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DISCRETIZATION ERROR CANCELLATION IN ELECTRONIC STRUCTURE
CALCULATION: TOWARD A QUANTITATIVE STUDY ∗, ∗∗
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Abstract. It is often claimed that error cancellation plays an essential role in quantum chemistry and
first-principle simulation for condensed matter physics and materials science. Indeed, while the energy
of a large, or even medium-size, molecular system cannot be estimated numerically within chemical
accuracy (typically 1 kcal/mol or 1 mHa), it is considered that the energy difference between two
configurations of the same system can be computed in practice within the desired accuracy. The purpose
of this paper is to initiate the quantitative study of discretization error cancellation. Discretization error
is the error component due to the fact that the model used in the calculation (e.g. Kohn−Sham LDA)
must be discretized in a finite basis set to be solved by a computer. We first report comprehensive
numerical simulations performed with Abinit [X. Gonze, B. Amadon, P.-M. Anglade et al., Comput.
Phys. Commun. 180 (2009) 2582–2615; X. Gonze, J.-M. Beuken, R. Caracas et al., Comput. Materials
Sci. 25 (2002) 478–492] on two simple chemical systems, the hydrogen molecule on the one hand, and
a system consisting of two oxygen atoms and four hydrogen atoms on the other hand. We observe
that errors on energy differences are indeed significantly smaller than errors on energies, but that
these two quantities asymptotically converge at the same rate when the energy cut-off goes to infinity.
We then analyze a simple one-dimensional periodic Schrödinger equation with Dirac potentials, for
which analytic solutions are available. This allows us to explain the discretization error cancellation
phenomenon on this test case with quantitative mathematical arguments.
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1. Introduction

Error control is a central issue in molecular simulation. The error between the computed value of a given
physical observable (e.g. the dissociation energy of a molecule) and the exact one, has several origins. First,
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there is always a discrepancy between the physical reality and the reference model, here the N -body Schrödinger
equation, possibly supplemented with Breit terms to account for relativistic effects. However, at least for the
chemical elements of the first three rows of the periodic table, this reference model is in excellent agreement with
experimental data, and can be considered as exact in most situations of interest. The overall error is therefore
the sum of the following components:

(1) the model error, that is the difference between the value of the observable for the reference model, which
is too complicated to solve in most cases, and the value obtained with the chosen approximate model (e.g.
the Kohn−Sham LDA model), assuming that the latter can be solved exactly;

(2) the discretization error, that is the difference between the value of the observable for the approximate model
and the value obtained with the chosen discretization of the approximate model. Indeed, the approximate
model is typically an infinite dimensional minimization problem, or a system of partial differential equations,
which must be discretized to be solvable by a computer, using e.g. a Gaussian atomic basis set, or a planewave
basis;

(3) the algorithmic error, which is the difference between the value of the observable obtained with the exact
solution of the discretized approximate model, and the value computed with the chosen algorithm. The
discretized approximate models are indeed never solved exactly; they are solved numerically by iterative
algorithms (e.g. SCF algorithms, Newton methods), which, in the best case scenario, only converge in the
limit of an infinite number of iterations. In practice, stopping criteria are used to exit the iteration loop
when the error at iteration k, measured in terms of differences between two consecutive iterates or, better,
by some norm of some residual, is below a prescribed threshold. If the stopping criterion is very tight, the
algorithmic error can become very small, . . . or not! For instance, if the discretized approximate model is
a non convex optimization problem, there is no guarantee that the numerical algorithm will converge to a
global minimum. It may converge to a local, non-global minimum, leading to a non-zero algorithmic error
even in the limit of an infinitely tight stopping criterion;

(4) the implementation error, which may, obviously, be due to bugs, but does not vanish in the absence of bugs,
because of round-off errors: in molecular simulation packages, most operations are implemented in double
precision, and the resulting round-off errors can accumulate, especially for very large systems;

(5) the computer error, due to random hardware failures (miswritten or misread bits). This component of the
error is usually negligible in today’s standard computations, but is expected to become critical in future
exascale architectures [24].

Quantifying these different sources of errors is an interesting purpose for two reasons. First, guaranteed estimates
on these five components of the error would allow one to supplement the computed value of the observable
returned by the numerical simulation with guaranteed error bars (certification of the result). Second, they would
allow one to choose the parameters of the simulation (approximate model, discretization parameters, algorithm
and stopping criteria, data structures, etc.) in an optimal way in order to minimize the computational effort
required to reach the target accuracy.

The construction of guaranteed error estimators for electronic structure calculation is a very challenging task.
Some progress has however been made in the last few years, regarding notably the discretization and algorithmic
errors for Kohn−Sham LDA calculations. A priori discretization error estimates have been constructed in [3]
for planewave basis sets, and then in [8] for more general variational discretization methods. A posteriori error
estimators of the discretization error have been proposed in [5,7,19]. A combined study of both the discretization
and algorithmic errors was published in [4] (see also [11]). We also refer to [9,10,17,22,23,25,26,30,31,33] and
references therein for other works on error analysis for electronic structure calculation.

In all the previous works on this topic we are aware of, the purpose was to estimate, for a given nuclear con-
figuration R of the system, the difference between the ground state energy ER (or another observable) obtained
with the continuous approximate model under consideration (e.g. Kohn−Sham LDA) and its discretized coun-
terpart denoted by ER,N , where N is the discretization parameter. The latter is typically the number of basis
functions in the basis set for local combination of atomic orbitals (LCAO) methods [18], the inverse fineness of
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the grid or the mesh for finite difference (FD) and finite element (FE) methods [16,28,29,34], the cut-off param-
eter in energy or momentum space for planewave (PW) discretization methods [12, 14, 21], or the inverse grid
spacing and the coarse and fine region multipliers for wavelet (WL) methods [27]. In variational approximation
methods (LCAO, FE, PW, and WL), the discretization error ER,N −ER is always nonnegative by construction.
In systematically improvable methods (FD, FE, PW, and WL), this quantity goes to zero when N goes to
infinity with a well-understood rate of convergence depending on the smoothness of the pseudopotential (see [3]
for the PW case). However, in most applications, the discretization parameters are not tight enough for the
discretization error to be lower than the target accuracy, which is typically of the order of 1 kcal/mol or 1 mHa
(recall that 1 mHa � 0.6275 kcal/mol � 27.2 meV, which corresponds to an equivalent temperature of about
316 K). It is often advocated that this is not an issue since the real quantity of interest is not the value of the
energy ER for a particular nuclear configuration R, but the energy difference ER1 −ER2 between two different
configurations R1 and R2. It is indeed expected that

