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A HYBRID HIGH-ORDER METHOD FOR KIRCHHOFF–LOVE

PLATE BENDING PROBLEMSI
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and Françoise Krasucki2

Abstract. We present a novel Hybrid High-Order (HHO) discretization of fourth-order elliptic prob-
lems arising from the mechanical modeling of the bending behavior of Kirchhoff–Love plates, including
the biharmonic equation as a particular case. The proposed HHO method supports arbitrary approx-
imation orders on general polygonal meshes, and reproduces the key mechanical equilibrium relations
locally inside each element. When polynomials of degree k ¥ 1 are used as unknowns, we prove con-
vergence in hk�1 (with h denoting, as usual, the meshsize) in an energy-like norm. A key ingredient in
the proof are novel approximation results for the energy projector on local polynomial spaces. Under
biharmonic regularity assumptions, a sharp estimate in hk�3 is also derived for the L2-norm of the error
on the deflection. The theoretical results are supported by numerical experiments, which additionally
show the robustness of the method with respect to the choice of the stabilization.
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1. Introduction

As remarked by O.C. Zienkiewicz [40], “one of the early requirements of the Finite Element (FE) approxi-
mation was the choice of shape functions which did not lead to infinite strains on element interfaces and which
therefore preserved a necessary degree of continuity”. This requirement (also called of conformity) appeared
easy to satisfy for simple self-adjoint problems governed by second-order equations, where C0-continuity at
interfaces is enough. The situation is different as far as it concerns the knowledge, essential in structural engi-
neering, of the bending of plates, whose numerical treatment has always been a goal of FE computations. Since
thin plate bending in the Kirchhoff–Love approximation is governed by a fourth-order equation, C1-continuity
has to be introduced (and the continuity of both the function and of its normal derivative assured at interfaces).
This was difficult to achieve and computationally expensive in the classical FE framework, see e.g. Zienkiewicz
[39] for a first engineering-oriented discussion and Ciarlet [20] for a mathematically-oriented one. In order to
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relax such C1-continuity condition, many non-conforming, mixed, hybrid plates elements have been studied
and tested all over the last fifty years, and the literature on this subject is very broad; a minimal and by far
non-exhaustive sample includes the seminal paper by Lascaux–Lesaint [35], as well as the classical works of
Amara–Capatina–Chatti [2] (based on a decomposition of the constraints imposed on the bending moments by
applying twice the Tartar lemma and using the symmetry of the tensor), Bathe [6], Boffi–Brezzi–Fortin [11],
Brenner [13], Brenner–Scott [14], Brezzi–Fortin [16], Ciarlet[20], Comodi [23], Hughes [33], Johnson [34]; see
also references therein. More recent nonconforming methods which have similarities (and differences) with the
one presented here include the Hybridizable Discontinuous Galerkin method [21] of Cockburn–Dong–Guzmán
and the Weak Galerkin method [37] of Lin–Wang–Ye; see also [22] concerning the passage from Discontinuous
Galerkin to hybrid methods. We also cite here the mixed method of Behrens–Guzmán [8] based on a system
of first-order equations, and the HHO method of [18], where the fourth-order operator in the Cahn–Hilliard
equations is treated as a system of second-order operators.

A recent approach to the construction of FE spaces with C1-regularity, on the other hand, has been developed
in the context of the Virtual Element Method (VEM) [3, 9, 15]. Here, global continuity requirements are enforced
by renouncing an explicit expression of the basis functions at each point, and local contributions are built using
computable projections thereof (a stabilization term therefore has to be added). We refer the reader to [17, 19]
for an application of C1-conforming virtual spaces to plate-bending problems similar to the ones considered
here. Nonconforming versions of the VEM have also been developed for fourth order operators, see, e.g., the
very recent contributions by Antonietti–Manzini–Verani [4] (including nodal unknowns) and Zhao–Chen–Zhang
[41] (with C0-continuous virtual functions).

The Kirchhoff–Love plate bending model problem considered in this work reads

�divdivM � f in Ω, (1.1a)

u � 0 on BΩ, (1.1b)

Bnu � 0 on BΩ, (1.1c)

where Ω � R2 denotes a two-dimensional bounded and connected polygonal domain, representing the middle
surface of a plate in its reference configuration, and the divergence operator is denoted by div or div, as to
whether it acts on vector- or tensor-valued fields, respectively. In (1.1a), f represents a surface load orthogonal
to the plane of the plate, and M is the moment tensor, a second-order symmetric tensor field related to the
scalar unknown u, the deflection of the plate, by the constitutive law

M � �A∇2u,

where A is a fourth-order, symmetric and uniformly elliptic tensor field, and �∇2u is referred to as the curvature
tensor. For the sake of simplicity, we assume in what follows that A is piecewise constant on a finite polygonal
partition

PΩ � tΩi : i P Iu (1.2)

of Ω, and that f P L2pΩq. Variational formulations are classical for problem (1.1). For X � Ω, we denote by
p�, �qX the scalar product in L2pXq, L2pXq2 or L2pXq2�2, depending on the context, and by }�}X the associated
norm; we omit the subscript X whenever X � Ω. The primal variational formulation of problem (1.1) reads:
Find u P H2

0 pΩq such that

pA∇2u,∇2vq �: apu, vq � pf, vq @v P H2
0 pΩq. (1.3)

Owing to the Lax–Milgram Lemma, problem (1.3) is well-posed (see, e.g., [16, 38]).
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In this work, we propose and analyze a novel Hybrid High-Order (HHO) method for the approximation of
problem (1.3) which sits at the far end of the spectrum of nonconforming methods, since the underlying space
does not even embed C0-continuity. HHO methods, introduced in [28] in the context of quasi-incompressible
linear elasticity, are a class of new-generation discretization methods for partial differential equations with
several advantageous features. The most relevant in the context of plate bending problems are: (i) the support
of arbitrary approximation orders on general polygonal meshes; (ii) the reproduction of key continuous properties
(such as, e.g., local equilibrium relations) at the discrete level; (iii) competitive computational cost thanks to
static condensation and compact stencil. We refer the reader to [29] for an introduction covering the salient
aspects of HHO methods for linear and nonlinear problems.

The HHO method for problem (1.3) is formulated in terms of discrete unknowns defined on mesh faces and
elements (whence the term hybrid), and such unknowns are polynomials of arbitrary degree k ¥ 1 (whence the
expression high-order) The construction is conceived so that only face-based unknowns are globally coupled,
whereas element-based unknowns can be eliminated by static condensation; see Remark 3.9 below for further
details. Element-based unknowns play the role of the deflection u inside elements, whereas face unknowns play
the role of the traces of u and of its gradient on faces. From these unknowns, a reconstruction of the deflection
of degree pk� 2q is obtained by solving a local problem inside each element. This reconstruction is conceived so
that, composed with a local reduction map, it coincides with the local energy projector and, as such, has optimal
approximation properties in the space of polynomials of total degree (up to) pk � 2q; see Theorem 3.10 below,
whose proof hinges on the recent results of [26]. The high-order deflection reconstruction is used to formulate
a local contribution, which includes a carefully tailored stabilization term. The role of the latter is to ensure
coercivity with respect to a H2-like seminorm while, at the same time, preserving the approximation properties
of the local deflection reconstruction.

An extensive convergence analysis of the method is carried out. Specifically, in Theorem 3.10 below we prove
convergence in hk�1 (with h denoting, as usual, the meshsize) in an energy-like norm and, in Theorem 3.14
below, a sharp estimate in hk�3 for the L2-norm under biharmonic regularity assumptions. The latter result
highlights a salient feature of HHO methods, namely the fact that, by construction, element-based unknowns
superconverge to the L2-orthogonal projection of the exact solution on general meshes. As this happens by
design (i.e., this behavior is not serendipitous), this phenomenon is henceforth referred to as supercloseness
rather than superconvergence. We also show that the method satisfies locally inside each element a discrete
version of the principle of virtual work with moments and shear forces obeying a law of action and reaction.
The performance of the method is showcased on numerical examples, including a study of the robustness with
respect to the choice of the stabilization.

The rest of the paper is organized as follows. In Section 2 we introduce the discrete setting: regularity for
polygonal meshes, basic results thereon, and local projectors. A novel general result contained in this section is
Theorem 2.1, where optimal approximation properties for the local energy projector on local polynomial spaces
are studied. The proof of this theorem is given in Section 6. In Section 3 we introduce the HHO method, state
the main results corresponding to Theorems 3.10 and 3.14, and provide a few numerical examples. In Section 4
we prove the local equilibrium properties of the HHO method and identify discrete equilibrated counterparts of
moments and shear forces at interfaces. Section 5 collects the technical proofs of the properties of the discrete
bilinear form relevant to the analysis. Conclusions and perspectives are discussed in Section 7.

2. Discrete setting

In this section we introduce some assumptions on the mesh, recall a few known results, and define two
projectors on local polynomial spaces that will play a key role in the analysis of the method.

2.1. Mesh

The HHO method is built upon a polygonal mesh of the domain Ω defined prescribing a set of elements Th
and a set of faces Fh.
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The set of elements Th is a finite collection of open disjoint polygons T with nonzero area such that Ω ��
TPTh

T and h :� maxTPTh
hT , with hT denoting the diameter of T . The set of faces Fh is a finite collection of

open disjoint line segments in Ω with nonzero length such that, for all F P Fh, (i) either there exist two distinct
mesh elements T1, T2 P Th such that F � BT1 X BT2 (and F is called an interface) or (ii) there exists a mesh
element T P Th such that F � BT X BΩ (and F is called a boundary face). We assume that Fh is a partition of
the mesh skeleton in the sense that

�
TPTh

BT �
�
FPFh

F .

