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ADAPTIVE APPROXIMATION OF THE MONGE–KANTOROVICH PROBLEM
VIA PRIMAL-DUAL GAP ESTIMATES
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Abstract. The Monge–Kantorovich problem arises as a special case for linear cost functionals in
optimal transportation problems. It leads to a convex minimization problem with limited regularity
properties. The convergent finite element discretization and iterative solution of the problem and its
dual are addressed. Based on these approximations a computable upper bound for the primal-dual
gap is derived which is suitable for efficient local mesh refinement. Numerical experiments reveal a
significant improvement of related adaptive methods.
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1. Introduction

1.1. Optimal mass transfer

Optimal mass transfer is a classical mathematical problem that models the optimal transmission of a Radon
measure into another one. It defines the Wasserstein distance which is an important tool in geometry, stochas-
tics, and partial differential equations, with applications in economics, image processing, and data analysis,
cf . [7, 12–14] and references therein. The general mathematical problem is a continuous linear program. Since
this general form provides little information about qualitative properties of the mass transfer and since dis-
cretizations are high-dimensional, reduced models for special cost functions have been identified in the literature.
Important cases are linear and quadratic cost functions which postulate that transport costs are proportional
to distance and squared distance, respectively. The quadratic case leads to the Monge–Ampère equation which
is a nonlinear elliptic partial differential equation. The linear case results in the Monge–Kantorovich problem
which is a constrained nonsmooth, convex minimization problem. For this problem we address the convergent
discretization, the iterative solution for the problem and its dual, and adaptive mesh refinement strategies based
on an a posteriori error estimate for the primal-dual gap.

1.2. Cost functional and relaxation

The optimal mass transfer problem due to Monge models the available and required amounts of mass by
nonnegative Radon measures μ+ and μ− on metric spaces X and Y , respectively. An admissible transport map
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is a bijective mapping s : X → Y which pushes μ+ into μ− in the sense that∫
X

ψ ◦ s dμ+ =
∫
Y

ψ dμ−

for all ψ ∈ C(Y ) denoted s#μ
+ = μ−. The total cost associated with a transport map is defined via a cost

function c : X × Y → R as

I(s) =
∫
X

c(x, s(x)) dμ+(x).

Establishing the existence of an optimal admissible transport map is difficult due to the nonlinear character of the
constraint. Kantorovich proposed to use transport plans which are nonnegative Radon measures μ ∈ M(X×Y )
on the product space X × Y and to relax I by considering

Ĩ(μ) =
∫∫

X×Y
c(x, y) dμ(x, y)

subject to the constraint that the projections of μ onto X and Y coincide with μ+ and μ− in the sense that∫∫
X×Y

φ(x) dμ(x, y) =
∫
X

φ(x) dμ+(x),∫∫
X×Y

ψ(y) dμ(x, y) =
∫
Y

ψ(y) dμ−(x),

for all φ ∈ C(X) and ψ ∈ C(Y ), respectively. This formulation admits solutions and is consistent with the
original formulation. By imposing the constraints via Lagrange multipliers, i.e., via a maximization of the
residuals over φ and ψ, in the minimization of Ĩ, and carrying out standard duality arguments, one obtains the
dual formulation that consists in the maximization of

K(φ, ψ) =
∫
X

φ(x) dμ+(x) +
∫
Y

ψ(y) dμ−(y)

subject to the constraint
φ(x) + ψ(y) ≤ c(x, y).

The functions φ and ψ have the interpretation of shipping costs per unit mass for the producer and the recipient
of goods. Since μ± are nonnegative we may, for given x and y, formally increase the objective by modifying ψ
maximally so that we have equality in the constraint. In particular, if X = Y = Ω and c satisfies the triangle
inequality we find that for x ∈ Ω we have

ψ(x) = −φ(x).

Assuming further that the Radon measures μ± are absolutely continuous with respect to Lebesgue measure
with nonnegative densities f± and setting f = f+ − f−, we obtain the reduced functional

K(φ) =
∫
Ω

fφdx

with the constraint
φ(x) − φ(y) ≤ c(x, y)

for all x, y ∈ Ω. In the case of the euclidean distance as cost function this means that φ is Lipschitz continuous
with constant 1. We refer to this case as the Monge–Kantorovich problem. For details of the derivation we refer
the reader to [7, 14].
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1.3. Monge–Kantorovich problem

Given f ∈ L1(Ω) with vanishing mean we seek a function φ ∈ W 1,∞(Ω) which is maximal for

K(φ) =
∫
Ω

fφdx− IK1(0)(∇φ),

where IK1(0) is the indicator functional of the closed unit ball inK1(0) ⊂ L∞(Ω; Rd). Standard duality arguments
lead to the dual formulation which determines a minimizing vector field p ∈ L1(Ω; Rd), whose distributional
divergence belongs to L1(Ω) and whose normal trace on the boundary vanishes in distributional sense denoted
W 1
N (div;Ω), for

D(p) = I{−f}(div p) +
∫
Ω

|p| dx

with the indicator functional I{−f} of the subset {−f} ⊂ L1(Ω). We remark that establishing the existence of
a maximizer for K is straightforward while it is not trivial to show that a minimizer for D exists. Nevertheless,
we have the strong duality relation, cf. [7, 10, 14],

max
φ∈W 1,∞(Ω)

K(φ) = inf
p∈W 1

N (div;Ω)
D(p). (1.1)

Since neither K nor D admits uniform convexity properties we will instead of error estimates for φ and p
consider the approximation of the optimal cost value and in particular the primal-dual gap as a measure for the
accuracy of approximations. The convergence of discretizations of the dual formulation has been investigated
in [6].

1.4. Error estimation and convergence

The Monge–Kantorovich problem has the interpretation of an infinity Laplace equation with limited regularity
of solutions, cf. [1,11]. Approximation schemes can thus greatly benefit from local mesh-refinement. We follow
here a well-known concept and use the primal-dual gap to control the approximation of the primal cost, i.e., for
a solution φ ∈ W 1,∞(Ω), an approximation φh ∈W 1,∞(Ω), and an arbitrary vector ph ∈ W 1

N (div;Ω) we have

0 ≤ K(φ) −K(φh) ≤ D(ph) −K(φh).

Following the arguments from [2, 3] and assuming that φh and ph are such that D and K are finite, i.e.,
− div ph = f and ‖∇φh‖L∞(Ω) ≤ 1, we deduce with an integration by parts that

0 ≤ K(φ) −K(φh) ≤
∫
Ω

|ph| − ph · ∇φh dx.

The integrand on the right-hand side is nonnegative and serves as a useful indicator for local mesh-refinement.
To choose discrete spaces for the approximation of the primal and dual problem with suitable approximation
properties, we carry out corresponding a priori error analyses. These reveal that for low order conforming P1
finite elements we obtain a quadratic consistency error in the primal cost functional while for the choice of lowest
order W 1

N (div;Ω) conforming spaces in discretizing the dual problem we only obtain linear consistency. Hence,
a second-order consistent subspace of W 1

N (div;Ω) has to be chosen in order to benefit from adaptive mesh
refinement. We will rigorously analyze fully practical discretizations of K and D which involves incorporating
stabilizing terms that are necessary for terminating iterative numerical schemes. A different approach to local
mesh-refinement has been used in [6], where refinement indicators are defined via variations of ph.
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1.5. Iterative solution

The iterative solution of the primal and the dual formulation of the Monge–Kantorovich problem is difficult
since a constraint on the gradient of the unknown and a nondifferentiable term, respectively, have to be treated
appropriately. Since the constraint and the nondifferentiability pose no difficulties when considered pointwise
we introduce auxiliary variables that result in augmented Lagrange functionals. Corresponding saddle points
will be computed with splitting methods that are unconditionally convergent. Two major difficulties that arise
in their practical realization are that degrees of freedom in subspaces of W 1

N (div;Ω) are typically not nodal
values and that nonuniqueness of solutions causes problems in formulating efficient stopping criteria. We will
therefore introduce appropriate quadrature or mass lumping and consider optional regularizing terms that do
not modify the essential features of the problem. The use of augmented Lagrange functionals is motivated by
the results in [5] which reports good performance of the splitting method for the primal problem.

1.6. Outline

The outline of this article is as follows. In Section 2 we introduce some notation and required finite element
spaces. Section 3 provides abstract a priori and a posteriori error estimates for the primal and dual problem
along with their application to specific finite element methods. In Section 4 we address the reliable iterative
solution of the maximization and minimization problems via regularization and iterative splitting. The influence
of regularizing terms and convergence of adaptively generated approximations are studied in Section 5. Section 6
reports various numerical experiments which show that adaptivity based on our primal-dual gap estimator leads
quasi-optimal experimental convergence rates. In Appendix A we include a convergence proof for the employed
splitting method.

2. Preliminaries

2.1. Lebesgue and Sobolev spaces

Throughout this article we let Ω ⊂ R
d, 1 ≤ d ≤ 3, be a polyhedral Lipschitz domain with finite diameter

dΩ > 0 and denote the inner product and corresponding norm in L2(Ω; R�), � ∈ N, by

(v, w) =
∫
Ω

v · w dx, ‖v‖ = (v, v)1/2.

We let W s,p(Ω; R�) denote the standard Sobolev space with norm and seminorm denoted by ‖v‖W s,p(Ω) and
|v|W s,p(Ω), respectively. If s = 0 then we write Lp(Ω; R�) instead of W s,p(Ω; R�). The set of functions f ∈ Lr(Ω)
with vanishing mean, i.e., ∫

Ω

f dx = 0

is denoted by Lr0(Ω).

2.2. Standard finite element spaces

For a sequence of regular triangulations (Th)h>0 of Ω consisting of regular simplices we let

Lk(Th) = {vh ∈ L1(Ω) : vh|T ∈ Pk(T ) for all T ∈ Th},
Sk(Th) = {vh ∈ C(Ω) : vh|T ∈ Pk(T ) for all T ∈ Th},

where Pk(A) denotes the set of polynomials of total degree at most k on the set A ⊂ R
d. We let

Πk
h : L1(Ω; R�) → Lk(Th)�



ADAPTIVITY FOR THE MONGE–KANTOROVICH PROBLEM 2241

denote the L2 projection onto Lk(Th)�. The space C(Th) consists of all functions in L∞(Ω) that are continuous
on every element T ∈ Th. The elementwise application of the nodal interpolation operator to an elementwise
continuous function is denoted by the operator

Îh : C(Th) → L1(Th),

which can be identified with the standard nodal interpolation operator Ih : C(Ω) → S1(Th) on continuous
functions. With the8 set of nodes Nh and the associated nodal basis (ϕz : z ∈ Nh) of S1(Th) we have for all
T ∈ Th that

Îhv|T =
∑

z∈Nh∩T
v|T (z)ϕz|T .

We define a discrete inner product on C(Th) by

(v, w)h =
∫
Ω

Îh(vw) dx =
∑
T∈Th

∑
z∈Nh∩T

βTz v|T (z)w|T (z), βTz =
∫
T

ϕz dx.

Note that the induced norm ‖ · ‖h is equivalent to the L2 norm on L1(Th). We define the mesh-size function
hT ∈ L∞(Ω) by

hT |T = hT = diam(T ),

for all T ∈ Th, and set
hmin = min hT , hmax = maxhT .

Since we consider locally refined meshes we also work with the average mesh-size h defined with the number of
nodes in Nh via

h = (#Nh)−1/d.

We stress that for a sequence of triangulations (Th)h>0 we only assume that the average mesh-size h tends to
zero as h→ 0 but not necessarily the maximal mesh size hmax unless stated otherwise.

2.3. Vector fields and weak divergence

We say that the vector field p ∈ Lr(Ω; Rd) has a weak divergence if there exists f ∈ Lr(Ω) such that∫
Ω

p · ∇φdx =
∫
Ω

fφdx

for all continuously differentiable, compactly supported functions φ ∈ C1
c (Ω). In this case we denote − div p = f .

We say that p has vanishing normal component on ∂Ω if the identity holds for all φ ∈ C1(Ω). For r ≥ 1 we let

W r
N (div;Ω) =

{
p ∈ Lr(Ω; Rd) : div p ∈ Lr(Ω), p · n = 0 on ∂Ω

}
denote the space of vector fields with weak divergence in Lr(Ω) and vanishing normal component on ∂Ω
indicated by the subscript N . The space is equipped with the norm

‖p‖W r
N(div;Ω) = ‖p‖Lr(Ω) + ‖ div p‖Lr(Ω).

The divergence operator div : W r
N (div;Ω) → Lr0(Ω) is surjective with a bounded left inverse, i.e., for all

f ∈ Lr0(Ω) there exists p ∈ W r
N (div;Ω) such that − div p = f and

‖p‖W r
N (div;Ω) ≤ c‖f‖Lr(Ω),
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with an r-independent constant c > 0, cf. [6] for details. For the construction of discrete subspaces of divergence
spaces we note that an elementwise polynomial vector field belongs to W r

N (div;Ω) if and only if its normal com-
ponent is continuous across neighboring element boundaries and vanishes on ∂Ω. A suitable discrete subspace
of W r

N (div;Ω) are the Raviart–Thomas finite element spaces

RT kN (Th) =
{
qh ∈ W 1

N (div;Ω) : for all T ∈ Th
qh|T (x) = qT (x) + (x− xT )pT (x), qT ∈ Pk(T )d, pT ∈ Pk(T )

}
,

where xT denotes the barycenter of T ∈ Th. This space is compatible with the space Qh = Lk(Th)∩L1
0(Ω) in the

sense that if Vh = RT kN (Th) then there exists a bounded left inverse for the divergence operator div : Vh → Qh,
i.e., for all fh ∈ Qh there exists ph ∈ Vh such that for 1 < r < 4/3 we have

− div ph = fh, ‖ph‖W r
N (div;Ω) ≤ cr‖fh‖Lr(Ω),

with a constant cr > 0 that depends on r > 1 but not on h, cf. [6]. This property implies the inf-sup condition.
Moreover, there exists a generalized interpolation operator IF : W r

N (div;Ω) → Vh such that

div IF ξ = Πk
h div ξ.

For ξ ∈W r
N (div;Ω) ∩W β,r(Ω; Rd) with r > 1 we have that

‖ξ − IF ξ‖Lr(Ω) ≤ crh
β‖ξ‖Wβ,r(Ω), (2.1)

for 1 ≤ β ≤ k + 1, provided that Lk(Th)d ∩W 1
N (div;Ω) ⊂ Vh. The operator IF is stable on W 1,r(Ω; Rd), i.e.,

‖IF ξ‖W 1,r(Ω) ≤ cr‖ξ‖W 1,r(Ω).

For details we refer the reader to [4, 6, 8]. If f ∈ Lr00 (Ω) for some r0 > 1 the operator IF allows us to construct
a sequence (ph)h>0 of discrete vector fields ph ∈ Vh with − div ph = fh = Π1

hf and

‖ph‖W 1
N (div;Ω) ≤ c‖ph‖W 1+ε

N (div;Ω) ≤ c‖ph‖W r0
N (div;Ω)

as h, ε → 0 by choosing ξ ∈ W r0
N (div;Ω) such that − div ξ = f and setting ph = IF ξ. Note that the constant

involved in the interpolation estimate for IF depends on r but the operator itself does not. We finally remark
that every ph ∈ RT kN (Th) admits on every T ∈ Th the local representation

ph|T = vTh + (x − xT )qTh

with vTh ∈ Pk(T )d and qTh ∈ Pk(T ) which is homogeneous of degree k, i.e., we have (x − xT ) · ∇qTh (x) = kqTh ,
cf. [4]. This implies that

div ph|T = div vTh + (d+ k)qTh ,

and hence
ph|T = vTh + (d+ k)−1(x − xT )(div pTh − div vTh ). (2.2)

If div ph = 0 then it follows that ph|T ∈ Pk(T )d for every T ∈ Th.

3. Abstract error estimates

3.1. A priori estimate for primal cost

For a finite-dimensional subspace Xh ⊂ W 1,∞(Ω) ∩ L1
0(Ω) and an approximation fh ∈ Qh ⊂ L1

0(Ω) of f we
let φh ∈ Xh be a maximizing function for

Kh(φh) =
∫
Ω

fhφh dx− IK1(0)(∇φh).

A possibly nonunique solution φh ∈ Xh exists due to the direct method in the calculus of variations.



ADAPTIVITY FOR THE MONGE–KANTOROVICH PROBLEM 2243

Proposition 3.1 (A priori estimate I). Let φh ∈ Xh be maximal for Kh and φ ∈W 1,∞(Ω) be maximal for K
with vanishing means. For every 1 ≤ r ≤ ∞ we have that

K(φ) −K(φh) ≤ inf
ψh∈Xh

|∇ψh|≤1

‖f‖L1(Ω)‖φ− ψh‖L∞(Ω) + cr‖f − fh‖Lr(Ω),

where cr = 2dΩ|Ω|(r−1)/r, dΩ = diam(Ω), provided that f ∈ Lr(Ω).

Proof. For every ψh ∈ Xh with |∇ψh| ≤ 1 in Ω we have that

K(φ) −K(φh) = K(φ) −Kh(φh) +
∫
Ω

(fh − f)φh dx

≤ K(φ) −Kh(ψh) +
∫
Ω

(fh − f)φh dx

= K(φ) −K(ψh) +
∫
Ω

(fh − f)(φh − ψh) dx

=
∫
Ω

f(φ− ψh) dx+
∫
Ω

(fh − f)(φh − ψh) dx.

In view of the vanishing mean we have the Poincaré inequality ‖ψ‖L∞(Ω) ≤ dΩ‖∇ψ‖L∞(Ω) and this implies the
estimate. �

Remark 3.2. If f ∈ L2(Ω) and L0(Th) ∩ L1
0(Ω) ⊂ Qh we may choose r = 2 and fh ∈ Qh as the L2 projection

Π0
hf and use the estimate∫

Ω

(fh − f)(φh − ψh) dx ≤ ‖hT (f − fh)‖‖h−1
T (φh − ψh −Π0

h(φh − ψh))‖

≤ ‖hT (f − fh)‖‖∇(φh − ψh)‖,

to obtain an improved estimate with ‖f − fh‖Lr(Ω) replaced by ‖hT (f − fh)‖.

For triangulations Th which are right-angled in the sense that every element T ∈ Th has d orthogonal edge
vectors we have for φ ∈W 1,∞(Ω) and its P1 interpolant Ihφ ∈ S1(Th) the stability estimate

‖∇Ihφ‖L∞(Ω) ≤ ‖∇φ‖L∞(Ω).

This implies that Ihφ is admissible for K and allows us to deduce the following error estimate.

Corollary 3.3 (Convergence rate I). Assume that Th is right-angled. If φ ∈W 1+α,∞(Ω) and fh ∈ L1(Th) is the
elementwise affine interpolant of the elementwise smooth function f ∈ L2(Ω) then we have for every maximizer
φh ∈ Xh of Kh that

K(φ) −K(φh) ≤ cIh
1+α|φ|W 1+α,∞(Ω) + c2cIh

2‖D2
T f‖L2(Ω),

where D2
T f denotes the elementwise computed Hessian of f .

Proof. The estimate is a consequence of Proposition 3.1 and the interpolation estimates ‖φ − Ihφ‖L∞(Ω) ≤
ch1+α‖φ‖W 1+α,∞(Ω) and ‖f − Îhf‖ ≤ ch2‖D2

T f‖. �

Remark 3.4.
(i) The assumption of a right-angled triangulation is restrictive in particular for d = 3.
(ii) The maximization of K is a variant of the infinity Laplace problem for which generic solutions φ ∈W 1,∞(Ω)

have at most the regularity property φ ∈ W 4/3,∞(Ω), cf. [1,11], i.e., we cannnot expect a higher convergence
rate than O(h4/3) for P1 finite element functions which is significantly worse than the formal optimal
convergence rate O(h2) for φ ∈W 2,∞(Ω).
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3.2. A posteriori estimate for primal cost

To obtain a mechanism that allows for local adaptive mesh refinement and thereby improved convergence
rates, we derive an a posteriori error estimate that is obtained from the strong duality relation with admissible
functions.

Proposition 3.5 (A posteriori estimate). Given arbitrary φ, φh ∈W 1,∞(Ω) ∩ L1
0(Ω) with

‖∇φ‖L∞(Ω), ‖∇φh‖L∞(Ω) ≤ 1

and an arbitrary vector field ph ∈W 1
N (div;Ω) with

− div ph = fh in Ω,

we have that
K(φ) −K(φh) ≤ ηh(φh, ph) =

∑
T∈Th

ηT (φh, ph) + 2dΩ
∑
T∈Th

oscT (f, fh),

where for every T ∈ Th we have

ηT (φh, ph) =
∫
T

|ph| − ph · ∇φh dx, oscT (f, fh) =
∫
T

|f − fh| dx.

Proof. Noting the duality relation (1.1) for Kh and Dh which result from replacing f by fh in K and D,
respectively, and integrating by parts we find that

K(φ) −K(φh) = Kh(φ) −Kh(φh) +
∫
Ω

(f − fh)(φ− φh) dx

≤ Dh(ph) −Kh(φh) +
∫
Ω

(f − fh)(φ − φh) dx

=
∫
Ω

|ph| − fhφh dx+
∫
Ω

(f − fh)(φ − φh) dx

=
∫
Ω

|ph| + div ph φh dx+
∫
Ω

(f − fh)(φ − φh) dx

≤
∫
Ω

|ph| − ph · ∇φh dx+ ‖φ− φh‖L∞(Ω)

∫
Ω

|f − fh| dx.

Using that the function φ − φh has a root in Ω and that its gradient is uniformly bounded by 2, we deduce
‖φ− φh‖L∞(Ω) ≤ 2dΩ, which implies the estimate. �

The a posteriori error estimate is based on the primal-dual gap and requires a good approximation of a solution
for the dual problem.

3.3. A priori estimate for dual cost

For subspaces Vh ⊂ W 1
N (div;Ω) and Qh ⊂ L1

0(Ω) which are compatible in the sense that the divergence
operator div : Vh → Qh is a surjection with bounded left inverse, we consider for given fh ∈ Qh the minimization
of the discretized dual functional

Dh(ph) =
∫
Ω

|ph| dx+ I{−fh}(div ph).

The following estimate enables us to determine necessary approximation properties of Vh to obtain the same
formal consistency error as in the discretization of K.
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Proposition 3.6 (A priori estimate II). Let δ > 0 and pδ ∈ W 1
N (div;Ω) be a δ-minimizer for D, i.e.,

D(pδ) ≤ inf
p∈W 1

N (div;Ω)
D(p) + δ.

Then, for every qh ∈ Vh with − div qh = fh we have that

|Dh(qh) −D(pδ)| ≤ ‖qh − pδ‖L1(Ω) + 2cS,r|Ω|1/2‖f − fh‖Lr(Ω) + δ,

provided that f ∈ Lr(Ω) with r > 1 if d ≤ 2 and r ≥ 6/5 if d = 3.

Proof. We first define a sequence of corrections q(h) ∈ W 2
N (div;Ω) so that for q̃h = qh + q(h) we have

− div q̃h = f,

and hence D(q̃h) is finite. This is achieved by letting α(h) ∈ W 1,2(Ω) be the unique weak solution with vanishing
mean of

−Δα(h) = f − fh in Ω, ∇α(h) · n = 0 on ∂Ω

and setting q(h) = ∇α(h). With the Sobolev inequality ‖α(h)‖Lr′(Ω) ≤ cS,r‖∇α(h)‖ for r′ ≤ 6 if d = 3 or r′ <∞
if d ≤ 2, we have

‖q(h)‖L1(Ω) ≤ |Ω|1/2‖∇α(h)‖ ≤ cS,r|Ω|1/2‖f − fh‖Lr(Ω),

for r ≥ 6/5 if d = 3 and r > 1 if d ≤ 2. We thus deduce that

|D(q̃h) −Dh(qh)| ≤ ‖q̃h − qh‖L1(Ω) = ‖q(h)‖L1(Ω) ≤ cS,r‖f − fh‖Lr(Ω).

This leads to

0 ≤ D(q̃h) − inf
q∈W 1

N (div;Ω)
D(q)

≤ D(q̃h) −D(pδ) + δ

≤ ‖qh − pδ‖L1(Ω) + cS,r|Ω|1/2‖f − fh‖Lr(Ω) + δ,

which implies the estimate. �

Assuming the existence of a bounded sequence of almost-minimizing vector fields pδ ∈W β,2(Ω; Rd), 1 ≤ β ≤
2, for the dual functional, we obtain the following formal error estimate.

Corollary 3.7 (Convergence rate II). Assume that β ∈ [1, 2] and every δ = hβmax there exists pδ ∈W β,2(Ω; Rd)
which is a δ-minimizer for D, that f ∈ L2(Ω) is elementwise smooth and fh = Π1

hf , and that for k ≤ 1 we have

Lk(Th)d ∩W 1
N (div;Ω) ⊂ Vh.

If 1 ≤ β ≤ k + 1 we have for every minimizer ph ∈ Vh for Dh that

|Dh(ph) −D(pδ)| ≤ chβ(1 + |pδ|Wβ,2(Ω)) + ch2‖D2
T f‖.

Proof. The estimate follows from interpolation estimates for the Fortin-like operator IF , cf. (2.1), with qh = IF pδ
noting − div qh = Π1

hf , the relation Dh(ph) ≤ Dh(qh), and Proposition 3.6. �

Remark 3.8.
(i) Note that we need k ≥ 1 to match the formal quasioptimal convergence rate O(h2) for the approximation of

the optimal cost of the primal problem, i.e., the lowest order Raviart–Thomas finite element space RT 0
N(Th)

is not sufficient to obtain an optimally convergent error estimator ηh(φh, ph).
(ii) If fh is defined via fh = Îhf then the difference Îhf − Π1

hf can be controlled similarly to the difference
f − fh in the proof of Proposition 3.6.
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4. Iterative solution

We discuss in this section the iterative solution of the primal and dual problem. For a fixed discretization we do
not compute the exact discrete solutions. This does not affect the validity of the a priori error estimates provided
that the tolerances and regularization terms remain within the formal consistency errors. The a posteriori error
estimate only requires feasibility which is guaranteed for the computed approximations. In the following we
apply the alternating direction of multipliers method (ADMM) to appropriate modifications of the discretized
primal and dual problems.

4.1. Primal problem

To enforce a unique solution φh ∈ S1(Th) we introduce an optional regularizing term weighted by a factor
ε ≥ 0 and consider the maximization of the functional

Kh,ε(φh) =
∫
Ω

fhφh dx− ε

2

∫
Ω

|∇φh|2 dx− IK1(0)(∇φh).

For every ε > 0 we have that −Kh,ε is uniformly convex on the space of functions in S1(Th) with vanishing
mean. The iterative solution introduces the auxiliary variable sh = ∇φh and uses the augmented Lagrange
functional

Lh,ε,τ : S1(Th) × L0(Th)d × L0(Th)d → R ∪ {−∞},

which is for a stabilization parameter τ > 0 defined by

Lh,ε,τ (φh, sh;μh) =
∫
Ω

fhφh dx− ε

2
‖sh‖2 − IK1(0)(sh)

− (μh,∇φh − sh) −
τ

2
‖∇φh − sh‖2.

Note that the term weighted by the factor τ is a consistent stabilizing term. The maximization of Kh,ε on
S1(Th) is equivalent to computing a saddle point for Lh,ε,τ , i.e., we have

max
φh∈S1(Th)

Kh,ε(φh) = max
(φh,sh)∈S1(Th)×L0(Th)d

min
μh∈L0(Th)d

Lh,ε,τ (φh, sh;μh).

The minimization with respect to μh enforces the relation sh = ∇φh. The splitting of the variable has the
advantage that the maximization of Lh,ε,τ with respect to sh is pointwise and can be done explicitly. Uncondi-
tional convergence of the following iterative scheme follows from general assertions, see [9] and Appendix A. The
stabilizing term weighted by ε is included to guarantee uniqueness and convergence of the iterates (skh)k=0,1,....
For ε = 0 we only have convergence of subsequences.

Algorithm 4.1 (Primal splitting). Let s0h, μ
0
h ∈ L0(Th)d, τ > 0, set k = 1.

(1) Compute the maximizer φkh ∈ S1(Th) with vanishing mean for

φh → Lh,ε,τ(φh, sk−1
h ;μk−1

h ).

(2) Compute the maximizer skh ∈ L0(Th)d for

sh → Lh,ε,τ (φkh, sh, μ
k−1
h ).

(3) Compute the minimizer μkh ∈ L0(Th)d for

μh → 1
2τ

‖μh − μk−1
h ‖2 + Lh(φkh, s

k
h;μh).
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(4) Stop the iteration if
τ‖skh − sk−1

h ‖ + ‖μkh − μk−1
h ‖ ≤ δstop.

(5) Increase k → k + 1 and continue with (1).

Note that it is essential to involve the variable sh in the stopping criterion in order to ensure convergence of
approximations to a saddle point since the difference skh − sk−1

h occurs as a residual in the optimality equation
for φh.

Remark 4.2.
(i) The solution in step (1) is the uniquely defined function φkh ∈ S1(Th) with vanishing mean that satisfies

τ(∇φkh,∇ψh) = −(μk−1
h − τsk−1

h ,∇ψh) + (fh, ψh)

for all ψh ∈ S1(Th).
(ii) The solution in step (2) is the uniquely defined function skh ∈ L0(Th)d that satisfies

−(τ + ε)skh + μk−1
h + τ∇φkh ∈ ∂IK1(0)(skh),

which is given by the elementwise shrinkage operation

sh =
rh

max{1, |rh|}
, rh =

1
τ + ε

(
μk−1
h + τ∇φkh

)
.

(iii) Step (3) leads to the explicit updating formula

μkh = μk−1
h + τ(∇φkh − skh).

We note that our stopping criterion controls the constraint violation ∇φh = sh via τ(∇φkh − skh) = μkh − μk−1
h

and this quantity also occurs as a residual in the stationarity equations for the variables sh and φh. The residual
in the optimality equation for the variable φh involves also the quantity skh− s

k−1
h resulting from the decoupling

of the minimizations in sh and φh.

4.2. Dual problem

For approximately solving the discretized dual problem we consider a finite element space Vh ⊂W 1
N (div;Ω)

and the regularized functional

D̃h,ε(ph) =
1

1 + ε

∫
Ω

|ph|1+ε dx+ I{−fh}(div ph).

The choice of a positive regularization parameter ε > 0 introduces a uniform convexity property and thereby
uniqueness of the discrete minimizer. For optimal stability, the iterative solution has to respect the features on
the nonregularized problem and should not make explicit use of the regularization. In particular, the devised
numerical scheme described below is well defined for ε = 0. To efficiently deal with the practical nondifferen-
tiability we introduce a variable sh ≈ ph that is an element of a finite element space with nodal degrees of
freedom, i.e., in the space L1(Th)d of elementwise affine, discontinuous vector fields which are not contained in
W r
N (div;Ω). Using quadrature, this allows us to express the nondifferentiable functional as a sum of separate

functionals applied to nodal values. This leads to the discretization

Dh,ε(ph) =
1

1 + ε

∫
Ω

Îh|Π1
hph|1+ε dx+ I{−fh}(div ph)

=
1

1 + ε

∑
T∈Th

∑
z∈Nh∩T

βTz
∣∣sh|T (z)

∣∣1+ε + I{−fh}(div ph),
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where we abbreviate sh = Π1
hph. The discretization is similar to the one considered in [6] for zero-th order

Raviart–Thomas elements. The practical minimization is realized via the augmented Lagrange functional

Mh,ε,τ : Vh × L1(Th)d × L1(Th)d → R ∪ {+∞}

defined by

Mh,ε,τ (ph, sh;λh) =
1

1 + ε

∫
Ω

Îh|sh|1+ε dx+ I{−fh}(div ph)

+ (sh −Π1
hph, λh)h,w +

τ

2
‖sh −Π1

hph‖2
h,w.

The weighted scalar product (·, ·)h,w is given by

(sh, λh)h,w =
∫
Ω

hdT Îh[sh · λh] dx.

For the induced norm we have by an elementwise inverse estimate that

‖sh‖h,w ≤ c‖sh‖L1(Ω).

The use of this weighting is necessary due to the fact that approximations sh ≈ ph are only bounded in
L1(Ω; Rd). The minimization of Dh,ε is equivalent to finding a saddle point for Mh,ε,τ , i.e., we have

min
ph∈Vh

Dh,ε(ph) = min
(ph,sh)∈Vh×L1(Th)d

max
λh∈L1(Th)d

Mh,ε,τ (ph, sh;λh).

We use the following splitting algorithm to approximate saddle points for Mh,ε,τ .

Algorithm 4.3 (Splitting method II). Choose s0h, λ
0
h ∈ L1(Th)d and τ > 0 and set k = 1.

(1) Compute the minimizer pkh ∈ Vh for

ph →Mh,ε,τ(ph, sk−1
h ;λk−1

h ).

(2) Compute the minimizer skh ∈ L1(Th)d for

sh →Mh,ε,τ(pkh, sh;λ
k−1
h ).

(3) Compute the maximizer λkh ∈ L1(Th)d for

λh → − 1
2τ

‖λh − λk−1
h ‖2

h,w +Mh,ε,τ(pkh, s
k
h;λh).

(4) Stop the iteration if
τ‖skh − sk−1

h ‖h,w + ‖λkh − λk−1
h ‖h,w ≤ δstop.

(5) Increase k → k + 1 and continue with (1).

The minimization problem in step (1) is equivalent to a linear system of equations, while the iterates of steps (2)
and (3) can be computed explicitly.
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Remark 4.4.
(i) The minimization in step (1) is a linearly constrained quadratic minimization problem. Its well-posedness

in the case of zeroth or first order Raviart–Thomas elements follows from the coercivity of the bilinear form

ah,τ (ph, qh) = τ

∫
Ω

hdT Îh
[
Π1
hph ·Π1

hqh] dx

on the subspace of divergence-free vector fields in Vh, i.e., on

Kh = {qh ∈ Vh : div qh = 0}.

It is shown in [4] and Section 2.3 that for Vh = RT �N (Th) we have

Kh ⊂ L�(Th) ∩W 1
N (div;Ω).

Hence, if � = 0, 1 then for ph ∈ Kh we have Π1
hph = ph and

ah,τ (ph, ph) = τ

∫
Ω

hdT Îh|ph|2 dx ≥ τhdmin‖ph‖2
W 1

N (div;Ω),

where we used that ‖vh‖h ≥ ‖vh‖ for vh ∈ L�(Th), � = 0, 1.
(ii) step (2) is equivalent to nodewise minimization problems, i.e., for every T ∈ Th and every z ∈ Nh ∩ T the

value x = skh|T (z) is minimal for

x → 1
1 + ε

|x|1+ε + x · c+
c′

2
|x|2,

with c = hdT (λk−1
h |T (z) − τΠ1

hp
k
h|T (z)) and c′ = hdT τ . The optimal vector x ∈ R

d is zero if c = 0 and a
nonnegative multiple of −c/|c| otherwise. This factor α = |skh|T (z)| is minimal for

α → 1
1 + ε

α1+ε − α|c| + c′

2
α2.

For ε = 0 the minimizer is given by α = (1/c′)max{|c| − 1, 0}. We use this value to initialize the Newton
scheme for the optimality equation

αε − |c| + c′α = 0.

To improve the convexity properties and hence the performance of the Newton iteration for this equation,
we use the variable transformation β = αε, which results in the equation

g(β) = β − |c| + c′β1/ε = 0

with a uniformly convex function g.
(iii) Step (3) is equivalent to the explicit equation

hdT (λkh − λk−1
h ) = τhdT (skh −Π1

hp
k
h).

As in the previous subsection the stopping criterion controls the residuals in the optimality conditions and the
constraint violation.
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5. Convergence of approximations

5.1. Vanishing gap estimator

We show that if the estimators ηh(φh, ph) converge to zero as h → 0, then the bounded sequences
(φh)h>0 ⊂ W 1,∞(Ω) and (ph)h>0 ⊂ W 1

N (div;Ω) accumulate at solutions of the primal and dual problem,
respectively. The following proposition guarantees that for vanishing maximal mesh-size and gap estimator nu-
merical approximations for the primal problem accumulate at solutions. For statements on the convergence of
the dual variable we refer the reader to discussion below and the results of [6].

Proposition 5.1. Assume that the sequences (φh)h>0 ⊂W 1,∞(Ω) and (ph)h>0 ⊂W 1
N (div;Ω) are such that

ηh(φh, ph) → 0

as h→ 0. We then have that

K(φh) → max
φ∈W 1,∞(Ω)

K(φ), Dh(ph) → inf
p∈W 1

N (div;Ω)
D(p).

Moreover, every weak-� accumulation point φ ∈W 1,∞(Ω) is a maximizer for K.

Proof. The estimator defines an upper bound for the primal dual gap of the pair (φh, ph) and for the difference
‖f − fh‖L1(Ω). This implies that we have

lim
h→0

K(φh) → max
φ∈W 1,∞(Ω)

K(φ),

i.e., (φh)h>0 is an infimizing sequence for −K. The weak-* lower semicontinuity of −K implies that every
weak-* accumulation point solves the primal problem. �

Remark 5.2. Interpreting the sequence (ph)h>0 as a bounded sequence in a space of vectorial Radon measures,
it follows that subsequences converge to generalized solutions of the dual problem, cf. [6].

5.2. Consistency of regularizations

The definition of the primal-dual gap estimator is based on the numerical solution of regularized primal
and dual formulations. We show that these are consistent regularizations under moderate assumptions on the
regularization parameters. The following two results imply that the gap estimator tends to zero as h→ 0.

Proposition 5.3 (Primal functional). Let (φh)h>0 be a sequence of maximizers φh ∈ Xh ⊂W 1,∞(Ω) ∩ L1
0(Ω)

for the functionals

Kh,ε(φh) =
∫
Ω

fhφh dx− ε

2
‖∇φh‖2 − IK1(0)(∇φh).

We then have that
0 ≤ Kh(φh) −Kh,ε(φh) ≤

ε

2
|Ω|.

Proof. The statement is an immediate consequence of the fact that we have ‖∇φh‖L∞(Ω) ≤ 1 for every
h > 0. �

To allow for the best possible convergence rate of the discrete costs we choose ε = h
2
. The analysis for the

regularized dual functional is more involved.
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Proposition 5.4 (Dual functional). Assume that fh = Π1
hf → f in L1(Ω) as h → 0. For every q ∈

W 1
N (div;Ω) ∩W 2,∞(Ω; Rn) with − div q = f we have∣∣Dh,ε(IF q) −D(q)

∣∣ ≤ c
(
hσ + h2 + ε

)
,

with some σ ≥ 1 or σ = 2 if
‖D2

T |Πk
hIF q|1+ε‖L2(Ω) ≤ c,

and where Dh,ε is defined by

Dh,ε(ph) =
1

1 + ε

∫
Ω

Îh|Π1
hph|1+ε dx+ I{−fh}(div ph). �

Proof. The properties of the generalized interpolant IF imply that − div IF q = fh and that IF q · n = 0 on ∂Ω.
To prove the asserted estimate we note that with the abbreviations qh = IF q and sh = Π1

hqh we have

∣∣Dh,ε(IF q) −D(q)
∣∣ ≤ ∣∣ ∫

Ω

Îh|sh|1+ε − |sh|1+ε dx
∣∣

+
∥∥|sh|1+ε − |sh|

∥∥
L1(Ω)

+
∥∥sh − q

∥∥
L1(Ω)

+ ε‖sh‖L1(Ω) = A+B + C +D.

We estimate the terms on the right-hand side using that the local projection operator Π1
h is stable in the sense

that ‖sh‖W �,r(T ) ≤ c�,r‖qh‖W �,r(T ) for � ∈ {0, 1}, r ∈ [1,∞], and every T ∈ Th. Basic interpolation estimates
imply that, formally, the quadrature term A is bounded by

A ≤ ch2‖D2
T |sh|1+ε‖L2(Ω),

Rigorously, we have with r = 1 + ε for x ∈ T that∣∣|sh(x)|r − Îh|sh|r(x)
∣∣ =

∑
z∈Nh∩T

ϕz(x)
(
|sh(z)|r − |sh(x)|r

)
,

and the monotonicity estimate
|b|r − |c|r ≤ r|b|r−2b · (b− c)

yields that
A ≤ r‖sh‖r−1

L∞(Ω)h‖∇sh‖L1(Ω).

To bound term B we note that by the mean value theorem we have for a > 0 that there exists 0 ≤ ε′ ≤ ε such
that

|a− a1+ε| ≤ εa1+ε′ | ln a|.
If a ≥ 1 then we use a1+ε′ ≤ a1+ε. Otherwise, if 0 < a < 1 then we set s = 1 + ε′ and deduce that

|a− a1+ε| ≤ εas|s ln a| = εes ln a|s ln a| ≤ ε,

where we incorporated that |x|ex ≤ 1 for x < 0. It thus follows that

B ≤ ε
(
1 + ln(1 + ‖sh‖L∞(Ω))

) ∫
Ω

|sh|1+ε dx.

An estimate for term C follows from interpolation estimates, i.e.,

C ≤ ‖Π1
hIF q − IF q‖L1(Ω) + ‖IF q − q‖L1(Ω) ≤ ch2‖q‖H2(Ω).

Incorporating H2 stability of IF implies the estimate.
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By choosing a regularized infimizing sequence we obtain convergence of the discrete, regularized cost value
to the exact one. For completeness we show how convergence of equilibria can be proved. For this we assume
that the sequence of approximations of the dual problem accumulates at vector fields in W 1

N (div;Ω) but this
assumption can be avoided by considering generalized minimizers, cf. [6]. Minimizers for Dh,ε are characterized
by the system (

|Π1
hph|ε−1Π1

hph, Π
1
hqh

)
h
− (uh, div qh) = 0,

−(vh, div ph) = (fh, vh).

and we have that the unique solutions (ph, uh) obey the uniform bound

‖ph‖W 1
N (div;Ω) + ‖uh‖L∞(Ω) ≤ c,

which follows from the estimates discussed in Section 2.3, cf. [6] for further details. As (h, ε) → 0 we extract
weakly-* convergent subsequences (possibly after embedding the vector fields into a space of Radon measures)
with limit (p, u) ∈ W 1

N (div;Ω) × L∞(Ω). To show that this pair is a solution for the continuous dual problem
we first note that for every ξ ∈ C∞

0 (Ω; Rd) we have

(uh, div IF ξ) → (u, div ξ).

This implies that with r = 1 + ε we have

(uh, div[ph − IF ξ]) = (|Π1
hph|r−2Π1

hph, Π
1
h[ph − IF ξ])h

≥ 1
r
(|Π1

hph|r, 1)h −
1
r
(|Π1

hIF ξ|r, 1)h.

As (h, r) → (0, 1) we find, using Jensen’s inequality and weak lower semicontinuity of the L1 norm, that
− div p = f and

(u, div[p− ξ]) ≥
∫
Ω

|q| dx−
∫
Ω

|ξ| dx,

which characterizes a solution of the continuous dual problem. Note that u ∈ W 1,∞(Ω) solves the primal
problem, i.e., the multipliers uh ∈ Qh for the constraint − div ph = fh define nonconforming approximations
for the primal problem.

6. Numerical experiments

We verify our results and test our adaptive refinement strategy in two experiments. The densities f± are
constructed with the help of the Gaussian bell function g : R

d × R
d → R defined by

g(x, z) = cd,σ exp
(
−|x− z|2

2σ2

)
,

where we always set σ = 0.05. The first setting uses a convex domain and four Gaussian bells.

Example 6.1 (Convex domain). Let d = 2 and Ω = (−1/2, 1/2)2 and define for x ∈ Ω

f±(x) =
1
2
g(x, z±) +

1
2
g(x,−z±),

where z+ = (1/4, 1/4) and z− = (−1/4, 1/4).

Less regular solutions are expected on nonconvex domains. Considering this case is motivated by the connec-
tion of the Monge–Kantorovich problem problem to the infinity Laplace problem.
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Example 6.2 (Nonconvex domain). Let d = 2 and Ω = (−1/2, 1/2)2 \ [−1/8, 1/8]2, and define for x ∈ Ω

f±(x) = g(x,±z),

where z = (1/4, 1/4).

We use the P1 finite element space Xh = S1(Th) ∩ L1
0(Th) for discretizing the primal problem and the

first order Raviart–Thomas finite element space Vh = RT 1
N (Th) combined with elementwise affine functions

Qh = L1(Th) for the dual problem. Corresponding approximations fh ∈ Qh of the functions f = f+ − f− on
adaptively generated triangulations are displayed in Figure 1. The functions are obtained by nodal interpolation
and a correction of their means, i.e., we always use

fh =
1

(Ihf+, 1)
Ihf+ − 1

(Ihf−, 1)
Ihf−.

The adapted triangulations Th are obtained from coarse initial triangulations by refining elements T ∈ Mh in
a minimal set Mh ⊂ Th for which we have∑

T∈Mh

η̃T (ph, φh) ≥
1
2

∑
T ′∈Th

η̃T (ph, φh).

Further elements are refined to guarantee mesh conformity. The numerical solutions ph and φh defining the
error indicators ηT (ph, φh) are obtained with Algorithms 4.1 and 4.3, respectively. The auxiliary variables sh
and μh needed therein are initialized via prolongations of corresponding functions on coarser triangulations or
with the trivial value zero. The involved parameters are defined via the average mesh-size h = (#Nh)−1/d and

ε = h
2
, τ = 1/h, δstop = h.

All linear systems of equations with a symmetric and positive definite matrix were solved with a conjugate
gradient methods and a preconditioning obtained from Cholesky factorizations. Other linear systems, i.e., those
that correspond to saddle-point problems were solved with a direct method. Mesh-refinement was always done
using bisection of single elements.

Remark 6.3. We implemented computable approximations η̃T of the indicators ηT . These are obtained from
first replacing ph by its elementwise projection Π1

hph onto elementwise affine vector fields, i.e.,

ηT (φh, ph) ≤
∫
T

|Π1
hph| −Π1

hph · ∇φh dx+ ‖Π1
hph − ph‖L1(T ).

Noting that the mapping x → |Π1
hph(x)|, x ∈ T , is convex, we deduce the upper bound

ηT (φh, ph) ≤
∫
T

Îh|Π1
hph| −Π1

hph · ∇φh dx+ ‖Π1
hph − ph‖L1(T ).

To control the L1 norm on the right-hand side we note that it follows from (2.2) and div ph = fh that on every
T ∈ Th we have

ph −Π1
hph =

1
d+ k

([
(x− xT )fh

]
−Π1

h

[
(x− xT )fh

])
.

Hence, we have

‖ph −Π1
hph‖L1(T ) ≤ |T |1/2‖(I −Π1

h)
[
(x− xT )fh

]
‖L2(T ) ≤ h

1+d/2
T ‖fh‖L2(T ).

Omitting this data term motivates defining the approximate estimator

η̃T (ph, φh) =
∫
T

Îh|Π1
hph| −Π1

hph · ∇φh dx.
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Figure 1. Density functions f = f+ − f− in Examples 6.1 (left) and 6.2 (right) on adaptively
generated triangulations.

6.1. Experimental convergence rates

To illustrate the benefits of adaptive mesh refinement we plotted in Figure 2 for sequences of uniformly and
adaptively refined triangulations the errors in the approximation of the primal cost defined by

δh = Kref −Kh(φh),

where the reference value Kref is obtained from an extrapolation of approximations on a sequence of uniformly
refined triangulations. In the case of the convex domain from Example 6.1 we observe quadratic experimental
rates of convergence for both uniform and adaptive mesh refinement. This is surprising at first glance since
the approximated exact potential φ is nonsmooth as can be anticipated from the plot of its approximation φh
shown in the left part of Figure 3. The transport flux is however supported in regions in which φh is smooth,
cf. Figure 4. In the setting of Example 6.2 the experimental convergence rate for uniform mesh refinement is
approximately linear. The adaptive refinement strategy improves this experimental value to the theoretically
optimal quadratic rate.

In the experiments reported above we avoided having a good approximation of an exact dual solution by
working with a reference value for the primal cost. It turned out that the approximation of the dual variable
is more difficult than approximating the primal variable accurately. To illustrate this observation we limit
the number of error sources and replace the Gaussian bells in the densities f± of Examples 6.1 and 6.2 by
hat functions with respect to the initial triangulations centered at the same points. Due to this choice the
approximations of the primal cost are nearly exact. Figure 4 shows the transport flux in the modified versions
of Examples 6.1 and 6.2.

Experimental convergence rates for the primal-dual gaps

δh = Dh,ε(ph) −Kref

are illustrated in Figure 5. We observe that for the convex and the nonconvex domain uniform mesh refinement
leads to suboptimal experimental convergence rates. The convergence rates relate to the expected W 4/3,∞(Ω)
regularity of solutions for the infinity Laplace operator independently of convexity properties of the domain.
The experimental rates are improved to the optimal quadratic rate by adaptive mesh refinement.

6.2. Choice of parameters

We introduced regularizations of the primal and dual problems defined by a parameter ε ≥ 0. The splitting
algorithms devised for the numerical solution of the primal and dual problems are well defined for ε = 0 but
their perfomance is expected to improve for a positive parameter as solutions are then unique. Figure 6 displays
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Figure 2. Approximated primal cost errors Kref −Kh(φh) in the convex (left) and nonconvex
(right) settings from Examples 6.1 and 6.2. Adaptive mesh refinement leads to reduced errors
and an improved experimental convergence rate in the nonconvex setting.
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Figure 3. Approximate potentials φh on the initial triangulations of convex (left) and non-
convex (right) domains in Examples 6.1 and 6.2.

the numbers of iterations needed to satisfy the stopping criteria on triangulations obtained from 8, 9, 10, and
11 uniform refinements of the initial triangulation. The numbers show that regularization does not affect the
iteration numbers in case of the primal problem while these are substantially reduced in case of the dual problem.

Although the primal and dual splitting algorithms are unconditionally convergent in terms of the step size τ ,
the numbers of iteration depend sensitively on this quantity. Our choices are motivated by the stability estimate
for the iterations which involve the upper bounds

‖λh − λ0
h‖2 + τ2‖ph − p0

h‖2,

i.e., the squared distances of starting values to a solution. Assuming that within a multilevel scheme our starting
values (λ0

h, p
0
h) approximate the pair (λh, λ0

h) comparable to the optimal approximation rates O(hk), we choose
τ = h−k. The iteration numbers shown in Table 1 reveal that for the primal problem a step size in the range
[1, 1/h] and for the dual problem in the range [1/h, 1/h

2
] lead to the best results. On the triangulations Tj ,

j ≥ 1, good starting values are available via prolongation from coarser triangulations.
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Figure 4. Approximated transport flux on a convex (left) and a nonconvex (right) domain.
Nearly no transport occurs through the center of the convex domain.
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Figure 5. Primal-dual gap δh with extrapolated reference value Kref in the modified versions
of Examples 6.1 and 6.2.

Table 1. Iteration numbers for different step sizes in the primal (left) and dual (right) splitting
algorithms on uniform triangulations of a nonconvex domain with different mesh-sizes.

τ T0 T1 T2 T3 T4

1 86 72 136 227 356

1/h 82 51 74 176 246

1/h
2

1068 158 342 1458 –

τ T0 T1 T2 T3 T4

1 81 157 312 618 1230

1/h 17 31 41 94 212

1/h
2

13 175 346 552 1142
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Figure 6. Iteration numbers for the primal (left) and dual (right) splitting algorithms in
the case of nonconvex domain and uniformly refined triangulations with mesh-size h ∼ 2−j,
j = 8, 9, 10, 11. White bars refer to unregularized functionals, i.e., ε = 0, while gray bars
correspond to regularized functions with ε = h
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Figure 7. Convergence of the discrete residual for the primal (left) and dual (right) splitting
algorithms on a fixed triangulation resulting from 12 uniform refinements and different step
sizes.

To further illustrate the importance of a good choice of the step size τ we displayed in Figure 7 the decay of
the residuals, i.e., the quantities that serve as stopping criteria in Step (4) of Algorithms 4.1 and 4.3 on a fixed
triangulation using different step sizes. We observe that the best convergence behavior is obtained for τ = 1/h.
A similar conclusion can be drawn from the plots in Figure 8 where we displayed the primal and dual cost
functionals for the iterates of the algorithms. For τ = 1/h the value max I(φ) = minD(p) ≈ 0.772 is attained
most rapidly.
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Figure 8. Convergence of the primal (left) and dual (right) cost functionals during the iteration
of the primal and dual splitting algorithms.

Appendix A. Convergence of the splitting method

Given convex, proper, and lower-semicontinuous functionals F : Y → R∪ {+∞}, G : X → R∪ {+∞}, and a
bounded linear operator B : X → Y we consider the minimization problem

inf
u∈X

F (Bu) +G(u).

