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MODELING OF A DIFFUSION WITH AGGREGATION: RIGOROUS

DERIVATION AND NUMERICAL SIMULATIONI

Li Chen, Simone Göttlich* and Stephan Knapp

Abstract. In this paper, a diffusion-aggregation equation with delta potential is introduced. Based
on the global existence and uniform estimates of solutions to the diffusion-aggregation equation, we
also provide the rigorous derivation from a stochastic particle system while introducing an intermediate
particle system with smooth interaction potential. The theoretical results are compared to numerical
simulations relying on suitable discretization schemes for the microscopic and macroscopic level. In
particular, the regime switch where the analytic theory fails is numerically analyzed very carefully and
allows for a better understanding of the equation.
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1. Introduction

In the last decades, diffusion-aggregation equations of the following type

∂tu−∇ · (a∇u− u∇V ∗ u) = 0, x ∈ Rd

have been widely studied in the literature. One prominent example is the so-called Keller-Segel system which
corresponds to the case that V (x) = C(d)/|x|d−2 is the fundamental solution of the Poisson equation. It is
well-known that depending on the choice of the initial datum, the solution to the Keller-Segel system might
exist globally and blow-up in finite time, see for example [14, 19], or [2] for more general potentials of the form
V (x) = 1/|x|γ , γ < d− 2.

The aggregation phenomena can be motivated by several effects such as flocking and swarming in biological
systems [6, 7, 34] or interacting granular media [3, 10, 35]. Moreover, in [24], it has been shown that the local
and global existence of the solution to the aggregation equation, i.e. a = 0, depends on the regularity of V . For
instance, for the potential V (x) = e−|x| only local existence can be proved while for V (x) = e−|x|

2

the global
existence holds. It is also known that in the case of a power-like potential V (x) = |x|α, 2 − d ≤ α < 2, the
smooth solution of the aggregation equation generates finite time blow-ups, see [4, 9, 15, 20].
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In this paper, we focus on the case that the aggregation potential is a delta distribution. More precisely, the
problem is reduced to the following diffusion-aggregation equation:

∂tu−∇ · (a∇u− 2bu∇u) = ∂tu−∆((a− bu)u) = 0, (1.1)

where a and b are both positive constants and the initial data is given by a non-negative density u(x, 0) =
u0(x) ≥ 0. The problem can be obtained as a mean-field limit of the following interaction stochastic particle
system:

dXi(t) =
√

2a dBi(t) +
1

N

∑
j 6=i

∇Vε(|Xi(t)−Xj(t)|)dt, (1.2)

Xi(0) = ξi, i.i.d. random variables with probability density function (pdf) u0

with Bi being independent standard Brownian motions for each particle i. Furthermore, the potential Vε(r) =

ε−dV (r/ε) with

∫
Rd

V (x)dx = 2b is considered. The large particle limit N → ∞ can be understood in the

following sense. For fixed ε > 0, the particle model converges heuristically after applying Itô’s formula to an
intermediate non-local problem for uε, i.e. the distribution of the random variable Xi

t at time t:

∂tu
ε −∇ · (a∇uε − uε∇Vε ∗ uε) = 0 with uε(x, 0) = u0(x). (1.3)

As ε→ 0, Vε → 2bδ, we get that the limit u of uε satisfies the following diffusion-aggregation equation:

∂tu− a∆u+ b∆u2 = 0.

Using the transformation v = u− a
2b , the equation can be rewritten as a backward porous media equation

∂tv + b∆v2 = 0

which has a special solution (backward Barenblatt solution) in d dimensions

v(t, x) =
1

b(T − t)

(
(T − t)

2
d+2 − |x|2

4(d+ 2)

)
+
.

We note that the constant a
2b plays a crucial role in terms of a threshold to get global existence or finite time

blow-up. In particular, we prove that for 0 ≤ u0 <
a
2b and

∫
u0(x)dx < ∞, the weak solution exists globally.

Under further assumptions, we get that the solution is smooth and uniform estimates for the solution to the
intermediate problem (1.3) hold, see Section 2. These results are then used to prove the rigorous convergence
from many stochastic particle system to the trajectory of the diffusion-aggregation problem (1.1), see Section 3.
In the literature, a variety of similar results can be found for such convergence proofs. The rigorous mean-field
limit and the propagation of chaos with bounded Lipschitz potential has been introduced in 1991, see [33].
More than 20 years later, the case with potential V (x) = |x|α, α ∈ (−1, 0) has been proven, see [17]. The
microscopic derivation of a two-dimensional Keller-Segel system is recently given in [16] while the derivation
of the multi-dimentional system starting from different cut-off interaction particle systems is done in [18, 26].
Parallelly, the derivation of porous medium equations with exponent 2 from large interacting particles systems
has been introduced in 1990, see [29]. These results have been later improved in [22, 31]. Since the aggregation
effect we consider has the backward porous medium structure, we basically follow the idea taken from the
derivation of porous medium equations. However, we derive estimates according to the well-posedness of the
diffusion-aggregation equation.
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For our numerical investigations, we impose a problem-adapted numerical scheme to better illustrate the
transition from the diffusion to the aggregation regime of the equation (1.1). We prove that the numerical method
is positive preserving independent on the coefficients a, b which is the main difference to a classical finite difference
approximation, see Section 4. In the derivation of the numerical scheme we use ideas for degenerated parabolic
equations [5, 8, 27, 30] as well as techniques used for chemotaxis models, see e.g. [12, 13]. We numerically
study the order of convergence and validate the scheme by examining the difference to the microscopic model,
see Section 5. To study the convergence of the microscopic model to the macroscopic equation, we introduce
an efficient way to generate sample paths of the stochastic particle system (1.2). Since we use a superposition
of Barenblatt profiles as initial densities, the computation of the pseudo-inverse and the use of the inverse
transformation method [23] leads to an exact and efficient way to generate the initial random numbers for the
approximation of the particle system.

The paper is organized as follows. In Section 2, the global existence and uniform estimates of solutions to the
intermediate problem (1.3) and the diffusion-aggregation equation (1.1) are presented. Section 3 is devoted to
the rigorous derivation of (1.1) from a stochastic particle system (1.2) via introducing an intermediate particle
system with smooth interaction potential. Appropriate numerical approximation schemes to simulate (1.1) and
(1.2) are introduced in Section 4. In Section 5, the theoretical results are compared to numerical simulations
for several examples.

2. Solvability and uniform estimates

This section is devoted to the solvability of the intermediate and limiting (macroscopic) diffusion-aggregation
problem. Therefore, the section is divided into three parts: We first show the global existence and uniqueness of
the non-local intermediate problem and the corresponding uniform estimates in ε. Then, the global solvability
of the diffusion-aggregation problem is obtained by taking the limit ε→ 0. Finally, the error estimates for small
ε are given. These three results are the main ingredients for the mean field limit in Section 3.

2.1. Solvability of the intermediate problem

As already noted in the introduction, the intermediate problem for uε is

∂tu
ε −∇ · (a∇uε − uε∇Vε ∗ uε) = 0, x ∈ Rd,

uε(x, 0) = u0(x), (2.1)

where

∫
Rd

Vε(x)dx = 2b. From [28], we know the following standard estimates that are frequently used in our

proof. For any multi-index α = (α1, . . . , αd) with |α| = α1 + · · · + αd = s > d
2 + 1, it holds for f, g ∈ Hs(Rd)

that

‖Dα(fg)‖L2(Rd) ≤ C(‖f‖L∞(Rd)‖Dsg‖L2(Rd) + ‖g‖L∞(Rd)‖Dsf‖L2(Rd)), (2.2)

‖[Dα, f ]g‖L2(Rd) ≤ C(‖Df‖L∞(Rd)‖Ds−1g‖L2(Rd) + ‖g‖L∞(Rd)‖Dsf‖L2(Rd)), (2.3)

where C depends on d and s. Here, we use the notations Dα = ∂α1
x1
· · · ∂αd

xd
, ‖Dsg‖L2(Rd) =

∑
|α|=s ‖Dαg‖L2(Rd)

and [Dα, f ]g = Dα(fg)− fDαg.

Theorem 2.1. Suppose that 0 ≤ u0 ∈ Hs(Rd)∩L1(Rd) (s > d
2 + 1) and ‖u0‖∞ < a

2b , then problem (2.1) has a
unique solution uε ∈ L∞(0,∞;Hs(Rd)∩L1(Rd))∩L2(0,∞;Hs+1(Rd)) and 0 ≤ uε(x, t) < a

2b with the following
estimates

‖uε(·, t)‖L1(Rd) = ‖u0‖L1(Rd), ‖uε‖L∞(0,∞;L2(Rd)) + ‖Duε‖L2(0,∞;L2(Rd)) ≤ C, (2.4)
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where C is a constant independent of ε.

Proof. We use the standard Banach fixed-point theorem to prove the local existence of solutions. Furthermore,
we give additional estimates for any fixed ε, so that the existence can be extended to arbitrary long times. In
the end of the proof, we present the uniform in ε estimates of the solution.

Step 1: Local existence of solution for any fixed ε. Without loss of generality, we assume 0 ≤ u0(x) ≤ a
2b − η

with 0 < η � 1. Let

X =
{
u ∈ L∞(0, T ∗;Hs(Rd) ∩ L1(Rd)) : ‖u‖L∞(0,T∗;Hs(Rd)) ≤ 2‖u0‖Hs(Rd) := M̃,

u(x, 0) = u0(x), 0 ≤ u(x, t) ≤ a

2b
− η := M, a. e.x ∈ Rd, t ∈ [0, T ∗],

‖u(·, t)‖L1(Rd) = ‖u0‖L1(Rd)

}
with metric d(u,w) = sup0≤t≤T∗ ‖u− w‖L2 , where T ∗ is to be determined later.

Now we define a map T : X → X as follows: For all w ∈ X , let u be the unique solution of the following
Cauchy problem

∂tu− a∆u+∇ · (u+,M∇Vε ∗ w) = 0, x ∈ Rd,
u(x, 0) = u0(x), (2.5)

where u+,M = min{u+,M}, u+ = max{0, u}. It is easy to see that the solution of (2.5) has the property of
conservation of mass, i.e.

∫
Rd

u(x, t)dx =

∫
Rd

u0(x)dx.

Let α be an arbitrary multi-index with |α| ≤ s. Applying the operator Dα on both sides of equation (2.5),
multiplying by Dαu and integrating on Rd leads to

1

2

d

dt

∫
Rd

|Dαu|2dx+ a

∫
Rd

|∇Dαu|2dx

=

∫
Rd

Dα(u+,M∇(Vε ∗ w)) · ∇Dαudx

≤ ‖Dα(u+,M∇(Vε ∗ w))‖L2‖∇Dαu‖L2

≤ C
(
‖u+,M‖L∞‖Ds∇(Vε ∗ w)‖L2 + ‖Dsu+,M‖L2‖∇(Vε ∗ w)‖L∞

)
‖∇Dαu‖L2

≤ a

2
‖∇Dαu‖2L2 + C

(
‖u‖2L∞‖∇Vε ∗Dsw‖2L2 + ‖Dsu‖2L2‖∇Vε ∗ w‖2L∞

)
.

where inequality (2.2) is applied. By Young’s inequality and the Sobolev embedding Hs ↪→ L∞, it follows

d

dt

∫
Rd

|Dαu|2dx+ a

∫
Rd

|∇Dαu|2dx

≤ C(‖Dsu‖2L2‖∇Vε‖2L1‖Dsw‖2L2 + ‖Dsu‖2L2‖∇Vε‖2L1‖w‖2L∞)

≤ C(ε)‖w‖2L∞(0,T∗;Hs)‖D
su‖2L2 .
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Taking the summation of all multi-index |α| ≤ s on both sides, we get

d

dt
‖u‖2Hs + a‖u‖2Hs+1 ≤ C(ε, M̃)‖u‖2Hs .

By Gronwall’s inequality, we have

sup
0≤t≤T∗

‖u(·, t)‖2Hs + a‖u‖2L2(0,T∗;Hs+1) ≤ ‖u0‖2HseC(ε,M̃)T∗ ≤ M̃,

where T ∗ ≤ T1 has been taken so small that eC(ε,M̃)T1 ≤ 2.
Next, we have to check that 0 ≤ u ≤M . To do so, we use u− = −min{0, u} as a test function, i.e.

1

2

d

dt

∫
Rd

|u−|2dx+ a

∫
Rd

|∇u−|2dx = 0.

Due to the non-negativity of the initial data u0, we get u(t, ·) ≥ 0 almost everywhere in Rd. Similarly, using
uM = (u−M)+ as a test function, we get

1

2

d

dt

∫
Rd

|uM |2dx+ a

∫
Rd

|∇uM |2dx = 0.

Due to the fact that u0 ≤M , we can conclude uM = 0 which means equivalently u(t, ·) ≤M almost everywhere
in Rd. In this way, we have built a map T from X to X .

Now, we show that the map T is a contraction for a short time T ∗ that depends on ε, M and M̃ . Let
u1 = T w1 and u2 = T w2, then we take the difference of the two equations, use u1 − u2 as a test function and
integrate on Rd:

1

2

d

dt

∫
Rd

|u1 − u2|2dx+ a

∫
Rd

|∇(u1 − u2)|2dx

=

∫
Rd

(u1 − u2)∇Vε ∗ w1 · ∇(u1 − u2)dx+

∫
Rd

u2∇Vε ∗ (w1 − w2) · ∇(u1 − u2)dx

≤ a

2

∫
Rd

|∇(u1 − u2)|2dx+ C‖∇Vε ∗ w1‖2L∞
∫
Rd

|u1 − u2|2dx

+C‖u2‖2L∞
∫
Rd

|∇Vε ∗ (w1 − w2)|2dx.

Using the Young’s inequality implies

d

dt

∫
Rd

|u1 − u2|2dx+ a

∫
Rd

|∇(u1 − u2)|2dx

≤ C‖∇Vε‖2L1‖w1‖2L∞
∫
Rd

|u1 − u2|2dx+ C‖u2‖2L∞‖∇Vε‖2L1

∫
Rd

|w1 − w2|2dx.

Notice that ‖u1(·, 0)− u2(·, 0)‖L2 = 0 and Gronwall’s inequality leads to

sup
0≤t≤T∗

‖u1(·, t)− u2(·, t)‖L2 ≤ T ∗eC(ε,M)T∗ sup
0≤t≤T∗

‖w1 − w2‖L2 ,

which means for T ∗ ≤ T1 and T ∗eC(ε,M)T∗ ≤ 1
2 , the map T is a contraction.
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By Banach fixed-point theorem, the map T has a unique fixed-point in time interval 0 ≤ t ≤ T ∗(ε,M, M̃).
Let uε be the unique solution of

∂tu
ε − a∆uε +∇ · ((uε)+,M∇Vε ∗ uε) = 0, x ∈ Rd t ∈ (0, T ∗),

uε(x, 0) = u0(x), 0 ≤ u0(x) ≤M.

Since we have shown that 0 ≤ uε ≤M in (0, T ∗)× Rd, we can replace (uε)+,M in the equation by uε itself.

Step 2: Global solution. According to the local existence result that we have obtained in step 1, there exists a
maximum existence time T̂ such that

lim
t→T̂
‖u(·, t)‖Hs =∞. (2.6)

With the help of 0 ≤ u ≤M , we can show that the above blow-up criteria will not happen in finite time, which
means that T̂ = ∞. This can be again proved by using energy estimates for all t < T̂ and any multi-index α
with |α| ≤ s. Applying the operator Dα on both sides of equation (2.1), multiplying by Dαu and integrating on
Rd leads to

1

2

d

dt

∫
Rd

|Dαu|2dx+ a

∫
Rd

|∇Dαu|2dx

=

∫
Rd

Dα(u+,M∇(Vε ∗ u)) · ∇Dαudx

≤ ‖Dα(u∇(Vε ∗ u))‖L2‖∇Dαu‖L2

≤ C
(
‖u‖L∞‖Ds∇(Vε ∗ u)‖L2 + ‖Dsu‖L2‖∇(Vε ∗ u)‖L∞

)
‖∇Dαu‖L2

≤ a

2
‖∇Dαu‖2L2 + C

(
M2‖∇Vε ∗Dsu‖2L2 + ‖Dsu‖2L2‖∇Vε ∗ u‖2L∞

)
≤ a

2
‖∇Dαu‖2L2 + 2M2‖∇Vε‖2L1‖Dsu‖2L2 .

Taking the summation of all multi-index |α| ≤ s on both sides, we get

d

dt
‖u‖2Hs + a‖u‖2Hs+1 ≤ C(ε,M)‖u‖2Hs .

Gronwall’s inequality leads to

sup
0≤t<T̂

‖u(·, t)‖2Hs + a‖u‖2
L2(0,T̂ ;Hs+1)

≤ ‖u0‖2HseC(ε,M)T̂ .

If T̂ is finite, the above estimate contradicts the blow-up criteria (2.6). Therefore, the solution exists globally
for any fixed ε.

Step 3: Uniform in ε estimates. Let uε ∈ X be the solution of the following problem

∂tu
ε − a∆uε +∇ · (uεVε ∗ ∇uε) = 0, x ∈ Rd,

uε(x, 0) = u0(x), (2.7)
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which is a reformulation of (2.1). The conservation of mass is satisfied, i.e.∫
Rd

uε(x, t)dx =

∫
Rd

u0(x)dx. (2.8)

Multiplying the equation by uε, integrating on Rd and applying Young’s inequality yields

1

2

d

dt

∫
Rd

|uε|2dx+ a

∫
Rd

|∇uε|2dx =

∫
Rd

uεVε ∗ ∇uε · ∇uεdx

≤
( a

2b
− η
)∫ ∫

Rd×Rd

∣∣∣Vε(x− y)∇uε(x, t)∇uε(y, t)
∣∣∣dxdy

≤ (a− 2bη)

∫
Rd

|∇uε|2dx.

Therefore, we get that

sup
t≥0
‖uε(·, t)‖2L2 + 4bη‖∇uε‖2L2(0,∞;L2(Rd)) ