
ESAIM: M2AN 52 (2018) 207–253 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2017063 www.esaim-m2an.org

A MACH-SENSITIVE SPLITTING APPROACH FOR EULER-LIKE

SYSTEMS

D. Iampietro1,2,3,*, F. Daude1,3, P. Galon4 and J.-M. Hérard2,5

Abstract. Herein, a Mach-sensitive fractional step approach is proposed for Euler-like systems. The
key idea is to introduce a time-dependent splitting which dynamically decouples convection from acous-
tic phenomenon following the fluctuations of the flow Mach number. By doing so, one seeks to maintain
the accuracy of the computed solution for all Mach number regimes. Indeed, when the Mach number
takes high values, a time-explicit resolution of the overall Euler-like system is entirely performed in
one of the present splitting step. On the contrary, in the low-Mach number case, convection is totally
separated from the acoustic waves production. Then, by performing an appropriate correction on the
acoustic step of the splitting, the numerical diffusion can be significantly reduced. A study made on
both convective and acoustic subsystems of the present approach has revealed some key properties
as hyperbolicity and positivity of the density and internal energy in the case of an ideal gas thermo-
dynamics. The one-dimensional results made on a wide range of Mach numbers using an ideal and a
stiffened gas thermodynamics show that the present approach is as accurate and CPU-consuming as a
state of the art Lagrange-Projection-type method.
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1. Introduction

Condensation Induced Water Hammer (CIWH) is a very specific two-phase fast transient phenomenon. It
starts by the smooth deformation of a slow material interface between hot vapor and cooler liquid water. Then,
as time goes on, shear instabilities and steep temperature gradients entail the trapping and then the sudden
condensation of vapor pockets leading to the production of strong shock waves in the liquid phase.

In the above description, two time-scales can be identified: a material scale linked to the slow interface
deformation and a fast acoustic scale related to the propagation of the shock front. As the Euler compressible
system produces similar multi-scale waves, it constitutes the framework of the present paper. Indeed, the Mach
number of the flow M = |u| /c, with u the velocity field and c the fluid speed of sound, measures the gap between
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the material and the acoustic time-scales. The particularity of a CIWH results from the fact that, initially, since
the deformation of the slow material wave is the leading process, the fluid behaves as a low Mach number
compressible flow: 0 < M � 1. Then, because of the stiffness of the liquid water thermodynamics, strong shock
waves are triggered even if 0 < M � 1. In order to enforce this fact, one can find in [39] a water-hammer
experiment in liquid water for which |u| ≈ 0.2 m · s−1, cliquid ≈ 1.5 × 103 m · s−1 leading to pressure jumps of
several bars. Besides, the analytical solution of a symmetric double shock Riemann problem obtained with the
Euler compressible system endowed with a stiffened gas thermodynamics is derived later on in this work. It
allows to better understand this peculiar aspect.

Thus, the long-term objective of the present work is to set out a method involving compressible Godunov-like
solvers in order to fulfill a two-fold aim:

(I) Accurately follow the slow material waves when 0 < M � 1

in the absence of fast transient phenomena.

(II) Then, accurately follow the fast and strong acoustic waves even when 0 < M � 1.

In the sequel, the different issues inherent to point (I) and point (II) are described. However, the present study
is entirely dedicated to point (II) and we leave point (I) for future works.

Godunov-like schemes perform poorly in the context of point (I) . A first issue is related to the first order
time-discretization of such methods when 0 < M � 1. Indeed, let us introduce ∆x the cell size of a 1D mesh,
∆t the time-step built using a time-explicit Godunov-like scheme, λu+c (respectively λu) the non-dimensional

acoustic eigenvalue (respectively the slow convective eigenvalue). Besides, define C|u|+c = 1
M

∆t λu+c

∆x (respectively

C|u| = ∆t λu

∆x ) the acoustic Courant number (respectively the convective Courant number). The stability of the
fast acoustic dynamics requires C|u|+c = 1− and then C|u| ≈M C|u|+c ≈M � 1. Hence, the slow material wave
dynamics are largely depreciated because C|u|, associated with a first order time-discretization, is too small
to compensate the numerical diffusion induced by the first-order space-discretization. In [31], the evolution of
the stiffness of the profile of an isolated slow contact-discontinuity as function of C|u|+c supports this point. A
solution, described in [17, 29] for the Euler isentropic system and in [21, 34] for the whole Euler compressible
system endowed with an ideal gas thermodynamics, consists in applying a time-implicit discretization on the stiff
pressure gradient. By doing so, one can replace the constraining time-explicit acoustic CFL condition C|u|+c = 1−

by a convective CFL one: C|u| = 1−, the latter being adapted to accurately follow slow material waves. What
is more, in the above references, additional time-implicit discretizations hold on the density convection term
[17, 29] or on the total energy convection term [21]. The resulting implicit-explicit schemes are thus consistent,
when M → 0 and ∆t, ∆x fixed, with a discrete incompressible solver. Schemes that are stable under the CFL
condition C|u| = 1− and have the above consistent behavior are said to be Asymptotic Preserving (AP) towards
the Euler incompressible system.

A second issue, in the framework of point (I) is related to the spatial discretization of Godunov-like schemes.
Indeed, in [27, 28] the authors show, using a 2D discrete asymptotic decomposition w.r.t. M on a cartesian
mesh, that Godunov-like schemes are not able to maintain an initial incompressible solution in the incompressible
phase-space from one time-step to an other. In [18, 19, 20], the authors transpose the Schochet theory [36, 37]
at the discrete level and highlight the same difficulty. Moreover, they point out that this issue only concerns
2D (respectively 3D) non-triangular (respectively non-tetrahedral) meshes for which the non-dimensional mesh
size is bigger than M . Then, they concentrate on means to control the computed solution proximity towards
the incompressible well-prepared space (see [20] for a definition) for non-dimensional time-scales lower than M .
Without going into details, the key idea is that the discrete acoustic operator of Godunov-like schemes contains
a non-centered diffusive part scaling as O(∆x/M) notably in the discrete momentum equation. When applied
to an initial well-prepared solution, the latter produces new acoustic pressure waves scaling as O(M) instead of
O(M2). In [22, 35] a low Mach number correction rescaling the momentum diffusive part as O(∆x) is proposed.
It has since been re-used in [10, 11, 20].
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The background of point (II) is more simple since we “only” want to be accurate on fast acoustic waves
neglecting the slow material wave diffusion induced by the time-discretization as well as the proximity towards
the incompressible phase space. However, as mentioned in the above paragraph, Godunov-like schemes suffer
from a numerical diffusion of order O(∆x/M) due to the spatial discretization which can be observed even in
1D under the CFL condition C|u|+c = (1/2)−.

In the light of the time-scale difficulties encountered in point (I) , it seems relevant to introduce a fractional
step method allowing to solve the slow convection process and the fast acoustic waves production separately. It is
based on a Weighted Splitting Approach (WSA). The “Weighted” notion stems from the fact that the proposed
splitting relies on a decomposition of the pressure balanced by a time-dependent splitting parameter. Inspired
from [1, 7], a first part of the pressure decomposition, seen as a “small” pressure fluctuation if 0 < M � 1,
is sent to a convective subsystem C. The remaining part goes into an acoustic subsystem A. In the context
of point (I) , a time-implicit resolution of A combined with a time-explicit resolution of C moves the proposed
approach towards the convective CFL condition Cu0

= 1−. The stability proof of the implicit-explicit version of
the present method is examined a more recent companion paper [31]. As already mentioned, this paper focuses
on the point (II) . Thus, a time-explicit Godunov-like scheme is applied for both subsystems C and A. The
spatial discretization comes from the relaxation schemes theory [2, 4, 12, 13, 33] and notably from the Suliciu-
like relaxation solvers [4, 42]. It provides a simple approximate Riemann solver whose writing is independent
of the equation of state. Besides, in order to reduce the numerical diffusion when 0 < M � 1, an anti-diffusive
term, directly taken from [11, 20, 35], but simply seen as a tool here, is added to the present acoustic pressure
flux. In the sequel, the anti-diffusive term is referred to as θ-correction.

Let us end the present WSA description by saying that, in the more common case where the production of
shock waves is associated with a local rise of the Mach number M ≈ 1, the present splitting is canceled and the
overall Euler system is retrieved in the C subsystem. Thus fast acoustic waves are accurately captured.

The paper is structured as follows: in section one, the dynamic splitting is firstly described at the continuous
level. A study of each resulting conservative subsystem is done through hyperbolicity and positivity analyses
involving ideal and stiffened gas equations of state. Section two deals with the approximate Riemann solvers
derived for the subsystems spatial discretization. Discrete positivity properties in the case of ideal gas thermo-
dynamics are also derived under a non-restrictive condition. Following the steps of [11], section three is devoted
to different truncation error analyses. The dependence in terms of Mach number as well as the impact of the
θ-correction on the numerical diffusive operator of the overall scheme is shown. Eventually, section four presents
one-dimensional time-explicit results obtained for ideal and stiffened gas thermodynamics and for a wide panel
of Mach numbers. It turns out that the presented method is as accurate and efficient as a Lagrange-Projection
method presented in [11]. However in the case of a stiffened gas thermodynamics with 0 < M � 1, the proposed
method, although L∞ stable, produces more oscillations than the Lagrange-Projection approach.

2. Convective and acoustic effects in Euler-like systems

2.1. Homogeneous equilibrium model equations

When the non-equilibrium effects are small, one way to model two-phase flows is to assume that the two
phases have the same velocity, pressure, temperature and chemical potential. The conservation laws are then
similar to the Euler compressible system. Define U = [ρ, ρu, ρ e]

T
the conservative variables vector with ρ the

fluid density, u its velocity vector and e its total specific energy. The mass, momentum and energy conservation
then read:

∂t ρ+∇ · (ρu) = 0, (2.1a)

∂t (ρu) +∇ · (ρu⊗ u + p I) = 0, (2.1b)

∂t (ρ e) +∇ · ((ρ e+ p) u) = 0, (2.1c)

e =
|u|2

2
+ ε, ε = εEOS (ρ, p) . (2.1d)
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Equality in (2.1d) is the equation of state for a single phase fluid. It relates ε the specific internal energy
with density and pressure. Its strong level of nonlinearity is known to produce rarefaction or shock waves
inside the flow. Recall that the Euler system is strictly hyperbolic, its eigenvalues being in one-dimension:
λE1 = u − c < λE2 = u < λE3 = u + c; with c the sound speed which strongly depends on the equation of state
and can be defined as:

ρ c2 =
(
∂p ε|ρ

)−1
(
p

ρ
− ρ ∂ρ ε|p

)
. (2.2)

What is more λE1 and λE3 are related to genuinely non-linear fields whereas λE2 is associated with a linearly
degenerate one.

Eventually, let us write the second law of thermodynamics principle, introducing the specific entropy variable
s = sEOS (ρ, ε) related with ρ and ε by the differential equation:

d ε = T d s− p d
(

1

ρ

)
,

with: T = TEOS(ρ, s) = ∂s ε|ρ, p = pEOS(ρ, s) = ρ2 ∂ρ ε|s.

(2.3)

Using equation (2.3), it can be easily verified that, for smooth EOS, s is also solution of the PDE:

∂ρ s|p + c2 ∂p s|ρ = 0. (2.4)

Such a physical entropy is used to characterise admissible weak solutions of Euler system (2.1). Indeed, as
proved in [26], the mapping (ρ, ρu, ρ e) → −ρ s is a strictly convex function and (−ρ s,−ρu s) constitutes a
mathematical entropy pair. Thus, any admissible weak solution of the Euler system should verify the inequality:

∂t (ρ s) +∇ · (ρ su) ≥ 0. (2.5)

Beyond conservativity and maximum principle, inequality (2.5) is a key theoretical property that one would
like to obtain, at the discrete level, in a numerical scheme.

Let us end this subsection by defining the one-dimensional Riemann problem associated to system (2.1). Let
UL and UR be two constant states of the one-dimensional Euler system (2.1). It reads:

∂t U + ∂x F (U) = 0,

U(., t = 0) =

{
UL, if x < 0

UR, if x > 0,
with: F (U) =

 ρ u
ρ u2 + p

(ρ e+ p)u

. (2.6)

As proved in [40], in the case of ideal gas or in [26] under more general thermodynamical hypothesis, Riemann
problem (2.6) admits a unique entropic solution made of contact waves, rarefaction waves and shock waves as
long as UL and UR are close enough.

2.2. A weighted splitting approach

As mentioned in the introduction in the context of point (I) , two different physics are at stake inside Euler-
like systems. In 1D, the first convects conservative variables using velocity u, the second contains pressure
effects responsible for shock and rarefaction waves propagating at speed u± c. Thus, in the case of low-Mach
compressible flows, |u| � c and the acoustic physics goes much faster than the convective one. Therefore,
time-explicit schemes restricted by the acoustic CFL condition tend to diffuse material waves as time goes on.
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Looking at the Euler compressible system (2.1), a first step to elaborate a cure consists in decoupling the
convective from the acoustic physics and proceed to their resolution separately and successively. This can be
done by splitting the conservation laws system into two new continuous subsystems:

C :


∂t ρ+∇ · (ρu) = 0,

∂t (ρu) +∇ ·
(
ρu⊗ u + E 2

0 (t) p I
)

= 0,

∂t (ρ e) +∇ ·
(
(ρ e) + E 2

0 (t) p) u
)

= 0,

(2.7)

A :


∂t ρ = 0,

∂t (ρu) +∇ ·
(
(1− E 2

0 (t)) p I
)

= 0,

∂t (ρ e) +∇ ·
(
(1− E 2

0 (t)) pu
)

= 0.

(2.8)

Here, E0(.) is a time-dependent weighting factor belonging to interval ]0, 1] and proportional to the maximal
Mach number of the flow:

E0(t) ∝ max (Einf , min (Mmax(t), 1)),

Mmax(t) = sup
x∈Ω

(
M(x, t) =

|u(x, t)|
c(x, t)

)
,

(2.9)

Ω being the computational domain. It has to be mentioned that in [1], Baraille and co-authors introduce the
same kind of splitting for the Euler barotropic system with E0 equal to zero. Since their resulting C-subsystem
is not hyperbolic, they re-introduce a similar pressure perturbation, with E0 seen as a fixed parameter. They
solve the Riemann problem associated with the perturbed subsystem and make E0 tend towards zero in the
obtained solution in order to derive their numerical scheme.

In the present splitting, E0(t) is strictly positive because of the lower bound Einf defined such that 0 < Einf �
1. By doing so, the above loss of hyperbolicity on the jacobian of C is avoided. Besides, here E0(t) has a physical
interest since it measures the gap between the convective and the acoustic time-scales.

Indeed, assume that at instant t the flow is such that Mmax(t) is close or superior to 1. Then, E0(t) will
be close to 1, the subsystem C formally converges towards the full Euler system while A is a degenerated
stationary subsystem. Hence, if C is solved using a time-explicit Godunov-like scheme, Euler shocks related to
a temporal rise of the Mach number would be correctly captured. On the contrary, In the case of a globally
low-Mach number flow, Mmax(t) ≈ E0(t)� 1, and pressure terms completely disappear from C which turns out
to be a pure “convective” subsystem. Pressure terms are treated afterwards in A which becomes an “acoustic”
subsystem. Particularly, a time-implicit scheme [14, 21] applied on it would remove the most constraining part of
the CFL condition. Let us end the splitting description by saying that both subsystems C and A are conservative,
and that their formal summation allows to recover the original Euler system (2.1).

In the sequel, C is referred as the convective subsystem and A the acoustic one. Before going further into
the numerical resolution of C and A, one has to study their basic mathematical properties: hyperbolicity and
maximum principle. This is done in the next section.

2.2.1. Hyperbolicity of C and A
Above all, the hyperbolicity of the two subsystems C and A is investigated. This ensures that solutions of C

and A do not suffer from definition issues by producing waves with celerities evolving in the C space. This is the
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object of the following proposition written in one space dimension but easily extendable to the multi-dimensional
case:

Proposition 2.1 (Hyperbolicity of convective and acoustic subsystems). Let us introduce cC (ρ, p) and cA (ρ, p)
two modified sound speeds such that:

(ρ cC (ρ, p))
2

=
(
∂p ε|ρ

)−1 (
E 2

0 p− ρ2 ∂ρ ε|p
)
,

(ρ cA (ρ, p))
2

=
(
∂p ε|ρ

)−1
p.