We denote by F i
h the set of all interfaces and by Fb

h the set of all boundary faces, so that Fh � F i
hYFb

h . The
length of a face F P Fh is denoted by hF . For any T P Th, FT is the set of faces that lie on BT (the boundary of
T ) and, for any F P FT , nTF is the unit normal to F pointing out of T . Symmetrically, for any F P Fh, TF is
the set containing the mesh elements sharing the face F (two if F is an interface, one if F is a boundary face).

The notion of geometric regularity for polygonal meshes is more subtle than for standard meshes. To formulate
it, we assume the existence of a matching simplicial submesh, meaning that there is a conforming triangulation
Th of the domain such that each mesh element T P Th is decomposed into a finite number of triangles from Th
and each mesh face F P Fh is decomposed into a finite number of edges from the skeleton of Th. We denote by
% the regularity parameter such that (i) for any triangle S P Th of diameter hS and inradius rS , %hS ¤ rS and
(ii) for any mesh element T P Th and any triangle S P Th such that S � T , %hT ¤ hS . When considering refined
mesh sequences, the regularity parameter should remain bounded away from zero.

In what follows, we also assume that the mesh is compliant with the data, i.e., for each mesh element T P Th
there exist a unique polygon Ωi P PΩ (see (1.2)) such that T � Ωi. As a result, the material tensor field A is
element-wise constant, and we set for the sake of brevity

AT :� A|T @T P Th.

We also denote by A�
T and A�

T , respectively, the smallest and largest eigenvalues of AT , regarded as an
endomorphism of R2�2

sym. For l ¥ 0 we also introduce, for later use, the broken Sobolev space

H lpThq :�
 
v P L2pΩq : v|T P H

lpT q @T P Th
(
, (2.1)

equipped, unless noted otherwise, with the broken norm }�}HlpThq defined by

@v P H lpThq, }v}HlpThq :�

� ¸
TPTh

}v}2HlpT q

� 1
2

. (2.2)

2.2. Basic results

We next recall a few geometric and functional inequalities, whose proofs are straightforward adaptations of
the results collected in Chapter 1 of [27] (where a slightly different notion of mesh faces is considered). For any
mesh element T P Th and any face F P FT it holds that

%2hT ¤ hF ¤ hT , (2.3)

which expresses the fact that we are working on isotropic meshes. Moreover, the maximum number of faces of
a mesh element is uniformly bounded: There is an integer NB ¥ 3 only depending on % such that

max
hPH

max
TPTh

cardpFT q ¤ NB. (2.4)

Let a polynomial degree l ¥ 0 be fixed, let X be a mesh element or face, and denote by PlpXq the space spanned
by the restrictions to X of two-variate polynomials of total degree at most l ¥ 0. There exist three real numbers
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Ctr ¡ 0, Ctr,c ¡ 0, and Cinv depending on % and possibly on l, but independent of h, such that for any T P Th
and F P FT , the following discrete trace, continuous trace, and inverse inequalities hold:

}w}F ¤ Ctr h
� 1

2

F }w}T @w P PlpT q, (2.5a)

h
1
2

T }w}BT ¤ Ctr,c p}w}T � hT }∇w}T q @w P H1pT q, (2.5b)

}∇w}T ¤ Cinvh
�1
T }w}T @w P PlpT q. (2.5c)

We also recall the following Poincaré inequality, valid for all T P Th and all w P H1pT q such that pw, 1qT � 0:

}w}T ¤ CphT }∇w}T , (2.6)

where the real number Cp is independent of both hT and T , but possibly depends on % (for instance, Cp � π�1

for convex elements [7]).

2.3. Projectors on local polynomial spaces

Projectors on local polynomial spaces are an essential ingredient in the construction and analysis of our
method. Let a polynomial degree l ¥ 0 be fixed, and let X denote a mesh element or face. The L2-orthogonal
projector πlX : L2pXq Ñ PlpXq is such that, for all v P L2pXq, πlXv is the unique polynomial satisfying the
relation

pπlXv � v, wqX � 0 @w P PlpXq. (2.7)

The corresponding vector-valued version, denoted by πlX , acts component-wise. We recall the following approx-
imation results that are a special case of the ones proved in ([25], Lems. 3.4 and 3.6): There exists a real number
C ¡ 0 independent of h, but possibly depending on % and l, such that, for all T P Th, all s P t0, . . . , l � 1u, and
all v P HspT q,

|v � πlT v|HmpT q ¤ Chs�mT |v|HspT q @m P t0, . . . , su, (2.8a)

and, if s ¥ 1,

|v � πlT v|HmpBT q ¤ Ch
s�m� 1

2

T |v|HspT q @m P t0, . . . , s� 1u. (2.8b)

Here we have set, for any ϕ P HspT q,

|ϕ|HmpT q :�
¸

αPN2,}α}1�m

}Bαϕ}L2pT q, |ϕ|HmpBT q :�
¸

αPN2,}α}1�m

}Bαϕ}L2pBT q,

with m respectively as in (2.8a) and (2.8b), }α}1 :� α1 � α2 and Bα :� Bα1
1 Bα2

2 . Notice that, in the second
definition, ϕ and Bαϕ stand for the boundary traces of the function and of its derivatives up to order m,
respectively.

Let a mesh element T P Th be fixed. For u, v P H2pT q, we let a|T pu, vq :�
�
AT∇2u,∇2v

�
T

and introduce the

local energy projector $l
T : H2pT q Ñ PlpT q such that, for any integer l ¥ 2 and any function v P H2pT q,

a|T p$
l
T v � v, wqT � 0 for all w P PlpT q and π1

T p$
l
T v � vq � 0. (2.9)

Optimal approximation properties for the local energy projector are stated in the following theorem, whose
proof is given in Section 6.
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Theorem 2.1 (Optimal approximation properties of the local energy projector). There is a real number C ¡ 0
independent of h, but possibly depending on A, % and l, such that, for all T P Th, all s P t2, . . . , l � 1u, and all
v P HspT q, it holds

|v �$l
T v|HmpT q ¤ Chs�mT |v|HspT q @m P t0, . . . , su, (2.10a)

and

|v �$l
T v|HmpBT q ¤ Ch

s�m� 1
2

T |v|HspT q @m P t0, . . . , s� 1u. (2.10b)

Remark 2.2 (Dependence on the material tensor). It can be checked that the constant C in the right-hand
side of (2.10) actually depends on AT only through the ratio between A�

T and A�
T .

3. The Hybrid High-Order method

In this section, we present the construction underlying the HHO method, state the discrete problem, and
discuss the main results. Henceforth, we fix once and for all a polynomial degree k ¥ 1.

3.1. Local discrete unknowns and interpolation

Let a mesh element T P Th be fixed. The local space of discrete unknowns is defined as the set

Uk
T :� PkpT q �

� ¡
FPFT

PkpF q2
�
�

� ¡
FPFT

PkpF q

�
. (3.1)

For a general collection of discrete unknowns vT P Uk
T , we use the standard underlined HHO notation

vT � pvT , pv∇,F qFPFT
, pvF qFPFT

q,

where vT contains the element-based discrete unknowns, v∇,F the discrete unknowns related to the trace of the
gradient on the face F , and vF the discrete unknowns related to the trace on F .

The local interpolation operator IkT : H2pT q Ñ Uk
T is such that, for all v P H2pT q,

IkT v :�
�
πkT v, pπ

k
F p∇vq|F qFPFT

, pπkF pv|F qqFPFT

�
. (3.2)

Since the boundary of T is piecewise smooth, the trace theorem (see, e.g., [38]) ensures that the restrictions v|F
and p∇vq|F of v appearing in (3.2) are both well-defined.

3.2. Local deflection reconstruction

Let again a mesh element T P Th and a polynomial degree k ¥ 1 be fixed. We introduce the local deflection
reconstruction operator pk�2

T : Uk
T Ñ Pk�2pT q such that, for all vT P Uk

T , pk�2
T vT P Pk�2pT q satisfies for all

w P Pk�2pT q

a|T pp
k�2
T vT , wq � �pvT ,divdivMw,T qT �

¸
FPFT

pv∇,F ,Mw,TnTF qF �
¸
FPFT

�
vF ,divMw,T � nTF

�
F
, (3.3)

where Mw,T :� �AT∇2w. Here, the notation Mw,T is used to emphasize the fact that Mw,T is a moment
tensor of virtual nature (with space of virtual deflections equal to Pk�2pT q) unlike tensor M appearing in
bilinear form a introduced in (1.3). The right-hand side of (3.3) is conceived so as to resemble an integration
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by parts formula where the roles of the function represented by vT and of its gradient are played by element
discrete unknowns inside volumetric integrals and by face-based discrete unknowns on boundary integrals.

Since ker∇2 � P1pT q, the compatibility condition for problem (3.3) requires that the linear form on the
right-hand side vanish on the elements of P1pT q; since Mw,T � 0 for all w P P1pT q, this condition is satisfied.
The solution of (3.3) is not unique: if pk�2

T vT P Pk�2pT q is a solution, pk�2
T vT � zT for any zT P P1pT q also is.

To ensure uniqueness, we add the closure condition

π1
T p

k�2
T vT � π1

T vT . (3.4)

Notice, in passing, that element discrete unknowns do not contribute to the right-hand side of (3.3) for k � 1,
and they only appear in the closure condition (3.4).

For further use, we also observe that, since vT is smooth, performing an integration by parts on the first
term in the right-hand side of (3.3) and using the symmetry of AT leads to the following reformulation, which
points out the non-conformity of the method:

a|T pp
k�2
T vT , wq � a|T pvT , wq �

¸
FPFT

pv∇,F �∇vT ,Mw,TnTF qF �
¸
FPFT

�
vF � vT ,divMw,T � nTF

�
F
. (3.5)

The definition of pk�2
T is justified by the following proposition, which establishes a link with the local energy

projector defined by (2.9).

Proposition 3.1 (Link with the local energy projector). It holds

pk�2
T � IkT � $k�2

T . (3.6)

Proof. We write (3.3) for vT � IkT v (cf. (3.2) for the definition of the local interpolator). Since w P Pk�2pT q and
AT is a constant tensor, we infer that

divdivMw,T P Pk�2pT q � PkpT q

and, for all F P FT ,

pMw,T q|FnTF P PkpF q2, pdivMw,T q|F � nTF P Pk�1pF q � PkpF q.

Consequently, recalling the definition (2.7) of πkT , πkF , and πkF , we have

pπkT v,divdivMw,T qT � pv,divdivMw,T qT ,

pπkF p∇vq|F ,Mw,TnTF qF � pp∇vq|F ,Mw,TnTF qF ,

pπkF v|F ,divMw,T � nTF qF � pv|F ,divMw,T � nTF qF .

Plugging the above identities into the right-hand side of (3.3), performing an integration by parts, and using
the symmetry of AT , we arrive at the following orthogonality condition:

a|T pp
k�2
T IkT v � v, wq � 0. (3.7)

Comparing (3.7) and (3.4) with the definition (2.9) of $k�2
T concludes the proof.

Remark 3.2 (Approximation properties for pk�2
T � IkT ). The above result implies that pk�2

T � IkT � $k�2
T has

optimal approximation properties in Pk�2pT q, in the sense made precise by Theorem 2.1.
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3.3. Local contribution

We introduce the local discrete bilinear form aT p�, �q on Uk
T �Uk

T given by

aT puT , vT q :� a|T pp
k�2
T uT , p

k�2
T vT q � sT puT , vT q. (3.8)

Here, the first contribution is the usual Galerkin term responsible for consistency. The second contribution, in
charge of stability, penalizes high-order differences between the reconstruction and the unknowns and is such
that, for all puT , vT q P Uk

T �Uk
T ,

sT puT , vT q :�
A�
T

h4T

�
πkT pp

k�2
T uT � uT q, π

k
T pp

k�2
T vT � vT q

	
T

�
A�
T

hT

¸
FPFT

�
πkF p∇pk�2

T uT � u∇,F q,π
k
F p∇pk�2

T vT � v∇,F q
	
F

�
A�
T

h3T

¸
FPFT

�
πkF pp

k�2
T uT � uF q, π

k
F pp

k�2
T vT � vF q

	
F
. (3.9)

Remark 3.3 (Stabilization). Other expressions are possible for the stabilization term, and the specific choice
can affect the accuracy of the results. In particular, the discussion below remains true if we replace (3.8) by

aT puT , vT q :� a|T pp
k�2
T uT , p

k�2
T vT q � ηsT puT , vT q, (3.10)

with η ¡ 0 denoting a user-dependent parameter independent of h. In practice, it is important that the numerical
results be only marginally affected by the specific choice of the stabilization. We refer the reader to Section 3.7
below for a numerical study of the robustness of the method with respect to η.

The following proposition states a consistency result for the stabilization bilinear form (3.9).

Proposition 3.4 (Consistency of sT ). There is a real number C ¡ 0 independent of h, but possibly depending
on A, % and k, such that, for all v P Hk�3pT q,

sT pI
k
T v, I

k
T vq

1
2 ¤ Chk�1

T |v|Hk�3pT q. (3.11)

Proof. We have

sT pI
k
T v, I

k
T vq � T1 � T2 � T3,

where, recalling Proposition 3.1 and using the linearity and idempotency of projectors,

T1 :�
A�
T

h4T
}πkT p$

k�2
T v � πkT vq}

2
T �

A�
T

h4T
}πkT p$

k�2
T v � vq}2T ,

T2 :�
A�
T

hT

¸
FPFT

}πkF p∇$k�2
T v � πkF p∇vqq}2F �

A�
T

hT

¸
FPFT

}πkF p∇$k�2
T v �∇vq}2F ,

T3 :�
A�
T

h3T

¸
FPFT

}πkF p$
k�2
T v � πkF vq}

2
F �

A�
T

h3T

¸
FPFT

}πkF p$
k�2
T v � vq}2F .

By the boundedness of L2-projectors, along with the approximation properties (2.10a)–(2.10b) of $k�2
T with

s � k � 3 and, respectively, m � 0 for T1, m � 1 for T2, and again m � 0 for T3, the conclusion follows.
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We equip the space Uk
T with the following local discrete seminorm:

}vT }
2
A,T :� }A

1
2

T∇
2vT }

2
T �

A�
T

hT

¸
FPFT

}v∇,F �∇vT }
2
F �

A�
T

h3T

¸
FPFT

}vF � vT }
2
F . (3.12)

The following result shows that the bilinear form aT induces on Uk
T a seminorm }�}a,T uniformly equivalent to

}�}A,T .

Lemma 3.5 (Local coercivity and boundedness). There is a real number C ¡ 0 independent of h, but possibly
depending on A, % and k, such that, for all T P Th, the following inequalities hold (expressing, respectively, the
coercivity and boundedness of aT ):

C�1}vT }
2
A,T ¤ }vT }

2
a,T :� aT pvT , vT q ¤ C}vT }

2
A,T @vT P Uk

T . (3.13)

Proof. See Section 5.1.

Remark 3.6 (Polynomial degree). The assumption k ¥ 1 is essential in the proof of the above result. For this
reason, the steps in which this hypothesis is used are pointed out accordingly.

3.4. Global space, interpolation, and norm

We define the following global space of discrete unknowns:

Uk
h :�

�¡
TPTh

PkpT q

�
�

� ¡
FPFh

PkpF q2
�
�

� ¡
FPFh

PkpF q

�
. (3.14)

Note that interface unknowns in Uk
h are single-valued, i.e., their values match from one element to the adjacent

one. For a collection of discrete unknowns in Uk
h, we use the notation

vh � ppvT qTPTh
, pv∇,F qFPFh

, pvF qFPFh
q,

and we denote by vT � pvT , pv∇,F qFPFT
, pvF qFPFT

q P Uk
T its restriction to a mesh element T P Th. We also

denote by vh (no underline) the broken polynomial function on Th such that

vh|T � vT @T P Th.

We define the global interpolator Ikh : H2pΩq Ñ Uk
h such that, for all v P H2pΩq,

pIkhvq|T � IkT pv|T q @T P Th. (3.15)

The space Uk
h is equipped with the following seminorm (cf. (3.12) for the definition of }�}A,T ):

}vh}
2
A,h :�

¸
TPTh

}vT }
2
A,T . (3.16)

We notice that the couple of boundary conditions (1.1b) and (1.1c) is equivalent to the couple u � 0 on BΩ
and ∇u � 0 on BΩ. Indeed, the fact that u vanishes on BΩ implies its tangential derivative to vanish on BΩ
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as well. Accounting for this remark, we introduce the following subspace that incorporates the latter couple of
boundary conditions in a strong manner:

Uk
h,0 :� tvh P Uk

h : vF � 0, v∇,F � 0 for any F P Fb
hu. (3.17)

It is a simple matter to check that the image of the restriction of Ikh to H2
0 pΩq is contained in Uk

h,0.

Proposition 3.7 (Norm }vh}A,h). The mapping Uk
h,0 Q vh ÞÑ }vh}A,h P R defines a norm on Uk

h,0.

Proof. The seminorm property is trivial. It then suffices to show that }vh}A,h � 0 ùñ vh � 0 P Uk
h,0. Clearly,

}vh}A,h � 0 implies ∇2vT � 0 for all T P Th and v∇,F �∇vT � 0 and vF � vT � 0 for all F P Fh. By definition
(3.17), we have v∇,F � 0 and vF � 0 for all F P Fb

h; thus, for any T P Th, if FT X Fb
h � H then there exists

F P Fb
h such that ∇vT � 0 and vT � 0 on F . Since ∇2vT � 0 in T , these facts imply that vT � 0 in T , which

in turn implies that vF � 0 and v∇,F � 0 for all F P FT . Repeating this argument for inner layers of elements
yields the assertion.

3.5. Discrete problem

The discrete problem is formulated as follows: Find uh P Uk
h,0 such that

ahpuh, vhq � pf, vhq @vh P Uk
h,0 (3.18)

with global bilinear form ah on Uk
h �Uk

h obtained by element-by-element assembly setting

ahpuh, vhq :�
¸
TPTh

aT puT , vT q. (3.19)

The following lemma summarizes the properties of the global bilinear form ah.

Lemma 3.8 (Properties of ah). The bilinear form ah defined by (3.19) has the following properties:
(i) Coercivity and boundedness. There is a real number C ¡ 0 independent of h, but possibly depending on A,
% and k, such that

C�1}vh}
2
A,h ¤ }vh}

2
a,h :� ahpvh, vhq ¤ C}vh}

2
A,h @vh P Uk

h. (3.20)

(ii) Consistency. There is a real number C ¡ 0 independent of h, but possibly depending on A, % and k, such
that, for all v P H2

0 pΩq XH4pΩq XHk�3pThq, it holds that

sup
whPU

k
h,0zt0u

pdiv divA∇2v, whq � ahpI
k
hv,whq

}wh}A,h
¤ Chk�1|v|Hk�3pΩq. (3.21)

Proof. See Section 5.1.

As a consequence of the first inequality in (3.20), the discrete problem (3.18) admits a unique solution. This
solution minimizes the following discrete energy :

Uk
h,0 Q vh ÞÑ Epvhq :�

1

2
ahpvh, vhq � pf, vhq P R. (3.22)

The discrete energy will play an important role in numerical experiments (cf. Sect. 3.7 below).
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Remark 3.9 (Implementation). Proceeding as in standard FE methods, to write an algebraic version of problem
(3.18) we associate to each mesh element or face a set of degrees of freedom (DOFs) that form a basis for the dual
space of the local polynomial space supported by it. Let a basis Bh for the space Uk

h,0 be fixed such that every
basis function is supported by only one mesh element or face. To fix the ideas, we take as DOFs the coefficients
of the expansion of a HHO function vh P Uk

h,0 in Bh, and we collect them in the vector Vh partitioned as

Vh �

�
VTh

VFh

�
,

where the subvector VTh
collects the coefficients associated with element-based DOFs, while the remaining

coefficients (associated with face-based DOFs) are collected in VFh
. Denote by Ah the matrix representation of

the bilinear form ah and by Bh the vector representation of the linear form vh ÞÑ pf, vhq, both partitioned in a
similar way. The algebraic problem corresponding to (3.18) reads�

AThTh
AThFh

Aᵀ
ThFh

AFhFh

�
loooooooooomoooooooooon

Ah

�
UTh

UFh

�
loomoon

Uh

�

�
BTh

0Fh

�
loomoon

Bh

. (3.23)

The submatrix AThTh
is block-diagonal and symmetric positive definite, and is therefore inexpensive to invert.

In the practical implementation, this remark can be exploited by solving the linear system (3.23) in two steps:

(i) First, element-based coefficients in UTh
are expressed in terms of BTh

and UFh
by the inexpensive solution

of the first block equation:

UTh
� A�1

ThTh
pBTh

� AThFh
UFh

q. (3.24a)

This step is referred to as static condensation in the FE literature;

(ii) Second, face-based coefficients in UFh
are obtained solving the following global problem involving quantities

attached to the mesh skeleton:�
AFhFh

� Aᵀ
ThFh

A�1
ThTh

AThFh

�loooooooooooooooooomoooooooooooooooooon
:�ÃFhFh

UFh
� �Aᵀ

ThFh
A�1
ThTh

BTh
. (3.24b)

This computationally more intensive step requires to invert the symmetric matrix ÃFhFh
, whose stencil involves

neighbours through faces, and which has size Ndof �Ndof with Ndof � 2 cardpF i
hq
�
k�d�1
k

�
. Observing that ÃFhFh

is in fact the Schur complement of AThTh
in Ah, and since Ah is symmetric and both Ah and AThTh

are positive
definite, a classical result in linear algebra yields that also ÃFhFh

is positive definite (see, e.g., [32]).

3.6. Main results

We next present the main results of the analysis, namely error estimates in an energy-like norm, in a jump-
seminorm, and in the L2-norm. Inside the proofs of this section, we often abridge as a À b the inequality a ¤ Cb
with C ¡ 0 independent of h, but possibly depending on A, %, and k.

3.6.1. Energy error estimate

We introduce the global deflection reconstruction operator pk�2
h : Uk

h Ñ L2pΩq such that, for all vh P Uk
h,

ppk�2
h vhq|T � pk�2

T vT @T P Th.
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We also define the stabilization seminorm |�|s,h on Uk
h setting, for all vh P Uk

h,

|vh|
2
s,h :�

¸
TPTh

sT pvT , vT q.

Theorem 3.10 (Energy error estimate). Let u P H2
0 pΩq and uh P Uk

h,0 denote the unique solutions to the contin-

uous (1.3) and discrete (3.18) problems, respectively. Assume the additional regularity u P H4pΩq XHk�3pThq.
Then, it holds that

}A
1
2∇2

hpp
k�2
h uh � uq} � |uh|s,h ¤ Chk�1|u|Hk�3pThq, (3.25)

where ∇h denotes the usual broken gradient operator on Th and the real number C ¡ 0 is independent of h (but
possibly depends on A, %, and k).

Remark 3.11 (Regularity of the solution). Concerning the regularity assumptions on u, we mention as an
example that, for k � 1, the regularity u P H4pΩq is satisfied by the solution of the biharmonic problem with
Dirichlet boundary conditions (obtained taking A � I in (1.1)) posed on a three-dimensional cubic domain,
provided the load f is square-integrable (see, e.g., Maz’ya [36], Chapter 4). In two dimensions, under the weaker
assumption that f P H�1pΩq, it holds that u P H3pΩq provided Ω is convex (see, e.g., Grisvard [30], Chapter 3).
In general, a regularity assumption on the exact solution is actually the consequence of a compatibility condition
between the datum regularity and the domain geometry. When f P L2pΩq in two dimensions, one can have
u P H4pΩq under the condition of Kondratiev on the opening of each corner (see, e.g., Blum–Rannacher [10],
Grisvard [31]). As a further reference on the regularity for the solution of fourth-order elliptic problems, we also
refer the reader to Dauge [24], Chapter 4. To close this remark, we emphasize that, since u needs only be locally
regular inside each element, the presence of corner singularities and layers can be accounted for by a judicious
choice of h and, possibly, of k.

Proof of Theorem 3.10. Let, for the sake of brevity, puh :� Ikhu. We start by proving that

}uh � puh}a,h À hk�1|u|Hk�3pThq, (3.26)

with norm }�}a,h defined by (3.20). Using the linearity of ah in its first argument together with the discrete

problem (3.18), and recalling that divdivA∇2u � f a.e. in Ω, we have, for all vh P Uk
h,0,

ahpuh � puh, vhq � pf, vhq � ahppuh, vhq ¤ sup
whPU

k
h,0zt0u

pdivdivA∇2u,whq � ahppuh,whq

}wh}A,h
}vh}A,h.

Thus, choosing vh � uh � puh and using the consistency (3.21) of ah to bound the supremum in the right-hand
side, the basic estimate (3.26) follows.

Let us now prove (3.25). Using the triangle inequality, we infer that

}A
1
2∇2

hpp
k�2
h uh � uq} � |uh|s,h

¤ }A
1
2∇2

hpp
k�2
h uh � puhq} � |uh � puh|s,h � }A

1
2∇2ppk�2

h puh � uq} � |puh|s,h
¤ }uh � puh}a,h � }A

1
2∇2ppk�2

h puh � uq} � |puh|s,h,
where we have used the discrete Cauchy–Schwarz inequality together with the definition (3.20) of the }�}a,h-norm
in the last line. The conclusion follows using (3.26) to estimate the first term in the right-hand side, the optimal
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approximation properties (2.10a) of pk�2
T puT � $k�2

T u with s � k � 3 and m � 2 for all T P Th to estimate the
second term, and the consistency (3.11) of sT for all T P Th to estimate the third term.

Remark 3.12 (Convergence of face unknowns). Combining the norm equivalence (3.20) with (3.26), we readily
infer that� ¸

TPTh

�
}A

1
2

T∇
2puT � πkTuq}

2
T �

¸
FPFT

�
A�
T

hT
}u∇,F � π

k
F p∇uq}2F �

A�
T

h3T
}uF � πkFu}

2
F


�� 1
2

À hk�1|u|Hk�3pThq,

which shows, in particular, that the face variables converge in an energy-like norm to the corresponding pro-
jections of the exact solution and its normal derivative. This is in itself a supercloseness result for the face
variables since, replacing πkF p∇uq by ∇u and πkFu by u in the left-hand side of the above inequality, one would
only obtain a suboptimal estimate in hk�1 (which would only converge if k ¥ 2). An optimal error estimate in
hk�1 for the trace of u and its gradient can be recovered using the deflection reconstruction instead of the face
variables: � ¸

TPTh

¸
FPFT

�
A�
T

hT
}∇ppk�2

T uT � uq}2F �
A�
T

h3T
}pk�2
T uT � u}2F


� 1
2

À hk�1|u|Hk�3pThq.

Remark 3.13 (Convergence of the jumps). From the estimate of Theorem 3.10, one can prove that the jumps
of pk�2

h uh and of its gradient converge to zero with optimal rate. To this end, define on H2pThq (cf. Def. (2.1))
the following jump seminorm:

|v|2J,h :�
¸
FPFh

�
AF

hF
}πkF r∇vsF }

2
F �

AF

h3F
}πkF rvsF }

2
F



,

where r�sF is the usual jump operator if F is an interface (the sign is irrelevant), whereas rϕsF :� ϕ|F if F is

a boundary face, and AF :� minTPTF
A�
T . Then, observing that |pk�2

h uh|
2
J,h ¤ 2%�6|uh|

2
s,h as a consequence of

the triangle inequality together with (2.3), it is inferred from (3.25) that

|pk�2
h uh|J,h ¤ Chk�1|u|Hk�3pThq. (3.27)

with real number C ¡ 0 independent of h, but possibly depending on A, %, and k.

3.6.2. L2-error estimate

A sharp L2-norm error estimate can also be inferred assuming biharmonic regularity, in the following form:
For all q P L2pΩq, the unique solution z P H2

0 pΩq to

apz, vq � pq, vq @v P H2
0 pΩq (3.28)

satisfies the a priori estimate (see, e.g., [10])

}z}H4pΩq ¤ Cbihar}q}, (3.29)

with Cbihar ¡ 0 only depending on Ω and on A.

Theorem 3.14 (L2-error estimate). Let u P H2
0 pΩq and uh P Uk

h,0 denote the unique solutions to the continuous

(1.3) and discrete (3.18) problems, respectively. Assume u P H4pΩq X Hk�3pThq, biharmonic regularity, and
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f P Hk�1pThq. Then, there exists a real number C ¡ 0 depending on A, %, and k, but independent of h, such
that

}pk�2
h uh � u} ¤ Chk�3

�
}u}Hk�3pThq � }f}Hk�1pThq

�
. (3.30)

Proof. Let, for the sake of brevity, puh :� Ikhu. By the triangle inequality, we have that

}pk�2
h uh � u} ¤ }pk�2

h puh � u} � }pk�2
h puh � puhq} �: T1 � T2.

By the approximation properties (2.10a) of pk�2
T � IkT � $k�2

T (cf. Rem. 3.2) with s � k � 3 and m � 0, we
immediately have that

T1 À hk�3}u}Hk�3pThq.

For the second term, on the other hand, we observe that

T2
2 �

¸
TPTh

}pk�2
T ppuT � uT q}

2
T

À
¸
TPTh

�
h4T }A

1
2

T∇
2pk�2
T ppuT � uT q}

2
T � }π1

T ppuT � uT q}
2
T

	
À h4}puh � uh}

2
a,h � }puh � uh}

2,

where we have used the triangle inequality and the approximation properties of π1
T for s � 2 and m � 0, as

well as the closure condition (3.4) to pass to the second line, and the definition of the }�}a,h-norm to conclude.
Using (3.26) and Lemma 3.15 below to bound the first and second addend in the right-hand side, respectively,
the conclusion follows.

The following lemma, used in the proof of Theorem 3.14 above, shows that element-based discrete unknowns
behave “almost” like the L2-orthogonal projection of the exact solution on the space of broken polynomials of
total degree at most k on Th.

Lemma 3.15 (Supercloseness of element discrete unknowns). Under the assumptions and notations of Theorem
3.14, it holds that

}puh � uh} ¤ Chk�3
�
}u}Hk�3pThq � }f}Hk�1pThq

�
, (3.31)

where puh and uh are the broken polynomial functions of total degree at most k such that puh|T :� puT � πkTu and
uh|T :� uT for any mesh element T P Th.

Proof. Set, for the sake of brevity, eh :� puh � uh and eh :� puh � uh. Let z solve (3.28) with q � eh and setpzh :� Ikhz. Integrating by parts, using the linearity of ah in its first argument, as well as the continuity of moments
and shear forces at interfaces, and letting qzT :� $k�2

T pz|T q for all T P Th, we have that }eh}
2 � T1 � T2, with

T1 :�
¸
TPTh

¸
FPFT

��
AT∇2pz � qzT q�nTF , e∇,F �∇eT qF

�pdivAT∇2pz � qzT q � nTF , eF � eT qF

	
�

¸
TPTh

sT ppzT , eT q,
T2 :� ahppuh,pzhq � pf, πkhzq, (3.32)
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where πkh is such that pπkhvq|T � πkT pv|T q for all T P Th and all v P H2pΩq. The Cauchy–Schwarz inequality then
yields

|T1| À

� ¸
TPTh

�
hT

A�
T

}AT∇2pz � qzT q}2BT � h3T
A�
T

}divAT∇2pz � qzT q}2BT
� |pzh|2s,h
� 1

2

�
�
}eh}

2
A,h � |eh|

2
s,h

� 1
2 .

The approximation properties (2.10) of $k�2
T with s � 4 the consistency property (3.11) of the stabilization

bilinear form, and the stability of ah together with the energy error estimate (3.26) allow to conclude that

|T1| À h2|z|H4pΩqh
k�1}u}Hk�3pThq À hk�3}u}Hk�3pThq}eh},

where in the last estimate we have used the biharmonic regularity hypothesis. Turning to T2, using the fact
that pf, πkT zqT � pπkT f, zqT and exploiting the orthogonality property (3.7), we have

T2 �
¸
TPTh

a|T p$
k�2
T u� u,$k�2

T z � zq �
¸
TPTh

sT ppuT ,pzT q � pf � πkhf, zq �: T2,1 � T2,2 � T2,3.

We have that |T2,1| À hk�3}u}Hk�3pThq}eh} by the Cauchy–Schwarz inequality, the approximation properties

of $k�2
T , and biharmonic regularity. An analogous bound can be obtained for |T2,2|. Finally, we observe that

T2,3 � pf � πkhf, z � πkhzq by the definition (2.7) of the L2-orthogonal projector. Using the approximation
properties (2.8a) of πkT with l � k, m � 0, and s � k � 1 for the first factor, s � 2 for the second, we obtain

|T2,3| ¤ }f � πkhf}}z � πkhz} À hk�1}f}Hk�1pThqh
2}z}H2pΩq À hk�3}f}Hk�1pThq}eh}.

This concludes the proof.

3.7. Numerical examples

In this section we solve problem (1.1) for A � I (i.e., the biharmonic equation) in the unit square and, with
a view towards testing the convergence of the method in the case of more complex geometries, in a L-shaped
domain as well.

3.7.1. Unit square

In this first case, the domain under consideration is Ω � p0, 1q � p0, 1q. The right-hand side f is set in
agreement with the exact solution

upx, yq � x2p1� xq2y2p1� yq2,

on three different meshes: triangular, cartesian and hexagonal (cf. Fig. 1). Figures 2 and 3 show convergence
results in the energy norm and in the L2-norm, respectively, for different meshes and polynomial degrees, up to
three. We consider }puh�uh}a,h and }πkhu�uh} as measures of the error in the energy norm and in the L2-norm,
respectively. Since biharmonic regularity (3.29) is satisfied (the domain is convex and the exact solution is of
class C8), the numerical results show asymptotic convergence rates that match those predicted by the theory,
i.e., estimates (3.26) and (3.31), in all of the three cases.

Also, we check the numerical convergence of the discrete energy (3.22) with four uniformly refined triangular
meshes, and a polynomial degree k ranging from 1 to 4. As Table 1 shows, only three refinements are necessary
when k P t2, 3, 4u to achieve a five-significant-digit precision for the limit of the discrete energy.

We finally test the robustness of the variant of the HHO method based on the local bilinear form (3.10) with
respect to the user-dependent parameter η. In Figures 4 and 5 we plot, respectively, the energy- and L2-norms
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Figure 1. Meshes used for the numerical tests.

Figure 2. }puh � uh}a,h vs. h for three different meshes. (Color online.)

Figure 3. }πkhu� uh} vs. h for three different meshes. (Color online.)

of the error when η varies from 10�3 to 103 on fixed meshes corresponding to the third refinement level of
the ones in Figure 1. From these plots, the robustness of the method can be appreciated, as the energy error
spans only two orders of magnitude and the L2-error spans four orders of magnitude, while the user-dependent
parameter η spans six orders of magnutide.
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Table 1. Convergence of Epuhq with four uniform mesh refinements for each polynomial degree
k P t1, 2, 3, 4u. The number of triangular elements is given by N .

N � 56 N � 224 N � 896 N � 3584

k � 1 �1.662960e�03 �1.635846e�03 �1.632895e�03 �1.632670e�03
k � 2 �1.637918e�03 �1.632707e�03 �1.632652e�03 �1.632653e�03
k � 3 �1.632412e�03 �1.632634e�03 �1.632652e�03 �1.632653e�03
k � 4 �1.632433e�03 �1.632638e�03 �1.632652e�03 �1.632653e�03

k = 1 k = 2 k = 3

10−3 10−2 10−1 100 101 102 103

10−6

10−5

10−4

10−3

10−2

(a) Triangular

10−3 10−2 10−1 100 101 102 103

10−5

10−4

10−3

10−2

(b) Cartesian

10−3 10−2 10−1 100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

(c) Hexagonal

Figure 4. }puh � uh}a,h vs. η for the third refinement level of the triangular, cartesian, and
hexagonal meshes. (Color online.)

k = 1 k = 2 k = 3

10−3 10−2 10−1 100 101 102 103
10−12

10−10

10−8

10−6

10−4

10−2

(a) Triangular

10−3 10−2 10−1 100 101 102 103

10−10

10−8

10−6

10−4

10−2

(b) Cartesian

10−3 10−2 10−1 100 101 102 103
10−10

10−8

10−6

10−4

10−2

(c) Hexagonal

Figure 5. }πkhu � uh} vs. η for the third refinement level of the triangular, cartesian, and
hexagonal meshes. (Color online.)

3.7.2. L-shaped domain

We now consider the domain Ω � pp0, 1q � p0, 1qq z pp1{2, 1q � p1{2, 1qq, and a uniform load f � 1. Figure 6
shows the numerical solution obtained for k � 3 on five nested, uniformly refined triangular meshes. Since a
closed-form solution is not available in this case, we check the numerical convergence of the discrete energy on
the above-mentioned meshes, again for a polynomial degree k ranging from 1 to 4. As Table 2 shows, this energy
converges numerically towards a value given by �2.80e�05 to two significant digits. This allows to conclude
that the method converges even in situations where such singular geometries are considered. As expected, since
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Table 2. Convergence of Epuhq with uniform mesh refinements for each polynomial degree
k P t1, 2, 3, 4u. The number of triangular elements is given by N .

N � 34 N � 136 N � 544 N � 2176 N � 8704

k � 1 �4.208744e�05 �3.071276e�05 �2.885137e�05 �2.833621e�05 �2.813136e�05
k � 2 �3.167765e�05 �2.945556e�05 �2.858722e�05 �2.824400e�05 �2.809123e�05
k � 3 �2.944060e�05 �2.868230e�05 �2.828896e�05 �2.811198e�05 �2.803012e�05
k � 4 �2.899953e�05 �2.845505e�05 �2.818988e�05 �2.806669e�05 �2.800896e�05

biharmonic regularity is not satisfied in this case (because of the domain geometry), convergence is slower than
in Table 1, and five mesh refinements are required to achieve a two-significant-digit precision for the limit. For
further details, we refer the reader to Section 7.1.

4. Local principle of virtual work and laws of action-reaction

Let a mesh element T P Th be fixed. At the continuous level, the deflection field u satisfies, for all v P PkpT q,

a|T pu, vq �
¸
FPFT

pMTnTF ,∇vqF �
¸
FPFT

pdivMT � nTF , vqF � pf, vqT , (4.1a)

where MT :� �AT∇2u. Equation (4.1a) expresses the principle of virtual work in the context of Kirchhoff–Love
plates, written for the mesh element element T and with PkpT q as the space of virtual deflections. The quantities
MTnTF and divMT � nTF are internal actions and represent, respectively, the moment and the (scalar) shear
force exerted on the face F P FT by the adjacent element. This can be viewed as a two-dimensional counterpart
of Cauchy’s hypothesis that the contact force density c at a point of an oriented surface Σ in a three-dimensional
continuum depends on Σ only through the normal n to Σ at that point; indeed, this implies that there is a
second-order tensor field, the Cauchy stress S, such that, at each point of the three-dimensional body, c � Sn.

For an interface F P FT1 XFT2 , with T1, T2 distinct elements of Th, since nT2F � �nT1F , both moments and
shear forces obey the following laws of action-reaction:

MT1
nT1F �MT2

nT2F � 0, divMT1
� nT1F � divMT2

� nT2F � 0. (4.1b)

The denomination for equations (4.1b) emphasizes the fact that the moment (resp., shear force) exerted on
element T1 by element T2 through the common interface F is the opposite of the moment (resp., shear force)
exerted on T2 by T1 through F .

We next show that the solution to discrete problem (3.18) satisfies discrete counterparts of (4.1a) and (4.1b).
This requires a reformulation of the stabilization contribution in terms of the differences between face-based
and element-based discrete unknowns. Define the space

Dk
BT :�

� ¡
FPFT

PkpF q2
�
�

� ¡
FPFT

PkpF q

�

and the boundary difference operator δkBT : Uk
T Ñ Dk

BT such that, for all vT P Uk
T ,

δkBTvT �
�
pδk∇,FvT qFPFT

, pδkFvT qFPFT

�
:�

�
pv∇,F �∇vT qFPFT

, pvF � vT qFPFT

�
.
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Figure 6. Numerical solution obtained for a uniform load f � 1, on five uniformly refined
triangular meshes (with N elements) of the domain, with k � 3. Case (a): N � 34; case (b):
N � 136; case (c): N � 544; case (d): N � 2176; case (e): N � 8704. (Color online.)
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Proposition 4.1 (Boundary difference reformulation of sT ). The local stabilization bilinear form sT defined by
(3.9) can be rewritten, for all uT , vT P Uk

T ,

sT puT , vT q � sT pp0, δ
k
BTuT q, p0, δ

k
BTvT qq. (4.2)

Proof. As a consequence of (3.6), for all vT P PkpT q � Pk�2pT q it holds

pk�2
T IkT vT � $k�2

T vT � vT , (4.3)

where we have used the fact that, as a projector, $k�2
T preserves polynomials up to degree pk � 2q. Now, using

(4.3) and the linearity of pk�2
T , we have

pk�2
T vT � vT � pk�2

T pvT � IkT vT q � pk�2
T p0, δkBTvT q. (4.4)

Also, for all F P FT , it holds

∇pk�2
T vT � v∇,F �∇ppk�2

T vT � pk�2
T IkT vT q � pv∇,F �∇vT q �∇pk�2

T p0, δkBTvT q � δ
k
∇,FvT (4.5)

and, analogously,

pk�2
T vT � vF � ppk�2

T vT � pk�2
T IkT vT q � pvF � vT q � pk�2

T p0, δkBTvT q � δkFvT . (4.6)

Using (4.4), (4.5), and (4.6) respectively in the first, second, and third term in the right-hand side of (3.9), the
conclusion follows.

Define now the residual operator

Rk
BT �

�
pRk

∇,F qFPFT
, pRkF qFPFT

�
: Uk

T Ñ Dk
BT

such that, for all vT P Uk
T and all αBT � ppα∇,F qFPFT

, pαF qFPFT
q P Dk

BT ,

pRk
BTvT , αBT q0,BT :�

¸
FPFT

�
pRk

∇,FvT ,α∇,F qF � pRkFvT , αF qF

	
� sT pp0, δ

k
BTvT q, p0, αBT qq. (4.7)

Problem (4.7) is well-posed as a consequence of the Riesz representation theorem for the L2-like product in the
left-hand side.

Lemma 4.2 (Local principle of virtual work and laws of action-reaction). Denote by uh P Uk
h,0 the unique

solution to (3.18) and, for all T P Th and all F P FT , define the discrete moment and shear force

Mk
TF puT q :� �

�
pA∇2pk�2

T uT qnTF �R
k
∇,FuT

�
,

SkTF puT q :� �divA∇2pk�2
T uT � nTF �RkFuT . (4.8)

Then, the following discrete counterparts of (4.1a) and (4.1b) hold, respectively: For any mesh element T P Th,

a|T pp
k�2
T uT , vT q �

¸
FPFT

pMk
TF puT q,∇vT qF �

¸
FPFT

pSkTF puT q, vT qF � pf, vT qT , @vT P PkpT q, (4.9a)
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and, for any interface F P FT1
X FT2

, with T1, T2 distinct elements of Th,

Mk
T1F puT1

q �Mk
T2F puT2

q � 0, SkT1F puT1
q � SkT2F puT2

q � 0. (4.9b)

Proof. Recalling the definition (3.8) of aT , and using the reformulation (4.2) of sT together with the defini-
tion (4.7) of the residual operator, it is inferred from the discrete problem (3.18) that, for all vh P Uk

h,0, it
holds

¸
TPTh

�
a|T pp

k�2
T uT , p

k�2
T vT q � pRk

BTuT , δ
k
BTvT q0,BT

	
� pf, vhq. (4.10)

Using the definition (3.5) of pk�2
T vT with w � pk�2

T uT for the first term, and recalling (4.7) and (4.8), we can
rewrite (4.10) as

¸
TPTh

�
a|T pp

k�2
T uT , vT q �

¸
FPFT

pMk
TF puT q,v∇,F �∇vT qF �

¸
FPFT

pSkTF puT q, vF � vT qF

�
� pf, vhq. (4.11)

Thus, for a given mesh element T P Th, choosing in (4.11) vh such that vT spans PkpT q, vT 1 � 0 for all T 1 P
ThztT u, v∇,F � 0 and vF � 0 for all F P Fh immediately yields (4.9a). Next, for a given interface F P FT1 XFT2 ,
choosing in (4.11) vh such that vT � 0 for all T P Th, v∇,F 1 � 0 for all F 1 P FhztF u, vF � 0 for all F P Fh, and
letting v∇,F span PkpF q2 yields the first equation in (4.9b). Similarly, choosing in (4.11) vh such that vT � 0
for all T P Th, v∇,F � 0 for all F P FhztF u, vF 1 � 0 for all F P FhztF u, and letting vF span PkpF q yields the
second equation in (4.9b).

5. Properties of the discrete bilinear form

This section contains the proofs of the technical Lemmas 3.5 and 3.8.

5.1. Local coercivity and boundedness

Proof of Lemma 3.5. Let a mesh element T P Th be fixed, and let vT P Uk
T .

(i) Coercivity. Taking w � vT P PkpT q � Pk�2pT q in (3.5) gives

a|T pvT , vT q � a|T pp
k�2
T vT , vT q �

¸
FPFT

pv∇,F �∇vT ,MvTnTF qF �
¸
FPFT

�
vF � vT ,divMvT � nTF

�
F
.

Using the Cauchy–Schwarz inequality to bound the first term in the right-hand side, the Cauchy–Schwarz
and discrete trace (2.5a) inequalities to bound the second, and the Cauchy–Schwarz, discrete trace (2.5a) and
inverse (2.5c) inequalities to bound the third, and simplifying we obtain:

}A
1
2

T∇
2vT }T À

�
}A

1
2

T∇
2pk�2
T vT }

2
T �

A�
T

hT

¸
FPFT

}v∇,F �∇vT }
2
F �

A�
T

h3T

¸
FPFT

}vF � vT }
2
F

� 1
2

. (5.1)

It remains to estimate the boundary terms inside the parentheses using the }�}a,T -seminorm.
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(i.a) Bound on
A�

T

hT

°
FPFT

}v∇,F �∇vT }
2
F . For all F P FT , inserting �πkF∇

�
pk�2
T vT � πkT p

k�2
T vT

�
into the

norm and using the linearity of πkF and the fact that it preserves polynomials in PkpF q2 as a projector, we obtain

}v∇,F �∇vT }F � }πkF
�
v∇,F �∇pk�2

T vT
�
� πkF∇

�
pk�2
T vT � πkT p

k�2
T vT

�
�∇

�
πkT p

k�2
T vT � vT

�
}F

À }πkF
�
v∇,F �∇pk�2

T vT
�
}F�}π

k
F∇ppk�2

T vT � πkT p
k�2
T vT q}F�}∇πkT pp

k�2
T vT � vT q}F

�: T1 � T2 � T3, (5.2)

where we have used the triangle inequality to pass to the second line. By the definition (3.9) of sT , we readily
infer that

h
� 1

2

T

b
A�
T |T1| À }vT }a,T .

Using the L2pF q2-boundedness of πkF followed by the discrete trace inequality (2.5a), we can write |T2| À

h
� 1

2

T }∇ppk�2
T vT � πkT p

k�2
T vT q}T . Then, by the approximation properties (2.8a) of πkT with l � k, m � 1, and

s � 2, we infer that

|T2| À h
1
2

T |p
k�2
T vT |H2pT q À h

1
2

T }∇
2pk�2
T vT }T , (5.3)

so that

h
� 1

2

T

b
A�
T |T2| À }vT }a,T .

Notice, in passing, that in the second bound in (5.3) we have used the fact that k ¥ 1. Finally, the third term
in the right-hand side of (5.2) can be estimated using the discrete trace (2.5a) and inverse (2.5c) inequalities
together with the definition (3.9) of sT as follows:

h
� 1

2

T

b
A�
T |T3| À h�2

T

b
A�
T }π

k
T pp

k�2
T vT � vT q}T ¤ }vT }a,T .

Hence, multiplying (5.2) by h
� 1

2

T

b
A�
T , squaring, summing over F P FT , using the above estimates for T1, T2,

T3, and recalling the uniform bound (2.4) on cardpFT q, we have

A�
T

hT

¸
FPFT

}v∇,F �∇vT }
2
F À }vT }

2
a,T . (5.4)

(i.b) Bound on
A�

T

h3
T

°
FPFT

}vF � vT }
2
F . For all F P FT , inserting �πkF

�
pk�2
T vT � πkT p

k�2
T vT

�
into the norm,

and using the linearity of πkF and πkT together with the fact that they preserve polynomials up to degree k as
projectors, we have that

}vF � vT }F � }πkF
�
vF � pk�2

T vT
�
� πkF

�
pk�2
T vT � πkT p

k�2
T vT

�
� πkT pp

k�2
T vT � vT q}F

¤ }πkF pvF � pk�2
T vT q}F � }πkF pp

k�2
T vT � πkT p

k�2
T vT q}F � }πkT pp

k�2
T vT � vT q}F

�: T1 � T2 � T3. (5.5)
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By the definition (3.9) of sT , it is readily inferred that

h
� 3

2

T

b
A�
T |T1| À }vT }a,T .

The second term can be estimated as follows:

|T2| À h
� 1

2

T }pk�2
T vT � πkT p

k�2
T vT }T À h

� 1
2

T h2T |p
k�2
T vT |H2pT q À h

3
2

T }∇
2pk�2
T vT }T ,

where we have used the L2pF q-boundedness of πkF , the discrete trace inequality (2.5a), the uniform equivalence
of face and element diameters (2.3) to replace hF with hT , and the approximation property (2.8a) with l � k,
s � 2, and m � 0. Again, here the hypothesis k ¥ 1 is necessary to infer the second bound. Hence,

h
� 3

2

T

b
A�
T |T2| À }vT }a,T .

Finally, using the discrete trace inequality (2.5a) followed by the definition (3.9) of sT , we have

h
� 3

2

T

b
A�
T |T3| À }vT }a,T .

Multiplying (5.5) by h
� 3

2

T

b
A�
T , squaring, summing over F P FT , using the above estimates for T1, T2, T3, and

recalling the uniform bound (2.4) on cardpFT q, we arrive at

A�
T

h3T

¸
FPFT

}vF � vT }
2
F À }vT }

2
a,T . (5.6)

(i.c) Conclusion. Combining (5.1), (5.6), and (5.4), the first inequality in (3.13) follows.
(ii) Boundedness. Taking w � pk�2

T vT in (3.5), using the Cauchy–Schwarz, discrete trace (2.5a) and inverse
inequalities (2.5c), and simplifying, we get

}A
1
2

T∇
2pk�2
T vT }T À }vT }A,T , (5.7)

which bounds the portion of }vT }a,T stemming from the consistency term in (3.8). It remains to bound on the
local stabilization terms in sT pvT , vT q.

(ii.a) Bound on
A�

T

h4
T
}πkT pp

k�2
T vT � vT q}

2
T . Inserting �pk�2

T vT into the norm and using the triangle inequality,

we have that

}πkT pp
k�2
T vT � vT q}T ¤ }πkT p

k�2
T vT � pk�2

T vT }T � }pk�2
T vT � vT }T �: T1 � T2. (5.8)

For the first term, using the approximation property (2.8a) with l � k, m � 0, and s � 2, and (5.7), we get

h�2
T

b
A�
T |T1| À }vT }A,T .

Once more, we use here the fact that k ¥ 1. For the second term, inserting 0 � �π1
T p

k�2
T vT � π1

T vT into the
norm (see (3.4)) and using the triangle inequality, we obtain

|T2| � }pk�2
T vT � π1

T p
k�2
T vT � π1

T vT � vT }T ¤ }pk�2
T vT � π1

T p
k�2
T vT }T � }π1

T vT � vT }T .
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The approximation property (2.8a) with l � 1, m � 0, and s � 2 gives }pk�2
T vT � π1

T p
k�2
T vT }T À

h2T }∇2pk�2
T vT }T and }vT � π1

T vT }T À h2T }∇2vT }T so that, accounting for (5.7),

h�2
T

b
A�
T |T2| À }vT }A,T .

Squaring (5.8), multiplying the resulting inequality by A�
T {h

4
T , and using the above estimates for T1 and T2

together with the uniform bound (2.4) on cardpFT q, we conclude that

A�
T

h4T
}πkT pp

k�2
T vT � vT q}

2
T À }vT }

2
A,T .

(ii.b) Bound on
A�

T

hT

°
FPFT

}πkF p∇pk�2
T vT �v∇,F q}

2
F . For any F P FT , inserting �∇vT into the norm, invok-

ing the linearity of πkF together with the fact that it preserves polynomials in PkpF q2 as a projector, and using
the triangle inequality, we have that

}πkF p∇pk�2
T vT � v∇,F q}F ¤ }πkF∇

�
pk�2
T vT � vT

�
}F � }∇vT � v∇,F }F

À h
� 3

2

T }pk�2
T vT � vT }T � }∇vT � v∇,F }F

À
h

1
2

Tb
A�
T

}vT }A,T � }∇vT � v∇,F }F (5.9)

where to pass to the second line we have used the L2pF q2-boundedness of πkF , the discrete trace inequality
(2.5a), and the inverse inequality (2.5c), while to pass to the third line we have estimated the first addend as
the term T2 in (5.8) (which requires again k ¥ 1). Thus, squaring the above inequality, summing over F P FT ,
multiplying it by A�

T {hT , and using the uniform bound (2.4) on cardpFT q, we finally infer

A�
T

hT

¸
FPFT

}πkF p∇pk�2
T vT � v∇,F q}

2
F À }vT }

2
A,T . (5.10)

(ii.c) Bound on
A�

T

h3
T

°
FPFT

}πkF pp
k�2
T vT � vF q}

2
F . For any F P FT , inserting �vT into the norm, invoking

the linearity of πkF together with the fact that it preserves polynomials in PkpF q as a projector, and using the
triangle inequality, we infer that

}πkF pp
k�2
T vT � vF q}F ¤ }πkF pp

k�2
T vT � vT q}F � }vF � vT }F

À h
� 1

2

T }pk�2
T vT � vT }T � }vF � vT }F

À
h

3
2

Tb
A�
T

}vT }A,T � }vF � vT }F , (5.11)

where to pass to the second line we have used the L2pF q-boundedness of πkF followed by the discrete trace
inequality (2.5a) and the uniform equivalence of the element and face diameters expressed by (2.3), while to
pass to the third line we have estimated the first addend as the term T2 in (5.8) and, once more, we used the

fact that k ¥ 1. Hence, multiplying (5.11) by h
� 3

2

T

b
A�
T , squaring, summing over F P FT , recalling (5.8), and
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using the uniform bound (2.4) on cardpFT q, we conclude that

A�
T

h3T

¸
FPFT

}πkF pp
k�2
T vT � vF q}

2
F À }vT }

2
A,T . (5.12)

(ii.d) Conclusion. The second inequality in (3.13) then follows combining (5.7), (5.12), and (5.10) and recalling
the definition (3.12) of }�}A,T .

5.2. Global coercivity, boundedness, and consistency

Proof of Lemma 3.8.

(i) Coercivity and boundedness. The norm equivalence (3.20) is an immediate consequence of Lemma 3.5
together with the definition (3.16) of the }�}A,h-norm.

(ii) Consistency. Let us prove (3.21). An element-wise integration by parts yields

pdivdivA∇2v, whq �
¸
TPTh

�
pAT∇2v,∇2wT qT �

¸
FPFT

pdivAT∇2v � nTF , wF � wT qF

�
¸
FPFT

�
pAT∇2vqnTF ,w∇,F �∇wT

�
F



, (5.13)

where we have used the fact that moments and Kirchhoff shear forces are continuous at interfaces owing to the
regularity of v (see (4.1b) for the expression of these continuity properties for the exact solution u) and that
homogeneous boundary conditions are embedded in Uk

h,0. Now, let

pvh :� Ikhv, pvT :� IkT pv|T q and qvT :� pk�2
T pvT � $k�2

T v|T ; (5.14)

we have

ahppvh,whq �
¸
TPTh

�
pAT∇2qvT ,∇2wT qT �

¸
FPFT

�
divAT∇2qvT � nTF , wF � wT

�
F

�
¸
FPFT

�
pAT∇2qvT qnTF ,w∇,F �∇wT

�
F
� sT ppvT ,wT q



. (5.15)

Thus, letting Ehpwhq :� pdivdivA∇2v, whq � ahppvh,whq, (5.13) and (5.15) yield

Ehpwhq �
¸
TPTh

�
pAT∇2pqvT � vq,∇2wT qT �

�
pAT∇2pqvT � vqqnTF ,w∇,F �∇wT

�
F

�
¸
FPFT

pdivAT∇2pqvT � vq � nTF , wF � wT qF



�

¸
TPTh

sT ppvT ,wT q

�: T1 � T2 � T3 � T4.

By the definition (2.9) of the local energy projector, we have that

T1 � 0. (5.16)
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Using the approximation properties (2.10) with l � k � 2, s � k � 3, and m � 2, 3, we infer that

|T2 � T3| À hk�1|v|Hk�3pThq}wh}A,h. (5.17)

Moreover, for all T P Th, we have sT ppvT ,wT q ¤ sT ppvT ,pvT q 1
2 sT pwTwT q

1
2 ; as for the first factor, by (3.11) we have

sT ppvT ,pvT q 1
2 À

b
A�
T h

k�1
T |v|Hk�3pT q, whereas the second inequality in (3.13) gives sT pwT ,wT q

1
2 À }wT }A,T , so

that

|T4| À hk�1|v|Hk�3pThq}wh}A,h. (5.18)

Using (5.16), (5.17), and (5.18) to estimate Ehpwhq, and using the resulting bound in the supremum in (3.21)
concludes the proof.

6. Proof of Theorem 2.1

(i) Proof of (2.10a). We apply ([26], Lem. 3). Therefore, proving (2.10a) amounts to proving the following
estimates:

}∇2$l
T v}T À }∇2v}T , (6.1a)

}∇$l
T v}T À

�
}∇v}T � hT }∇2v}T

�
, (6.1b)

}$l
T v}T À

�
}v}T � hT }∇v}T � h2T }∇2v}T

�
. (6.1c)

where a À b means a ¤ Cb with C ¡ 0 as in (2.10).
We start by proving (6.1a). The definition (2.9) of $l

T implies that

b
A�
T }∇

2pv �$l
T vq}T ¤ }A

1
2

T∇
2pv �$l

T vq}T

¤ }A
1
2

T∇
2pv � πlT vq}T À

b
A�
T }∇

2v}T ,
(6.2)

where we have used the definition of A�
T (see Sect. 2.1) in the first line, the characterization of $l

T as

arg minzPPlpT q }A
1
2

T∇2pv � zq}T in the second line, along with the definition of A�
T and the H2-stability of

the L2-orthogonal projector (resulting from (2.8a) with s � m � 2) to conclude. Thus, using again the triangle
inequality, we have that

}∇2$l
T v}T ¤ }∇2p$l

T v � vq}T � }∇2v}T À }∇2v}T ,

and (6.1a) is proved.
To prove (6.1b), we introduce the quantities 0 � �∇π1

T$
l
T v �∇π1

T v (recall the second condition in (2.9))
and �∇v inside the L2pT q-norm of ∇$l

T v to infer that

}∇$l
T v}T ¤ }∇p$l

T v � π1
T$

l
T vq}T � }∇pv � π1

T vq}T � }∇v}T

À hT }∇2$l
T v}T � hT }∇2v}T � }∇v}T À

�
}∇v}T � hT }∇2v}T

�
,

where we have used the approximation estimate (2.8a) for π1
T with m � 1 and s � 2 together with the fact that,

for any w P H2pT q, |w|H2pT q À }∇2w}T to estimate the first two terms, and (6.1a) to conclude.
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Table 3. Size of the matrix associated with ah with uniform mesh refinements for each
polynomial degree k P t1, 2, 3, 4u. The number of triangular elements is given by N .

N � 34 N � 136 N � 544 N � 2176 N � 8704

k � 1 354 1320 5088 19 968 79 104
k � 2 531 1980 7632 29 952 118 656
k � 3 708 2640 10 176 39 936 158 208
k � 4 885 3300 12 720 49 920 197 760

Table 4. Number of nonzero elements of the matrix associated with ah with uniform mesh
refinements for each polynomial degree k P t1, 2, 3, 4u. The number of triangular elements is
given by N .

N � 34 N � 136 N � 544 N � 2176 N � 8704

k � 1 9468 37 296 148 032 589 824 2 354 688
k � 2 21 303 83 916 333 072 1 327 104 5 298 048
k � 3 37 872 149 184 592 128 2 359 296 9 418 752
k � 4 59 175 233 100 925 200 3 686 400 14 716 800

The proof of (6.1c) is completely analogous. We obtain

}$l
T v}T ¤ }$l

T v � π1
T$

l
T v}T � }v � π1

T v}T � }v}T

À h2T }∇2$l
T v}T � hT }∇v}T � }v}T

À
�
h2T }∇2v}T � hT }∇v}T � }v}T

�
,

where we have used (2.8a) to estimate the first two addends in the first line, with m � 0 and s � 2 for the first
one and with m � 0 and s � 1 for the second one. This concludes the proof of (2.10a).

(ii) Proof of (2.10b). For m ¤ s� 1, by applying the continuous trace inequality (2.5b) to w � Bαpv�$l
T vq P

H1pT q for all α P N2 such that α1 � α2 � m, we have

h
1
2

T |v �$l
T v|HmpBT q À |v �$l

T v|HmpT q � hT |v �$l
T v|Hm�1pT q.

The conclusion follows using (2.10a) for m and m� 1 to bound the terms in the right-hand side.

7. Concluding remarks

Some concluding remarks are in order.

7.1. Computational cost of the method

It is worth to draw some conclusions from the numerical tests set forth in Section 3.7, with particular
reference to the L-shaped domain case. Indeed, in many applications, as well as from a theoretical viewpoint,
it is interesting to estimate the computational cost of a given numerical method. Here, we can evaluate the
computational cost of our method by comparing the sizes of the matrices associated with the bilinear form ah,
as well as the number of nonzero elements of such matrices,1 upon varying the polynomial degree k and the

1 The latter, in particular, gives an insight into the stencil of the method.
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number of elements N . These two quantities are represented in Tables 3 and 4, respectively. As Table 3 shows,
in certain cases (compare, for instance, the results given by the two choices k � 2, N � 136 and k � 3, N � 34
in Tab. 2) using polynomials of high order on coarse triangulations is more convenient than using polynomials
of lower order on finer triangulations to obtain a given numerical value of the discrete energy to two significant
digits.

7.2. Mixed formulations

The results of this paper concern the primal formulation (1.1) of the Kirchhoff–Love plate bending model
problem. As it is well known, this problem admits dual and mixed formulations that have been the basis for the
development of mixed and hybrid nonconforming finite elements (see, e.g., [16]). A HHO discretization based
on a mixed formulation will make the object of a future work, as well as the study of its relation with the
method presented here and its variations. We notice, in passing, that a similar study for a second-order elliptic
problem has been carried out in [1] and, in a more general setting, in [12]. The latter works can be regarded as
a generalization to new generation polytopal methods of the classical hybridization techniques of Arnold–Brezzi
[5].

Acknowledgements. The authors are grateful to Franco Brezzi (IMATI Pavia) for the fruitful discussions that have
helped shape up this work.
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équations elliptiques published in 1967 simultaneously by Academia, the Publishing House of the Czechoslovak Academy of
Sciences in Prague, and by Masson in Paris. Springer (2012).

[39] O.C. Zienkiewicz, in The Finite Element Method in Engineering Science, 1st edition. McGraw-Hill, New York (1971).

[40] O.C. Zienkiewicz, Origins, milestones and directions of the finite element method – a personal view, in Handbook of Numerical
Analysis, edited by P.G. Ciarlet and J.–L. Lions. Vol. IV of Finite Element Methods (Part 2) – Numerical Methods for Solids
(Part 2) (1996) 5–67.

[41] J. Zhao, S. Chen, and B. Zhang, The nonconforming virtual element method for plate bending problems. Math. Models Methods
Appl. Sci. 26 (2016) 1671–1687.

https://arxiv.org/abs/1703.05136
https://arxiv.org/abs/1703.05136

	A Hybrid High-Order method for Kirchhoff-Love plate bending problems
	1 Introduction
	2 Discrete setting
	2.1 Mesh
	2.2 Basic results
	2.3 Projectors on local polynomial spaces

	3 The Hybrid High-Order method
	3.1 Local discrete unknowns and interpolation
	3.2 Local deflection reconstruction
	3.3 Local contribution
	3.4 Global space, interpolation, and norm
	3.5 Discrete problem
	3.6 Main results
	3.6.1 Energy error estimate
	3.6.2 L2-error estimate

	3.7 Numerical examples
	3.7.1 Unit square
	3.7.2 L-shaped domain


	4 Local principle of virtual work and laws of action-reaction
	5 Properties of the discrete bilinear form
	5.1 Local coercivity and boundedness
	5.2 Global coercivity, boundedness, and consistency

	6 Proof of Theorem 2.1
	7 Concluding remarks
	7.1 Computational cost of the method
	7.2 Mixed formulations


	References