Upon introducing p = Bu and choosing τ ≥ 0 we obtain the equivalent, consistently stabilized saddle-point
problem defined by

inf
(u,p)∈X×Y

sup
λ∈Y

F (p) +G(u) + (λ,Bu − p)Y +
τ

2
‖Bu− p‖2

Y = Lτ (u, p;λ).

Here we assume that Y is a Hilbert space and let (·, ·)Y be an inner product on Y with associated norm
‖ · ‖Y . Possible strong convexity of F or G is characterized by nonnegative functionals �F : Y × Y → R and
�G : X ×X → R satisfying

(r, q − p)Y + F (p) + �F (q, p) ≤ F (q),
〈w, v − u〉 +G(u) + �G(v, u) ≤ G(v),

for all p, q, r ∈ Y and u, v ∈ X and w ∈ X ′ such that r ∈ ∂F (p) and w ∈ ∂G(u).

Lemma A.1 (Optimality conditions). A triple (u, p, λ) is a saddle point for Lτ if and only if Bu = p and

−
(
λ,B(v − u)

)
Y

+G(u) + �G(v, u) ≤ G(v),(
λ, q − p

)
Y

+ F (p) + �F (q, p) ≤ F (q),

for all (v, q) ∈ X × Y .

Proof. The variational inequalities characterize stationarity with respect to u and p, respectively, i.e., that, e.g.,
0 ∈ ∂uLτ (u, p;λ). �

The arbitrary nonnegative parameter τ ≥ 0 is assumed to be positive in the following iterative algorithm.
Typical choices are τ ≥ 1 as the iteration is unconditionally convergent.
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Algorithm A.2 (Splitting algorithm). Choose (p0, λ0) ∈ Y × Y and τ > 0, set k = 1.

(1) Compute the minimizer uk ∈ X for
u → Lτ (u, pk−1;λk−1).

(2) Compute the minimizer pk ∈ Y for
p → Lτ (uk, p;λk−1).

(3) Compute the maximizer λk for

λ → −1
2τ

‖λ− λk−1‖2
Y + Lτ (uk, pk;λ),

i.e., update λk = λk−1 + τ(Buk − pk).
(4) Stop if

‖λk − λk−1‖Y + τ‖pk−1 − pk‖Y ≤ δstop.

(5) Set k → k + 1 and continue with (1).

Note that the order of minimization in u and p can be exchanged. In this case the contribution τ‖pk − pk−1‖Y
in the stopping criterion has to be replaced by τ‖uk− uk−1‖X as this difference then occurs as a residual in the
optimality equation for the minimization with respect to the p variable. The quantity λk −λk−1 = τ(Buk − pk)
measures the violation of the constraint. To guarantee termination of the iteration, the minimization should
first be done in a variable in which no coercivity is available, cf. Theorem A.4 below.

Lemma A.3 (Decoupled optimality conditions). The well defined iterates (uk, pk, λk)k=0,1,... satisfy the varia-
tional inequalities

−
(
λk + τ(pk − pk−1), B(v − uk)

)
Y

+G(uk) + �G(v, uk) ≤ G(v),(
λk, q − pk

)
Y

+ F (pk) + �F (q, pk) ≤ F (q),

λk − λk−1 = τ(Buk − pk),

for all (v, q) ∈ X×Y , i.e., the triple (uk, pk, λk) is a saddle point for Lτ if λk−λk−1 = 0 and τ(pk−pk−1) = 0.

Proof. The variational inequalities characterize stationarity of iterates. �

In what follows, we use for a sequence (ak)k=0,1,... the backward difference quotient

dta
k = (ak − ak−1)/τ,

and note that we have the discrete product rule

2dtak · ak = dt|ak|2 + τ |dtak|2.

With this, the updating step in Algorithm A.2 can be written as dtλk = Buk − pk. For ease of presentation we
introduce the symmetrized coercivity functionals

�̂F (p, q) = �F (p, q) + �F (q, p),
�̂G(u, v) = �G(u, v) + �G(v, u).

We assume that these are nonnegative functionals.
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Theorem A.4 (Convergence). Let (u, p, λ) be a saddle point for Lτ . For the iterates (uk, pk, λk)k=0,1,... of
Algorithm A.2 and corresponding errors δkλ = λ− λk, δkp = p− pk, and δku = u − uk, and every K ≥ 0 we have
that

1
2

(
‖δKλ ‖2

Y + τ2‖δKp ‖2
Y

)
+ τ

K∑
k=1

{
�̂G(uk, u) + �̂F (pk, p) + �̂F (pk, pk−1) +

τ

2

(
‖dtδkλ‖2

Y + τ2‖dtδkp‖2
)}

≤ 1
2

(
‖δ0λ‖2

Y + τ2‖δ−1
p ‖2

Y

)
.

In particular, −dtδkλ = dtλ
k = Buk − pk → 0 and −dtδpk = dtp

k → 0 as k → ∞ so that Algorithm A.2
terminates.

Proof. We choose (v, q) = (uk, pk) in the optimality conditions for the saddle point and (v, q) = (u, p) in the
optimality conditions for the iterates, and add corresponding equations to verify that

−
(
[λ− λk] − τ(pk − pk−1), B[uk − u]

)
Y

+ �̂G(uk, u) ≤ 0,(
λ− λk, pk − p)Y + �̂F (pk, p) ≤ 0.

Adding and using Buk − pk = dtλ
k = −dtδkλ and Bu = p we find that

�̂G(uk, u) + �̂F (pk, p) ≤ −τ(pk − pk−1, B[uk − u])Y + (λ− λk, Buk − pk)Y
= τ2(dtpk, Bδku)Y − (δkλ, dtδ

k
λ)Y .

This implies that
dt
2
‖δkλ‖2

Y +
τ

2
‖dtδkλ‖2

Y + �̂G(uk, u) + �̂F (pk, p) ≤ τ2
(
dtp

k, Bδku
)
Y
. (A.1)

We choose q = pk−1 and q = pk in the variational inequalities that characterize pk and pk−1, respectively, to
verify that (

λk,−τdtpk
)
Y

+ F (pk) − F (pk−1) + �F (pk, pk−1) ≤ 0,(
λk−1, τdtp

k,
)
Y

+ F (pk−1) − F (pk) + �F (pk−1, pk) ≤ 0.

Adding these inequalities and using dtλk = Buk − pk leads to

−τ2
(
Buk − pk, dtp

k
)
Y

+ �̂F (pk, pk−1) ≤ 0.

Inserting Bu = p and using dtpk = −dtδkp implies that

τ2 dt
2
‖δkp‖2

Y + τ2 τ

2
‖dtδkp‖2

Y + �̂F (pk, pk−1) ≤ −τ2
(
Bδku, dtp

k
)
Y
. (A.2)

Adding (A.1) and (A.2) and summing over k = 1, . . . ,K proves the theorem. �

Convergence of the iterates requires uniqueness of the corresponding limiting objects. Otherwise, only con-
vergence of subsequences can be established.

Remark A.5.
(i) For large step sizes τ the convergence of (uk) and (pk) may be slow whereas the consistency error Buk− pk

converges rapidly.
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(ii) Upper and lower estimates for the cost functional follow from choosing (v, q) = (uk, pk) in the optimality
conditions and (v, q) = (u, p) in the decoupled optimality conditions. In particular, we find that

δkI =
[
F (pk) +G(uk)

]
−

[
F (p) +G(u)

]
≥ −(λ,Buk − pk)Y ≥ −‖λ‖Y

δstop
τ

,

and

δkI + �̂F (p, pk) ≤
(
λk + τ(pk − pk−1), B(u− uk)

)
Y
− (λk, p− pk)Y

≤ τ‖pk − pk−1‖Y
(
‖p− pk‖Y + ‖pk −Buk‖Y

)
+ ‖λk‖Y

δstop
τ

.

This indicates that δstop/τ has to be sufficiently small to guarantee convergence of approximating costs.
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