|(ER1,N − ER2,N ) − (ER1 − ER2)| � |ER1,N − ER1 | + |ER2,N − ER2 |,

that is, the numerical error on the energy difference between the two configurations is much smaller than the
sum of the discretization errors on the energies of each configuration. This expected phenomenon goes by the
name of (discretization) error cancellation in the Physics and Chemistry literatures.

Obviously, for variational discretization methods, ERj ,N − ERj ≥ 0 so that both discretization errors have
the same sign, leading to

|(ER1,N − ER2,N) − (ER1 − ER2)| = |(ER1,N − ER1) − (ER2,N − ER2)|
≤ max (ER1,N − ER1 , ER2,N − ER2),

but this does not explain the magnitude of the error cancellation phenomenon. The commonly admitted qual-
itative argument usually raised to explain this phenomenon is that the errors ER1,N − ER1 and ER2,N − ER2

are of the same nature and almost annihilate one another.
The purpose of this article is to provide a quantitive analysis of discretization error cancellation for PW

discretization methods. First, we report in Section 2 two systematic numerical studies on, respectively, the
hydrogen molecule and a simple system consisting of six atoms. For these systems, we are able to perform very
accurate calculations with high PW cut-offs and tight convergence criteria, which provide excellent approxima-
tions of the ground state energy ER. We then compute, for two different configurations R1 and R2, the error
cancellation factor

0 ≤ QN :=
|(ER1,N − ER2,N) − (ER1 − ER2)|
|ER1,N − ER1 | + |ER2,N − ER2 |

≤ 1.

We observe that this ratio is indeed small (typically between 10−3 and 10−1 depending on the system and on
the configurations R1 and R2), and that it does not vary much with N . In Section 3, we introduce a toy model
consisting of seeking the ground state of a one-dimensional linear periodic Schrödinger equation with Dirac
potentials: (

− d2

dx2
−

∑
m∈Z

z1δm −
∑
m∈Z

z2δm+R

)
uR = ERuR,

∫ 1

0

u2
R(x)dx = 1,

for which we can prove that the error cancellation factor QN converges to a fixed number 0 < Q∞ < 1 when
N goes to infinity. Interestingly, it is possible to obtain a simple explicit expression of Q∞, which only depends
on z1, z2 and on uR1(0)2, uR2(0)2, uR1(R1)2, uR1(R2)2, i.e. on the values of the densities ρR1 = u2

R1
and

ρR1 = u2
R2

at the singularities of the potential.
An alternative way to estimate the error on the energy difference between two configurations R1 and R2 is to

integrate the error on the atomic forces on a smooth path linking R1 and R2. We conclude Section 2 by showing
that the latter approach is not efficient in general.
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2. Discretization error cancellation in planewave calculations

We present here some numerical simulations on two systems: the H2 molecule and a system consisting of
two oxygen atoms and four hydrogen atoms. The simulations are done in a cubic supercell of size 10×10×10
bohrs with the Abinit simulation package [14, 15]. The chosen approximate model is the periodic Kohn−Sham
LDA model [20] with the parametrization and the pseudopotential proposed in [13]. Note that, in this work,
we consider the approximation consisting of replacing the original problem set on the whole space R3 with a
problem set on a cubic supercell with periodic boundary conditions as a model error. Alternatively, this error
could be regarded as a discretization error: the supercell problem can indeed be seen as a non-consistent, non-
conforming approximation of the original problem set on the whole space (see [6], in which this point of view
was adopted to study the case of a local defect embedded in a perfect crystal).

For each configuration R, we compute a reference ground state energy ER taking a high energy cutoff
Ecut = 400 Ha. We then compute approximate energies for N = Ecut varying from 5 to 105 Ha by steps of
5 Ha. The so-obtained energies are denoted by ER,N .

For two given configurations R1 and R2 of the same system, we compute SN , the sum of the discretization
errors on the energies of the two configurations (note that ER,N−ER ≥ 0 since PW is a variational approximation
method), and DN , the discretization error on the energy difference:

SN = (ER1,N − ER1) + (ER2,N − ER2) and DN = |(ER1,N − ER2,N ) − (ER1 − ER2)| ,
as well as the error cancellation factor

QN =
DN

SN
=

|(ER1,N − ER2,N ) − (ER1 − ER2)|
(ER1,N − ER1) + (ER2,N − ER2)

·

The two chemical systems considered in this section are very simple. We can therefore safely assume that for
each configuration, our numerical simulations provide good approximations of the Kohn–Sham ground state.
Besides, very tight convergence criteria are used, so that algorithmic errors are negligible. Implementation and
computer errors are not expected to be significant in this context.

2.1. Ground state potential energy surface of the H2 molecule

In all our calculations, the H2 molecule lies on the x axis and is centered at the origin. The parameter R is
here the interatomic distance in bohrs.

We numerically observe that DN is smaller than SN by a factor of 10 to 100, and that the error cancellation
factor QN is smaller when the two interatomic distances are close to each other (R1 � R2). Morevoer, QN is
almost constant with respect to the cut-off energy N .

