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ERROR ESTIMATES OF THE THIRD ORDER RUNGE-KUTTA

ALTERNATING EVOLUTION DISCONTINUOUS GALERKIN

METHOD FOR CONVECTION-DIFFUSION PROBLEMS

Hailiang Liu1 and Hairui Wen2,*

Abstract. In this paper, we present the stability analysis and error estimates for the alternating
evolution discontinuous Galerkin (AEDG) method with third order explicit Runge-Kutta temporal
discretization for linear convection-diffusion equations. The scheme is shown stable under a CFL-like
stability condition c0τ ≤ ε ≤ c1h

2. Here ε is the method parameter, and h is the maximum spatial grid
size. We further obtain the optimal L2 error of order O(τ3 +hk+1). Key tools include two approximation
finite element spaces to distinguish overlapping polynomials, coupled global projections, and energy
estimates of errors. For completeness, the stability analysis and error estimates for second order explicit
Runge-Kutta temporal discretization is included in the appendix.
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1. Introduction

In this paper, we present the stability analysis and a priori error estimates of Runge-Kutta alternating
evolution discontinuous Galerkin (RKAEDG) method to smooth solutions of linear convection-diffusion equation

∂tφ+ α∂xφ = β∂2xφ, (x, t) ∈ [a, b]× (0, T ], (1.1a)

φ(x, 0) = φ0(x), x ∈ [a, b], (1.1b)

here α ∈ R, β ∈ R+ are given constants. We do not pay attention to boundary conditions in this paper, hence
the solution is considered to be periodic; though other boundary conditions can also be studied along the same
lines.

The AEDG method is a grid-based discontinuous Galerkin (DG) method, which was introduced by Liu and
Pollack first in [7] for Hamilton-Jacobi equations, and further developed in [8] for nonlinear convection-diffusion
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equation

∂tφ+∇x · f(φ) = ∆xB(φ), (1.2)

in one and multi-dimensional setting, where f(φ) is a given flux function, and B(φ) a non-decreasing function.
These and earlier works [13, 15] are all based on the alternating evolution (AE) framework introduced in [6].
The scheme construction is carried out by allowing the neighboring polynomials to overlap. In particular, the
AEDG method involves only one approximating polynomial near each grid point, independent of the spatial
dimension, hence providing a unique high order approximation locally around each grid point. The AEDG
method is similar to the central DG method in the sense of avoiding numerical fluxes. The central DG methods
developed in [4, 10, 11, 12] use overlapping cells [5] and hence duplicative information. Developed in [12] are two
versions of the central local discontinuous Galerkin (LDG) methods for solving the diffusion equation, ut = uxx,
based on discretizing an equivalent first order system, ut − rx = 0, r − ux = 0 on overlapping cells. For one
dimensional setting of same meshes, the central LDG method involves four times the computational cost and
storage requirement than the AEDG method presented in this paper. This distinction is more pronounced in
multi-dimensional setting. We refer to [7, 13] for comments on differences between the AEDG method and the
central DG methods [4, 10, 11] for hyperbolic problems.

The one-dimensional semi-discrete AEDG scheme introduced in [8] has the following form:∫
Ij

(∂tΦj + ∂xf(ΦSNj )− ∂2xB(ΦSNj ))ηdx =
(
−[f(ΦSNj )]η + [∂xB(ΦSNj )]η − [B(ΦSNj )]∂xη

) ∣∣∣
x=xj

+
1

ε

(∫
Ij

ΦSNj ηdx−
∫
Ij

Φjηdx

)
,

where xj is the grid point in cell Ij , in which the numerical solution is denoted by Φj ; Φ
SN
j are sampled from

neighboring polynomials Φj±1, with [g(ΦSNj )]|xj
standing for the difference of two neighboring functions at xj

in the sense that [g(ΦSNj )]|xj = g(Φj+1(x+j ))− g(Φj−1(x−j )).
In contrast to other DG methods, the stability analysis of the AEDG method is more subtle since stability

property is less obvious from the scheme formulation. For linear convection–diffusion equation (1.1a), the L2

stability of the semi-discrete AEDG method has been proven if ε ≤ Qh2, for some Q and mesh size h in [8],
in which the technical difficulty was resolved by a special regrouping of mixed terms combined with the use of
some inverse inequalities.

Further in [9] the authors obtained the first optimal L2 error estimates based on the stability result established
in [8] for the semi-discrete AEDG scheme (2.2). For a class of fully discrete θ−schemes, the stability condition
relating ε to the time step τ of the form c0τ ≤ ε < Qh2 for some c0 > 1 is shown sufficient for obtaining the
following optimal error estimate in [9] as

N−1∑
j=1

∫ xj+1

xj

|Φnj+1(x)− φ(x, tn)|2 + |Φnj (x)− φ(x, tn)|2

2
dx ≤ C(|1− 2θ|τ + τ2 + hk+1)2,

for θ = 0 the Euler forward method, θ = 1 the Euler backward, and θ = 1/2 the Crank-Nicolson. Here of course
Φnj is the numerical solution at time level n near grid xj , τ is the time step, and the positive constant C is

independent of τ , h and the numerical solution. This estimate differs from the usual L2 error since the AEDG
method uses overlapping polynomials. These features require new techniques in the error estimates.

High order fully discrete schemes are usually obtained by applying certain Runge-Kutta time discretization;
we refer to Cockburn and Shu [2] for a review of the development of the RKDG methods for nonlinear convection–
dominated problems. With the third order explicit SSP Runge–Kutta time discretization [3], Liu and Pollack
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[8] presented excellent numerical results for applying the AEDG method to both one and two dimensional
convection–diffusion problems. In this paper, we are to carry out the priori error estimates for such RK3AEDG
method approximating the smooth solutions of (1.1). The error analysis for RK2AEDG is simpler, and included
in the appendix. A general discussion of the AEDG method and background references on the error estimates
for the DG methods for convection-diffusion problems are given in the introduction to [9]. In this paper, we
have two objectives:
(i) to present the stability analysis of the RK3AEDG method;
(ii) to estimate the difference in L2 norm between the exact solution and the approximate ones.
The stability analysis for (i) is based on the AE formulation and carried out by identifying a sufficient condition
on the time step restriction, relating to the method parameter ε.

The error estimates for (ii) are based on Taylor’s expansion and energy estimates, following the recent works
on the RKDG methods for hyperbolic conservation laws [18, 19, 20], in which the error equations involve a
nonlinear operator. In [18, 20] the authors obtained error estimates for the second order explicit RKDG method
for smooth solutions, under the stronger time step restriction τ = o(h). In contrast, the optimal error estimates
in [19] for the third order RKDG method are obtained under the standard temporal-spatial restriction τ ≤ Ch
for convection. With the RKAEDG method for linear convection-diffusion equations, our error analysis is carried
out by solving a coupled system involving two bilinear operators, and we essentially use several tools developed
in [9], including two approximation spaces Vh×Uh associating with odd and even grids, respectively, with which
the AE scheme can be reformulated using two bi-linear operators; the two global projections on Vh and Uh,
coupled through the ε-dependent term dictated by the AEDG formulation, the projection errors, as well as the
ε-dependent energy norm in Vh ×Uh, involving a special term of the form h−1‖u− v‖ for (v, u) ∈ Vh ×Uh. The
error analysis for AEDG methods is more involved because the coupling between overlapping polynomials must
be carefully handled. Nevertheless, for both RK2AEDG and RK3AEDG methods, we are able to obtain the
optimal error estimates under the standard temporal-spatial restriction τ ≤ Ch2 for diffusion, with polynomials
of arbitrary degree k ≥ 1. The error estimate for other fully discrete DG methods has also been made available
recently, see, e.g. [16, 17] for the LDG method coupled with a third order Runge–Kutta time discretization to
solve linear convection-diffusion equations.

We now mention results related to the central DG methods in the literature. The development of the central
DG technique for hyperbolic conservation laws first appeared in [10], then stability analysis and error estimates
were obtained in [11] for linear hyperbolic problems. Further development of the central DG methods can be
found in [4] for Hamilton-Jacobi equations, and in [12] for diffusion equations. The interesting comparison
analysis by Reyna and Li [14] for linear convection problems indicates that for a fixed stable time discretization,
the time step allowed for the DG method is typically smaller than that for the central DG method.

The rest of this article is organized as follows: in Section 2 we present both the semi-discrete and fully discrete
AEDG schemes with third order Runge-Kutta time discretization for the one-dimensional linear convection-
diffusion equation, and the main results of both stability and optimal L2 error estimates. In Section 3 we
reformulate the RK3AEDG scheme as a coupled system using two bi-linear operators, and then review several
useful tools and known results from [9]. In Section 4, we figure out a sufficient condition on the time step
restriction so that the RK3AEDG can be shown stable. Finally, optimal L2 error estimates are given in Section 5.
The stability analysis and error estimates for second order explicit Runge-Kutta temporal discretization is
included in Appendix A.