(2.10)

In the case of a stiffened gas thermodynamics, c2C ≥ 0. Besides, if pressure remains positive, c2A ≥ 0. Under this
condition, the subsystems C and A are hyperbolic. Their eigenvalues are:

λC1 = u− E0 cC ≤ λC2 = u ≤ λC3 = u+ E0 cC ,

λA1 = −
(
1− E 2

0

)
cA ≤ λA2 = 0 ≤ λA3 =

(
1− E 2

0

)
cA,

(2.11)

the 1-wave and 3-wave of both subsystems are associated to genuinely non-linear fields whereas the 2-wave field
are linearly degenerate. What is more, cC, cA and c are related by:

(cC)
2

+
(
1− E 2

0

)
(cA)

2
= c2. (2.12)

The proof of this proposition is written in Appendix B. Beside, using relation (2.12), it can be observed that,
when E0 is close to one, C is approximately equivalent to the Euler system, and that is why: ∀k, lim

E0→1
λCk = λEk .

Moreover, when E0 tends towards zero, lim
E0→0

λCk = λE2 = u, because of the pressure terms disappearance. C then

degenerates into a pure convective subsystem already exhibited in [1, 7]. However, thanks to equality (2.12),
we have ∀k ∈ {1, 3} :

∣∣λAk ∣∣ ≤ c even when E0 goes to zero. Thus, the weighted splitting approach always tends
to underestimate acoustic wave speeds whatever the thermodynamics is. In Section 3, the transcription, at the
discrete level, of these non physical wave speeds will be seen. A numerical way to bridge the gap between cA and
c so that to follow the real physics will also be proposed. In order to make them less abstract, the expressions
of cC and cA are provided below, in the case of ideal gas:

cC =

√
γE0

p

ρ
< c, γE0

= E 2
0 (γ − 1) + 1 < γ,

cA =

√
(γ − 1) p

ρ
< c =

√
γ p

ρ
.

(2.13)

In the following, positivity of the relevant quantities got from the thermodynamical phase-space is analyzed in
both continuous subsystems C and A.

2.2.2. Positivity of density and internal energy

Positivity requirements reflect the invariance of a given solution towards its thermodynamical phase space. In
this study, one focuses on the ideal (IG) and the stiffened gas (SG) thermodynamics defined by the following sets:

ρ ε =
p

(γ − 1)
, (2.14a)

ΦPG =

{
U, s.t. e =

|u|2

2
+ ε, ρ > 0, ρ ε > 0

}
, (2.14b)
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=

{
U, s.t. e =

|u|2

2
+ ε, ρ > 0, p > 0

}
, (2.14c)

ρ ε =
p+ γ P∞
(γ − 1)

, P∞ > 0, (2.15a)

ΦSG =

{
U, s.t. e =

|u|2

2
+ ε, ρ > 0, ρ ε− P∞ > 0

}
, (2.15b)

=

{
U, s.t. e =

|u|2

2
+ ε, ρ > 0, p+ P∞ > 0

}
. (2.15c)

For both thermodynamics, the construction of the above phase-spaces allows to guarantee that the Euler speed
of sound c is real and strictly positive since:

(Φ)IG : c =

√
γ p

ρ
=

√
γ (γ − 1) (ρε)

ρ
,

(Φ)SG : c =

√
γ (p+ P∞)

ρ
=

√
γ (γ − 1) (ρε− P∞)

ρ
.

(2.16)

Thus, in the case of an ideal gas thermodynamics (respectively in the case of a stiffened gas thermodynamics),
the positivity of ρ and ρε (respectively the positivity of ρ and ρε − P∞) is studied. First of all, assume that
∀φ ∈ {ρ, ρε, ρε− P∞} a positive inlet boundary condition as well as an admissible initial condition hold, namely:

φ|∂ Ω ≥ 0 if u · n|∂ Ω ≤ 0,

φ(., t = 0) ≥ 0,
(2.17)

with Ω the spatial domain of boundary ∂Ω and n the outward local normal vector of ∂Ω.
Then, as recalled in [24] for sufficiently smooth solutions, positivity of density ρ is naturally obtained from

mass equation in subsystem C for both thermodynamics. Density is also stationary in subsystem A. So, after
having successively solved C and A, density remains positive.

In the case of an ideal gas thermodynamics, since ρ remains positive, the positivity of ρ ε is equivalent to the
positivity of ε. For smooth solutions, the specific internal energy in subsystems C and A verifies:

∂t ε+ u · ∇ε+ E 2
0 (t)

p

ρ
∇ · u = 0, (C)

∂t ε+
(
1− E 2

0 (t)
) p
ρ
∇ · u = 0. (A)

(2.18)

By making the same kind of regularity hypothesis than in [24], one can prove that, in the case of an ideal gas
thermodynamics, ε remains positive on Ω throughout time. See Appendix C for more details.

In the case of a stiffened gas thermodynamics, let us introduce P = ρ ε− P∞ = p+P∞
(γ−1) which is the variable

concerned by the positivity requirement. In C and A, it verifies the PDEs:{
∂t P +∇ · (P u) + E 2

0 (t) (γ − 1)P ∇ · (u) + (1− E 2
0 (t))P∞∇ · u = 0, (C)

∂t P + (1− E 2
0 (t)) (γ − 1)P ∇ · (u)− (1− E 2

0 (t))P∞∇ · u = 0. (A)
(2.19)
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Let us first notice that P∞
P = (γ − 1) P∞

p+P∞
is not a priori bounded since the stiffened gas phase-space allows

p to tend towards −P∞. Then, as shown in equation (C.9) of Appendix C, this prevents from controlling the
operator (1− E 2

0 (t))P∞∇ · u, and the positivity of P cannot a priori be ensured unless P∞ = 0 which is the
ideal gas case or E0 = 1 which corresponds to the resolution of Euler system with no splitting. More details are
given in Appendix C. Thus, in the case of a stiffened gas thermodynamics, computations involving the discrete
resolution of subsystems C and A in which the discrete pressure field is close to −P∞ could potentially produce
complex numbers for c. Nevertheless, in most cases, pressure remains positive and this difficulty can be avoided.

The next section is dedicated to the design of a time-explicit scheme to solve the above Mach-sensitive
fractional step.

3. Relaxation scheme applied to the weighted splitting approach

For the sake of simplicity and with no loss of generality, the scheme description is done in one dimension.
Literature dealing with relaxation schemes is vast. Without being exhaustive, we refer to [33] for the derivation
of relaxation schemes applied to abstract hyperbolic systems in which the whole flux is relaxed. In [12], the
authors question the existence of solutions for the relaxation systems as well as their convergence towards a
local equilibrium. A detailed study of the entropy-satisfying relaxation method applied to the isentropic gas
dynamics system and extended to the fully compressible Euler system is given in [6]. It uses a Suliciu-like
relaxation technique [42] which is also applied in [2] on a Drift-Flux model. Besides, the acoustic part of the
Lagrange-Projection splitting derived in [11, 25] is solved the same way too. Eventually in [13], an extension of
the Suliciu approach to general fluid systems is done. Following the same approach, we proceed to a Suliciu-like
relaxation method on both subsystems C and A.

Let us recall that the Suliciu relaxation method applied on Euler-like systems consists in introducing a new
pressure variable Π endowed with a “quasi-linear” dynamics converging towards the real pressure variable p.
This convergence is ensured thanks to a source term whose timescale µ� 1. The new system is still hyperbolic
and has only linearly degenerate fields which makes the derivation of an exact Godunov solver easier. What
is more, the high level of nonlinearity brought by the pressure variable via the equation of state (2.1d) is
encapsulated in one single constant. As a consequence, the derivation of the numerical scheme can be done
independently of the fluid equation of state. The cost to be paid is the increase of the system dimension through
an additional equation for Π. What is more, one has to decide how to treat the equilibrium between Π and p
numerically.

3.1. Suliciu relaxation for the weighted splitting approach

As previously mentioned, the Suliciu-like relaxation technique leans on a linearization of the pressure dynam-
ics. Let us first derive the PDEs associated with p for both subsystems C and A. Using the mass equations,
internal energy equations (2.18), and the fact that ∀D ∈ {∂t , ∂x } , D p = (∂ρ p)|εDρ+ (∂ε p)|ρDε, it yields:

C : ∂t p+ u ∂x p+ ρ (cC)
2 ∂x u = 0, (3.1)

A : ∂t p+ (1− E 2
0 ) ρ (cA)2 ∂x u = 0. (3.2)

Then, replace pressure p (ρ, ε) by a new relaxation pressure variable Π which no longer depends of density
and internal energy. One also expects Π to mimic the above physical pressure dynamics but with an additional
linearization effect on the thermodynamics. This is done by introducing two constants aC > 0 and aA > 0 such
that Π verifies:

C : ∂tΠ + u ∂xΠ +
a2
C
ρ
∂x u =

(p−Π)

µ
, (3.3)

A : ∂tΠ + (1− E 2
0 )

a2
A
ρ
∂x u =

(p−Π)

µ
. (3.4)
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Here, aC (respectively aA) is homogeneous to a density times a velocity and encapsulates the non-linear
effects brought by ρ cC(ρ, ε) (respectively ρ cA(ρ, ε)). Besides, by using the mass equation and because aC and
aA are constant, it is possible to rewrite equations (3.3) and (3.4) in a conservative way namely:

C : ∂t (ρΠ) + ∂x
(
(ρΠ + a2

C)u
)

=
ρ (p−Π)

µ
, (3.5)

A : ∂t (ρΠ) + ∂x
(
(1− E 2

0 )a2
A u
)

=
ρ (p−Π)

µ
. (3.6)

One can observe that, when µ→ 0 in (3.3) and (3.4), the relaxation pressure Π tends formally towards p at
zeroth order in µ. Hence (p−Π) /µ can be formally interpreted as a correction term of time scale µ forcing the
relaxation pressure to converge towards the physical pressure instantaneously if µ tends to zero.

Finally, the relaxation convective and acoustic systems read:

Cµ :



∂t ρ+ ∂x (ρ u) = 0,

∂t (ρ u) + ∂x
(
ρ u2 + E 2

0 (t)Π
)

= 0,

∂t (ρ e) + ∂x
(
(ρ e+ E 2

0 (t)Π)u
)

= 0,

∂t (ρΠ) + ∂x
(
(ρΠ + a2

C)u
)

=
ρ (p−Π)

µ
,

(3.7)

Aµ :



∂t ρ = 0,

∂t (ρ u) + ∂x
(
(1− E 2

0 (t))Π
)

= 0,

∂t (ρ e) + ∂x
(
(1− E 2

0 (t))Π u
)

= 0,

∂t (ρΠ) + ∂x
(
(1− E 2

0 (t)) a2
A u
)

=
ρ (p−Π)

µ
.

(3.8)

Remark 3.1. It is worth noting that, the relaxation schemes framework can be formulated differently. Indeed,

one can rewrite the subsystems Cµ and Aµ without the relaxation term ρ (p−Π)
µ . Hence, the relaxation pressure

Π is free to move away from the real pressure p. However in that case, the resolution of the homogeneous
relaxation subsystems is completed by a projection sub-step on the equilibrium manifold:{

(ρ, ρu, ρe, ρΠ ) s.t., Π = p(ρ, ε),with ε = e− ρu2

2

}
. (3.9)

As it will be seen in the sequel (see Eq. (3.28) dealing with the overall algorithm of the fractional step), in

practice both subsystems Cµ and Aµ are solved without ρ(p−Π)
µ . Then, at the end of each subsystem resolution,

the updated relaxation state is projected instantaneously on the equilibrium manifold.

One way to calibrate the constant relaxation coefficient aC (respectively aA) is to perform a Chapman-Enskog
expansion by rewriting all the variables φ ∈ {ρ, u, e, Π} in power of µ:

φ = φ0 + µφ1 + µ2 φ2 + · · · ,
Π0 = p.

By doing so, one can exhibit a subcharacteristic-like condition, also called Whitham-like condition [44]. It allows
to prevent Cµ (respectively Aµ) from triggering instabilities when µ → 0. What is more, it can be used as a
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sufficient condition to build an entropy pair and an extended entropy inequality for the relaxation system (see
[5, 6, 12]). As detailed in Appendix F, the subcharacteristic conditions obtained are:

Cµ : aC > ρ cC , (3.10a)

Aµ : aA > ρ cA. (3.10b)

Remark 3.2. By proceeding in the same manner, one could have obtained a Suliciu-like relaxation Euler
system. The relaxation pressure PDE would have been:

∂tΠ + u ∂xΠ +
a2
E

ρ
∂x u =

(p−Π)

µ
, (3.11)

with aE the constant relaxation coefficient constrained by the Euler subcharacteristic condition:

aE > ρ c. (3.12)

Recall that lim
E0→1

cC = c, and then (3.10a) becomes (3.12) in that case. More generally, the shape of such a

Suliciu-like relaxation Euler system can be obtained by formally making E0 tend towards one in Cµ.

Remark 3.3. In [6, 9, 13, 14, 15], in order to solve the Euler system using relaxation techniques, the authors
perform an inversion between the role played by total energy and entropy. The idea is to turn the total energy
equation into a mathematical entropy constraint while injecting the pure transport entropy equation:

∂t s+ u ∂x s = 0. (3.13)

By doing so, one can lean on good properties brought by relaxation methods applied on the barotropic Euler
system and enforce the entropy inequality (2.5) in the numerical resolution of the full Euler system. More
details can be found in the above references. In our splitting approach, such a strategy is avoided. Indeed, let
us consider UC (respectively UA) the conservative state solution of the subsystem C (respectively A). It can be
shown that the physical entropy function s

(
UC
)

(respectively s
(
UA
)
) defined in equation (2.4) does no longer

verify equation (3.13). For both subsystems, an additional non-conservative term appears and prevents from
applying directly the barotropic-relaxation system results. That is why, in our case, a simple Suliciu-relaxation
method is performed on the conservative system including total energy. Note that a similar relaxation treatment
is done in [11] for the acoustic subsystem.

Remark 3.4. As previously noted in Section 2.2.1, the lower bound in the acoustic subcharacteristic condition
(3.10b) uses cA an artificial celerity naturally provided by subsystem A. In the case of an ideal or a stiffened
gas thermodynamics, cA < c, so that one can provide, at the discrete level, a constant aA fulfilling a discrete
version of inequality (3.10b) while violating the natural acoustic subcharacteristic condition (3.12) based on
the real sound speed which is found in [9, 14, 25]. According to a formal Chapman-Enskog expansion, the
subcharacteristic condition (3.10b) provides a sufficient condition guaranteeing the stability of the time-explicit
scheme for the resolution of Aµ. However, no theoretical result has been found to prove that it was also a
sufficient condition to obtain the stability of the overall weighted splitting approach. In particular, in the case
of low Mach number compressible flows with cA � c, we think that it is relevant to numerically compare the
effect of considering the more demanding condition (3.12) rather than (3.10b). This will be done in Section 5.2.

3.2. Derivation of the relaxation scheme

Let us define ∆x (respectively ∆t) the space step (respectively the time step) of the scheme. For i ∈
[1, .., Ncells] let us set xi = i∆x, the coordinate of the cell center i and xi+1/2 = xi + ∆x/2, the coordinate
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of face i+ 1/2. Let us consider W = [ρ, ρ u, ρ e, ρΠ]
T

the extended relaxation conservative vector. Following

Remark 3.5. the Riemann problem related to the homogeneous versions of (3.7) or (3.8) writes:

∂t W + ∂x Fµ (W) = 0, W(t = 0, .) =

{
WL if x < x0,

WR if x > x0,
(3.14)

with

Fµ ∈

FµC (W) =


ρ u

ρ u2 + E 2
0 Π

(ρ e+ E 2
0 Π)u

(ρΠ + (aC)
2)u

 , FµA (W) = (1− E 2
0 )


0
Π
Π u

(aA)2 u


 .

Let us introduce Un
i the discrete approximation of 1

∆x

∫ xi+1/2

xi−1/2
L(W) (x, tn) dx, W verifying ∂t W +

∂x Fµ (W) = 0 ∀(x, t) , and L : W = [w1, w2, w3, w4]
T ∈ R4 → [w1, w2, w3]. Therefore Un

i represents the
discrete approximation of the solution of the relaxation system without the component ρΠ. Then, the Godunov
solver can be derived easily and reads:

Un+1
i = Un

i −
∆t

∆x

(
Hn
i+1/2 −Hn

i−1/2

)
,

with: Hn
i+1/2 = L

(
Fµ
(
WGod(0; Wn

i , Wn
i+1)

))
= Hn

i+1/2

(
Un
i , Un

i+1

)
,

(3.15)

and (x, t)→WGod
(
x−xi+1/2

t ; Wn
i , Wn

i+1

)
the self similar solution of the Riemann problem (3.14) located at

x0 = xi+1/2.
The study of Cµ and Aµ leading to the time-explicit expression of the Godunov flux has been done using the

non-conservative variable ZT = [ρ, u, Π, e]T . In the following, the structure of the fields, the eigenvalues and
the Riemann invariants are described.

3.2.1. Convective part

The relaxation system Cµ is strictly hyperbolic, its eigenvalues being: λC, µ1 = u − E0 aCτ, λ
C, µ
2 = λC, µ3 =

u, λC, µ4 = u+ E0 aCτ with τ = 1/ρ. Furthermore, each field is linearly degenerate and admits simple Riemann
invariants:

IC, µE0, 1
=

{
u− E0 aCτ, Π + a2

Cτ, e+
E0

aC
Π u

}
,

IC, µE0, 2, 3
= {u, Π} ,

IC, µE0, 4
=

{
u+ E0 aCτ, Π + a2

Cτ, e−
E0

aC
Π u

}
.

(3.16)

Let us notice that, for smooth solutions, mass equation in subsystem Cµ can be rewritten ∂t τ +u ∂x τ − τ ∂x u =
0. By multiplying this equation by a2

C and summing it with the Π equation in (3.8), one obtains:

∂t
(
Π + a2

Cτ
)

+ u ∂x
(
Π + a2

Cτ
)

= 0. (3.17)

Thus, Π + a2
Cτ remains constant along the characteristic curves of speed u. Besides, it is a 2,3-strong Riemann

invariant meaning that it is invariant through the 1-wave and the 4-wave. Eventually one can notice that this
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quantity is solution of the following equation:

∂ρ (ψ)|Π +

(
aC
ρ

)2

∂Π (ψ)|ρ = 0, (3.18)

which can be related to the entropy equation (2.4). The pressure term linearization induced by the relaxation
method has logically implied a linearization of the equation originally verified by entropy and Π + a2

Cτ seems
to play the same role.

Besides, the knowledge of the Riemann invariants allow to easily solve the one-dimensional Riemann problem
at a given face f , with ZL and ZR taken as initial conditions. Figure 1 describes the different states and waves
produced.

The two intermediate states Z∗f, C and Z∗∗f, C are:

Z∗f, C =


ρ∗L, C
u∗C
Π∗C
e∗L, C

, Z∗∗f, C =


ρ∗R, C
u∗C
Π∗C
e∗R, C

, (3.19)

with:



u∗C =
uR + uL

2
− E0

2 aC
(pR − pL),

E 2
0 Π

∗
C = E 2

0

pR + pL
2

− E0 aC
2

(uR − uL),

ρ∗k, C = 1/τ∗k, C , τ
∗
k, C = τk +

(−1)ik+1

E0 aC
(u∗C − uk),

e∗k, C = ek + E0
(−1)ik

aC
(Π∗C u

∗
C − pk uk),

k ∈ {L, R} , iL = 1, iR = 2

(3.20)

Figure 1. Subsystem Cµ: waves and states.
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Define W∗, n
i+1/2 (respectively W∗∗, n

i+1/2) using Z∗i+1/2, C (respectively Z∗∗i+1/2, C) and introduce U∗, ni+1/2 =

L
(
W∗, n

i+1/2

)
, U∗∗, ni+1/2 = L

(
W∗∗, n

i+1/2

)
. The convective numerical flux then reads:

Hc
n
i+1/2 =



L (FµC) (Un
i ) if uni − E n

0 (anC)i+1/2τ
n
i > 0,

L (FµC)
(
U∗, ni+1/2

)
if uni − E n

0 (anC)i+1/2τ
n
i ≤ 0 < (u∗C)

n
i+1/2,

L (FµC)
(
U∗∗, ni+1/2

)
if (u∗C)

n
i+1/2 ≤ 0 < uni+1 + E n

0 (anC)i+1/2τ
n
i+1,

L (FµC)
(
Un
i+1

)
if uni+1 + E n

0 (anC)i+1/2τ
n
i+1 ≤ 0,

(anC)i+1/2 = K max
(
ρni (cC)

n
i , ρ

n
i+1 (cC)

n
i+1

)
, K > 1.

(3.21)

Furthermore, using the exact Godunov structure and the fact that all the fields are linearly degenerate, one can
rewrite the relaxation flux in a more compact way (see [2, 3]) as:

Hc
n
i+1/2 =



1

2

(
L (FµC) (Un

i ) + L (FµC)
(
Un
i+1

))
− 1

2

∣∣uni − E n
0 (anC)i+1/2 τ

n
i

∣∣ (U∗, ni+1/2 −Un
i )

− 1

2

∣∣∣(u∗C)ni+1/2

∣∣∣ (U∗∗, ni+1/2 −U∗, ni+1/2)

− 1

2

∣∣uni+1 + E n
0 (anC)i+1/2 τ

n
i+1

∣∣ (Un
i+1 −U∗∗, ni+1/2).

(3.22)

3.2.2. Acoustic part

The acoustic system Aµ is also hyperbolic and its eigenvalues are: λA, µ1 = −(1 − E 2
0 ) aAτ, λ

A, µ
2 = λA, µ3 =

0, λA, µ4 = (1− E 2
0 ) aAτ . Once again the Riemann invariants can be easily found and read:

IA, µE0, 1
=

{
ρ, u+

Π

aA
, e+

Π u

aA

}
,

IA, µE0, 2, 3
= {u, Π} ,

IA, µE0, 4
=

{
ρ, u− Π

aA
, e− Π u

aA

}
.

(3.23)

It can be noticed that:

∂t

(
u+

Π

aA

)
+ λA, µ4 ∂x

(
u+

Π

aA

)
= 0,

∂t

(
u− Π

aA

)
+ λA, µ1 ∂x

(
u− Π

aA

)
= 0.

(3.24)

Thus, ω+
A = u+ Π

aA
(respectively ω−A = u− Π

aA
) remains constant along the characteristic curves of speed λA, µ4

(respectively λA, µ1 ). Besides, ω+
A is a 4-strong Riemann invariant whereas ω−A is a 1-strong Riemann invariant.

Following the steps of [14, 25], equations (3.24) associated with the strong Riemann invariants natural properties
provides a simple way to derive a time-implicit relaxation scheme for the acoustic subsystem. More details are
given in [31, 32].

The one-dimensional Riemann problem can be solved exactly without difficulty. The solution is described in
Figure 2.
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Figure 2. Subsystem Aµ: waves and states.

Z∗f,A =


ρL
u∗A
Π∗A
e∗L,A

, Z∗∗f,A =


ρR
u∗A
Π∗A
e∗R,A

, (3.25)

with:



u∗A =
uR + uL

2
− 1

2 aA
(pR − pL),

Π∗A =
pR + pL

2
− aA

2
(uR − uL),

e∗k,A = ek +
(−1)ik

aA
(Π∗A u

∗
A − pk uk),

k ∈ {L, R} , iL = 1, iR = 2.

(3.26)

One can notice that the weighting parameter E0 does not appear in the different intermediate quantities.
Besides, the intermediate velocity, pressure and energy formulas are similar to those obtained using the Lagrange-
Projection method [11, 25]. The only difference is that, in the present approach, aA is bounded by the modified
acoustic subcharacteristic condition (3.10b) whereas in [11, 25] it is (3.12). The related numerical flux writes:

Hac
n
i+1/2 =

(
1− (E n

0 )2
)  0

(Π∗A)ni+1/2

(Π∗A)ni+1/2 (u∗A)ni+1/2

,
(anA)i+1/2 = K max

(
ρni (cA)ni , ρ

n
i+1 (cA)ni+1

)
, K > 1.

(3.27)

3.2.3. General remarks on the splitting operator algorithm

The overall algorithm updating the discrete solution from tn to tn + ∆t is the following: starting from a given
state Un, a given relaxation pressure Πn = pEOS (Un) and a given splitting parameter E n

0 , the homogeneous
versions of subsystems Cµ and Aµ are successively solved using the relaxation scheme fluxes presented in
(3.21) and (3.27). At the end of each resolution, the new discrete states Wn+

i (after the convective sub-step)
and Wn+1

i (after the acoustic sub-step) are projected on the equilibrium manifold (3.9). Such a projection
procedure presented in [6] can be seen as an additional sub-step resolving ∂t W = Sµ(W) with Sµ(W) =

[0, 0, 0, (p−Π)/µ]
T

and µ→ 0. It allows to provide the appropriate physical pressure for the flux construction
between two sub-steps. Afterwards, the weighting factor E0 is updated. One can notice that the overall operator
splitting procedure is conservative since C and A are conservative subsystems and the resolution of Cµ and Aµ
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is performed using an exact conservative Godunov scheme. The global relaxation scheme including both steps
writes: {

Un+
i = Un

i − ∆t
∆x

(
Hci+1/2

(
Un
i , Un

i+1

)
−Hci−1/2

(
Un
i−1, Un

i

))
,

Πn+
i = pEOS

(
Un+
i

)
,{

Un+1
i = Un+

i − ∆t
∆x

(
Haci+1/2

(
Un+
i , Un+

i+1

)
−Haci−1/2

(
Un+
i−1, Un+

i

))
,

Πn+1
i = pEOS

(
Un+1
i

)
.

(3.28)

Written in one single conservative step, the scheme reads:

Un+1
i = Un

i −
∆t

∆x

(
Hci+1/2

(
Un
i , Un

i+1

)
−Hci−1/2

(
Un
i−1, Un

i

))
−∆t

∆x

(
Haci+1/2

(
Un+
i , Un+

i+1

)
−Haci−1/2

(
Un+
i−1, Un+

i

))
. (3.29)

Following the continuous definition (2.9) of the parameter E0, one can introduce E n
0 as:

E n
0 = max (Einf , min (Mn

max, 1)) withMn
max = max

i∈[1, Ncells]

(
|uni |
cni

)
. (3.30)

Here, cni = c (ρni , p
n
i ) where c(., .) is the sound speed function defined in equation (2.2). As already mentioned

in Section 2.2, 0 < Einf � 1 is only a lower bound preventing E n
0 from being exactly equal to zero if velocity is

initially null everywhere.

3.3. CFL condition choice

Definition 3.6. CFL condition based on the Euler system In order to adapt timesteps to the real waves
produced by the Euler system, let us define the discrete time step at iteration n as:

∆tnE =
σ

2

∆x

max
i+1/2

(
max

(
|uni |+ cni ,

∣∣uni+1

∣∣+ cni+1

)) ,
0 < σ < 1.

(3.31)

CFL condition (3.31) is adapted to the resolution of the overall Euler system. However, because of the weighted
splitting approach, one can exhibit two additional CFL conditions which would be sufficient to guarantee stability
of both C and A subsystems if they were solved independently. These CFL conditions write:

∆tnC =
σ

2

∆x

max
i+1/2

(
max

(∣∣∣uni − E n
0 (aC)ni+1/2 τ

n
i

∣∣∣ , ∣∣∣uni+1 + E n
0 (aC)ni+1/2 τ

n
i+1

∣∣∣)) ,
∆tnA =

σ

2

∆x

(1− (E n
0 )2) max

i+1/2

(
(aA)ni+1/2 max

(
τni , τ

n
i+1

)) ,
0 < σ < 1.

(3.32)

One should keep in mind that it is absolutely not sufficient, in a fractional-step method, to constrain the
time-step by only sub-steps CFL condition in order to guarantee the stability of the overall algorithm. A very
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simple hand-made but rather convincing example described in [16] shows that the CFL condition of the unsplit
system has to be taken into account too. Hence, the final CFL condition reads:

∆tn = min (∆tnE , ∆tnC , ∆tnA). (3.33)

We now study the discrete properties of our weighted splitting approach. Special attention will be paid to the
positivity of both density and internal energy.

3.4. Discrete properties of the overall scheme

3.4.1. Discrete density positivity

Let us first notice that the acoustic resolution step of Aµ does not modify density. Then, one has just to
check that discrete density remains positive after the convective step. This is classically done in [2] by rewriting
the convective relaxation scheme (3.15), (3.21) as:

Un+1
i =

U+
(
Wn

i , Wn
i−1

)
+ U−

(
Wn

i+1, Wn
i

)
2

,

with: U+ (WL, WR) =
2 ∆t

∆x

∫ ∆x
2 ∆t

0

L
(
WGod

)
(ξ, WL, WR) d ξ,

U− (WL, WR) =
2 ∆t

∆x

∫ 0

− ∆x
2 ∆t

L
(
WGod

)
(ξ, WL, WR) d ξ.

(3.34)

Hence, positivity of the discrete density ρn+1
i is maintained if all the intermediate densities appearing in the

Riemann problem described in Figure 1 and equalities (3.20) are positive. This can be done by adding an
additional lower bound for constant aC into the subcharacteristic condition (3.10a):

Lemma 3.7 (Positivity of intermediate density). Consider a given mesh face and the related local Riemann
problem related to subsystem C, producing waves described in Figure 1 with UL and UR as initial data. Assume
that the global CFL condition (3.33) holds so that waves produced by local Riemann problems do not interact.
Consider the intermediate densities ρ∗L, C and ρ∗R, C defined in (3.20); then:

{
ρ∗L, C ≥ 0,

ρ∗R, C ≥ 0,
⇔


fL(aC) = a2

C +
ρL (uR − uL)

2E0
aC −

ρL (pR − pL)

2
≥ 0,

fR(aC) = a2
C +

ρR (uR − uL)

2E0
aC +

ρR (pR − pL)

2
≥ 0.

(3.35)

Define aρL (respectively aρR) the highest positive root related to the second order polynomial function fL(aC)
(respectively fR(aC)). Thus, under the modified subcharacteristic condition:

Cµ : aC ≥ max (ρL (cC)L, ρR (cC)R, a
ρ
L, a

ρ
R) , (3.36)

inequalities (3.35) hold. Furthermore, if UL and UR are such that aρL (respectively aρR) is complex or negative,
ρ∗L, C ≥ 0 (respectively ρ∗R, C ≥ 0) is automatically fulfilled and aρL (respectively aρR) can be removed from (3.36).
Eventually, it is equivalent to guarantee the intermediate density positivity and the ordering of the waves speeds:

uL − E0 aC τL ≤ u∗C ≤ uR + E0 aC τR.
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The proof of this lemma, including the expressions of aρL and aρR, is written in Appendix D. The same kind
of results can be found in [2] in order to enforce the mass fraction positivity. One has to mention that the non-
dimensional expressions of aρL and aρR are of order O(1 + M/E0). Therefore considering the discrete splitting
parameter E n

0 defined in (3.30), the non-dimensional roots aρL and aρR are of order one w.r.t. the Mach number.
Thus, their impact on the overall fractional step and notably on the numerical diffusion associated with the
convective flux (3.22) is controlled in the sense that the modified subcharacteristic condition (3.36) does not
imply that lim

M→0
aC = +∞.

3.4.2. Discrete internal energy positivity for ideal gas thermodynamics

As already presented in Section 2.2.2, in the case of an ideal gas thermodynamics, specific internal energy
ε remains positive throughout space and time. Although ε is not a conservative variable, we can still consider
equation (3.34) seen as a continuous convex combination of conservative states and notice that ΦPG defined in
(2.14) is a convex set in the conservative phase-space (see [6] for a proof). Thus, similarly to density, a sufficient
condition to guarantee the positivity of εn+1 is to make sure that for k ∈ {L, R}, ε∗k, C = e∗k, C − (u∗C)

2/2 as well

as ε∗k,A = e∗k,A − (u∗A)2/2 are positive. Such a sufficient condition is presented in the next lemma:

Lemma 3.8 (Positivity of the intermediate internal energy). . Consider a given mesh face and the related
local Riemann problem associated with subsystem C (respectively A), producing waves described in Figure 1
(respectively Figure 2) with UL and UR as initial data. Assume that the global CFL condition (3.33) holds
so that waves produced by local Riemann problems do not interact. For k ∈ {L, R}, consider the intermediate
densities ε∗k, C (respectively ε∗k,A) defined with quantities introduced in (3.20) (respectively (3.26));

for the acoustic subsystem:


fA, L(aC) = a2

A − ρεL
(uR − uL)

2
aA + ρεL

(pR − pL)

2
≥ 0,

fA, R(aA) = a2
A − ρεR

(uR − uL)

2
aA − ρεL

(pR − pL)

2
≥ 0

⇒

{
ε∗L,A ≥ 0,

ε∗R,A ≥ 0,
(3.37)

with ρεk = pk
εk

.
for the convective subsystem:


fC, L(aC) = a2

C − E0 ρ
ε
L

(uR − uL)

2
aC + E 2

0 ρ
ε
L

(pR − pL)

2
≥ 0,

fC, R(aC) = a2
C − E0 ρ

ε
R

(uR − uL)

2
aC − E 2

0 ρ
ε
L

(pR − pL)

2
≥ 0

⇒

{
ε∗L, C ≥ 0,

ε∗R, C ≥ 0,
(3.38)

Define (aεA, L, a
ε
C, L) (respectively (aεA, R, a

ε
C, R)) the highest positive roots related to the couple of second order

polynomial functions (fA, L(aA), fC, L(aC)) (respectively (fA, R(aA), fC, R(aC))). Then one can show that:

aεC, L = E0 a
ε
A, L,

aεC, R = E0 a
ε
A, R,

(3.39)

so that under the modified subcharacteristic condition:

Cµ : aC ≥ max
(
ρL (cC)L, ρR (cC)R, a

ε
A, L, a

ε
A, R

)
,

Aµ : aA ≥ max
(
ρL (cA)L, ρR (cA)R, a

ε
A, L, a

ε
A, R

)
,

(3.40)
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inequalities (3.37) and (3.38) hold. Eventually, if UL and UR are such that aεA, L (respectively aεA, R) is com-
plex or negative, the positivity of (ε∗L, C , ε

∗
L,A) (respectively (ε∗R, C , ε

∗
R,A) ) is automatically fulfilled and aεA, L

(respectively aεA, R) can be removed from (3.40).

The proof of this lemma and the formulas for the polynomial roots are provided in Appendix E. Once again,
it can be shown that the non-dimensional expressions of aεA, L and aεA, R are of order one w.r.t. the Mach number.

In the following section, a truncation error analysis performed on smooth solutions is derived in order to
assess the effect of the splitting parameter E0 in terms of numerical diffusion in the case of one-dimensional low
Mach number compressible flows.

4. A truncation error analysis

In [11, 25] a fractional step approach based on a Lagrange-Projection splitting [14] is proposed. The authors
use a relaxation scheme, very similar to these introduced in (3.25), (3.26), (3.27), to discretize their corresponding
acoustic flux. By performing a 1D non-dimensional truncation error analysis, they show that the dissipative
part of the discrete acoustic momentum flux scales as O(∆x/M). This prohibitive dissipation does not vanish
through their transport sub-step and the resulting diffusive operator for the overall scheme is of the same order.

A detailed study in [18, 19, 20] points out that this pathology actually holds for all Godunov-like schemes
and hides far more intricate spatial discretization issues if one is interested in maintaining the solution of
compressible Riemann solvers close to its incompressible initial part.

As explained in the introduction, the present work evolves within the point (II) framework. Then, we are
simply interested in reducing the numerical diffusion which could occur on acoustic wave fronts in the case
where 0 < M � 1. Hence, we only consider 1D non-dimensional truncation error analysis as a simple (although
incomplete) tool to have a rough idea of the numerical diffusion produced by the spatial discretization of the
present compressible solver when the Mach number is small compared with one. We notably want to measure the
effect of the splitting parameter E n

0 on the amplitude of the overall scheme numerical diffusion. For that purpose,
we start by performing a truncation error analysis for each subsystem as if they were solved independently. Then,
the additional numerical diffusion due to the composition between the discrete convective state update and the
acoustic flux is analyzed.

4.1. Truncation error of the weighted splitting subsystems

Each truncation error analysis is made on non-dimensional systems. Let us introduce tr, lr, ρr, ur, pr the
reference time-scale, space-scale, density, material velocity and pressure. Besides, define a reference acoustic
celerity cr such that ρr c

2
r = pr. Finally, consider the Mach number M = ur/cr and the Strouhal number Str =

lr/ (tr ur). Then, the overall non-dimensional Euler compressible system reads:

E :


Str ∂t ρ+ ∂x (ρ u) = 0,

Str ∂t (ρ u) + ∂x

(
ρ u2 +

p

M2

)
= 0,

Str ∂t (ρ e) + ∂x ((ρ e+ p)u) = 0,

(4.1)

with e = ε (ρ, ε) +M2 u2

2 . Note that in the context of point (II) , the reference time-scale is based on the fast
acoustic waves: tr = lr/cr. Thus, Str = 1/M . In the sequel, the Mach number is fixed to a given low value:
0 < M � 1. Then, by making the non-dimensional space-step ∆x tend towards zero for smooth solutions, one
seeks to find the amplitude of the diffusive operator induced by the spatial discretization of the overall fractional
step. We notably want to identify the diffusion sources of order O(∆x/M).

Here is the truncation error analysis performed on the convective subsystem C:

Proposition 4.1 (Truncation error analysis of the convective subsystem). Consider the convective numerical
scheme defined by equations (3.15), (3.21) and (3.22). Under the CFL condition (3.31), This scheme is consistent
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with the non-dimensional convective subsystem:

Ctrunc :



Str ∂t ρ+ ∂x (ρ u) = O(Str ∆t) +O

(
(1 +

E0

M
+
M

E0
)∆x

)
,

Str ∂t (ρ u) + ∂x

(
ρ u2 +

E 2
0 (t)

M2
p

)
= O(Str ∆t) +O

(
(1 +

E0

M
+
M

E0
)∆x

)
,

Str ∂t (ρ e) + ∂x
(
(ρ e+ E 2

0 (t) p)u
)

= O(Str ∆t) +O

(
(1 +

E0

M
+
M

E0
)∆x

)
.

(4.2)

The proof is given in Appendix H. Let us start by mentioning that the first order time-discretization of the
present approach produces a diffusion of order O(Str ∆t) = O(∆t/M) which can be important when 0 < M � 1.
This difficulty is not treated in the present paper which focuses exclusively on simple means to reduce the
numerical diffusion induced by the spatial discretization of Godunov-like schemes. In order to better understand
the above orders of magnitude, consider the diffusive part of the convective flux written in (3.22). Then one can
rewrite the difference of states as:

U∗i+1/2 −Ui =

 ρ∗i, C − ρi
(ρ∗i, C − ρi) (u∗C)i+1/2

(ρ∗i, C − ρi) e∗i, C

+

 0
ρi ((u∗C)i+1/2 − ui)

ρi (e∗i, C − ei)

, (4.3)

U∗∗i+1/2 −Ui+1 =

 ρ∗i+1, C − ρi+1

(ρ∗i+1, C − ρi+1) (u∗C)i+1/2

(ρ∗i+1, C − ρi+1) e∗i+1, C

+

 0
ρi+1 ((u∗C)i+1/2 − ui+1)
ρi+1 (e∗i+1, C − ei+1)

, (4.4)

where the expressions of (ρ∗i, C , e
∗
i, C) respectively (ρ∗i+1, C , e

∗
i+1, C) are provided in (3.20) with L = i, R = i+ 1.

The diffusion of order O
(
M
E0

∆x
)

has been produced by the density differences ρ∗i, C − ρi and ρ∗i+1, C − ρi+1.

It stems from the volume contraction operator ρ ∂x u which, contrary to [11], is present in our convective
subsystem to provide a conservative mass flux when associated with the transport operator u ∂x ρ. The diffu-
sion of order O

(
E0

M ∆x
)

has been produced by the acoustic part of the non-dimensional relaxation eigenvalues

ui − E0

M (aC)i+1/2 τi and ui+1 + E0

M (aC)i+1/2 τi+1; as well as the non-centered part of the intermediate velocity

(u∗C)i+1/2 = ui+1+ui

2 − (E0/M) (pi+1−pi)
2 (aC)i+1/2

. In both cases, the splitting parameter acts as a compensator of the

strong diffusive effect of order O(1/M).
Therefore the numerical diffusion produced by the convective subsystem C is of order O(∆x) in every Mach

regime. If the convective part of the present weighted splitting approach structurally avoids the numerical
diffusion when 0 < M � 1, the acoustic one continues to suffer from it. Indeed:

Proposition 4.2 (Truncation error analysis of the acoustic subsystem). Consider the acoustic numerical scheme
defined by equations (3.15) and (3.27). Under the CFL condition (3.31), This scheme is consistent with the
non-dimensional acoustic subsystem:

Atrunc :



Str ∂t ρ = O(Str ∆t),

Str ∂t (ρ u) + ∂x

(
(1− E 2

0 (t))

M2
p

)
= O(Str ∆t) +O

(
(1− E 2

0 )

M
∆x

)
,

Str ∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) p u
)

= O(Str ∆t) +O

(
(1− E 2

0 )(M +
1

M
)∆x

)
.

(4.5)
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Here, the term of order O
(

(1−E 2
0 )

M ∆x
)

in the momentum equation truncation error is directly produced by

the dissipative part of the intermediate acoustic pressure:

(Π∗A)i+1/2

M2
= (1/M2)

pi+1 + pi
2

− (1/M)
(aA)i+1/2

2
(ui+1 − ui). (4.6)

Besides, in the energy flux, the product between the centered part of (Π∗A)i+1/2 and the non-centered one

of (u∗A)i+1/2 = ui+1+ui

2 − (1/M) 1
2 (aA)i+1/2

(pi+1 − pi) provides the contribution −(1/M) 1
4 (aA)i+1/2

(
p2
i+1 − p2

i

)
also responsible for the O

(
(1−E 2

0 )
M ∆x

)
dissipative term. One can notice that the splitting parameter E0 does

not allow to damp the above diffusive terms since it solely acts as a (1− E 2
0 ) factor.

What is more, the flux construction in the acoustic sub-step is fed by a modified conservative state Un+

which is solution of the discrete convective scheme (3.15), (3.21) and (3.22). Such a modified state can hold
perturbations which, once injected in the non-dimensional acoustic pressure flux (4.6), can potentially bring

additional numerical diffusion of order O
(

(1−E 2
0 )

M ∆x
)

. This is studied in the following paragraph.

4.2. Effect of the convective and acoustic operators composition on the truncation error

Let us consider a smooth initial state xi → U(xi)
n+ solution of the non-dimensional discrete convective

scheme. According to (4.2), under the CFL condition (3.31), Un+
i is such that:

Un+
i = Un

i + Bn
i +O

(
M

(
1 +

E0

M
+
M

E0

)
∆x2

)
,

with: Bn
i = −∆tn

Str
∂x L (FµC) (Un

i ) = −∆tnM ∂x L (FµC) (Un
i ),

L (FµC) (Un
i ) =

[
ρni u

n
i , ρ

n
i (uni )

2
+ (E n

0 /M)2 pni ,
(
ρni e

n
i + (E n

0 )2 pni
)
uni

]T
,

ρni e
n
i = ρni ε

n
i +M2ρni

(uni )2

2
,

and ∆tn = A
n

∆x =
σ

2

∆x

max
i+1/2

(
M |uni |+ cni , M

∣∣uni+1

∣∣+ cni+1

) , 0 < σ < 1.

(4.7)

Neglecting the second order term O
(
M(1 + E0

M + M
E0

)∆x2
)

, we want to study the influence of the perturba-

tion Bn
i in terms of additional numerical diffusion when injected inside the non-dimensional pressure flux of

the acoustic momentum equation (4.6). According to (4.7), Bn
i is of order O (M∆x) since, according to for-

mula (3.30), E0 is proportional to the Mach number. Thus, it is only its contribution to the centered part of
(Π∗A)i+1/2/M

2 that can potentially produce an additional numerical diffusion scaling as a O (∆x/M) term. Let

us first rewrite p
(
Un+
i

)
as:

p (Un
i )−AnM∆x [∇Up (Un

i ) · ∂x L (FµC) (Un
i )] +O

(
(M∆x)2

)
,

with: p (Un
i ) = p(ρni , ρ

n
i e
n
i −M2 (ρni u

n
i )2

2ρni︸ ︷︷ ︸
ρni ε

n
i

),

and ∇Up (Un
i ) =

∂ρ p|ρε(ρni , ρni εni ) +M2 (un
i )2

2 ∂ρε p|ρ(ρ
n
i , ρ

n
i ε

n
i )

−M2 u
n
i

2 ∂ρε p|ρ(ρ
n
i , ρ

n
i ε

n
i )

∂ρε p|ρ(ρ
n
i , ρ

n
i ε

n
i )

.
(4.8)
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Then, the zeroth order terms w.r.t. M of the product ∇Up (Un
i ) · ∂x L (FµC) (Un

i ) are only:[
∂ρ p|ρε(ρ

n
i , ρ

n
i ε

n
i )
]
∂x (ρni u

n
i ) +

[
∂ρε p|ρ(ρ

n
i , ρ

n
i ε

n
i )
]
∂x (ρni ε

n
i u

n
i ). (4.9)

In the case of a stiffened gas thermodynamics (2.15):

∂ρ p|ρε(ρ
n
i , ρ

n
i ε

n
i ) = 0,[

∂ρε p|ρ(ρ
n
i , ρ

n
i ε

n
i )
]
∂x (ρni ε

n
i u

n
i ) = ∂x (pni u

n
i ) = uni ∂x p

n
i + pni ∂x u

n
i .

(4.10)

Thus, if no supplementary hypothesis are made on the shape of pni and uni , the combination of both convective
and acoustic sub-steps entails a spurious numerical diffusion because of the equation of state relating the pressure
with the internal energy ρε. Such a difficulty can be circumvented if one assumes that at time tn the discrete
solution Un

i lies into the discrete well-prepared space (see [18, 20, 38]):

uni = u0 +O (M),

pni = p0 +O
(
M2
)
,

with: u0, p0 constants of order one,

(4.11)

since in that case ∂x (pni u
n
i ) becomes of order O(M). Recall that the present work concentrates on the point

(II) described in the introduction. Hence, in the case where the stiffness of the thermodynamics allows to generate
high amplitude pressure jumps even if 0 < M � 1, the well-prepared conditions (4.11) do not hold. However
we can still consider the above analysis as a basic way to identify the main sources of numerical diffusion,
try to remove them when it is possible and observe the impact of the corrections on the numerical results. In
the sequel, we restrict our truncation error analysis to stiffened gas thermodynamics and initial well-prepared
conditions.

In any case, a last special treatment has to be implemented to remove the O
(

(1−E 2
0 )∆x
M

)
diffusive terms

brought by the acoustic non-centered part in the momentum flux.

4.3. Correction of the acoustic splitting step

In [18, 25], facing at similar difficulties regarding the amplitude of the numerical diffusion brought by their
acoustic sub-step, the authors apply a discrete correction to the non-centered part of the acoustic pressure. Such
a correction, originally introduced in [22], has been also studied in [20, 35] as a way to control the accuracy of
the computational solution towards its initial incompressible part when the Mach number is close to zero. Here,
however, we only consider the correction as a tool which could potentially reduce the one-dimensional diffusion
of our compressible solver and then provide a better accuracy towards the compressible solution of Riemann
problems when the Mach number is small compared with one.

The correction consists in adding artificially a term of order O(M) in front of the non-centered part in the
acoustic pressure. This new term can be built using the local velocity and sound speed. The modified acoustic
flux reads:

Hac
n
i+1/2 =

(
1− (E n

0 )2
)  0

(Π∗A, θ)
n
i+1/2

(Π∗A, θ u
∗
A)ni+1/2

,
with: (Π∗A, θ)

n
i+1/2 =

pni+1 + pni
2

−
(aA θ)

n
i+1/2

2

(
uni+1 − uni

)
,

and θni+1/2 = min


∣∣∣(u∗A)ni+1/2

∣∣∣
max

(
cni+1, c

n
i

) , 1

.
(4.12)
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Figure 3. Approximate Riemann solver of subsystem Aµ: waves and states (color online).

As noticed in [25], the introduction of this correction does not alter the consistency of the numerical scheme
because it solely impacts the non-centered part in the momentum flux which is only responsible for the numerical
diffusion. Furthermore, it is possible to build an approximate Riemann solver in the sense of Harten, Lax and
Van Leer [30] with the same eigenvalues than those produced by the exact Riemann problem associated with the
acoustic relaxation system Aµ. Details on this approximate Riemann solver are given in Figure 3, and equations
(4.13), (4.14). The insensitivity of the eigenvalues to the correction allows to maintain the same kind of CFL
condition (3.33) for the modified acoustic scheme.

Z∗f, θ =


ρL
u∗L, θ
Π∗A, θ
e∗L, θ

 , Z∗∗f, θ =


ρR
u∗R, θ
Π∗A, θ
e∗R, θ

 , (4.13)

with:


u∗k, θ = u∗A + (−1)ik (1− θ) (uR − uL)

2
,

e∗k, θ = e∗k,A + (−1)ik (1− θ) (uR − uL)u∗A
2

,

k ∈ {L, R} , iL = 1, iR = 2.

(4.14)

Thanks to this correction term, numerical diffusion of the subsystem A is modified, namely:

Proposition 4.3 (Truncation error analysis of the acoustic subsystem with correction). Consider the acoustic
numerical scheme defined by equations (3.15) with the corrected flux (4.12). Suppose that pressure follows the
well-prepared initial condition written in (4.11). Then, under the CFL condition (3.31), This scheme is consistent
with the non-dimensional acoustic subsystem:

Atrunc :


Str ∂t ρ = O(Str ∆t),

Str ∂t (ρ u) + ∂x

(
(1− E 2

0 (t))

M2
p

)
= O(Str ∆t) +O

(
(1− E 2

0 )θ

M
∆x

)
,

Str ∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) p u
)

= O(Str ∆t) +O
(
(1− E 2

0 )(1 + θ)M∆x
)
.

(4.15)

Assume that there exists a smooth function (x, t)→ θ(x, t) such that ∀(i, n), θ(xi+1/2, t
n) = θni+1/2. Then

the numerical diffusion contained in the term of order O
(

(1−E 2
0 )θ

M ∆x
)

is actually of order O
(
(1− E 2

0 )∆x
)
.

Moreover, the global truncation error analysis writes:
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Proposition 4.4 (Truncation error analysis of the overall scheme with correction). . Assume a fluid endowed
with a stiffened gas thermodynamics (2.15). Consider the global relaxation scheme defined by equations (3.29)
endowed with the corrected acoustic flux (4.12). Suppose that initial state Un

i follows the well-prepared initial
conditions written in (4.11). Then, under the CFL condition (3.31), this scheme is consistent with the non-
dimensional system:

Etrunc :



Str ∂t ρ+ ∂x (ρ u) = O(Str ∆t) +O

(
(1 +

E0

M
+
M

E0
)∆x

)
,

Str ∂t (ρ u) + ∂x

(
ρ u2 +

p

M2

)
= O(Str ∆t) +O

(
(1 +

E0

M
+
M

E0
)∆x

)
+O

(
(1− E 2

0 )(1 +
θ

M
)∆x

)
,

Str ∂t (ρ e) + ∂x ((ρ e+ p)u) = O(Str ∆t) +O

(
(1 +

E0

M
+
M

E0
)∆x

)
+O

(
(1− E 2

0 )(1 + θ)M∆x
)
.

(4.16)

The proofs of the above propositions are written in Appendix H. Since the local correction θni+1/2 as well as
the splitting parameter E n

0 are by construction of order M , the numerical diffusion for the overall fractional
step becomes of order O (∆x) even when the Mach number is small compared with one. In the sequel, the
anti-diffusion introduced by the coefficient θ is refered as to “θ-correction”.

In the next section, one-dimensional numerical results of the present weighted splitting approach are pre-
sented. They are only made of 1D compressible test cases including ideal and stiffened gas thermodynamics. The
main objective here is to assess the accuracy w.r.t. the compressible analytical solution of the present approach
as well as its efficiency for a wide panel of Mach numbers. In order to do so, we systematically compare the
present work with the Lagrange-Projection method described in [11, 25].

5. Numerical results

5.1. Ideal gas thermodynamics

Let us first consider a one-dimensional configurable shock-tube test-case. The fluid has been firstly endowed
with an ideal gas thermodynamics (2.14a) with the heat capacity ratio γ = 7/5. The simulation has been
conducted on a domain of length 1m, the initial discontinuity of the Riemann problem being located at x =
0.5m. The initial inputs of the Riemann problem are summed up in Table 1: recall that the analytical solution
is made of a left-going 1-rarefaction wave, a 2-contact discontinuity propagating to the right and a right-going
3-shock wave. The maximal Mach number is reached at the tail of the 1-rarefaction wave and can be controlled
by increasing or diminishing the parameter ∆. When ∆ = 9, the classical Sod shock-tube described in [41]
is retrieved, and the maximal Mach number Mmax is about 0.92. We will refer to it as a Mach one case.
When ∆ = 2 × 10−1, Mmax ≈ 9.5 × 10−2. This will be considered as an intermediate regime. Finally, when
∆ = 8 × 10−3, Mmax ≈ 4.2 × 10−3 and we call it low-Mach case. Let us mention that in the above three test
cases, the Mach number across the left-going 3-rarefaction wave evolves from 0 to Mmax. Then, low Mach
number regions are present in every test case. However, the definition of the splitting parameter E0(t), based
on Mmax(t), will provide a completely different behavior according to ∆. Indeed, in the first case, after several
time-steps, E0(t) ≈ 1 and the contribution of the acoustic subsystem A is almost negligible. This test case allows
to assess the quality of the present approach in the classical configuration where large pressure variations are
related to a sudden rise of the Mach number. In the third case 0 < E0(t)� 1 and the Euler system is fully split.
Besides, one can notice that, in this case, the amplitude of the 1-rarefaction and the 3-shock waves is small due
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Table 1. Ideal gas shock tube initial conditions.

Left state Right state

ρ (kg.m−3) ρ0, L = 1 ρ0, R = 0.125
u (m · s−1) u0, L = 0 u0, R = 0.
p (bar) p0, L = p0, R (1 +∆) p0, R = 0.1

to the ideal gas thermodynamics. Indeed, initial conditions are such that:

|p0, R − p0, L|
p0, R

= O(Mmax). (5.1)

For every test case, the computation ends when the right-going 3-shock wave reaches the position x = 0.75m.
The corresponding final times are Tend = 4.51 × 10−4 s for Mmax = 0.92, Tend = 7.31 × 10−4 s for Mmax =
9.5 × 10−2 and Tend = 7.43 × 10−4 s for Mmax = 4.2 × 10−3. Besides, transmissive boundary conditions have
been considered. Finally, the CFL condition of our time-explicit scheme is the one written in (3.33) with σ = 0.9.
In the sequel, Mmax is rewritten M for the sake of simplicity.

As previously announced, three criteria have been involved in order to measure the quality of the present
approach: mesh convergence in L1 norm, profiles of the different computed solutions and efficiency.

5.1.1. Convergence curves

Convergence curves have been built using a wide range of cells number:
Ncells ∈

{
102, 103, 104, 3× 104, 5× 104, 7× 104, 9× 104

}
. Convergence rates have been calculated using

the error of the cases: Ncells = 7 × 104 and Ncells = 9 × 104. For each variable of interest, three conver-
gence curves are plotted according to the three different maximal Mach numbers defined above. Besides,
five different schemes have been tested: “no-Sp” corresponds to the case where E n

0 = 1 is imposed along
the simulation. Thus, the weighted splitting is not triggered. “Sp-(

√
M)” is the weighted splitting approach

with E n
0 = max

(√
Einf , min

(√
Mn

max, 1
))

while “Sp-(M)” involves E n
0 defined in formula (3.30). Although the

asymptotic behavior w.r.t. the Mach number is the same for both above definitions of E n
0 , the convective flux of

the second should provide a lower numerical diffusion in smooth areas according to Proposition 4.1 and Propo-
sition 4.4. Eventually, “LP” is the Lagrange-Projection splitting method, fully described in [11] and taken as a
benchmark. The mention “-corr” means that the correction defined in (4.12) is triggered. Figure 4 corresponds
to the velocity convergence curve while Figure 5 is associated with the pressure variable. Density convergence
curve has intentionally not been plotted because results were extremely close.

Every numerical scheme converges towards the analytical compressible solution as the mesh is refined. In
the Mach one regime, convergence curves overlap quasi perfectly. It is coherent with the fact that, in such a
regime, subsystem C is almost similar to the full Euler system. By construction, the numerical contribution
of the acoustic subsystem A is negligible. Still, the proximity between the Lagrange-Projection scheme with
correction and the weighted splitting schemes is less straightforward.

Furthermore, as Mmax decreases one can observe that the schemes with the θ-correction Sp-(
√
M)-corr and

Sp-LP-corr are clearly more accurate than the other ones. For example in Figure 4, for M = 9.5 × 10−2, Sp-
(
√
M)-corr reaches the precision level of 2× 10−3 with a 3× 103 cells mesh whereas it requires more than 7× 103

for No-Sp. This is in agreement with the acoustic truncation error result of Proposition 4.3 derived for a smooth
and initially well-prepared solution. In 1D, the θ-correction has an anti-diffusion effect which improves the global
accuracy of the proposed approach in smooth regions of the computational solution. Although this was already
observed in [20] for a Godunov scheme (without splitting), it is satisfying to notice that the present splitting
does not alter this anti-diffusion effect. Moreover, as it can be seen in Figure 5, for M = 4.2× 10−3, switching
the weighting parameter E n

0 from
√
Mn

max to Mn
max has only a very slight positive effect on the scheme accuracy.



A MACH-SENSITIVE SPLITTING APPROACH FOR EULER-LIKE SYSTEMS 231

Figure 4. Velocity convergence curves.

Figure 5. Pressure convergence curves.

This is due to the fact that, in case of low-Mach number compressible flow, most of the numerical diffusion is
generated by the acoustic part of the weighted splitting approach. To complete this comparison, one could have
wished to see the case Sp-(M)-corr which, according to Proposition 4.4, is supposed to reduce the convective and
acoustic numerical diffusion for a smooth solution initially in the well-prepared space. Unfortunately this case
suffers from strong non-physical oscillations located in the left rarefaction wave area. Plots of these oscillations
for different cells numbers can be seen on Appendix G.

They have already been observed for low-Mach corrected numerical schemes written in Eulerian coordinates
(see [25], chapter 3, Sect. 3.G). However, these spurious perturbations are damped in the sense of the L∞ and
L1 norms as the mesh is refined. So far finding the optimal choice for the couple (E0, θ) in order to prevent the
acoustic momentum flux from being completely centered and thus triggering such oscillations is still an open
issue.
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Table 2. Pressure convergence rate (L1 norm).

M = 0.92 M = 9.5× 10−2 M = 4.2× 10−3

No-Sp 0.870 0.803 0.530

Sp-(
√
M) 0.868 0.814 0.531

Sp-M 0.860 0.829 0.597

Sp-(
√
M)-corr 0.868 0.833 0.580

Sp-LP-corr 0.882 0.806 0.572
HLLC 0.879 0.802 0.528

Let us do a last remark about the convergence rates of the different curves as the Mach number tends towards
zero. In [23], the authors show that, for Riemann problems whose maximal Mach number Mmax is close to 1, the
rate of convergence of variables varying through genuinely non-linear waves is around 1. However, for variables
jumping through a contact wave, typically the density ρ, the rate is around 0.5. This numerical observation
holds independently of the approximate Riemann solver at stake and is also mentioned in [20]. Thus, since u
and p do not jump through the right-going 2-contact discontinuity of the above shock tubes, the expected rate
of convergence should be 1.

Table 2 presents these orders of convergence for pressure. One can see that for every schemes, the order
of convergence is depreciated as the maximal Mach number decreases. Indeed for pressure, it passes from
0.87 at M = 0.92 (the expected order already obtained in [23]) to 0.82 at M = 9.5 × 10−2 and 0.56 in the
low-Mach number case. Seeking to confirm this behavior, the same test case has been computed using an
HLLC-type scheme [43]; once again, at M = 4.2 × 10−3 the convergence rate is 0.528. This unusual behavior
can be summed up as: the lowest the maximal Mach number is, the slowest Godunov-like schemes are to reach
the analytical compressible solution as the mesh is refined. The same convergence rate order can be found
in [21] (p. 20, Tab. 6.2) for a 1D double rarefaction wave problem performed on the Euler barotropic system
with M ≈ 3.1× 10−2. The implicit-explicit AP scheme used to obtain this order is based on a Rusanov spatial
discretization. Further investigations have to be undertaken in order to understand this numerical phenomenon.

Beyond convergence curves and rates, one must also have a look on the solution profile obtained with the
different numerical schemes at a fixed mesh size. This is done in the next subsection.

5.1.2. Solution profiles

Figures 6 and 7 show the velocity and pressure final profiles calculated with the different numerical solutions in
the low-Mach regime. We only plot the left-going 1-rarefaction and the right-going 3-shock waves through which
u and p change. Mesh is made of Ncells = 103 cells. Let us point out that the stiffness of the rarefaction wave exact
profile is only due to the fact that the width of the fan at a given instant t writes: |(u0, L − c0, L)− (u∗ − c∗L)| t =
|c∗L − c0, L − u∗| t; with u∗ the intermediate analytical velocity and c∗L the intermediate sound speed located at
the left of the 2-contact discontinuity. Since the maximal Mach number is very low compared to one |u∗| �
min (c0, L, c

∗
L), and since c0, L ≈ c∗L, the width of the fan is approximately equal to |u∗| t. Thus, it is very small

when acoustic time-scales such as 0 < t < 10−3 s are considered.
One can notice that No-Sp is always the most diffusive scheme. Besides, the positive effect of the E n

0 =
max (Einf , min (Mn

max, 1)) choice compared to E n
0 = max

(
Einf , min

(√
Mn

max, 1
))

is exclusively located in the

left rarefaction wave fan where the solution is continuous. In addition, No-Sp, Sp-(
√
M) and Sp-(M) profiles

overlap in the shock front region.
Eventually, the correction globally improves the computed solution accuracy. The Sp-(

√
M)-corr case pro-

duces profiles closer to the analytical solution than Sp-LP-corr at the cost of little overshoots in the tail of the
left rarefaction wave and before the shock front.
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Figure 6. Velocity profile at M = 4.2× 10−3, with Ncells = 103 (color online).

Figure 7. Pressure profile at M = 4.2× 10−3, with Ncells = 103 (color online).

5.1.3. Efficiency curve

Computational cost at fixed accuracy level is now investigated. Figures 8 and 9 describe the pressure efficiency
curves of the different numerical schemes for the three Mach regimes. In the Mach one regime, every scheme
seems to behave equivalently, the proposed weighted splitting approach requiring slightly more CPU time than
No-Sp or Sp-LP-corr. When M = 9.5× 10−2, the weighted splitting approach is still slower than No-Sp, however
the θ-corrected schemes are clearly less time consuming, at fixed error than the other ones. Indeed Sp-(

√
M)-

corr and Sp-LP-corr reach the precision of 7× 10−5 in about one hour and a half whereas it requires six hours
for No-Sp and more than seven hours for Sp-(

√
M). Eventually, in the low-Mach case, Sp-(

√
M)-corr seems to

produce better results than Sp-LP-corr. For a fixed precision of 4× 10−6 the weighted splitting method needs
about one hour and forty minutes whereas the Lagrange-Projection method requires a little less than three
hours.

5.2. Stiffened gas thermodynamics

In the above subsection, some elements seem to suggest that the weighted splitting approach produces
satisfying results for a wide range of Mach number. The present method is notably able to capture strong shock
waves associated with a sudden rise of the maximal Mach number. Nevertheless, as mentioned in point (II) in
the introduction, we are interested in configurations where strong shock waves appear even if 0 < M � 1.
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Figure 8. Pressure efficiency curves: M = 0.92 (left), M = 9.5× 10−2 (right) (color online).

Figure 9. Pressure efficiency curves: M = 4.2× 10−3 (color online).

In Appendix A, the analytical solution of a symmetric double shock Riemann problem involving the Euler
compressible system endowed with a stiffened gas thermodynamics (2.15) is derived. Starting with initial states
of density ρ0 = 103 kg ·m−3, velocity |u0| = 1 m · s−1 and pressure p0 = 3 × 105 Pa, one can analytically show
that the non-dimensional pressure jump reads:

|p∗ − p0|
p0

= M0 (1 + α)×O(1) w.r.t. M0,

with: M0 =
|u0|
c0

, α =
P∞
p0

,

and p∗ the intermediate pressure behind the shock fronts.

(5.2)

Then, one can notice that the stiffness of the non-dimensional thermodynamical coefficient α can compensate the
amplitude reduction effect ofM0. By choosing γ = 7.5 and P∞ = 3×108 Pa, one can obtain c0 ≈ 1.5×103 m · s−1
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Table 3. Stiffened gas shock tube initial conditions.

Left state Right state

ρ (kg.m−3) ρ0, L = 103 ρ0, R = 9× 102

u (m · s−1) u0, L = 0 u0, R = 0
p (bar) p0, L = 3 p0, R = 1

which is representative of liquid water at T0 = 295 K. A numerical application leads to:

M0 ≈ 7× 10−4,

α = 103,

|p∗ − p0|
p0

≈ 5.2.

(5.3)

Hence, 15-bar amplitude shock waves are created while the Mach number is of order 10−3.
In the following, a shock tube Riemann problem using the above stiffened gas thermodynamics is tested. The

initial conditions have been defined on Table 3, and we still have γ = 7.5, P∞ = 3 × 108 Pa. In this case, the
maximal Mach number is about Mmax ≈ 4.6 × 10−5. Thus, we are still in a very low-Mach regime. The final
time of the simulation is Tend = 1.58× 10−4 s.

5.2.1. Acoustic relaxation coefficient calibration

Let us go back to Remark 3.4. Testing a stiffened gas thermodynamics allows to compare the acoustic
subcharacteristic condition (3.10b) derived from the weighted splitting approach and (3.12) obtained directly
from the relaxation of the full Euler system and found in [25]. Let us recall that the inferior bound of (3.10b) uses
an artificial acoustic sound speed cA whereas (3.12) is based on the physical sound speed c. In the previous ideal
gas thermodynamics case cA =

√
(γ − 1)p/ρ =

√
(γ − 1)/γ c and

√
(γ − 1)/γ ≈ 0.53 such that this non-physical

acoustic celerity was of the same order that the real sound speed. However, with a stiffened gas thermodynamics,
cA does not change while c becomes

√
γ (p+ P∞)/ρ ≈

√
γ P∞/ρ. Thus cA/c ≈

√
(γ − 1)/γ

√
p/P∞ � 1. One

could wonder if considering the subcharacteristic condition (3.10b) based on a non-physical celerity rather than
the one based on the real sound speed (3.12) has an effect on the overall scheme accuracy? So far, numerical
arguments seem to go in favor of an acoustic relaxation coefficient based on the real sound speed. Indeed,
Figure 10 shows two weighted splitting simulations of type Sp-(

√
M). The first one, noted Sp-(

√
M)-aA, takes

the subcharacteristic condition (3.10b) into account whereas the second one, Sp-(
√
M)-aE , involves (3.12). The

mesh was composed of 103 cells.
It turns out that Sp-(

√
M)-aA produces non-physical oscillations inside the rarefaction fan and before the

shock front. Things are even worse when Sp-(M)-aA and Sp-(M)-aE are compared. Indeed, even if the non-
physical subcharacteristic condition (3.10b) is fulfilled, the amplitude of the spurious oscillations is such that
pressure becomes negative after several timesteps. Simulation crashes because cA becomes a complex number.
On the contrary, Sp-(M)-aE does not suffer from any oscillations or stability issues. Recall that the relaxation
coefficient aA multiplies the non-centered part of the acoustic momentum flux responsible for most of the
numerical diffusion of the scheme. Hence, by considering subcharacteristic condition (3.12) rather than (3.10b)
this coefficient has been considerably increased as well as the numerical diffusion coefficient. Non-physical
oscillations are then removed.

In the sequel, the acoustic relaxation coefficient aA has been calculated using the physical sound speed:
aA > ρ c. The global CFL condition (3.33) is modified in consequence.
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Figure 10. Effect of the estimation of the relaxation coefficient (color online).

Figure 11. Pressure convergence curve (color online).

5.2.2. Convergence curves and computed solutions profiles

Similarly to the ideal gas thermodynamics configuration, pressure convergence curve plotted in Figure 11
shows that the θ-corrected schemes are the most accurate as the mesh is refined. However, one can notice that
the Sp-(

√
M)-corr curve remains at the same level of accuracy than the non-corrected schemes until Ncells > 103.

This can be explained by observing the solutions profiles drawn in Figure 12. The correction centers the pressure
flux since the Mach number is very small in every computational region. Hence, it triggers oscillations in areas
where the solution is sharp. Such oscillations are present even in the case of Sp-LP-corr but their amplitude is
smaller. In any case, the domain on which these oscillations are located as well as their relative height w.r.t. the
analytical solution are reduced as the mesh is refined. The present method is thus L∞ stable. For Ncells ≥ 3×104

the Sp-(
√
M)-corr becomes as accurate as the Sp-LP-corr one.

Once again let us point out an amazing numerical result already observed in the above ideal gas thermody-
namics shock tube with M = 4.2× 10−3. For every scheme (expect Sp-(

√
M)-corr but additional points should

be added to catch the asymptotic trend of its convergence curve), the observed pressure convergence rate written
on Table 4 is close to 0.5, the expected order for variables jumping through contact discontinuities; which was
not the expected.
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Figure 12. Velocity profile at M = 4.6× 10−5 with Ncells = 103 (color online).

Table 4. Pressure convergence rate (L1 norm).

M = 4.6× 10−5

No-Sp 0.506

Sp-(
√
M) 0.502

Sp-M 0.503

Sp-(
√
M)-corr 0.783

Sp-LP-corr 0.561

6. Conclusion

In this work, a conservative fractional step approach based on a time-weighted splitting has been proposed for
Euler-like models. The weighting parameter is proportional to the instantaneous maximal flow Mach number
M . When the latter takes high values the splitting allows to directly solve the overall Euler-like system in
one step with an explicit time integration. Thus, shock waves are correctly captured without any diffusion or
dispersion induced by the acoustic time-implicit discretization. On the contrary, if M is close to zero, convection
is completely decoupled from acoustic. In that case, the acoustic discrete flux is modified by an anti-diffusive
correction. If the fluid is endowed with a stiffened gas thermodynamics and if the solution is smooth as well as
initially well-prepared, it results in a uniform truncation error with respect to M .

What is more, the Suliciu-like relaxation method used to discretize both convective and acoustic subsystems
provides the density and internal energy positivity, in the case of an ideal gas thermodynamics, up to the
introduction of new non-restrictive lower bounds for the relaxation constants. Besides, such relaxation constants
encapsulate the thermodynamic nonlinearity and offer an easy way to deal with general equations of state.

The one-dimensional results performed with an ideal and a stiffened gas thermodynamics show that the
time-explicit weighted splitting approach is as accurate and efficient as the time-explicit Lagrange-Projection
method [11] for a wide range of Mach numbers. It can notably capture strong shock and rarefaction waves linked
to a sudden rise of the Mach number of the flow. In the specific case where high amplitude shock waves appear
even if 0 < M � 1, the present method, completed with the anti-diffusive correction, remains L∞ stable but
suffer from stronger oscillations than the Lagrange-Projection method.

Besides, if one is interested in following the slow material waves of low-Mach number compressible flows when
no fast transient phenomenon is present, the implicit-explicit version of the present approach can be relevant.
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Additional developments whose results are presented in [31, 32] deal with the adaptation of a time-implicit
discretization technique proposed in [11, 14] to the present acoustic subsystem.

Among many areas of improvement, one would concern the definition of the discrete weighting parameter E n
0 :

in the same manner as for the relaxation constants, it could be transformed into a local weighting factor which
would be only uniform for the Riemann problem solved at the interface. By doing so, the present weighted
splitting approach could react to the spatial fluctuations of the flow Mach number and could improve even
further the global accuracy of the method. Eventually, a reflection about the relevance of an extension of the
present weighted splitting approach to homogeneous relaxed models will be undertaken.

Appendix A. A symmetric double shock Rieman problem with a
stiffened gas equation of state

Let us consider a fluid endowed with a stiffened gas equation of state described in (2.15). Consider the 1D
Riemann problem whose initial conditions are written in Table A.1. The analytical solution is made of a left-
going 1-shock, a steady 2-contact discontinuity and a right-going 3-shock. The symmetry of the problem forces
the intermediate velocity u∗ related to the contact discontinuity speed to be equal to zero. This considerably
simplifies the Rankine-Hugoniot relations. The intermediate pressure p∗ and density ρ∗ can be found analytically.
Since u∗ = 0, there is only one remaining Mach number that one can control through the initial conditions:
M0 = (|u0| /c0). In the sequel, the analytical formula for the pressure jump |p∗ − p0| = p∗ − p0 is derived.

Let us focus on the 3-shock Rankine-Hugoniot relations. Using the mass and the momentum equations, one
obtains:

− σ [ρ0 − ρ∗] +

−ρ0u0 − ρ∗
=0︷︸︸︷
u∗

 = 0⇒ σ =
u0(

τ0
τ∗ − 1

) ,
ρ0u0σ +

(
ρ0u

2
0 + p0 − p∗

)
= 0⇒ ρ0u

2
0

(
1 +

1(
τ0
τ∗ − 1

))+ (p0 − p∗) = 0,

with: τ = 1/ρ.

(A.1)

Recall that the energy equation reads: [ε] + p [τ ] = 0; with p = (p∗ + p0)/2 and ε = (p+γP∞)τ
γ−1 . Let us introduce

P = p+P∞ and P0 = p0 +P∞. As explained in Section 2.2.2, P is the relevant variable in the case of a stiffened
gas thermodynamics. It results that:

τ∗(P ∗) = τ0
((P0/β) + P ∗)

((P ∗/β) + P0)
,

with: β =
γ − 1

γ + 1
.

(A.2)

After calculation,

1 +
1(

τ0
τ∗ − 1

) = 1 +
β

1− β
((P0/β) + P ∗)

(P ∗ − P0)
. (A.3)
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Table A.1. Stiffened gas symmetric double shock initial conditions.

Left state Right state

ρ (kg·m−3) ρ0, L = ρ0 = 103 ρ0, R = ρ0

u (m·s−1) u0, L = u0 = 1 u0, R = −u0

p (bar) p0, L = p0 = 3 p0, R = p0

When (A.3) is injected in (A.1) and after having multiplied by (P ∗−P0), one obtains a second-order polynomial
function equation, namely:

X2 − γ

1− β
M2

0 X − γ
1 + β

1− β
M2

0 = 0,

⇔X2 − γ (γ + 1)

2
M2

0 X − γ2M2
0 = 0, with: X =

P ∗ − P0

P0
.

(A.4)

As P ∗ > P0, we are looking for a strictly positive root , the solution writes:

P ∗ − P0

P0
= M0 γ

(
γ + 1

4
M0 +

√
1 +

(γ + 1)2

16
M2

0

)
. (A.5)

One can notice that if P∞ = 0 then, P ∗ = p∗, P0 = p0, and equality (A.5) becomes similar to these obtained
in [8] (p. 845) for an isolated shock endowed with an ideal gas thermodynamics. Thus, in the case of an ideal
gas thermodynamics:

p∗ − p0

p0
= M0 ×O(1) w.r.t. M0 ⇒ lim

M0→0

p∗ − p0

p0
= 0. (A.6)

However, in the case of a stiffened gas thermodynamics, since P0 = p0 (1 + α) with α = (P∞/p0):

p∗ − p0

p0
= M0 (1 + α) γ

(
γ + 1

4
M0 +

√
1 +

(γ + 1)2

16
M2

0

)
,

= M0 (1 + α)×O(1) w.r.t. M0.

(A.7)

Here we can clearly see that, provided that the non-dimensional thermodynamical coefficient α behaves as
M−δ0 with δ > 1, the stiffened gas thermodynamics is “stiff enough” to compensate the damping effect of M0

when M0 → 0. For example, if one considers γ = 7.5 and P∞ = 3 × 108 so that to obtain a speed of sound
c0 ≈ 1.5× 103 m · s−1 and a temperature of T0 = 295 K, a numerical calculation gives:

M0 ≈ 7× 10−4,

α = 103,

p∗ − p0

p0
≈ 5.26.

(A.8)

Hence, on this analytical solution got from the Euler compressible system endowed with a stiffened gas ther-
modynamics, a pressure jump of approximately 15 bars is created whereas the flow Mach number is of order
10−3.
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Appendix B. Subsystems hyperbolicity

For the sake of simplicity, we prove Proposition 2.1 in 1D. Let us consider the set of non conservative variables
V = [ρ, u, p]

T
. If the solutions of subsystems C and A are smooth, one can rewrite them equivalently as:

CNC :


∂t ρ+ u ∂x ρ+ ρ ∂x u = 0,

∂t u+ u ∂x u+
1

ρ
∂x
(
E 2

0 (t) p
)

= 0,

∂t p+ u ∂x p+ ρ c2C ∂x u = 0,

(B.1)

ANC :


∂t ρ = 0,

∂t u+
1

ρ
∂x
(
(1− E 2

0 (t)) p
)

= 0,

∂t p+ (1− E 2
0 (t))ρ c2A∂x u = 0.

(B.2)

In variables V the Jacobian matrices of subsystems CNC and ANC are:

CNC :

u ρ 0
0 u E 2

0 /ρ
0 ρ c2C u

 (B.3)

ANC :

0 0 0
0 0 (1− E 2

0 )/ρ
0 (1− E 2

0 )ρ c2A 0

 . (B.4)

Supposing that c2C ≥ 0 and c2A ≥ 0, the eigenvalues and eigenvectors can be easily obtained and read:

CNC :

λC1 = u− E0 cC ,

λC2 = u,

λC3 = u+ E0 cC ,

rC1 =

 ρ
−E0 cC
ρ c2C

 , rC2 =

1
0
0

 , rC3 =

 ρ
+E0 cC
ρ c2C

 , (B.5)

ANC :

λA1 = −
(
1− E 2

0

)
cA,

λA2 = 0,

λA3 =
(
1− E 2

0

)
cA,

rA1 =

 0
1

−ρ cA

 , rA2 =

1
0
0

 , rA3 =

 0
1

ρ cA

 . (B.6)

Then, one can notice that, for the two subsystems, the 1-field and 3-field are genuinely non linear whereas the
2-field is linearly degenerate. Let us now study the sufficient conditions for which c2C ≥ 0 and c2A ≥ 0. Consider
the ideal gas thermodynamics presented in equation (2.14). Then:

c2C =
(
1 + E 2

0 (γ − 1)
) p
ρ

= γE0

p

ρ
,

c2A = (γ − 1)
p

ρ
.

(B.7)
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Since E 2
0 ∈ [0, 1], γE0

∈ [1, γ]. What is more, by definition of the ideal gas phase-space (2.14), the pressure
variable p is positive. Thus, in case of an ideal gas thermodynamics, c2C and c2A are naturally positive. On the
contrary, when the stiffened gas thermodynamics is at stake one obtains:

c2C =
γE0

p+ γP∞
ρ

,

c2A = (γ − 1)
p

ρ
.

(B.8)

The stiffened gas phase-space (2.15) ensures that p > −P∞ ⇒ γE0
p + γ P∞ > (γ − γE0

)P∞. And γ − γE0
is

positive. Once again, c2C is positive without any condition. However c2A ≥ 0⇔ p ≥ 0 which is not guaranteed in
the stiffened gas phase space since p+ P∞ > 0.

Appendix C. Phase space invariance of the continuous
subsystems

Consider Ω a bounded spatial domain of Rd, d ∈ {1, 2, 3} which boundary is ∂ Ω.
The objective here is to study the positivity of ε (respectively P = ρε − P∞) in the case of an ideal gas

thermodynamics (respectively a stiffened gas thermodynamics). According to (2.14), (2.15), it corresponds to
the phase-space invariance for both ideal and stiffened gas thermodynamics.

C.1 Ideal gas thermodynamics

The specific internal energy of both subsystems verifies the following PDEs:


∂t ε+ u · ∇ ε+ E 2

0 (t)
p

ρ
∇ · u = 0, (C)

∂t ε+
(
1− E 2

0 (t)
) p
ρ
∇ · u = 0, (A)

(C.1)

which can also be rewritten: {
∂t ε+ u · ∇ ε+ E 2

0 (t) (γ − 1)ε∇ · u = 0, (C)
∂t ε+

(
1− E 2

0 (t)
)

(γ − 1)ε∇ · u = 0, (A)
(C.2)

because p/ρ = (γ − 1)ε.

Define ε− = ε−|ε|
2 the negative part of the specific internal energy. Consider the following hypothesis about

the solution’s smoothness and the initial and boundary conditions:

∀t ≥ 0, u(t, .) ∈ L∞ (Ω) , ∇ · u(t, .) ∈ L∞ (Ω), (C.3a)

∀t ≥ 0, ε(t, .) ∈ L∞ (Ω) , ∇ε(t, .) ∈ L∞ (Ω)
d
, (C.3b)

∀x ∈ Ω, ε(t = 0,x) > 0⇔ ε−(0,x) = 0, (C.3c)

ε|∂ Ω ≥ 0 if u · n|∂ Ω ≤ 0. (C.3d)
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By multiplying equation (C.1) by ε− and integrating over Ω one obtains:


d

dt

∫
Ω

(ε−)2

2
dΩ +

∫
Ω

u · ∇ (ε−)2

2
dΩ +

∫
Ω

(γ − 1)E 2
0 (t) (ε−)2∇ · u dΩ = 0 (C),

d

dt

∫
Ω

(ε−)2

2
dΩ +

∫
Ω

(γ − 1)
(
1− E 2

0 (t)
)

(ε−)2∇ · u dΩ = 0 (A).

(C.4)

By using Green’s formula, the above equations can be transformed into:


d

dt

||ε−||2L2

2
=

∫
Ω

∇ · u

(
1

2
− (γ − 1)E 2

0 (t)

)
(ε−)2 dΩ −

∫
∂ Ω

(ε−)2

2
u · n dΓ (C),

d

dt

||ε−||2L2

2
= −

∫
Ω

∇ · u(γ − 1)
(
1− E 2

0 (t)
)

(ε−)2 dΩ (A).

(C.5)

Because of the admissible inlet boundary condition (C.3d), −
∫
∂ Ω

(ε−)2

2 u · n dΓ is always negative so that we
can derive the following inequalities:



d

dt

∣∣∣∣ε−∣∣∣∣2
L2 ≤

LC(t)︷ ︸︸ ︷
sup
Ω

∣∣∇ · u
(
1− 2 E 2

0 (t) (γ − 1)
)∣∣ ∣∣∣∣ε−∣∣∣∣2

L2 (C),

d

dt

∣∣∣∣ε−∣∣∣∣2
L2 ≤ sup

Ω

∣∣2∇ · u
(
1− E 2

0 (t)
)

(γ − 1)
∣∣︸ ︷︷ ︸

LA(t)

∣∣∣∣ε−∣∣∣∣2
L2 (A).

(C.6)

Thus, because of Grönwall’s lemma:

{∣∣∣∣ε−∣∣∣∣2
L2 (t) ≤

∣∣∣∣ε−∣∣∣∣2
L2 (0) e

∫ t
0
LC(s) ds = 0⇒

∣∣∣∣ε−∣∣∣∣2
L2 (t) = 0 (C),∣∣∣∣ε−∣∣∣∣2

L2 (t) ≤
∣∣∣∣ε−∣∣∣∣2

L2 (0) e
∫ t
0
LA(s) ds = 0⇒

∣∣∣∣ε−∣∣∣∣2
L2 (t) = 0 (A).

(C.7)

One can notice that, beyond hypothesis presented in (C.3), a sufficient condition to derive inequalities (C.6) is
p
ρ = K ε with K a bounded function on Ω. Indeed, as previously seen, it allows to control the term

∫
Ω
ε− p

ρ ∇ ·
u dΩ by sup

Ω
|K∇ · u| ||ε−||2L2 .

C.2 Stiffened gas thermodynamics

When a stiffened gas thermodynamics defined by (2.15a) and (2.15b) is at stake, one is interested in the
positivity of P = ρ ε− P∞. Such a variable follows the PDEs:

{
∂t P +∇ · (P u) + E 2

0 (t) (γ − 1)P ∇ · u + P∞ (1− E 2
0 (t))∇ · u = 0, (C)

∂t P + (1− E 2
0 (t)) (γ − 1)P ∇ · u− P∞ (1− E 2

0 (t))∇ · u = 0. (A)
(C.8)



A MACH-SENSITIVE SPLITTING APPROACH FOR EULER-LIKE SYSTEMS 243

By doing exactly the same kind of hypothesis (but replacing ε by P ) and calculations than for the ideal case,
one can obtain:

d

dt

∣∣∣∣P−∣∣∣∣2
L2 ≤ (2 E 2

0 (γ − 1) + 1) sup
Ω
|∇ · u|

∣∣∣∣P−∣∣∣∣2
L2 − (1− E 2

0 (t))P∞

∫
Ω

P−∇ · u dΩ, (C)

d

dt

∣∣∣∣P−∣∣∣∣2
L2 ≤ 2 (1− E 2

0 )(γ − 1) sup
Ω
|∇ · u|

∣∣∣∣P−∣∣∣∣2
L2 + (1− E 2

0 (t))P∞

∫
Ω

P−∇ · u dΩ. (A)

(C.9)

Assume that there exists a function K ∈ L∞(Ω) such that:

P∞ = K P. (C.10)

Then, it is possible to control the term P∞
∫
Ω
P−∇ · u dΩ with ||P−||2L2 . Inequalities (C.9) turn into:

d

dt

∣∣∣∣P−∣∣∣∣2
L2 ≤ sup

Ω

∣∣((2 E 2
0 (γ − 1) + 1)−K (1− E 2

0 )
)
∇ · u

∣∣ ∣∣∣∣P−∣∣∣∣2
L2 , (C)

d

dt

∣∣∣∣P−∣∣∣∣2
L2 ≤ sup

Ω

∣∣(1− E 2
0 ) (2 (γ − 1) +K)∇ · u

∣∣ ∣∣∣∣P−∣∣∣∣2
L2 , (A)

(C.11)

and the Grönwall’s lemma can be applied so that to obtain ||P−||2L2 (t) = 0. However, in the case of a stiffened

gas thermodynamics P∞/P = (γ−1)P∞
(p+P∞) and p is allowed to tend towards −P∞. Thus, hypothesis (C.10) does

not hold a priori and we cannot ensure the positivity of P unless P∞ = 0 (ideal gas thermodynamics) or E0 = 1
(splitting not triggered).

Appendix D. Positivity of the discrete intermediate density

Consider the Riemann problem presented in Figure 1 related to the convective subsystem. It produces inter-
mediate states described in relations (3.19) and (3.20). Let us find a sufficient condition on the subcaracteristic
coefficient aC so that the intermediate densities ρ∗k, C , k ∈ {L, R} are positive.

ρ∗k, C ≥ 0⇔ τ∗k, C ≥ 0,

⇔ τk +
(−1)ik+1

E0 aC
(u∗C − uk) ≥ 0,

⇔ a2
C +

ρk (uR − uL)

2E0
aC +

(−1)ikρk (pR − pL)

2
≥ 0.

(D.1)

The second order polynomial function admits real roots if and only if ∆ρ
k ≡

ρk(uR−uL)2

8 E 2
0

+(−1)ik+1 (pR − pL) ≥ 0.

Let us notice that ∆ρ
L < 0 ⇒ ∆ρ

R > 0 and conversely. In that case the polynomial constraint (D.1) related to
∆ρ
L is automatically verified. Thus, consider the most demanding case where ∆ρ

L ≥ 0 and ∆ρ
R ≥ 0, namely:

−ρL (uR − uL)
2

8
≤ E 2

0 (pR − pL) ≤ ρR (uR − uL)
2

8
. (D.2)

If uL 6= uR, inequality (D.2) holds easily with low-Mach flows when E0 tends toward zero.
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Table D.1. Positivity domain of aρL and aρR.

uR > uL uR < uL

pR > pL aρL > 0, aρR < 0 aρL > 0, aρR > 0
pR < pL aρL < 0, aρR > 0 aρL > 0, aρR > 0

Let us define aρk, k ∈ {L, R} the highest roots related to the above polynomial functions:

aρL ≡
1

2

(
−ρL (uR − uL)

2 E0
+

√
ρ2
L (uR − uL)2

4 E 2
0

+ 2 ρL (pR − pL)

)
,

aρR ≡
1

2

(
−ρR (uR − uL)

2 E0
+

√
ρ2
R (uR − uL)2

4 E 2
0

− 2 ρR (pR − pL)

)
.

(D.3)

By noticing that ∀A ≥ 0,−A+
√
A2 +B > 0⇔ B > 0, Table D.1 provides the sign of aρL and aρR: In practice,

when either aρL or aρR are positive, we add it as an additional constraint into the subcaracteristic condition
(3.10a) leading to the modified subcaracteristic condition (3.36).

The non-dimensional expressions of aρL and aρR are:

aρL ≡
1

2

−M
E0

ρL (uR − uL)

2
+

√(
M

E0

)2
ρ2
L (uR − uL)2

4
+ 2 ρL (pR − pL)

,
aρR ≡

1

2

−M
E0

ρR (uR − uL)

2
+

√(
M

E0

)2
ρ2
R (uR − uL)2

4
− 2 ρR (pR − pL)

.
(D.4)

Thus, if E0 is proportional to the Mach number as defined in (3.30), the above non-dimensional roots are of
order one.

Concerning the equivalence between the intermediate density positivity and the ordering of the eigenvalues
of subsystem Cµ, one can notice that:

uL − E0 aC τL ≤ u∗C ,

⇔ 0 ≤ E0 aC

(
τL +

1

E0 aC
(u∗C − uL)

)
,

⇔ 0 ≤ τ∗L, C .

(D.5)

By doing the same calculation, one can see that u∗C ≤ uR + E0 aC τR ⇔ τ∗R, C ≥ 0.
Finally, let us recall that, in the acoustic Riemann problem presented in Figure 2, ρ∗L,A = ρL and ρ∗R,A = ρR.

The intermediate densities are then already positive. No additional constraint on aA needs to be provided in
order to preserve the density positivity.

Appendix E. Positivity of the discrete intermediate internal
energy

For an ideal gas thermodynamics, the specific internal energy is supposed to remain positive throughout space
and time under admissible boundary conditions. Here a sufficient condition under the relaxation constants aC
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and aA is looked for in order to obtain the positivity of the intermediate internal energies produced by the
Riemann problems described in Figures 1 and 2.

E.1 Relaxed convective subsystem

Once again, for the Riemann problem related to the convective relaxed subsystem C, the specific internal
energy reads:

ε∗k, C = e∗k, C −
(u∗C)

2

2
,

= ek −
(u∗C)

2

2
+ E0

(−1)ik

aC
(Π∗C u

∗
C −Πk uk),

= εk +
u2
k − (u∗C)

2

2
+ E0

(−1)ik

aC
(Π∗C u

∗
C −Πk uk),

= εk +
u2
k + (u∗C)

2

2
+ E0

(−1)ik

aC
u∗C

(
Π∗C +

(−1)ik+1 aC
E0

u∗C

)
− E0

(−1)ik

aC
Πk uk.

(E.1)

By combining, u + (−1)ik E0 aC τ and Π + (aC)
2 τ which both are 1-Riemann invariants of subsystem Cµ, one

can build a new one: Π + (−1)ik+1 aC
E0

u. Then, one can simplify the above expression of ε∗k, C , namely:

ε∗k, C = εk +
u2
k + (u∗C)2

2
+ E0

(−1)ik

aC
u∗C

(
Πk +

(−1)ik+1 aC
E0

uk

)
− E0

(−1)ik

aC
Πk uk,

= εk + E0
(−1)ik

aC
Πk (u∗C − uk) +

(u∗C − uk)
2

2
.

(E.2)

Thus, a sufficient condition which would guarantee that ∀k ∈ {L, R} , ε∗k, C ≥ 0 is:

εk + E0
(−1)ik

aC
pk (u∗C − uk) ≥ 0⇔ a2

C − E0 ρ
ε
k

(uR − uL)

2
aC + (−1)ik+1E 2

0 ρ
ε
k

(pR − pL)

2
≥ 0, (E.3)

with ρεk = pk
εk

, and considering that pk = Πk. Inequality (E.3) is very similar to the one obtained for the

intermediate density positivity. The most demanding case is the one where ∀k ∈ {L, R} , ∆ε
k ≡ ρεk

(uR−uL)2

8 +
(−1)ik (pR − pL) ≥ 0:

−ρ
ε
R (uR − uL)

2

8
≤ pR − pL ≤

ρεL (uR − uL)
2

8
. (E.4)

Once again the highest roots related to the polynomial functions written in (E.3) are:

aεC, L ≡
E0

2

(
ρεL (uR − uL)

2
+

√
(ρεL)2 (uR − uL)2

4
− 2 ρεL (pR − pL)

)
,

aεC, R ≡
E0

2

(
ρεR (uR − uL)

2
+

√
(ρεR)2 (uR − uL)2

4
+ 2 ρεR (pR − pL)

)
.

(E.5)
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Table E.1. Positivity domain of aεC, L and aεC, R.

uR > uL uR < uL

pR > pL aεC, L > 0, aεC, R > 0 aεC, L < 0, aεC, R > 0
pR < pL aεC, L > 0, aεC, R > 0 aεC, L > 0, aεC, R < 0

The sign of aεL and aεR is given in Table E.1. The non-dimensional version of these roots reads:

aεC, L ≡
E0

2

(
M ρεL (uR − uL)

2
+

√
M2 (ρεL)2 (uR − uL)2

4
− 2 ρεL (pR − pL)

)
,

aεC, R ≡
E0

2

(
M ρεR (uR − uL)

2
+

√
M2 (ρεR)2 (uR − uL)2

4
+ 2 ρεR (pR − pL)

)
.

(E.6)

Then, contrary to the non-dimensional roots involved in the intermediate density positivity they are of order
O(E0). When either aεL or aεR are positive, they are injected in the subcaracteristic condition (3.10a).

E.2 Relaxed acoustic subsystem

The acoustic relaxed subsystem Aµ also produces intermediate specific internal energies ε∗k,A = e∗k,A −
(u∗A)2

2 = εk + (−1)ik

aA
Πk (u∗A − uk) +

(u∗A−uk)2

2 . The proof is similar to the one done for the convective relaxed
subsystem. Indeed:

ε∗k,A = e∗k,A −
(u∗A)2

2
,

= ek −
(u∗A)2

2
+

(−1)ik

aA
(Π∗A u

∗
A −Πk uk),

= εk +
u2
k − (u∗A)2

2
+

(−1)ik

aA
(Π∗A u

∗
A −Πk uk),

= εk +
u2
k + (u∗A)2

2
+

(−1)ik

aA
u∗A
(
Π∗A + (−1)ik+1 aA u

∗
A
)
− (−1)ik

aA
Πk uk.

(E.7)

Recall that ω−A = u− Π
aA

(respectively ω+
A = u+ Π

aA
) introduced in Section 3.2.2 is 1-Riemann invariant (respec-

tively a 4-Riemann invariant). Then, one can replace Π∗A + (−1)ik+1 aA u
∗
A by Πk + (−1)ik+1 aA uk. Hence,

equality (E.7) is equivalent to:

ε∗k,A = εk +
(−1)ik

aA
Πk (u∗A − uk) +

(u∗A − uk)
2

2
. (E.8)

Thus, a sufficient condition which would guarantee that ∀k ∈ {L, R} , ε∗k,A ≥ 0 is:

εk +
(−1)ik

aA
pk (u∗A − uk) ≥ 0⇔ a2

A − ρεk
(uR − uL)

2
aA + (−1)ik+1ρεk

(pR − pL)

2
≥ 0. (E.9)

Sufficient conditions allowing to guarantee the intermediate specific energy positivity turns into the positivity
of two polynomial functions of order two in aA. The most demanding case corresponds exactly to inequalities
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(E.4). Finally the roots above which the relaxation coefficient has to be are:

aεA, L ≡
aεC, L
E0

; aεA, R ≡
aεC, R
E0

. (E.10)

Since for k ∈ {L, R}, aεC, k = O(E0), the non-dimensional expressions of aεA, k are of order one. One can notice
that, in case of low-Mach flows, the constraint imposed by the relaxation convective subsystem on the specific
internal energy positivity is negligible compared to the one of the relaxed acoustic subsystem.

Appendix F. Subcharacteristic conditions for the subsystems

The proof written below is only formal. It aims at exhibiting subcaracteristic conditions under which the
relaxation subsystems contain diffusive operators. The latter would avoid instabilities which could prevent the
convergence of the relaxation subsystems Cµ and Aµ towards C and A.

F.1 Relaxed convective subsystem

Consider the relaxed convective subsystem Cµ:

Cµ :



∂t ρ+ ∂x (ρ u) = 0,

∂t ρ u+ ∂x (ρ u2) + ∂x
(
E 2

0 (t)Π
)

= 0,

∂t ρ e+ ∂x
(
(ρ e+ E 2

0 (t)Π)u
)

= 0,

∂tΠ + u ∂xΠ +
a2
C
ρ
∂x u =

1

µ
(p−Π) .

(F.1)

Define W = [ρ, ρ u, ρ e, ρΠ]
T

and U = [ρ, ρ u, ρ e]
T

. Assume that one can perform a Chapman-Enskog
expansion on U and Π and write them in powers of µ, namely:

U = U0 + µU1 +O(µ2),

Π = p (U0) + µΠ1 +O(µ2),
(F.2)

with U0 and p(U0) solutions of subsystem C and U1, Π1 of order one. Making µ tend formally toward zero,
the relaxed pressure equation becomes at order zero:

∂t p(U0) + u0 ∂x p(U0) +
a2
C
ρ0
∂x u0 = −Π1 ⇔

(
a2
C
ρ0
− ρ0 cC(U0)2

)
∂x u0 = −Π1. (F.3)

In order to make Cµ converge towards C, a basic step is to make sure that U1 remains of order one throughout
time. Its evolution is influenced by non linear convective effects which mix order zero and order one terms as
well as pressure effects related to E 2

0 ∂xΠ1 for the momentum equation and E 2
0 ∂x (Π1 u0 + p0 u1) for the energy

equation. Using equation (F.3), one can notice that:

−E 2
0 ∂xΠ1 = E 2

0 ∂x

((
a2
C
ρ0
− ρ0 cC(U0)2

)
∂x u0

)
. (F.4)

Thus, under the convective subcaracteristic condition aC > ρ0 cC(U0), order zero terms results in a diffusive
effect on the order one momentum equation. One can believe that this diffusion will be sufficient to prevent U1

from exploding when µ tends toward zero.
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F.2 Relaxed acoustic subsystem

The same argumentation can be done on the relaxed acoustic subsystem Aµ. It gives the expected
subcaracteristic condition (3.10b).

Appendix G. Bounded oscillations of Sp-(M)-corr

According to the truncation error analyses derived in Section 4, the scheme Sp-(M)-corr allows to reduce the
spatial numerical diffusion in the convective as well as in the acoustic subsystem in the case of low-Mach number
compressible flows. In Figure G.1 velocity profiles are plotted for different meshes. The diffusion reduction results
in non-physical oscillations in the tail of the left rarefaction wave. However, the L∞ and the L1 norms of the
induced error decay as the cells number increases. Hence, the scheme is stable and converges to the analytical
solution.

Figure G.1. Velocity profile at M = 4.2× 10−3, Sp-(M)-corr (color online).

Appendix H. Truncation error analysis

H.1 Truncation error of the convective subsystem

Let us consider the convective numerical flux located at face indexed by i + 1/2. For the sake of notations
simplicity and in order to adopt an unstructured formalism, let us rewrite the index i + 1/2 as f for “face”.
Finally let us call L (respectively R) the index of the left (respectively the right) neighbor cell of the face f .
Typically, in 1D L = i and R = i + 1. As mentioned in Section 3.2.1 the relaxation scheme for the convective
subsystem can be written:

Hc
n
f = Hc

n(UL, UR) =
1

2
(L(FµC) (UL) + L(FµC) (UR))− 1

2
|uL − E0 aC τL|

(
U∗f −UL

)
−1

2
|u∗C |

(
U∗∗f −U∗f

)
−1

2
|uR + E0 aC τR|

(
UR −U∗∗f

)
, (H.1)

L(FµC) (U) =
[
ρ u, ρ u2 + E 2

0 p, (ρ e+ E 2
0 p)u

]T
.
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Using the classical rescaling described in [11], the non-dimensional version of this numerical flux writes:

Hc
n
f = Hn(UL, UR) =

1

2
(L(FµC) (UL) + L(FµC) (UR))− 1

2

∣∣∣∣uL − E0

M
aC τL

∣∣∣∣ (U∗f −UL

)
−1

2
|u∗C |

(
U∗∗f −U∗f

)
−1

2

∣∣∣∣uR +
E0

M
aC τR

∣∣∣∣ (UR −U∗∗f
)
, (H.2)

L(FµC) (U) =
[
ρ u, ρ u2 + (E0/M)2 p, (ρ e+ E 2

0 p)u
]T
, ρ e = ρ ε+

M2

2
ρ u2.

For the sake of notations, let us rewrite U∗f as U∗L and U∗∗f as U∗R. The non-dimensional intermediate states
U∗k, k ∈ {L, R} can be expressed as:

U∗k =

 ρ∗k, C
ρ∗k, C u

∗
C

ρ∗k, C e
∗
k, C

 , (H.3)

with: 

u∗C =
uR + uL

2
− E0

M

(pR − pL)

2 aC
,

p∗ =
pR + pL

2
− M

E0

aC (uR − uL)

2
,

ρ∗k, C = 1/τ∗k , τ
∗
k = τk +

M

E0

(−1)ik+1

aC
(u∗C − uk) ,

e∗k, C = ek + E0M
(−1)ik

aC
(p∗ u∗C − pk uk) ,

aC = K ·max (ρL cC(ρL, pL), ρR cC(ρR, pR)) , K > 1,

k ∈ {L, R} , iL ≡ 1, iR ≡ 2.

(H.4)

Let us define xf , xL and xR the positions of the face, left cell and right cell barycenters. In 1D: xL = xi,
xR = xi+1 and xf = xL + ∆x/2 = xR − ∆x/2. At a given time t, for a smooth function φ(., t) let us write
φf for φ(xf , t) and φL for φ(xL, t) . Particularly, we will consider x → a(x, t) a smooth function such that
aC(xi+1/2, t

n) = (aC)
n
i+1/2.

Let us consider a non-dimensional smooth state (x, t)→ U(x, t) verifying:

Str
U(xi, t

n + ∆t)−U(xi, t
n)

∆t
+

Hc (U(xi, t
n), U(xi+1, t

n))−Hc (U(xi−1, t
n), U(xi, t

n))

∆x
= 0, (H.5)

One wonders which partial differential equation does such a smooth solution verify?

It can be first noticed that U(xi, t
n+∆t)−U(xi, t

n)
∆t is consistent with ∂t Ui +O (∆t).

Let us now focus on Hc
n(UL, UR): first, ∀k ∈ {L, R}:

U∗k −Uk =

 ρ∗k, C − ρk
(ρ∗k, C − ρk)u∗C + ρk (u∗C − uk)

(ρ∗k, C − ρk) e∗k, C + ρk (e∗k, C − ek)

. (H.6)
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Furthermore, performing a Taylor expansion around xf , and setting iL = 1, iR = 2, one obtains:



ρ∗k, C − ρk =

[
−
ρ2
f

af

(
M

E0

)
∂x u|f + (−1)ik+1

(
ρf
af

)2

∂x p|f

]
∆x

2
+O

(
(1 +

M

E0
)∆x2

)
,

u∗C − uk =

[
(−1)ik+1∂x u|f −

(
E0

M

)
1

af
∂x p|f

]
∆x

2
+O

(
(1 +

E0

M
)∆x2

)
,

e∗k, C − ek = M E0

[
− 1

af
∂x p u|f + (−1)ik+1

((
E0

M

)
pf
a2
f

∂x p|f +

(
M

E0

)
uf∂x u|f

)]
∆x

2

+O

(
M E0(1 +

E0

M
+
M

E0
)∆x2

)
,

u∗C = uf −
(

E0

M

)
1

af
∂x p|f

∆x

2
+O

(
(1 +

E0

M
)∆x2

)
,

e∗k, C = ef + (−1)ik∂x e|f
∆x

2
+ e∗k, C − ek.

Then:

U∗k −Uk =
∆x

2


− ρ

2
f

af

(
M
E0

)
∂x u|f + (−1)ik+1

(
ρf
af

)2

∂x p|f

ρf

(
(−1)ik+1 − ρf uf

af
M
E0

)
∂x u|f +

ρf
af

(
(−1)ik+1 ρf uf

af
− E0

M

)
∂x p|f

ρf ef

((
ρf
af

M
E0

+ (−1)ik+1 uf

ef
E0

M
E0

)
∂x u|f + (−1)ik+1

(
ρf
a2
f

+ E0
E0

M
pf
a2
f ef

)
∂x p|f

)
+E0

E0

M
pf
a2
f ef

∂x p u|f


+O

(
(1 +

E0

M
+
M

E0
)∆x2

)
.

(H.7)

One can finally observe that, for the terms in order one in space, the Mach number is always compensated with
the weighting parameter E0. Thus ∀k ∈ {L, R}:

U∗k −Uk = O

(
(1 +

E0

M
+
M

E0
)∆x

)
f

. (H.8)

Similarly:

U∗R −U∗L = (U∗R −UR) + (UR −UL) + (UL −U∗L) ,

= O

(
(1 +

E0

M
+
M

E0
)∆x

)
f

.
(H.9)

Furthermore, one can easily see that ∀k ∈ {L, R}:

∣∣∣∣uk + (−1)ik
E0

M
aC τk

∣∣∣∣ =

∣∣∣∣uf + (−1)ik
E0

M
af τf

∣∣∣∣+O

(
(1 +

E0

M
)∆x

)
,

|u∗C | = |uf |+O

(
(1 +

E0

M
)∆x

)
.

(H.10)
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Thus, at a given face f we have:

Hc
n
f = Hc

n(UL, UR) =
1

2
(L(FµC) (UL) + L(FµC) (UR)) +O

(
(1 +

E0

M
+
M

E0
)∆x

)
f

. (H.11)

Besides, 1
2 (L(FµC) (UL) + L(FµC) (UR)) is consistent with L(FµC) (Uf ) +O

(
∆x2

)
.

Finally
Hn

i+1/2−H
n
i−1/2

∆x is consistent with ∂x L(FµC) (Ui) +O
(

(1 + E0

M + M
E0

)∆x
)

. Thus we have found that the

smooth solution U(x, t) verified the PDE ∀xi, tn:

Str ∂t Un
i + ∂x L(FµC) (Un

i ) = O (Str ∆t) +O

(
(1 +

E0

M
+
M

E0
)∆x

)
. (H.12)

H.2 Truncation error of the acoustic subsystem

Keeping the same notations than previously, the non-dimensional relaxation flux for the acoustic subsystem
writes:

Hac
n
f =

(
1− E 2

0

)  0
Π∗A

Π∗A u
∗
A

 =
(
1− E 2

0

) 0
1
M2

pR+pL
2

pR uR+pL uL

2

−
 0

1
M

aA
2 (uR − uL)

M aA
4

(
u2
R − u2

L

)
+ 1

4
1

M aA

(
p2
R − p2

L

)
,

with: aA = K ·max (ρL cA(ρL, pL), ρR cA(ρR, pR)), K > 1.

(H.13)

It is easy to check that
(
1− E 2

0

) 0
1
M2

pR+pL
2

pR uR+pL uL

2

 is consistent with

(
1− E 2

0

) 0
pf
M2

pf uf

 +

 0
O
(
(1− E 2

0 )(∆x/M)2
)

O
(
(1− E 2

0 )∆x2
)

. Besides, −(1 − E 2
0 )

 0
1
M

aA
2 (uR − uL)

M aA
4

(
u2
R − u2

L

)
+ 1

4
1

M aA

(
p2
R − p2

L

)
 is

consistent with −(1− E 2
0 )∆x

2

 0
1
M af∂x u|f

M af uf∂x u|f + 1
M af

pf∂x p|f

+

 0

O
(

(1−E 2
0 )

M ∆x2
)

O
(
(1− E 2

0 )(M + 1
M )∆x2

)

f

.

Finally, one obtains at order one in space:

Hac
n
f =

(
1− E 2

0

) 0
pf
M2

pf uf

+

 0

O
(

(1−E 2
0 )

M ∆x
)

O
(
(1− E 2

0 )(M + 1
M )∆x

)

f

. (H.14)

Thus we have found that the smooth solution U(x, t) verified the PDE ∀xi, tn:

Str ∂t ρ = O(Str ∆t),

Str ∂t (ρ u) + ∂x
(
(1− E 2

0 (t)) p
)

= O(Str ∆t) +O

(
(1− E 2

0 )

M
)∆x

)
,

Str ∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) p u
)

= O(Str ∆t) +O

(
(1− E 2

0 )

(
M +

1

M

)
∆x

)
.

(H.15)
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H.3 Truncation error of the acoustic subsystem with low-Mach correction

Endowed with the low-Mach correction described in equation (4.12), the acoustic flux at face xf reads:

Hac
n
f =

(
1− E 2

0

)  0
Π∗

Π∗ u∗

 =
(
1− E 2

0

) 0
1
M2

ΠR+ΠL

2
ΠR uR+ΠL uL

2

−
 0

θ
M

aA
2 (uR − uL)

Mθ aA
4

(
u2
R − u2

L

)
+ 1

4
1

M aA

(
Π2
R −Π2

L

)
.
(H.16)

The correction part is now consistent with:

−(1− E 2
0 )∆x

2

 0
θf
M af∂x u|f

Mθf af uf∂x u|f + 1
M af

pf∂x p|f

+

 0

O
(

(1−E 2
0 ) θ

M ∆x2
)

O
(
(1− E 2

0 )(M θ + 1
M )∆x2

)

f

.

At first order w.r.t. ∆x:

Hac
n
f =

(
1− E 2

0

) 0
pf
M2

pf uf

+

 0

O
(

(1−E 2
0 )θ

M ∆x
)

O
(
(1− E 2

0 )(Mθ + 1
M )∆x

)

f

. (H.17)

For a smooth solution U(x, t), the truncation error analysis made on the acoustic scheme with low-Mach
correction gives ∀xi, tn:

Str ∂t ρ = O(Str ∆t),

Str ∂t (ρ u) + ∂x
(
(1− E 2

0 (t)) p
)

= O(Str ∆t) +O

(
(1− E 2

0 )θ

M
)∆x

)
,

Str ∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) p u
)

= O(Str ∆t) +O

(
(1− E 2

0 )(Mθ +
1

M
)∆x

)
.

(H.18)
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