In Figure 1, we present detailed results for two different pairs of configurations. On the top, the configurations
are rather close since the interatomic distances are R1 = 1.464 and R2 = 1.524 bohr. For this approximate
model, the equilibrium distance is about Req � 1.464 bohrs (the experimental value is Rexp

eq � 1.401 bohrs).
The energy difference is better approximated by a factor of about 50 compared to the energies (QN � 0.02).
Moreover the log-log plots of SN and DN are almost parallel, which suggests that there is no improvement in
the order of convergence when considering energy differences instead of energies; only the prefactor is improved.
This is confirmed by the plots of the error cancellation factor QN , showing that this ratio does not vary
much with N . On the bottom, the configurations are further apart. The interatomic distances are R1 = 1.344
and R2 = 1.704 bohrs. We observe a similar behavior except that the error cancellation phenomenon is less
pronounced (QN � 0.1).

We then compare in Table 1 the values of SN and DN for different pairs of configurations and for two values
of N = Ecut: a rather coarse energy cut-off N = 30 Ha, and a quite fine one N = 100 Ha. One configuration
is kept fixed (R1 = 1.284 bohrs), while the second one varies from R2 = 1.344 bohrs (close configurations)
to R2 = 1.764 bohrs (distant configurations). We also report, for each pair of configurations, the minimum,
maximum, and mean values of QN over the different tested energy cutoffs 5 ≤ N ≤ 105 Ha. We also observe
that QN increases with R2 −R1 on the range R2 = [1.344, 1.764].
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Figure 1. Convergence plots of the quantities SN and DN (left) and of the error cancellation
factor QN = DN/SN (right) for two different pairs of interatomic distances for the H2 molecule.
Top: R1 = 1.464 and R2 = 1.524 bohrs. Bottom: R1 = 1.344 and R2 = 1.704 bohrs.

Table 1. Comparison of SN ,DN andQN for different atomic configurations of the H2 molecule.
Distances are in bohrs, energies in mHa.

R1 R2 SN=30 DN=30 SN=100 DM=100 min(QN) max(QN ) mean(QN)
1.284 1.344 9.410 0.1985 0.09157 0.00112 0.0103 0.0340 0.0212
1.284 1.404 9.268 0.3408 0.08990 0.00279 0.0216 0.0633 0.0413
1.284 1.464 9.160 0.4491 0.08772 0.00497 0.0375 0.0895 0.0610
1.284 1.524 9.065 0.5436 0.08552 0.00717 0.0544 0.1107 0.0802
1.284 1.584 8.969 0.6394 0.08380 0.00889 0.0713 0.1285 0.0985
1.284 1.644 8.863 0.7456 0.08274 0.00995 0.0841 0.1455 0.1151
1.284 1.704 8.744 0.8646 0.08213 0.01056 0.0983 0.1642 0.1302
1.284 1.764 8.615 0.9937 0.08154 0.01115 0.1072 0.1802 0.1440

2.2. Energy of a simple chemical reaction

In this section, we consider the energy difference between two very different configurations of a system
consisting of two oxygen atoms and four hydrogen atoms. The first configuration, denoted by R1, corresponds
to the chemical system 2 H2O (two water molecules) and the second one, denoted by R2, to the chemical system
2 H2 + O2, all these molecules being in their equilibrium geometry (see Fig. 2). The energy difference between
the two configurations thus provides a rough estimate of the energy of the chemical reaction

2 H2 + O2 −→ 2 H2O.
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Figure 2. Graphical representation of the two atomic configurations whose energies are com-
pared. Oxygen atoms are in green, hydrogen atoms in black.
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Figure 3. Convergence plots of the quantities SN and DN (left) and of the error cancellation
factor QN = DN/SN (right) for the two different configurations displayed on Figure 2.

Table 2. Comparison of SN , DN (in mHa) and QN for the two different configurations dis-
played on Figure 2.

SN=30 DN=30 SN=100 DN=100 min(QN) max(QN) mean(QN)
1403 5.726 15.12 0.0485 0.0005036 0.008986 0.004640

We can observe on Figure 3 and Table 2 a similar behavior as for H2, but with a better error cancellation
factor (QN � 0.005).

3. Mathematical analysis of a toy model

We now present a simple one-dimensional periodic linear Schrödinger model for which the discretization error
cancellation phenomenon observed in the previous section can be explained with full mathematical rigor.

We denote by
L2

per :=
{
u ∈ L2

loc(R) | u is 1 − periodic
}
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the vector space of the 1-periodic locally square integrable real-valued functions on R, and by

H1
per :=

{
u ∈ L2

per | u′ ∈ L2
per

}
the associated order-1 Sobolev space. For two given parameters z1, z2 > 0, we consider the family of problems,
indexed by R ∈ (0, 1), consisting in finding the ground state (uR, ER) ∈ H1

per × R of⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
− d2

dx2
−

∑
m∈Z

z1δm −
∑
m∈Z

z2δm+R

)
uR = ERuR,∫ 1

0

u2
R(x)dx = 1, uR ≥ 0,

(3.1)

where δa denotes the Dirac mass at point a ∈ R. A variational formulation of the problem is: find the ground
state (uR, ER) ∈ H1

per × R of⎧⎪⎪⎨⎪⎪⎩
∀v ∈ H1

per,

∫ 1

0

u′R(x)v′(x)dx − z1uR(0)v(0) − z2uR(R)v(R) = ER

∫ 1

0

uR(x)v(x)dx,∫ 1

0

u2
R(x)dx = 1, uR ≥ 0.

(3.2)

Remark 3.1. The ground state eigenvalue ER is negative. Indeed, using the variational characterization of the
ground state energy, we get

ER = min
v ∈ H1

per \ {0}

∫ 1

0

v′(x)2dx− z1v(0)2 − z2v(R)2∫ 1

0

v2(x)dx
< 0,

since the Rayleigh quotient is equal to −z1 − z2 < 0 for the constant test function v = 1.