Throughout this paper, we adopt standard notations for Sobolev spaces such as Wm,p(D) on sub-domain
D ⊂ [a, b] equipped with the norm ‖ · ‖m,p,D and semi-norm | · |m,p,D. When D = [a, b], we omit the subscript
D; and if p = 2, we set Wm,p(D) = Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D, and | · |m,p,D = | · |m,D. We use either ‖ · ‖0,D
or ‖ · ‖ when D = [a, b] to denote the usual L2 norm. We also use the notation A . B to indicate that A can be
bounded by B multiplied by a constant independent of the mesh size τ, h. A ∼ B stands for A . B and B . A.
We will also use C to denote a positive constant independent of h and τ , which may depend on solutions of
(1.1).
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2. Alternating evolution DG methods

The AEDG method consists of a semi-discrete formulation based on sampling of the AE system on alternating
grids and a fully discrete version by using an appropriate Runge-Kutta solver.

2.1. Setting of semi-discrete AEDG method

Recall the AEDG method for the one-dimensional convection-diffusion equation

∂tφ+ ∂xf(φ) = ∂2x(B(φ)) (2.1)

subject to initial data φ0(x) and periodic boundary conditions.
Partition the spatial domain [a, b] into a grid with grid points {xj} such that x1 = a, xN = b. Set Ij =

(xj−1, xj+1) for j = 1, 2, . . . , N − 1, while I1 = (x0, x2) in which (x0, x1) is the periodic shift of (xN−1, xN ) and

hj =
xj+1−xj−1

2 , and we define the quantities

h = max
1≤j≤N−1

hj and ρ = min
1≤j≤N−1

hj .

For simplicity of presentation we would like to assume that the ratio of h and ρ is upper bounded by a fixed
positive constant ν−1 when h goes to zero so that νh ≤ ρ ≤ h. We shall analyze the uniform grid case ν = 1,
knowing that the techniques can be easily carried over to the case ν 6= 1.

Centered at each grid {xj}, the numerical approximation is a polynomial Φ|Ij = Φj(x) ∈ P k, where P k

denotes a linear space of all polynomials of degree at most k:

P k := {p | p(x)|Ij =
∑

0≤i≤k

ai(x− xj)i, ai ∈ R}.

We denote v(x±) = limε→0± v(x+ ε), and v±j = v(x±j ). The jump at xj is [v]|xj
= v(x+j )− v(x−j ). Note that the

solution space here differs from the usual finite element space since it allows the overlapping of two neighboring
polynomials of Φj and Φj+1 over Ij ∩ Ij+1 = [xj , xj+1] 6= ∅.

The semi-discrete AEDG scheme introduced in [8] is to find Φ|Ij ∈ P k such that for all η ∈ P k(Ij),∫
Ij

(∂tΦj + ∂xf(ΦSNj )− ∂2xB(ΦSNj ))ηdx =
(
−[f(ΦSNj )]η + [∂xB(ΦSNj )]η − [B(ΦSNj )]ηx

) ∣∣∣
x=xj

+
1

ε

(∫
Ij

ΦSNj ηdx−
∫
Ij

Φjηdx

)
, (2.2)

where ΦSNj is defined as

ΦSNj =

{
Φj−1(x), xj−1 < x < xj ,

Φj+1(x), xj < x < xj+1

with periodic boundary conditions. ΦN (x) is regarded to be identical to Φ1(x), which is computed over I1 =
[x0, x2] = [a − h, a + h]. Numerical solution on [xN−1, xN ] is simply taken from Φ1 over [x0, x1]. Note that
Φ1(x, 0) = ΦN (x, 0) for initial data.

The semi-discrete AEDG scheme is also shown to be conservative and stable for linear problems in [8].
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Theorem 2.1. ([8], Thms. 3.1 and 3.2) Let Φ be computed from the AEDG scheme (2.2) for the linear
convection-diffusion equation

∂tφ+ α∂xφ = β∂2xφ,

with periodic boundary conditions. Then
(i) the scheme is conservative in the sense that

d

dt

N−1∑
j=1

∫ xj+1

xj

Φj+1 + Φj
2

dx

 = 0; and

(ii) the scheme using polynomials of degree k ≥ 1 is L2 stable if ε ≤ Qh2. Moreover,

d

dt

N−1∑
j=1

∫ xj+1

xj

Φ2
j+1 + Φ2

j

2
dx

 ≤ −β N−1∑
j=1

∫ xj+1

xj

(∂xΦj+1)2 + (∂xΦj)
2

2
dx

+

(
1

Qh2
− 1

ε

)N−1∑
j=1

∫ xj+1

xj

(Φj+1 − Φj)2dx (2.3)

with

Q =
1

β(k + 1)2(17(k + 1)2 − 1)
. (2.4)

2.2. Fully discrete AEDG method with third order Runge-Kutta time discretization

We now turn to time discretization of (2.2). Let {tn}, n = 0, 1, . . . ,K be a uniform partition of the time
interval [0, T ] and denote the time step size as τ . The initial data for Φj(x, 0) is taken as the L2 projection of
φ0 on Ij for j = 1, . . . , N − 1:∫

Ij

Φj(x, 0)ηdx =

∫
Ij

φ0(x)ηdx, ∀η ∈ P k(Ij), j = 1, . . . , N − 1. (2.5)

Denote Ψ = [ψ1, . . . , ψJ ]> the unknown coefficients of the numerical solution against the basis in the DG space,
the ODE system (2.2) can be written as

∂tΨ = L(Ψ),

where L(·) is some spatial differential operator defined by (2.2).
We use the third order explicit SSP Runge-Kutta method [3] for time discretization. In details, let Ψn,0 be

the solution at time level n, and Ψn,i, i = 1, 2 be the solution at intermediate step between tn and tn+1, thus
we can write

Ψn,1 = Ψn,0 + τL(Ψn,0), (2.6)

Ψn,2 =
3

4
Ψn,0 +

1

4

(
Ψn,1 + τL(Ψn,1)

)
, (2.7)

Ψn+1 =
1

3
Ψn,0 +

2

3

(
Ψn,2 + τL(Ψn,2)

)
. (2.8)
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Based on the above setting, we are able to show the scheme is stable under some restriction on the time
step τ and ε, and further obtain the optimal L2 error estimates for (2.2) with third order time discretization
(2.6)–(2.8). The main results are summarized in the following.

Theorem 2.2. Let Φn be the numerical solution computed from (2.6)–(2.8) with ε = cQh2, 0 < c < 1, then
there exists c0 > 0 such that for h small,

c0τ ≤ ε = cQh2, (2.9)

we have

N−1∑
j=1

∫ xj+1

xj

(
Φn+1
j+1

)2
+
(
Φn+1
j

)2
2

dx ≤
N−1∑
j=1

∫ xj+1

xj

(
Φnj+1

)2
+
(
Φnj
)2

2
dx.

Theorem 2.3. Let φ be the smooth solution to (2.1) subject to initial data φ0(x) and periodic boundary con-
ditions, and Φnj ∈ P k(Ij)(k ≥ 1) be the numerical solution to (2.6)–(2.8) with c0τ ≤ ε = cQh2 for some c0 > 0
and 0 < c < 1, then the following error estimate holds:

N−1∑
j=1

∫ xj+1

xj

|Φnj+1(x)− φ(x, tn)|2 + |Φnj (x)− φ(x, tn)|2

2
dx ≤ C(τ6 + h2k+2), nτ ≤ T, (2.10)

where C is a constant independent of τ, h and n.

We defer the proof of Theorem 2.2 to Section 4 and Theorem 2.3 to Section 5.

Remark 2.4. The CFL condition given in (2.9) is a sufficient condition rather than necessary to preserve L2

stability of numerical solutions, which ensure the optimal error estimates. Therefore, in practice, such CFL
condition is strictly enforced only in the case the stability property is violated. Technically, a slightly sharper
estimate (4.26) of c0 can be obtained in the proof of Theorem 2.2, also Theorem 4.2.

3. Scheme reformulation and useful tools

3.1. Scheme reformulation

Following [9], we introduce two solution spaces of piecewise polynomials as

Vh = {η ∈ L2, η ∈ P k(Ij), j = odd}, Uh = {η ∈ L2, η ∈ P k(Ij), j = even}. (3.1)

Note that for N odd, the set {j = even} = {2, 4, . . . , N − 1}, and {j = odd} = {1, 3, . . . , N − 2}; For N even,
the set {j = even} = {2, 4, . . . , N − 2} and {j = odd} = {1, 3, . . . , N − 1}. This way the periodic boundary
condition is always satisfied through Φ1 = ΦN , with Φ1 ∈ Vh, no matter N is odd or even.

Taking f(w) = αw and B(w) = βw in AEDG scheme (2.2), summing over j = odd and j = even, respectively,
we obtain a coupled system

〈∂tv, ξ〉+A21(u, ξ) =
1

ε
〈u− v, ξ〉, ξ ∈ Vh, (3.2)

〈∂tu, η〉+A12(v, η) =
1

ε
〈v − u, η〉, η ∈ Uh, (3.3)
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where inner product is defined as 〈w, ξ〉 =
∑N−1
j=1

∫ xj+1

xj
wξdx and the two bilinear operators are defined by

A21(u, ξ) =

N−1∑
j=1

∫ xj+1

xj

∂xJ(u)ξdx+
∑
j=odd

([J(u)]ξ + β[u]∂xξ)|xj , (u, ξ) ∈ Uh × Vh,

A12(v, η) =

N−1∑
j=1

∫ xj+1

xj

∂xJ(v)ηdx+
∑

j=even

([J(v)]η + β[v]∂xη)|xj
, (v, η) ∈ Vh × Uh,

where J(w) = αw− β∂xw. Note that for N odd,
∫ xN

xN−1
∂xJ(v)ηdx is defined by

∫ x1

x0
∂xJ(v)ηdx; and for N even,∫ xN

xN−1
∂xJ(u)ξdx is defined by

∫ x1

x0
∂xJ(v)ξdx, using the periodicity of the numerical solution. We remark that

the subscripts in the operator A12 or A21 indicate the odd and even (or even and odd) spaces to which the
corresponding arguments belong.

For notational convenience, in the following we use ‖∂xv‖2 :=
∫ b
a

(∂xv)2dx and ‖∂xu‖2 :=
∫ b
a

(∂xu)2dx to
denote ∑

j=odd

∫ xj+1

xj−1

|∂xv|2dx,
∑

j=even

∫ xj+1

xj−1

|∂xu|2dx (3.4)

respectively if (v, u) ∈ Vh × Uh, unless otherwise stated. Also, we define the L2 norm and energy norm of
(v, u) ∈ Vh × Uh as

‖(v, u)‖2 := ‖v‖2 + ‖u‖2 (3.5)

and

‖(v, u)‖2E := ‖(v, u)‖2 + ‖(∂xv, ∂xu)‖2 +
1

h2
‖v − u‖2, (3.6)

respectively, where ‖ · ‖ is the L2 norm for functions in Vh and Uh shown in (3.4).
For semi-discrete AEDG scheme (2.2), the stability result obtained in [8] is as follows.

Lemma 3.1. For any (v, u) ∈ Vh × Uh, we have

A21(u, v) +A12(v, u) ≥ β

2
‖(∂xv, ∂xu)‖2 − 1

Qh2
‖v − u‖2,

where Q is defined in (2.4).

The AEDG method with the third order SSP Runge-Kutta method for time discretization gives the
RK3AEDG scheme (2.6)–(2.8), which can be rewritten as

〈vn,1, ξ〉 = 〈vn, ξ〉 − τA21(un, ξ) +
τ

ε
〈un − vn, ξ〉, (ξ, η) ∈ Vh × Uh, (3.7a)

〈un,1, η〉 = 〈un, η〉 − τA12(vn, η) +
τ

ε
〈vn − un, η〉, (vn, un) ∈ Vh × Uh; (3.7b)

〈vn,2, ξ〉 =
1

4
〈3vn + vn,1, ξ〉 − τ

4
A21(un,1, ξ) +

τ

4ε
〈un,1 − vn,1, ξ〉, (ξ, η) ∈ Vh × Uh, (3.8a)

〈un,2, η〉 =
1

4
〈3un + un,1, η〉 − τ

4
A12(vn,1, η) +

τ

4ε
〈vn,1 − un,1, η〉, (vn,1, un,1) ∈ Vh × Uh; (3.8b)
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〈vn+1, ξ〉 =
1

3
〈vn + 2vn,2, ξ〉 − 2τ

3
A21(un,2, ξ) +

2τ

3ε
〈un,2 − vn,2, ξ〉, (ξ, η) ∈ Vh × Uh, (3.9a)

〈un+1, η〉 =
1

3
〈un + 2un,2, η〉 − 2τ

3
A12(vn,2, η) +

2τ

3ε
〈vn,2 − un,2, η〉, (vn,2, un,2) ∈ Vh × Uh. (3.9b)

3.2. Projection and projection errors

In this subsection, we review the global projections introduced in [9] and the associated properties proved
therein.

Suppose w is a smooth periodic function, the two coupled projections (Πvw,Πuw) ∈ Vh × Uh introduced in
[9] are as follows

〈Πvw − w, ξ〉+A21(Πuw − w, ξ) =
1

ε
(Πuw −Πvw, ξ), ξ ∈ Vh, (3.10)

〈Πuw − w, η〉+A12(Πvw − w, η) =
1

ε
(Πvw −Πuw, η), η ∈ Uh. (3.11)

Here, we again construct Πvw,Πuw over the extended cell I1 = [x0, x2], and set

Πvw|[xN−1,xN ] = Πvw|[x0,x1], N = odd,

Πuw|[xN−1,xN ] = Πuw|[x0,x1], N = even.

Such extension for both Πvw and Πuw is made so that they become periodic.

Theorem 3.2. ([9], Lem. 3.2, Thms. 3.3 and 4.4) Let w be a smooth periodic function that belongs to Hm,
if ε = cQh2 for 0 < c < 1, then the two projection operators Πv, Πu defined in (3.10) and (3.11) have the
following projection error

‖(Πvw − w,Πuw − w)‖E ≤ Chmin{k,m}|w|m, (3.12)

‖Πvw − w‖+ ‖Πuw − w‖ ≤ Chmin{k+1,m}|w|m, (3.13)

where C is a constant independent of h.

We recall some local approximation results, see, e.g.,[1], Lemma 4.3.8, which will be used for the energy
estimates.

Lemma 3.3. ([9], Lem. 4.1) If w ∈ Hm(Ω) is a periodic function, then there exists polynomials (vI , uI) ∈
Vh ×Uh that satisfy optimal approximation properties, i.e., vI ∈ Vh, uI ∈ Uh are polynomials in Ij, for j = odd
and j = even, respectively,

|w − vI |s,Ij ≤ Chmin{m,k+1}−s|w|m,Ij , j = odd,

|w − uI |s,Ij ≤ C ′hmin{m,k+1}−s|w|m,Ij , j = even,

for 0 ≤ s ≤ min{m, k + 1}, where C and C ′ are two constants independent of mesh size h.

Lemma 3.4. ([9], Lem. 4.2) Let I = [c, d] ⊂ [a, b] be an interval of length |I|, and v ∈ Pm(I), then

max{|v(c)|, |v(d)|} ≤ (m+ 1)|I|−1/2‖v‖0,I , (3.14a)

‖∂xv‖0,I ≤ (m+ 1)
√
m(m+ 2)|I|−1‖v‖0,I , (3.14b)
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‖v(·)‖2∞,I ≤
√

5 + 1

2
(|I|−1‖v‖20,I + |I|‖∂xv‖20,I), if v ∈ H1(I). (3.14c)

We shall also use the following bound of two bilinear operators A21 and A12.

Lemma 3.5. ([9], Lem. 5.1) For any (ξ, η), (v, u) ∈ Vh × Uh, it holds

A21(u, ξ) ≤ h−1Γ (‖ux‖+ h−1‖v − u‖)‖ξ‖, (3.15)

A12(v, η) ≤ h−1Γ (‖vx‖+ h−1‖v − u‖)‖η‖, (3.16)

where

Γ := max{|α|h+ βγk + 2(k + 1)(1 + γ2k)1/2, 2(k + 1)(1 + γ2k)1/2(|α|h+ βγk)}, (3.17)

with γk = (k + 1)
√
k(k + 2).

4. Stability analysis

In this section, we present the L2 stability analysis while relating time step τ to ε for the RK3AEDG method.
We start by introducing some notations:

Ln,1v = vn,1 − vn,Ln,2v = 2vn,2 − vn,1 − vn,Ln,3v = vn+1 − 2vn,2 + vn, (4.1a)

Ln,1u = un,1 − un,Ln,2u = 2un,2 − un,1 − un,Ln,3u = un+1 − 2un,2 + un. (4.1b)

Lemma 4.1. For the fully discrete RK3AEDG method (3.7)–(3.9), we can write

〈Ln,1v , ξ〉 = −τA21(un, ξ) +
τ

ε
〈un − vn, ξ〉, ξ ∈ Vh, (4.2a)

〈Ln,2v , ξ〉 = −τ
2
A21(Ln,1u , ξ) +

τ

2ε
〈Ln,1u − Ln,1v , ξ〉, ξ ∈ Vh, (4.2b)

〈Ln,3v , ξ〉 = −τ
3
A21(Ln,2u , ξ) +

τ

3ε
〈Ln,2u − Ln,2v , ξ〉, ξ ∈ Vh, (4.2c)

〈Ln,1u , η〉 = −τA12(vn, η) +
τ

ε
〈vn − un, η〉, η ∈ Uh, (4.2d)

〈Ln,2u , η〉 = −τ
2
A12(Ln,1v , η) +

τ

2ε
〈Ln,1v − Ln,1u , η〉, η ∈ Uh, (4.2e)

〈Ln,3u , η〉 = −τ
3
A12(Ln,2v , η) +

τ

3ε
〈Ln,2v − Ln,2u , η〉, η ∈ Uh. (4.2f)

Proof. Using notations in (4.1a), (4.2a) is straightforward from (3.7a). We can obtain (4.2b) by calculating
2× (3.8a)− 1

2 × (3.7a). To prove (4.2c), substituting the left hand side of (3.7a) into (3.8a), we have

〈vn,2 − vn, ξ〉 = −τ
4
A21(un,1 + un, ξ) +

τ

4ε
〈un,1 + un − (vn,1 + vn), ξ〉, (4.3)

then by applying (3.9a)− 4
3 × (4.3), we get (4.2c). In entirely same manner, we can obtain the claimed relations

(4.2d)–(4.2f) for Ln,1u ,Ln,2u ,Ln,3u too.

Stability result in Theorem 2.2 can be reformulated in terms of (vn, un) as follows.
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Theorem 4.2. Let vn and un be the numerical solution computed from (3.7)–(3.9) with ε = cQh2, 0 < c < 1,
there exists c0 > 0 such that for h small,

c0τ ≤ ε = cQh2, (4.4)

then

‖(vn+1, un+1)‖ ≤ ‖(vn, un)‖.

Proof. Taking (ξ, η) = (vn, un) in (3.7), (ξ, η) = (4vn,1, 4un,1) in (3.8), (ξ, η) = (6vn,2, 6un,2) in (3.9) and
summing up the resulting relations, we obtain

−τ
(
A21(un, vn) +A21(un,1, vn,1) + 4A21(un,2, vn,2) +A12(vn, un) +A12(vn,1, un,1)

)
−4τA12(vn,2, un,2)− τ

ε
‖vn − un‖2 − τ

ε
‖vn,1 − un,1‖2 − 4τ

ε
‖vn,2 − un,2‖2 =

∫ b

a

Vdx+

∫ b

a

Udx, (4.5)

in which V and U can be written as

V = −2vnvn,1 − (vn)2 + 4vn,1vn,2 − (vn,1)2 + 6vn,2vn+1 − 2vnvn,2 − 4(vn,2)2

= 3
(
(vn+1)2 − (vn)2

)
− (2vn,2 − vn,1 − vn)2 − 3(vn+1 − vn)(vn+1 − 2vn,2 + vn), (4.6)

U = −2unun,1 − (un)2 + 4un,1un,2 − (un,1)2 + 6un,2un+1 − 2unun,2 − 4(un,2)2

= 3
(
(un+1)2 − (un)2

)
− (2un,2 − un,1 − un)2 − 3(un+1 − un)(un+1 − 2un,2 + un). (4.7)

Substituting (4.6) and (4.7) into (4.5), we have

3‖(vn+1, un+1)‖2 − 3‖(vn, un)‖2 = Π1 +Π2, (4.8)

where Πi(i = 1, 2) are defined by

Π1 = −τ
(
A21(un, vn) +A21(un,1, vn,1) + 4A21(un,2, vn,2)

)
−τ
(
A12(vn, un) +A12(vn,1, un,1) + 4A12(vn,2, un,2)

)
−τ
ε
‖vn − un‖2 − τ

ε
‖vn,1 − un,1‖2 − 4τ

ε
‖vn,2 − un,2‖2, (4.9)

and

Π2 =

∫ b

a

[
(2vn,2 − vn,1 − vn)2 + 3(vn+1 − vn)(vn+1 − 2vn,2 + vn)

]
dx

+

∫ b

a

[
(2un,2 − un,1 − un)2 + 3(un+1 − un)(un+1 − 2un,2 + un)

]
dx

= 〈Ln,2v ,Ln,2v 〉+ 3〈Ln,1v + Ln,2v + Ln,3v ,Ln,3v 〉+ 〈Ln,2u ,Ln,2u 〉+ 3〈Ln,1u + Ln,2u + Ln,3u ,Ln,3u 〉. (4.10)

Here we have used notations in (4.1) and the fact that vn+1 − vn = Ln,1v +Ln,2v +Ln,3v (similarly for un+1 − un)
in the last equality of (4.10).
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From Lemma 3.1 and the fact 1
Qh2 = c

ε , it follows that

Π1 ≤ −
βτ

2
‖(∂xvn, ∂xun)‖2 − τ

ε
(1− c)‖vn − un‖2

−βτ
2
‖(∂xvn,1, ∂xun,1)‖2 − τ

ε
(1− c)‖vn,1 − un,1‖2

−2βτ‖(∂xvn,2, ∂xun,2)‖2 − 4τ

ε
(1− c)‖vn,2 − un,2‖2 ≤ 0. (4.11)

Next we show that under some restriction on τ and ε, Π2 can be bounded by |Π1| for 0 < c < 1. To this aim,
we denote

Π2 = Π1
2 +Π2

2 +Π3
2 , (4.12)

where

Π1
2 =〈Ln,2v ,Ln,2v 〉+ 3〈Ln,3v ,Ln,1v 〉+ 〈Ln,2u ,Ln,2u 〉+ 3〈Ln,3u ,Ln,1u 〉,

Π2
2 =3〈Ln,3v ,Ln,2v 〉+ 3〈Ln,3u ,Ln,2u 〉,

Π3
2 =3〈Ln,3v ,Ln,3v 〉+ 3〈Ln,3u ,Ln,3u 〉.

Regrouping terms in Π1
2 we have

Π1
2 = −〈Ln,2v ,Ln,2v 〉+ 2〈Ln,2v ,Ln,2v 〉+ 3〈Ln,3v ,Ln,1v 〉 − 〈Ln,2u ,Ln,2u 〉+ 2〈Ln,2u ,Ln,2u 〉+ 3〈Ln,3u ,Ln,1u 〉

= −‖Ln,2v ‖2 − ‖Ln,2u ‖2 − τA21(Ln,1u ,Ln,2v ) +
τ

ε
〈Ln,1u − Ln,1v ,Ln,2v 〉

−τA21(Ln,2u ,Ln,1v ) +
τ

ε
〈Ln,2u − Ln,2v ,Ln,1v 〉 − τA12(Ln,1v ,Ln,2u ) +

τ

ε
〈Ln,1v − Ln,1u ,Ln,2u 〉

−τA12(Ln,2v ,Ln,1u ) +
τ

ε
〈Ln,2v − Ln,2u ,Ln,1u 〉, (4.13)

where we have used (4.2b), (4.2c) and (4.2e), (4.2f) in the last equality.
For those bilinear forms in (4.13), from Lemma 3.1, we can derive

−A21(Ln,1u ,Ln,2v )−A12(Ln,2v ,Ln,1u ) ≤ −β
2
‖(∂xLn,2v , ∂xLn,1u )‖2 +

1

Qh2
‖Ln,1u − Ln,2v ‖2 (4.14)

and

−A21(Ln,2u ,Ln,1v )−A12(Ln,1v ,Ln,2u ) ≤ −β
2
‖(∂xLn,1v , ∂xLn,2u )‖2 +

1

Qh2
‖Ln,2u − Ln,1v ‖2. (4.15)

Choosing ξ = Ln,1v in (4.2a), by Lemma 3.5 and the Cauchy-Schwartz inequality, we have

‖Ln,1v ‖2 =− τA21(un,Ln,1v ) +
τ

ε
〈un − vn,Ln,1v 〉

≤τΓ
h

(‖∂xun‖+ h−1‖vn − un‖)‖Ln,1v ‖+
τ

ε
‖vn − un‖‖Ln,1v ‖,
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then, canceling the common term ‖Ln,1v ‖ and noting 1
h2 = cQ

ε , we write

‖Ln,1v ‖ ≤
τΓ

h
‖∂xun‖+

τ

ε
(1 + cQΓ )‖vn − un‖. (4.16)

Since we can obtain a similar estimate as (4.16) for ‖Ln,1u ‖, we have

‖(Ln,1v ,Ln,1u )‖2 ≤ 2τ2Γ 2

h2
‖(∂xvn, ∂xun)‖2 +

4τ2

ε2
(1 + cQΓ )2‖vn − un‖2. (4.17)

Thus substituting (4.14) and (4.15) into (4.13), noticing ε = cQh2, we estimate Π1
2 as

Π1
2 ≤− ‖(Ln,2v ,Ln,2u )‖2 − βτ

2
(‖(∂xLn,1v , ∂xLn,1u )‖2 + ‖(∂xLn,2v , ∂xLn,2u )‖2)

+
cτ

ε
‖Ln,1u − Ln,2v ‖2 +

cτ

ε
‖Ln,2u − Ln,1v ‖2 +

2τ

ε
〈Ln,1u − Ln,1v ,Ln,2v − Ln,2u 〉

≤ − ‖(Ln,2v ,Ln,2u )‖2 − βτ

2

(
‖(∂xLn,1v , ∂xLn,1u )‖2 + ‖(∂xLn,2v , ∂xLn,2u )‖2

)
+

2cτ

ε

(
‖Ln,1u ‖2 + ‖Ln,1v ‖2 + ‖Ln,2v ‖2 + ‖Ln,2u ‖2

)
+
τ

ε

(
δ‖Ln,2v − Ln,2u ‖2 +

1

δ
‖Ln,1u − Ln,1v ‖2

)
≤− (1− 2cτ

ε
)‖(Ln,2v ,Ln,2u )‖2 − βτ

2
(‖(∂xLn,1v , ∂xLn,1u )‖2 + ‖(∂xLn,2v , ∂xLn,2u )‖2)

+
4τ

ε
(c+

1

δ
)

(
τ2Γ 2

h2
‖(∂xvn, ∂xun)‖2 +

2τ2

ε2
(1 + cQΓ )2‖vn − un‖2

)
+
δτ

ε
‖Ln,2v − Ln,2u ‖2, (4.18)

where δ ∈ (0, 1) in the second inequality is a constant to be specified, and we have used (4.17) in the last
inequality (4.18).