Denoting by kR =
√−ER, we have{

uR(x) = AekRx +Be−kRx, ∀x ∈ [0, R],
uR(x) = CekRx +De−kRx, ∀x ∈ [R− 1, 0), (3.3)

where A, B, C, and D are real-valued constants. Since the function uR is 1-periodic and continu-
ous on R and its derivative satisfies the jump conditions u′R(m + 0) − u′R(m − 0) = −z1uR(m) and
u′R(m+R+ 0) − u′R(m+R− 0) = −z2uR(m+R) for all m ∈ Z, the coefficients A, B, C, D solve the lin-
ear system ⎛⎜⎜⎝

1 1 −1 −1
ekRR e−kRR −ekR(R−1) −e−kR(R−1)

kR + z1 −kR + z1 −kR kR

(kR − z2)ekRR −(kR + z2)e−kRR −kRekR(R−1) kRe−kR(R−1)

⎞⎟⎟⎠
︸ ︷︷ ︸

M(kR)

⎛⎜⎝A
B
C
D

⎞⎟⎠ =

⎛⎜⎝0
0
0
0

⎞⎟⎠ .

The wave vector kR is the lowest positive root of the function k 
→ det(M(k)). The coefficients (A,B,C,D) are
then uniquely determined by the normalization condition ‖uR‖L2

per
= 1 and the positivity of uR. Exact solutions

for two different values of the triplet of parameters (z1, z2, R) are plotted in Figure 4.
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Figure 4. Plot of the exact solutions of (3.1) for two sets of parameters.

An approximate solution of the problem is obtained using the PW discretization method. Denoting by

XN := Span

⎧⎨⎩vN (x) =
∑

k∈Z, |k|≤N

v̂ke2πikx

∣∣∣∣ v̂k ∈ C, v̂−k = v̂k

⎫⎬⎭ ⊂ H1
per,

the variational approximation of problem (3.2) in XN consists in computing the ground state (uR,N , ER,N ) ∈
XN × R of ⎧⎪⎪⎨⎪⎪⎩

∀vN ∈ XN ,

∫ 1

0

u′R,Nv
′
N − z1uR,N(0)vN (0) − z2uR,N(R)vN (R) = ER,N

∫ 1

0

uR,NvN ,∫ 1

0

u2
R,N = 1,

∫ 1

0

uR,N ≥ 0.
(3.4)

The conditions v̂−k = v̂k in the definition of XN is equivalent to imposing that the elements of XN are real-
valued functions. For convenience, the discretization parameter N here corresponds to the cut-off in momentum
space. As above, we consider the error cancellation factor

QN =
|(ER1,N − ER2,N) − (ER1 − ER2)|
(ER1,N − ER1) + (ER2,N − ER2)

(3.5)

associated with the pair of configurations (R1, R2).
Note that imposing the condition

∫ 1

0
uR,N ≥ 0, we ensure that the discrete eigenfunction uR,N will approxi-

mate the positive eigenfunction uR to the continuous problem (3.1) and not −uR.

Theorem 3.2 (Asymptotic expressions of the energy error and of the error cancellation factor). For all z1, z2 >
0 and R ∈ (0, 1), we have for all ε > 0,

ER,N − ER =
αR

N
− αR

2N2
+
β

(1)
R,N

N
+
γR

N
ηR,N + o

(
1

N3−ε

)
, (3.6)

where

αR :=
z2
1uR(0)2 + z2

2uR(R)2

2π2
, γR :=

z1z2uR(0)uR(R)
π2

, ηR,N := N
+∞∑

k=N+1

cos(2πkR)
k2

,

β
(1)
R,N :=

z2
1uR(0)(uR,N (0) − uR(0)) + z2

2uR(R)(uR,N (R) − uR(R))
2π2

·
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Figure 5. Plots of the function R 
→ αR for three sets of parameters (z1, z2).

In addition

|ηR,N | ≤ min

(
1,

2 + π3

8

| sin(πR)|N

)
,

and for all ε > 0, there exists Cε ∈ R+ such that

|β(1)
R,N | ≤ Cε

N1−ε
.

As a consequence, we have for all z1, z2 > 0 and all R1, R2 ∈ (0, 1),

lim
N→+∞

QN =
|αR1 − αR2 |
αR1 + αR2

=

∣∣z2
1

(
uR1(0)2 − uR2(0)2

)
+ z2

2

(
uR1(R1)2 − uR2(R2)2

)∣∣
z2
1(uR1(0)2 + uR2(0)2) + z2

2(uR1(R1)2 + uR2(R2)2)
· (3.7)

The proof of the above theorem is given in Appendix. We deduce from (3.6) that the discretization error
ER,N − ER on the energy of the configuration R is the sum of

(1) a leading term αRN
−1 of order 1 (in N−1);

(2) three terms −1/2αRN
−2, β(1)

R,NN
−1, and γRN

−1ηR,N which are roughly of order 2;
(3) higher order terms which are roughly of order 3 and above.

The leading term αRN
−1 has a very simple expression and the prefactor αR does not vary much with respect

to R (see Fig. 5). This explains the phenomenon of discretization error cancellation. Regarding the second order
corrections on ER,N − ER, we have observed numerically (see Fig. 6) that

• the terms − 1
2αRN

−2 and γRN
−1ηR,N are of about the same order of magnitude in absolute values, that

the former is always negative (since αR > 0), but that the latter can be either positive or negative, so that
the sum of these two contributions can be either significant or negligible;

• the term β
(1)
R,NN

−1 is smaller in absolute value than the other two terms, and seems to be always negative.
Our numerical calculations indeed show that uR,N (0) < uR(0) and uR,N (R) < uR(R), which is not very
surprising since the function uR has cusps at points x = 0 and x = R (see Fig. 4). These inequalities have
not been rigorously established though.

Finally, we observe on Figure 7 that QN converges to the asymptotic value Q∞ when N goes to infinity very
smoothly for large values of R, and with oscillations when R becomes close to zero. Moreover, QN −Q∞ is of
order N−2.

Remark 3.3. The 1D model studied in this section involves Dirac potentials, for which the exact solutions (3.3),
as well as the lowest-order terms of the discretization error (3.6), can be computed explicitly. It would have
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Figure 6. Convergence plots of the four quantities αR

N , αR

2N2 ,
|β(1)

R,N |
N , and γR

N |ηR,N | (left) and

plots of
|( αR

N − αR
2N2 +

β
(1)
R,N
N +

γR
N ηR,N )−(ER,N−ER)|

ER,N−ER
and |αR

N −(ER,N−ER)|
ER,N−ER

(right). Top: z1 = z2 =
1, R = 0.3. Bottom: z1 = z2 = 1, R = 0.09.
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Figure 7. Plot of QN −Q∞ for three values of R.

been possible to use more regular potentials with explicit solutions, such as piecewise constant potentials for
instance. However, the calculations would have been more tedious than for the Dirac case, and we anticipate
that, qualitatively, the results would have been similar. Loosely speaking, the faster convergence of the energy
difference originates from the fact that the leading term of the error depends on the nuclear configuration, but
not that much. This explains why the convergence rate is not improved, while the prefactor is improved. For
smoother potentials, as well as for pseudopotentials, it is expected that most of the error on the energy remains
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Figure 8. Colorplots of the functions defined in (3.8). The forces were computed with centered
finite difference with step size 10−6 and the integrals with Simpson’s rule with step length 10−2,
chosen equal to the resolution of the figure.
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Figure 9. Convergence of the errors on the energy (in red) and on the forces (in blue).

concentrated in the vicinities of the core regions, where, for different nuclear configurations, the electronic
orbitals change, but not much.

Remark 3.4. Note that a variant of the projected augmented wave (PAW) method [2] was recently studied for
the 1D model considered here [1]: it is shown that the error on the energy has two contributions, the first one
scaling as r4N0

c N−1, and the second one as r−p
c N−(p+1), where rc is the core radius, N0 the number of pseudo-

orbitals, p the degree of the (polynomial) pseudo-orbitals in the core region, and N the number of planewaves.
However, it is not clear how to use the estimates in [1] to obtain estimates on energy differences. We intend to
investigate this point in the future.

To conclude, let us comment on the alternative approach to estimate the error on the energy difference
between two configurations consisting in integrating the error on the atomic forces along a path in the nuclear
configuration space liking the two configurations. In this simple 1D setting, we have, for R1 < R2,

|(ER1,N − ER2,N ) − (ER1 − ER2)| =

∣∣∣∣∣
∫ R2

R1

(FR,N − FR) dR

∣∣∣∣∣ , where FN,R := −dER,N

dR
and FR := −dER

dR
·
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Figure 10. Plots of the functions R 
→ dER,N

dR − dER,N

dR and R 
→ dχR,N

dR , and of the derivative of
each of the four components of χR,N , for N = 10 (top) and N = 100 (bottom). The derivatives
were computed numerically by centered finite differences with step size 10−6.

The use of a variational method guaranties that the energy error ER,N − ER is nonnegative for all N and all
R. On the other hand, the error on the force FR,N − FR does not have a constant sign (it integrates to zero on
the interval [0, 1]), so that, in general,

|(ER1,N − ER2,N ) − (ER1 − ER2)| =

∣∣∣∣∣
∫ R2

R1

(FR,N − FR) dR

∣∣∣∣∣ ≤
∫ R2

R1

|FR,N − FR|dR.

The left hand-side of the above inequality can a priori be much smaller than the right hand-side. In this case,
using bounds on the error on the forces would lead to a dramatic overestimation of the error on the energy
difference. This is confirmed by our numerical simulations. The functions

(R1, R2) 
→
∣∣∣∣∣
∫ R2

R1

(FR,N − FR) dR

∣∣∣∣∣ and (R1, R2) 
→
∫ R2

R1

|FR,N − FR| dR, (3.8)

plotted in Figure 8, are very different and the latter one is not a good approximation of the former one. Another
interesting observation is the following. Numerical simulations show that the forces converge at the same rate
as the energy, i.e. in 1/N (see Fig. 9), and that, for each value of N in the range [10, 100], the derivatives of the
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functions

R 
→ ER,N − ER and R 
→ χR,N :=
αR

N
− αR

2N2
+
β

(1)
R,N

N
+
γR

N
ηR,N

agree up to very small correction terms. Nevertheless, the derivative of the fourth term in χR,N (i.e. of
γRηR,NN

−1) can be much larger than the derivative of the first term (i.e. of αRN
−1). The leading term of

the error on the force is therefore not in general (minus) the derivative of the leading term of the energy error.
In Figure 10, the above functions are plotted for N = 10 (top) and N = 100 (bottom).

Appendix A: Proof of Theorem 3.2

In the sequel, z1 and z2 are fixed positive real numbers. We endow the functional spaces L2
per and H1

per with
their usual scalar products

〈u|v〉L2
per

:=
∫ 1

0

u(x)v(x) dx and 〈u|v〉H1
per

:= 〈u|v〉L2
per

+ 〈u′|v′〉L2
per
.

More generally, we endow the Sobolev space

Hs
per :=

{
v(x) =

∑
k∈Z

v̂ke2iπkx

∣∣∣∣ v̂k ∈ C, v̂−k = v̂k,
∑
k∈Z

(1 + (2πk)2)s|v̂k|2 <∞
}
,

s ∈ R, with the scalar product defined by

〈u|v〉Hs
per

:=
∑
k∈Z

(1 + (2πk)2)s ûk v̂k.

Note that the above two definitions of 〈u|v〉H1
per

coincide and that H0
per = L2

per. We also denote by ΠN the
orthogonal projection on XN for the L2

per (and also Hs
per) scalar product and by Π⊥

N = 1 −ΠN .
We first recall some useful results on the convergence of (uR,N , ER,N ) to (uR, ER).