For Π2
2 , choosing ξ = Ln,2v in (4.2c) and η = Ln,2u in (4.2f), summing the results up, we have

Π2
2 = 3〈Ln,3v ,Ln,2v 〉+ 3〈Ln,3u ,Ln,2u 〉

= −τA21(Ln,2u ,Ln,2v ) +
τ

ε
〈Ln,2u − Ln,2v ,Ln,2v 〉 − τA12(Ln,2v ,Ln,2u ) +

τ

ε
〈Ln,2v − Ln,2u ,Ln,2u 〉

≤ −βτ
2
‖(∂xLn,2v , ∂xLn,2u )‖2 − τ

ε
(1− c) ‖Ln,2u − Ln,2v ‖2, (4.19)

where we have used Lemma 3.1 and ε = cQh2 in the above inequality (4.19).
For Π3

2 , choosing ξ = Ln,3v in (4.2c), in a similar way to get (4.16) and (4.17), we obtain

‖Ln,3v ‖ ≤
τΓ

3h
‖∂xLn,2u ‖+

τ

3ε
(1 + cQΓ )‖Ln,2v − Ln,2u ‖ (4.20)

and

‖(Ln,3v ,Ln,3u )‖2 ≤ 2τ2Γ 2

9h2
‖(∂xLn,2v , ∂xLn,2u )‖2 +

4τ2

9ε2
(1 + cQΓ )2‖Ln,2v − Ln,2u ‖2. (4.21)

Thus, Π3
2 can be bounded by

Π3
2 = 3‖(Ln,3v ,Ln,3u )‖2
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≤ 2τ2Γ 2

3h2
‖(∂xLn,2v , ∂xLn,2u )‖2 +

4τ2

3ε2
(1 + cQΓ )2‖Ln,2v − Ln,2u ‖2. (4.22)

Thus substituting (4.18), (4.19) and (4.22) into (4.12), we have

Π2 ≤−
(

1− 2cτ

ε

)
‖(Ln,2v ,Ln,2u )‖2 − βτ

2
‖(∂xLn,1v , ∂xLn,1u )‖2 −

(
βτ − 2τ2Γ 2

3h2

)
‖(∂xLn,2v , ∂xLn,2u )‖2

+
4τ

ε
(c+

1

δ
)

(
τ2Γ 2

h2
‖(∂xvn, ∂xun)‖2 +

2τ2

ε2
(1 + cQΓ )2‖vn − un‖2

)
− τ

ε

(
1− c− δ − 4τ

3ε
(1 + cQΓ )2

)
‖Ln,2v − Ln,2u ‖2. (4.23)

Combining those estimates in (4.11) and (4.23) and collecting the common terms, we obtain

Π1 +Π2 ≤− τ
(
β

2
− (c+

1

δ
)
4τ2Γ 2

εh2

)
‖(∂xvn, ∂xun)‖2

− τ

ε

(
1− c− (c+

1

δ
)(1 + cQΓ )2

8τ2

ε2

)
‖vn − un‖2

− βτ

2

(
‖(∂xvn,1, ∂xun,1)‖2 + 4‖(∂xvn,2, ∂xun,2)‖2 + ‖(∂xLn,1v , ∂xLn,1u )‖2

)
− τ

ε
(1− c)

(
‖vn,1 − un,1‖2 + 4‖vn,2 − un,2‖2

)
−
(

1− 2cτ

ε

)
‖(Ln,2v ,Ln,2u )‖2

−
(
βτ − 2τ2Γ 2

3h2

)
‖(∂xLn,2v , ∂xLn,2u )‖2 − τ

ε

(
1− c− δ − 4τ

3ε
(1 + cQΓ )2

)
‖Ln,2v − Ln,2u ‖2. (4.24)

Recall (4.8) we see that the desired stability will follow if each term on the right side of the above inequality is
nonpositive, this is indeed so if

β

2
− (c+

1

δ
)
4τ2Γ 2

εh2
≥ 0, 1− c− (c+

1

δ
)(1 + cQΓ )2

8τ2

ε2
≥ 0,

1− 2cτ
ε ≥ 0, β − 2τΓ 2

3h2
≥ 0, 1− c− δ − 4τ

3ε
(1 + cQΓ )2 ≥ 0

(4.25)

for any δ ∈ (0, 1− c). These are implied by (4.4) if we choose

c0 = max

{(
8cQΓ 2(c+ 1

δ )

β

)1/2

, 2 (1 + cQΓ )

(
2(c+ 1

δ )

1− c

)1/2

, 2c,
2cQΓ 2

3β
,

4(1 + cQΓ )2

3(1− c− δ)

}
(4.26)

with δ = 1−c
2 .

5. Error estimates

In this section, based on the stability analysis presented in Section 4, we obtain the optimal L2 error estimates
of the fully discrete AEDG method (3.7)–(3.9). We first prepare the error function and two lemmas for later
use.
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5.1. Reference solution and error representation

Set φn,0 = φ(x, tn), according to the 3-stage RK3AEDG method (3.7)–(3.9), we define the reference solutions
of (1.1) as

φn,1 = φn,0 − τ(α∂x − β∂2x)φn,0, (5.1a)

φn,2 =
3

4
φn,0 +

1

4
φn,1 − τ

4

(
α∂x − β∂2x

)
φn,1. (5.1b)

Lemma 5.1. If ‖∂4t φ‖ is bounded uniformly for any t ∈ [0, T ], we have

φ(x, tn + τ) =
1

3
φn,0 +

2

3
φn,2 − 2τ

3

(
α∂x − β∂2x

)
φn,2 + F (n;x), (5.2)

where F (n;x) is the local truncation error in time and ‖F (n;x)‖ = O(τ4) uniformly for any time t ∈ [0, T ].

Proof. By Taylor’s expansion in variable t,

φ(x, tn + τ) = φ(x, tn) + τ∂tφ(x, tn) +
τ2

2
∂2t φ(x, tn) +

τ3

6
∂3t φ(x, tn) +

τ4

24
∂4t φ(x, t′) (5.3)

where t′ ∈ (tn, tn+1). The right hand side of (5.2) (RHS) with notations in (5.1) reduces to

RHS = φn,0 − τ(α∂x − β∂2x)φn,0 +
τ2

2
(α∂x − β∂2x)2φn,0 − τ3

6
(α∂x − β∂2x)3φn,0 + F (n;x). (5.4)

Using the fact that φ(x, tn) = φn,0 and φn,0 is a solution of (1.1a), we have

F (n;x) =
τ4

24
∂4t φ(x, t′).

This completes the proof.

Since all reference solutions φn,i, i = 1, 2 are smooth in [a, b], the consistency of the AEDG scheme (see [8])
yields 〈φ

n,1, ξ〉 = 〈φn,0, ξ〉 − τA21(φn,0, ξ) +
τ

ε
〈φn,0 − φn,0, ξ〉,

〈φn,1, η〉 = 〈φn,0, η〉 − τA12(φn,0, η) +
τ

ε
〈φn,0 − φn,0, η〉,

(5.5)


〈φn,2, ξ〉 =

1

4
〈3φn,0 + φn,1, ξ〉 − τ

4
A21(φn,1, ξ) +

τ

4ε
〈φn,1 − φn,1, ξ〉,

〈φn,2, η〉 =
1

4
〈3φn,0 + φn,1, η〉 − τ

4
A12(φn,1, η) +

τ

4ε
〈φn,1 − φn,1, η〉,

(5.6)


〈φn+1, ξ〉 =

1

3
〈φn,0 + 2φn,2, ξ〉 − 2τ

3
A21(φn,2, ξ) +

2τ

3ε
〈φn,2 − φn,2, ξ〉+ 〈F (n;x), ξ〉,

〈φn+1, η〉 =
1

3
〈φn,0 + 2φn,2, η〉 − 2τ

3
A12(φn,2, η) +

2τ

3ε
〈φn,2 − φn,2, η〉+ 〈F (n;x), η〉,

(5.7)

where (ξ, η) ∈ Vh × Uh at each stage.
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Noting that vn,0 = vn, un,0 = un, we split the solution errors as follows.

φn,i − vn,i = en,i1 − ε
n,i
1 , φn,i − un,i = en,i2 − ε

n,i
2 (5.8)

for i = 0, 1, 2, where

en,i1 = Πvφ
n,i − vn,i, εn,i1 = Πvφ

n,i − φn,i,
en,i2 = Πuφ

n,i − un,i, εn,i2 = Πuφ
n,i − φn,i.

Each equation in scheme (3.7)–(3.9) when subtracted from the corresponding relation in (5.5)–(5.7), leads to

〈en,11 − en,01 , ξ〉+ τA21(en,02 , ξ) =〈εn,11 − εn,01 , ξ〉+ τA21(εn,02 , ξ)

− τ

ε
〈un,0 − vn,0, ξ〉, (5.9a)

〈en,12 − en,02 , η〉+ τA12(en,01 , η) =〈εn,12 − εn,02 , η〉+ τA12(εn,01 , η)

− τ

ε
〈vn,0 − un,0, η〉, (5.9b)

〈4en,21 − 3en,01 − en,11 , ξ〉+ τA21(en,12 , ξ) =〈4εn,21 − 3εn,01 − εn,11 , ξ〉+ τA21(εn,12 , ξ)− τ

ε
〈un,1 − vn,1, ξ〉, (5.10a)

〈4en,22 − 3en,02 − en,12 , η〉+ τA12(en,11 , η) =〈4εn,22 − 3εn,02 − εn,12 , η〉+ τA12(εn,11 , η)− τ

ε
〈vn,1 − un,1, η〉, (5.10b)

〈6en+1
1 − 2en,01 − 4en,21 , ξ〉+ 4τA21(en,22 , ξ) =〈6εn+1

1 − 2εn,01 − 4εn,21 , ξ〉+ 4τA21(εn,22 , ξ)

− 4τ

ε
〈un,2 − vn,2, ξ〉+ 〈6F (n;x), ξ〉, (5.11a)

〈6en+1
2 − 2en,02 − 4en,22 , η〉+ 4τA12(en,21 , η) =〈6εn+1

2 − 2εn,02 − 4εn,22 , η〉+ 4τA12(εn,21 , η)

− 4τ

ε
〈vn,2 − un,2, η〉+ 〈6F (n;x), η〉 (5.11b)

for (ξ, η) ∈ Vh × Uh at each stage, respectively.

Lemma 5.2. If the time step satisfies c0τ ≤ ε = cQh2, then the following inequalities hold true

‖(en,11 , en,12 )‖2 ≤ C‖(en,01 , en,02 )‖2 + Ch2k+2, (5.12a)

‖(en,21 , en,22 )‖2 ≤ C‖(en,01 , en,02 )‖2 + C‖(en,11 , en,12 )‖2 + Ch2k+2, (5.12b)

where C is a constant independent τ, h, n.

Proof. Taking ξ = en,11 in (5.9a), we obtain

‖en,11 ‖2 − 〈e
n,0
1 , en,11 〉+ τA21(en,02 , en,11 ) =〈εn,11 − εn,01 , en,11 〉+ τA21(εn,02 , en,11 )

− τ

ε
〈un,0 − vn,0, en,11 〉. (5.13)
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Using the Young’s inequality, ab ≤ δa2 + 1
4δ b

2 with δ = 3/2, we have

〈en,01 , en,11 〉 ≤
3

2
‖en,01 ‖2 +

1

6
‖en,11 ‖2. (5.14)

From Lemma 3.5 it follows

τA21(en,02 , en,11 ) ≤ τ

(
Γ

h
‖∂xen,02 ‖+

Γ

h2
(‖en,01 ‖+ ‖en,02 ‖)

)
‖en,11 ‖

≤ Cτ

h2
(‖en,01 ‖+ ‖en,02 ‖)‖e

n,1
1 ‖

≤ 1

6
‖en,11 ‖2 + C‖(en,01 , en,02 )‖2, (5.15)

where we have used the inverse inequality (3.14b) in the second inequality and τ ≤ cQh2/c0 in the last inequality.
Again from Lemma 3.5 and the projection error in Theorem 3.2, we obtain

τA21(εn,02 , en,11 ) ≤ τ

(
Γ

h
‖∂xεn,02 ‖+

Γ

h2
(‖εn,01 ‖+ ‖εn,02 ‖)

)
‖en,11 ‖

≤ Cτ

h2

(
‖εn,01 ‖+ ‖εn,02 ‖+ h‖∂xεn,02 ‖

)
‖en,11 ‖

≤ 1

6
‖en,11 ‖2 + Ch2k+2. (5.16)

Using the L2 projection error in (3.13), we obtain

〈εn,11 − εn,01 , en,11 〉 ≤ (‖εn,11 ‖+ ‖εn,01 ‖)‖e
n,1
1 ‖ ≤

1

6
‖en,11 ‖2 + Ch2k+2, (5.17)

similarly,

〈un,0 − vn,0, en,11 〉 = 〈en,01 − εn,01 − (en,02 − εn,02 ), en,11 〉
≤ (Chk+1 + ‖en,01 ‖+ ‖en,02 ‖)‖e

n,1
1 ‖

≤ 1

6
‖en,11 ‖2 + C‖(en,01 , en,02 )‖2 + Ch2k+2. (5.18)

Plugging (5.14)–(5.18) into (5.13) we arrive at

‖en,11 ‖2 ≤ C‖(e
n,0
1 , en,02 )‖2 + Ch2k+2. (5.19)

Likewise, we have

‖en,12 ‖2 ≤ C‖(e
n,0
1 , en,02 )‖2 + Ch2k+2. (5.20)

Taking summation of (5.19) and (5.20) leads to (5.12a). In a similar manner, we can also prove (5.12b).

5.2. Error estimates of RK3AEDG in L2 norm

Based on the stability analysis and the error representation, we set out to derive the error estimates of scheme
(3.7)–(3.9). The result stated in Theorem 2.3 can be reformulated in terms of (vn, un) as follows.
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Theorem 5.3. Let φ be the smooth solution of (2.1) subject to initial data φ0(x) and periodic boundary con-
ditions, (vn, un) ∈ Vh × Uh be the numerical solution computed through the fully discrete scheme (3.7)–(3.9),
then we have the following error estimate:

‖φ(·, tn)− vn(·)‖+ ‖φ(·, tn)− un(·)‖ ≤ C(τ3 + hk+1), nτ ≤ T, (5.21)

where C is a constant independent of τ, h and n.

Proof. Taking w = φn,i with ξ = en,i1 in (3.10), and η = en,i2 in (3.11) for i = 0, 1, 2, respectively, we have

〈εn,i1 , en,i1 〉+A21(εn,i2 , en,i1 ) =
1

ε
〈εn,i2 − ε

n,i
1 , en,i1 〉,

〈εn,i2 , en,i2 〉+A12(εn,i1 , en,i2 ) =
1

ε
〈εn,i1 − ε

n,i
2 , en,i2 〉.

This together with vn,i − un,i = en,i2 − e
n,i
1 − (εn,i2 − ε

n,i
1 ) gives

A21(εn,i2 , en,i1 ) +A12(εn,i1 , en,i2 ) =
1

ε
〈εn,i2 − ε

n,i
1 , en,i1 − e

n,i
2 〉 − 〈ε

n,i
1 , en,i1 〉 − 〈ε

n,i
2 , en,i2 〉

= −1

ε
‖en,i1 − e

n,i
2 ‖2 −

1

ε
〈vn,i − un,i, en,i1 − e

n,i
2 〉 − 〈ε

n,i
1 , en,i1 〉 − 〈ε

n,i
2 , en,i2 〉,

which is equivalent to

A21(εn,i2 , en,i1 ) +A12(εn,i1 , en,i2 ) +
1

ε
〈vn,i − un,i, en,i1 − e

n,i
2 〉 = −1

ε
‖en,i1 − e

n,i
2 ‖2 − 〈ε

n,i
1 , en,i1 〉 − 〈ε

n,i
2 , en,i2 〉. (5.22)

Taking (ξ, η) = (en,01 , en,02 ), (ξ, η) = (en,11 , en,12 ) and (ξ, η) = (en,21 , en,22 ) in each stage of (5.9)–(5.11), respectively,
summing the result up, noticing (5.22), according to the stability analysis (4.8), we obtain

3‖(en+1
1 , en+1

2 )‖2 = 3‖(en1 , en2 )‖2 +Π ′1 +Π ′2 +G1 +G2, (5.23)

where

Π ′1 = −τ
(
A21(en,02 , en,01 ) +A21(en,12 , en,11 ) + 4A21(en,22 , en,21 )

)
−τ
(
A12(en,01 , en,02 ) +A12(en,11 , en,12 ) + 4A12(en,21 , en,22 )

)
−τ
ε
‖en,01 − en,02 ‖2 −

τ

ε
‖en,11 − en,12 ‖2 −

4τ

ε
‖en,21 − en,22 ‖2, (5.24)

Π ′2 =

∫ b

a

[
(2en,21 − en,11 − en,01 )2 + 3(en+1

1 − en,01 )(en+1
1 − 2en,21 + en,01 )

]
dx

+

∫ b

a

[
(2en,22 − en,12 − en,02 )2 + 3(en+1

2 − en,02 )(en+1
2 − 2en,22 + en,02 )

]
dx, (5.25)

G1 = 〈εn,11 − εn,01 , en,01 〉+ 〈εn,12 − εn,02 , en,02 〉+ 〈4εn,21 − 3εn,01 − εn,11 , en,11 〉+ 〈4εn,22 − 3εn,02 − εn,12 , en,12 〉
+〈6εn+1

1 − 2εn,01 − 4εn,21 , en,21 〉+ 〈6εn+1
2 − 2εn,02 − 4εn,22 , en,22 〉, (5.26)
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and

G2 = −τ
1∑
i=0

(
〈εn,i1 , en,i1 〉+ 〈εn,i2 , en,i2 〉

)
− 4τ〈εn,21 , en,21 〉 − 4τ〈εn,22 , en,22 〉+ 〈6F (n, x), en,21 + en,22 〉. (5.27)

From the stability analysis in leading to (4.8) and (4.24), under the stability condition (4.4), we have

Π ′1 +Π ′2 ≤ 0. (5.28)

Noticing the fact that φn,0 is a solution of (1.1), using (5.1) and the Taylor expansion, we obtain

φn,1 − φn,0 = −τ(α∂x − β∂2x)φn,0 = τ∂tφ
n,0, (5.29a)

4φn,2 − 3φn,0 − φn,1 = −τ(α∂x − β∂2x)φn,1

= −τ(α∂x − β∂2x)φn,0 + τ2(α∂x − β∂2x)2φn,0, (5.29b)

3φn+1 − φn,0 − 2φn,2 = 3φn+1 − 3φn,0 + τ(α∂x − β∂2x)φn,0 − τ2

2
(α∂x − β∂2x)2φn,0

= 2τ(α∂x − β∂2x)φn,0 − τ2(α∂x − β∂2x)2φn,0 − τ3

2
(α∂x − β∂2x)3φn,0. (5.29c)

Applying the projection error (3.13) and (5.29), we have

‖εn,11 − εn,01 ‖ =‖Πv

(
φn,1 − φn,0

)
− (φn,1 − φn,0)‖

≤ Cτhmin{k+1,m} ∣∣∂tφn,0∣∣m ≤ Cτhmin{k+1,m}‖φn,0‖m+2. (5.30a)∥∥∥4εn,21 − 3εn,01 − εn,11

∥∥∥ =
∥∥Πv

(
4φn,2 − 3φn,0 − φn,1

)
− (4φn,2 − 3φn,0 − φn,1)

∥∥
≤ Cτhmin{k+1,m}‖φn,0‖m+4. (5.30b)∥∥∥6εn+1

1 − 2εn,01 − 4εn,21

∥∥∥ =‖Πv(6φ
n+1 − 2φn,0 − 4φn,2)− (6φn+1 − 2φn,0 − 4φn,2)‖

≤ Cτhmin{k+1,m}‖φn,0‖m+6. (5.30c)

Same estimates as (5.30a)–(5.30c) hold true for εn,i2 .
From the Young’s inequality, for w ∈ L2, we have

〈w, en,ij 〉 ≤ ‖e
n,i
j ‖

2 +
1

4
‖w‖2, (5.31)

where i = 0, 1, 2 and j = 1, 2.
This when applied to each term in G1 and taking m = k + 1, together with (5.30a)–(5.30c) gives

|G1| ≤
2∑
i=0

τ‖(en,i1 , en,i2 )‖2 + Cτh2k+2. (5.32)

Now we turn to the estimate of G2, again from (5.31),

|G2| ≤ τ
2∑
i=0

‖(en,i1 , en,i2 )‖2 +
τ

4

(
1∑
i=0

‖(εn,i1 , εn,i2 )‖2 + 16‖(εn,21 , εn,22 )‖2 +
1

τ2
‖F (n; ·)‖2

)
(5.33)
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≤ τ
2∑
i=0

‖(en,i1 , en,i2 )‖2 + Cτ(h2k+2 + τ6)

thus, collecting the estimate in (5.32) and (5.33), it is easy to see that

|G1 +G2| ≤ 2τ

2∑
i=0

‖(en,i1 , en,i2 )‖2 + Cτ(h2k+2 + τ6) (5.34)

≤ Cτ‖(en,01 , en,02 )‖2 + Cτ(h2k+2 + τ6),

where we have used (5.12) in the last inequality.
Plugging (5.28) and (5.34) into (5.23) leads to

‖(en+1
1 , en+1

2 )‖2 ≤(1 + Cτ)‖(en1 , en2 )‖2 + Cτ(h2k+2 + τ6),

this gives

‖(en1 , en2 )‖ ≤ (1 + Cτ)n/2‖(e01, e02)‖+ (1 + Cτ)n/2(hk+1 + τ3).

From the choice of the initial data in (2.5), projection error in Theorem 3.2 and local approximation property
in Lemma 3.3, we have

‖e01‖ = ‖e1(·, 0)‖ = ‖Πvφ0 − v(·, 0)‖ ≤ ‖Πvφ0 − φ0‖+ ‖φ0 − v(·, 0)‖ ≤ Chk+1, (5.35)

similarly ‖e02‖ ≤ Chk+1.
Further using the initial error as given in (5.35), so that

‖(en1 , en2 )‖ ≤ C(hk+1 + τ3).

This together with the projection error for εni when inserted into (5.8) yields the desired estimate (5.21).

Appendix A

If one considers the second order explicit SSP Runge-Kutta method of the form

Ψn,1 = Ψn,0 + τL(Ψn,0), (A.1a)

Ψn+1 =
1

2
Ψn,0 +

1

2
Ψn,1 +

τ

2
L(Ψn,1) (A.1b)

for the time discretization, then the corresponding RK2AEDG can be reformulated as

〈vn,1, ξ〉 = 〈vn, ξ〉 − τA21(un, ξ) +
τ

ε
〈un − vn, ξ〉, (ξ, η) ∈ Vh × Uh, (A.2a)

〈un,1, η〉 = 〈un, η〉 − τA12(vn, η) +
τ

ε
〈vn − un, η〉, (vn, un) ∈ Vh × Uh; (A.2b)

〈vn+1, ξ〉 =
1

2
〈vn + vn,1, ξ〉 − τ

2
A21(un,1, ξ) +

τ

2ε
〈un,1 − vn,1, ξ〉, (ξ, η) ∈ Vh × Uh, (A.3a)
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〈un+1, η〉 =
1

2
〈un + un,1, η〉 − τ

2
A12(vn,1, η) +

τ

2ε
〈vn,1 − un,1, η〉, (vn,1, un,1) ∈ Vh × Uh. (A.3b)

The stability analysis for the RK2AEDG is similar, we state the result in the following

Theorem A.1. Let Φn be the numerical solution computed from (A.2)–(A.3) with ε = cQh2, 0 < c < 1, then
for τ satisfying

c∗τ ≤ ε = cQh2 with c∗ := max

{
20cQΓ 2

β
,

12(1 + cQΓ )2

1− c

}
, (A.4)

we have

N−1∑
j=1

∫ xj+1

xj

(Φn+1
j+1 )2 + (Φn+1

j )2

2
dx ≤

N−1∑
j=1

∫ xj+1

xj

(Φnj+1)2 + (Φnj )2

2
dx.

Moreover, the following error estimate holds:

N−1∑
j=1

∫ xj+1

xj

|Φnj+1(x)− φ(x, tn)|2 + |Φnj (x)− φ(x, tn)|2

2
dx ≤ C(τ4 + h2k+2), nτ ≤ T, (A.5)

where C is a constant independent of τ, h and n.

We now outline the main steps of the stability proof.
Step 1 (Regrouping). Taking (ξ, η) = (vn, un) in (A.2) and (ξ, η) = (2vn,1, 2un,1) in (A.3), respectively, and
summing up the resulting relations, we obtain

V1 + U1 =− τ
(
A21(un, vn) +A12(vn, un) +A21(un,1, vn,1) +A12(vn,1, un,1)

)
− τ

ε
‖vn − un‖2 − τ

ε
‖vn,1 − un,1‖2 (A.6)

where

V1 = 2〈vn+1, vn,1〉 − ‖vn,1‖2 − ‖vn‖2 = ‖vn+1‖2 − ‖vn‖2 − ‖vn+1 − vn,1‖2,
U1 = 2〈un+1, un,1〉 − ‖un,1‖2 − ‖un‖2 = ‖un+1‖2 − ‖un‖2 − ‖un+1 − un,1‖2.

Thus, we can rewrite (A.6) as

‖(vn+1, un+1)‖2 − ‖(vn, un)‖2 = Π1 +Π2 (A.7)

in which

Π1 =− τ
(
A21(un, vn) +A12(vn, un) +A21(un,1, vn,1) +A12(vn,1, un,1)

)
− τ

ε
‖vn − un‖2 − τ

ε
‖vn,1 − un,1‖2

and

Π2 = ‖vn+1 − vn,1‖2 + ‖un+1 − un,1‖2.
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Step 2 (Estimate of Π1). From Lemma 3.1 and the fact 1
Qh2 = c

ε , it follows that

Π1 ≤− βτ

2
‖(∂xvn, ∂xun)‖2 − τ

ε
(1− c)‖vn − un‖2

− βτ

2
‖(∂xvn,1, ∂xun,1)‖2 − τ

ε
(1− c)‖vn,1 − un,1‖2 ≤ 0. (A.8)

Step 3 (Estimate of Π2). Subtracting (A.2a) from (A.3a), then taking ξ = vn+1− vn,1 in the resulting equation,
we obtain

‖vn+1 − vn,1‖2 =
1

2
〈vn,1 − vn, vn+1 − vn,1〉 − τA21

(
un,1

2
− un, vn+1 − vn,1

)
+
τ

ε

(
1

2
(un,1 − vn,1)− (un − vn), vn+1 − vn,1

)
≤1

2
‖vn,1 − vn‖‖vn+1 − vn,1‖+

τ

ε

(
1

2
‖un,1 − vn,1‖+ ‖un − vn‖

)
‖vn+1 − vn,1‖

+

(
τΓ

h
‖∂x(

1

2
un,1 − un)‖+

τΓ

h2

(
1

2
‖un,1 − vn,1‖+ ‖un − vn‖

))
‖vn+1 − vn,1‖

where we have used the Cauchy-Schwartz inequality, the triangle inequality, and Lemma 3.5, respectively. By
canceling the factor ‖vn+1− vn,1‖ on both sides, collecting the common terms, and using the fact that 1

h2 = cQ
ε ,

we obtain

‖vn+1 − vn,1‖ ≤1

2
‖vn,1 − vn‖+

τ

ε
(1 + cQΓ )

(
1

2
‖un,1 − vn,1‖+ ‖un − vn‖

)
+
τΓ

h
‖∂x(

un,1

2
− un)‖,

which upon squaring yields

‖vn+1 − vn,1‖2 ≤‖vn,1 − vn‖2 +
τ2

ε2
(1 + cQΓ )2

(
‖un,1 − vn,1‖2 + 4‖un − vn‖2

)
+

2τ2Γ 2

h2
‖∂xun,1‖2 +

8τ2Γ 2

h2
‖∂xun‖2. (A.9)

In an entirely same manner, we derive

‖un+1 − un,1‖2 ≤‖un,1 − un‖2 +
τ2

ε2
(1 + cQΓ )2

(
‖un,1 − vn,1‖2 + 4‖un − vn‖2

)
+

2τ2Γ 2

h2
‖∂xvn,1‖2 +

8τ2Γ 2

h2
‖∂xvn‖2. (A.10)

Note that the bounds for Ln,1v = vn,1 − vn, Ln,1u = un,1 − un given in (4.17) can still be used. Thus (A.9) and
(A.10) together with (4.17) allow us to bound Π2 as follows.

Π2 ≤2τ2Γ 2

h2
‖(∂xvn, ∂xun)‖2 +

4τ2

ε2
(1 + cQΓ )2‖vn − un‖2

+
2τ2

ε2
(1 + cQΓ )2

(
‖un,1 − vn,1‖2 + 4‖un − vn‖2

)
+

2τ2Γ 2

h2
‖(∂xvn,1, ∂xun,1)‖2 +

8τ2Γ 2

h2
‖(∂xvn, ∂xun)‖2
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=
10τ2Γ 2

h2
‖(∂xvn, ∂xun)‖2 +

12τ2

ε2
(1 + cQΓ )2‖vn − un‖2

+
2τ2Γ 2

h2
‖(∂xvn,1, ∂xun,1)‖2 +

2τ2

ε2
(1 + cQΓ )2‖vn,1 − un,1‖2. (A.11)

Step 4 (Finding stability condition) Plugging the estimate of Π1 in (A.8) and estimate of Π2 in (A.11) into
(A.7), we obtain

Π1 +Π2 ≤− τ

2

(
β − 20τΓ 2

h2

)
‖(∂xvn, ∂xun)‖2 − τ

ε

(
1− c− 12τ

ε
(1 + cQΓ )2

)
‖vn − un‖2

− τ

2

(
β − 4τΓ 2

h2

)
‖(∂xvn,1, ∂xun,1)‖2 − τ

ε

(
1− c− 2τ

ε
(1 + cQΓ )2

)
‖vn,1 − un,1‖2.

It suffices for the RK2AEDG to be stable if each term on the right hand side of the above inequality is
non-positive, this is indeed so if

τ ≤ βh2

20Γ 2
, τ ≤ (1− c)ε

12(1 + cQΓ )2
,

which is implied by the assumption (A.4).
The error estimate for the 2-stage RK2AEDG method (A.2) and (A.3) can be carried out similarly to that

for the RK3AEDG method. We outline the key ingredients in the following.
Define the reference solutions of (1.1) as

φn,0 = φ(x, tn), (A.12a)

φn,1 = φn,0 − τ(α∂x − β∂2x)φn,0, (A.12b)

then the use of Taylor’s expansion as in the proof of Lemma 5.1 gives the following result.

Lemma A.2. If ‖∂3t φ‖ is bounded uniformly for any t ∈ [0, T ], we have

φ(x, tn + τ) =
φn,0

2
+
φn,1

2
− τ

2

(
α∂x − β∂2x

)
φn,1 + F 1(n;x),

where F 1(n;x) = τ3

6 ∂
3
t φ(x, ·), with ‖F 1(n; ·)‖ = O(τ3) uniformly for any time t ∈ [0, T ].

We use the same notation as given in (5.8) for i = 0, 1 only, the first part of Lemma 5.2 remains valid, stated
as follows:

Lemma A.3. If the time step satisfies c∗τ ≤ ε = cQh2, then the following inequality holds true

‖(en,11 , en,12 )‖2 ≤ C‖(en,01 , en,02 )‖2 + Ch2k+2,

where C is a constant independent τ, h, n.

Equipped with Lemmas A.2 and A.3, the rest of the proof of (A.5) follows the same pattern as the proof of
Theorem 5.3, now under the stability condition (A.4). For completeness, we include the main steps.

Step 1 (Error equations). In a similar manner to that leading to (5.9)–(5.11), we write the error equations as

〈en,11 − en,01 , ξ〉+ τA21(en,02 , ξ) = 〈εn,11 − εn,01 , ξ〉+ τA21(εn,02 , ξ)− τ

ε
〈un,0 − vn,0, ξ〉, (A.13a)
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〈en,12 − en,02 , η〉+ τA12(en,01 , η) = 〈εn,12 − εn,02 , η〉+ τA12(εn,01 , η)− τ

ε
〈vn,0 − un,0, η〉, (A.13b)

〈2en+1
1 − en,01 − en,11 , ξ〉+ τA21(en,12 , ξ) =〈2εn+1

1 − εn,01 − εn,11 , ξ〉+ τA21(εn,12 , ξ)

− τ

ε
〈un,1 − vn,1, ξ〉+ 〈2F 1(n;x), ξ〉, (A.14a)

〈2en+1
2 − en,02 − en,12 , η〉+ τA12(en,11 , η) =〈2εn+1

2 − εn,02 − εn,12 , η〉+ τA12(εn,11 , η)

− τ

ε
〈vn,1 − un,1, η〉+ 〈2F 1(n;x), η〉 (A.14b)

for (ξ, η) ∈ Vh × Uh at each stage, respectively.

Step 2 (Regrouping against proper test functions). Taking (ξ, η) = (en,01 , en,02 ) and (ξ, η) = (en,11 , en,12 ) in stage
(A.13)–(A.14), respectively, summing the result up, using (5.22) again, according to the stability analysis (A.7),
we obtain

‖(en+1
1 , en+1

2 )‖2 − ‖(en1 , en2 )‖2 = Π3 +Π4 +G3 +G4, (A.15)

where

Π3 =− τ
(
A21(en,02 , en,01 ) +A12(en,01 , en,02 ) +A21(en,12 , en,11 ) +A12(en,11 , en,12 )

)
− τ

ε
‖en,01 − en,02 ‖2 −

τ

ε
‖en,11 − en,12 ‖2,

Π4 =‖en+1
1 − en,11 ‖2 + ‖en+1

2 − en,12 ‖2

and

G3 = 〈εn,11 − εn,01 , en,01 〉+ 〈εn,12 − εn,02 , en,02 〉+ 〈2εn+1
1 − εn,01 − εn,11 , en,11 〉+ 〈2εn+1

2 − εn,02 − εn,12 , en,12 〉,

G4 = −τ
1∑
i=0

(
〈εn,i1 , en,i1 〉+ 〈εn,i2 , en,i2 〉

)
+ 〈2F 1(n, x), en,11 + en,12 〉.

Step 3 (Term by term estimates). Under stability condition (A.4), we know that

Π3 +Π4 ≤ 0. (A.16)

Next, |G3 + G4| can be bounded as for bounding |G1 + G2| in (5.34). Here, instead, we use Lemmas A.2 and
A.3 so that

|G3 +G4| ≤ 2τ

1∑
i=0

‖(en,i1 , en,i2 )‖2 + Cτ(h2k+2 + τ4)

≤ Cτ‖(en,01 , en,02 )‖2 + Cτ(h2k+2 + τ4). (A.17)

Step 4 (Final substitution). Inserting (A.16) and (A.17) into (A.15) gives

‖(en+1
1 , en+1

2 )‖2 ≤(1 + Cτ)‖(en1 , en2 )‖2 + Cτ(h2k+2 + τ4),
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this together with the initial error (5.35) leads to

‖(en1 , en2 )‖ ≤ C(hk+1 + τ2).

The above inequality and the projection error for εni when inserted into (5.8) yields the desired estimate (A.5).
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