Lemma A.1. Let R ∈ (0, 1). Let (uR, ER) be the ground state of the continuous problem (3.2), and
(uN,R, ER,N ) be a ground state of the discretized problem (3.4). Then, for all ε > 0 and all 0 ≤ s < 3/2,
there exists Cs,ε ∈ R+ such that

‖uR,N − uR‖Hs
per

≤ Cs,ε

N3/2−s−ε
· (A.1)

In addition, there exist 0 < c ≤ C <∞ such that

c‖uR,N − uR‖2
H1

per
≤ ER,N − ER ≤ C‖uR,N − uR‖2

H1
per
, (A.2)

and for all ε > 0, there exists Cε ∈ R+ such that

|uR,N (0) − uR(0)| + |uR,N(R) − uR(R)| ≤ Cε

N1−ε
· (A.3)

Proof. We denote by C0
per the space of continuous 1-periodic functions from R to R endowed with the norm

defined by
∀u ∈ C0

per, ‖u‖C0
per

:= max
x∈R

|u(x)|.

Recall that Hs
per is continuously embedded in C0

per for all s > 1/2. In particular, H1
per ↪→ C0

per and there exists
K ∈ R+ such that

∀u ∈ H1
per, ‖u‖C0

per
≤ K‖u‖

H
3/4
per

≤ K‖u‖3/4
H1

per
‖u‖1/4

L2
per
. (A.4)
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In particular, the bilinear form

∀(u, v) ∈ H1
per ×H1

per, aR(u, v) =
∫ 1

0

u′v′ − z1u(0)v(0) − z2u(R)v(R)

is well-defined, symmetric, and continuous on H1
per ×H1

per, and we have

∀u ∈ H1
per, aR(u, u) ≥ ‖u‖2

H1
per

− (z1 + z2)K2‖u‖3/2
H1

per
‖u‖1/2

L2
per

− ‖u‖2
L2

per

≥ 1
2
‖u‖2

H1
per

−
(

1 +
27
32

(z1 + z2)4K8

)
‖u‖2

L2
per
,

using Young’s inequality. The quadratic form H1
per � u 
→ aR(u, u) ∈ R therefore is bounded below and closed.

We denote by HR the unique self-adjoint operator on L2
per associated to aR(·, ·) (see e.g. [32], Thm. VIII.15).

Formally,

HR = − d2

dx2
− z1

∑
m∈Z

δm − z2
∑
m∈Z

δm+R.

The domain of HR being a subspace of H1
per, which is itself compactly embedded in L2

per, the spectrum of HR

is purely discrete: it consists of an increasing sequence of eigenvalues of finite multiplicities going to +∞. It is
easily seen that its ground state eigenvalue ER is simple. Let us denote by μR > 0 the gap between the lowest
two eigenvalues of HR. A classical calculation shows that

ER,N − ER = aR(uR,N − uR, uR,N − uR) − ER‖uR,N − uR‖2
L2

per

= 〈uR,N |HR|uR,N〉 − ER.

First, since ER < 0, we have

ER,N − ER ≤ aR(uR,N − uR, uR,N − uR) ≤MR‖uR,N − uR‖2
H1

per
,

whereMR is the continuity constant of aR, which proves the second inequality in (A.2). Second, since ‖uR‖L2
per

=
‖uR,N‖L2

per
= 1, we have on the one hand

ER,N − ER = 〈uR,N |HR|uR,N 〉 − ER ≥
(
ER|〈uR,N |uR〉L2

per
|2 + (ER + μR)

(
1 − |〈uR,N |uR〉L2

per
|2
))

− ER

= μR

(
1 − |〈uR,N |uR〉L2

per
|2
)
≥ μR

(
1 − 〈uR,N |uR〉L2

per

)
=
μR

2
‖uR,N − uR‖2

L2
per
,

and, on the other hand,

ER,N − ER ≥ 1
2
‖uR,N − uR‖2

H1
per

−
(

1 +
27
32

(z1 + z2)4K8 + ER

)
‖uR,N − uR‖2

L2
per
.

Combining the above two inequalities yields the first inequality in (A.2). Hence, (A.2) is proved.
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We deduce from the min-max principle that for each vN ∈ XN such that ‖vN‖L2
per

= 1, we have

ER,N − ER ≤ aR(vN , vN ) − ER = aR(vN − uR, vN − uR) − ER‖vN − uR‖2
L2

per

≤ (MR − ER) ‖vN − uR‖2
H1

per
.

Since z1
∑

m∈Z
δm + z2

∑
m∈Z

δm+R ∈ H
−1/2−ε
per for all ε > 0, we have that uR ∈ H

3/2−ε
per . Applying the above

estimate to vN = ‖ΠNuR‖−1
L2

per
ΠNuR, we get ER,N − ER ≤ Cε

N1−ε . Combining with (A.2), we obtain (A.1) for

s = 1. Together with (A.4), this implies in addition that (uR,N )N∈N converges to uR in C0
per. Since

−u′′R,N = z1uR,N (0)ΠN

(∑
k∈Z

δm

)
+ z2uR,N (R)ΠN

(∑
k∈Z

δm+R

)
+ ER,NuR,N ,

and the right hand-side converges to −u′′R in H
−1/2−ε
per for all ε > 0, the sequence (uR,N )N∈N converges to uR

in H
3/2−ε
per for all ε > 0. By interpolation, we then obtain (A.1) for all 1 ≤ s < 3/2. We finally obtain (A.1) for

s = 0 by a classical Aubin–Nitsche argument, and we conclude by interpolation that the result also holds true
for all 0 ≤ s < 1.

To prove (A.3), we infer from the Sobolev embedding H1/2+ε
per ↪→ C0

per, that

|uR,N (0) − uR(0)| + |uR,N (R) − uR(R)| ≤ 2‖uR,N − uR‖C0
per

≤ 2C′
ε‖uR,N − uR‖H

1/2+ε
per

,

and we conclude using (A.1) with s = 1/2 + ε. �

The following lemma provides an expression of the leading term of the energy difference ER,N − ER.

Lemma A.2. Let z1, z2 > 0. Let R ∈ (0, 1). Let (uR, ER) be the ground state of the continuous problem (3.2),
and (uR,N , ER,N ) be a ground state of the discretized problem (3.4). Then, for all ε > 0,

ER,N − ER = z1uR,N(0)(Π⊥
NuR)(0) + z2uR,N (R)(Π⊥

NuR)(R) + o

(
1

N3−ε

)
, (A.5)

when N goes to +∞.

Proof. The variational formulation (3.2) with v = uR,N gives

ER

∫ 1

0

uR,NuR =
∫ 1

0

u′R,Nu
′
R − z1uR,N(0)uR(0) − z2uR,N(R)uR(R).

The variational formulation (3.4) with vN = ΠNuR gives

ER,N

∫ 1

0

uR,N (ΠNuR) =
∫ 1

0

u′R,N(ΠNuR)′ − z1uR,N(0)(ΠNuR)(0) − z2uR,N (R)(ΠNuR)(R).

Subtracting these two equalities, and noting first that
∫ 1

0

uR,N(ΠNuR) =
∫ 1

0

uR,NuR, and second that∫ 1

0

u′R,N(ΠNuR)′ =
∫ 1

0

u′R,Nu
′
R, since uR,N ∈ XN and the orthogonal projection ΠN and the derivation

commute, we get

(ER,N − ER)
∫ 1

0

uR,NuR = z1uR,N (0)(Π⊥
NuR)(0) + z2uR,N(R)(Π⊥

NuR)(R).
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Moreover, since
∫ 1

0

u2
R =

∫ 1

0

u2
R,N = 1, we have

∫ 1

0

uR,NuR = 1 − 1
2

∫
u2

R − 1
2

∫ 1

0

uR,N
2 +

∫ 1

0

uR,NuR = 1 − 1
2
‖uR,N − uR‖2

L2
per
.

Hence,

(ER,N − ER)
(

1 − 1
2
‖uR,N − uR‖2

L2
per

)
= z1uR,N(0)(Π⊥

NuR)(0) + z2uR,N (R)(Π⊥
NuR)(R).

Using estimates (A.1) for s = 0 and (A.2), we obtain that for all ε > 0,

1 − 1
2
‖uR,N − uR‖2

L2
per

= 1 + o

(
1

N3−ε

)
, when N → +∞.

This concludes the proof of Lemma A.2. �

The following lemma provides an explicit expression of the quantities (Π⊥
NuR)(0) and (Π⊥

NuR)(R) appearing
in (A.5).

Lemma A.3. Let z1, z2 > 0. For all R ∈ (0, 1), all N ∈ N, and all x ∈ R,

(Π⊥
NuR)(x) =

+∞∑
k=N+1

2
k2

R + 4π2k2
(z1uR(0) cos(2πkx) + z2uR(R) cos(2πk(x−R))) . (A.6)

Proof. In order to estimate (Π⊥
NuR)(x), we first need to compute the Fourier coefficients of uR

∀k ∈ Z, ûR(k) :=
∫ 1

0

uR(x)e−2iπkx dx. (A.7)

Using the periodicity of uR, we can rewrite the first equation in (3.1) as

−u′′R − z1uR(0)

(∑
m∈Z

δm

)
− z2uR(R)

(∑
m∈Z

δm+R

)
= ERuR.

Taking the Fourier transform, and using the relation ER = −k2
R, we obtain

4π2k2ûR(k) − z1uR(0) − z2uR(R)e−2iπkR = −k2
RûR(k).

Hence, for all k ∈ Z,

ûR(k) =
1

k2
R + 4π2k2

(
z1uR(0) + z2uR(R)e−2iπkR

)
. (A.8)

Consequently,

(Π⊥
NuR)(x) =

∑
k∈Z, |k|>N

ûR(k)e2iπkx =
∑

k∈Z, |k|>N

1
k2

R + 4π2k2

(
z1uR(0) + z2uR(R)e−2iπkR

)
e2iπkx

=
+∞∑

k=N+1

2
k2

R + 4π2k2
(z1uR(0) cos(2πkx) + z2uR(R) cos(2πk(x−R))),

which completes the proof of Lemma A.3. �

The last technical lemma we need provides an estimates of the series in (A.6) for x = 0 and x = R.
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Lemma A.4. Let R � R 
→ kR ∈ R be a positive bounded function and M = supR∈R k
2
R. We denote by

fN (R) :=
+∞∑

k=N+1

1
k2

R + 4π2k2
and gN (R) :=

+∞∑
k=N+1

cos(2πkR)
k2

R + 4π2k2
·

For all R ∈ R \ Z we have

fN(R) =
1

4π2N
aN + φN (R), with aN = N

+∞∑
k=N+1

1
k2
, |φN (R)| ≤ M

48π4N3
, (A.9)

and

gN (R) =
1

4π2N
ηN,R + ψN (R), with ηN,R = N

+∞∑
k=N+1

cos(2πkR)
k2

, |ψN (R)| ≤ M

48π4N3
· (A.10)

Besides,

aN = 1 +
1

2N
+O

(
1
N2

)
and |ηN,R| ≤ min

(
1,

2 + π3

8

| sin(πR)|N

)
· (A.11)

Proof. The function fN can be decomposed as

fN(R) =
1

4π2N
aN + φN (R),

where

φN (R) = fN (R) − 1
4π2N

aN = − k2
R

4π2

+∞∑
k=N+1

1
k2(k2

R + 4π2k2)
·

We have on the one hand

aN = 1 +N

+∞∑
k=N+1

(
1
k2

−
∫ k

k−1

dt
t2

)
= 1 +N

+∞∑
k=N+1

1
k2

∫ 1

0

(
1 −

(
1 − s

k

)−2
)

ds = 1 +
1

2N
+O

(
1
N2

)
,

and on the other hand, by a sum-integral comparison,

|φN (R)| ≤ M

4π2

+∞∑
k=N+1

1
4π2k4

≤ M

48π4N3
·

Thus, (A.9) and the first statement of (A.11) are proved. For N ∈ N and R ∈ R, we set

hN (R) :=
+∞∑

k=N+1

cos(2πkR)
4π2k2

=
1

4π2N
ηR,N .

We have

|ψN (R)| = |gN(R) − hN (R)| =

∣∣∣∣∣−
+∞∑

k=N+1

k2
R cos(2πkR)

4π2k2(k2
R + 4π2k2)

∣∣∣∣∣ ≤M

+∞∑
k=N+1

1
16π4k4

≤ M

48π4N3
·
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Taking the second derivative of hN in the distribution sense and using Poisson summation formula, we obtain

h′′N (R) =
d2

dR2

(
+∞∑

k=N+1

e2iπkR + e−2iπkR

8π2k2

)
= −1

2

⎛⎝ ∑
k∈Z | |k|>N

e2iπkR

⎞⎠
= −1

2

(∑
k∈Z

e2iπkR −
N∑

k=−N

e2iπkR

)
= −1

2

∑
m∈Z

δm(R) +
1
2

sin ((2N + 1)πR)
sin(πR)

·

Therefore, hN is smooth on R \Z. Since it is 1-periodic, it suffices to study it on the open interval (0, 1). Since
hN

(
1
2 + t

)
= hN

(
1
2 − t

)
for all |t| < 1

2 , we have h′N
(

1
2

)
= 0, so that for all R ∈ (0, 1), and using Taylor formula

with integral remainder, we get

hN (R) = hN

(
1
2

)
+

∫ R

1
2

(R− t)h′′N (t) dt = hN

(
1
2

)
+

1
2

∫ R

1
2

(R− t)
sin ((2N + 1)πt)

sin(πt)
dt

= hN

(
1
2

)
+

1
2(2N + 1)2π2

(
(−1)N − sin ((2N + 1)πR)

sin(πR)

)
− 1

2(2N + 1)2π2

∫ R

1
2

(
2π

cos(πt)
sin(πt)

+
(R− t)π2(1 + cos2(πt))

sin2(πt)

)
sin ((2N + 1)πt)

sin(πt)
dt.

Since ∣∣∣∣hN

(
1
2

)∣∣∣∣ =

∣∣∣∣∣
+∞∑

k=N+1

(−1)k

4π2k2

∣∣∣∣∣ ≤ 1
4π2(N + 1)2

≤ 1
4π2N2

,

and since, for all R ∈ (0, 1/2),∣∣∣∣ 1
2(2N + 1)2π2

(
(−1)N − sin ((2N + 1)πR)

sin(πR)

)∣∣∣∣ ≤ 1
8π2N2

(
1 +

1
sin(πR)

)
≤ 1

4π2N2 sin(πR)
,

∣∣∣∣∣
∫ R

1
2

2π
cos(πt)
sin(πt)

sin ((2N + 1)πt)
sin(πt)

dt

∣∣∣∣∣ ≤ 2π
∫ 1

2

R

cos(πt)
sin2(πt)

dt = 2
(

1
sin(πR)

− 1
)
,

and, using the inequalities 2t < sin(πt) < πt for all 0 < t < 1
2 ,∣∣∣∣∣

∫ R

1
2

(R− t)π2(1 + cos2(πt))
sin2(πt)

sin ((2N + 1)πt)
sin(πt)

dt

∣∣∣∣∣ ≤ 2π2

∫ 1
2

R

t−R

sin3(πt)
dt ≤ π2

∫ 1
2

R

2t
sin3(πt)

dt

≤ π2

4

∫ 1
2

R

1
t2

dt ≤ π2

4R
≤ π3

4 sin(πR)
,

we finally get

|ηN,R| =
∣∣4π2NhN (R)

∣∣ ≤ 1
N

+
1

N sin(πR)
+

1
N

(
1

sin(πR)
− 1

)
+

π3

8 sin(πR)N

=
(

2 +
π3

8

)
1

sin(πR)N
,

which concludes the proof. �

We are now ready to prove Theorem 3.2.
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Proof of Theorem 3.2. Combining Lemmata A.1, A.2, A.3 and A.4, we get that for any R ∈ (0, 1),

ER,N − ER = z1uR,N (0)(Π⊥
NuR)(0) + z2uR,N(R)(Π⊥

NuR)(R) + o

(
1

N3−ε

)
(Lem. A.2)

= z1uR,N (0) (2z1uR(0)fN (R) + 2z2uR(R)gN (R))

+ z2uR,N (R) (2z2uR(R)fN (R) + 2z1uR(0)gN (R)) + o

(
1

N3−ε

)
(Lem. A.3)

=
(
2z2

1uR,N(0)uR(0) + 2z2
2uR,N(R)uR(R)

)
fN(R)

+ 2z1z2 (uR,N(0)uR(R) + uR,N (R)uR(0)) gN (R) + o

(
1

N3−ε

)
=

(
2z2

1uR,N(0)uR(0) + 2z2
2uR,N(R)uR(R)

) 1
4π2N

aN

+ 2z1z2 (uR,N(0)uR(R) + uR,N (R)uR(0))
1

4π2N
ηR,N + o

(
1

N3−ε

)
(Lem. A.4)

=
αR

N
aN +

β
(1)
R,N

N
aN +

γR

N2
ηR,N + o

(
1

N3−ε

)
,

where we have used the bounds (A.3) and (A.11) to obtain the last equality. The proof of (3.7) easily follows. �
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T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Ler-
oux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
M. Torrent, M.J. Verstraete, G. Zerah and J.W. Zwanziger, ABINIT: First-principles approach to material and nanosystem
properties. Comput. Phys. Commun. 180 (2009) 2582–2615.

[15] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet,
M. Torrent, A. Roy, M. Mikami, Ph Ghosez, J.-Y. Raty and D.C. Allan, First-principles computation of material properties:
the ABINIT software project. Comput. Materials Sci. 25 (2002) 478–492.
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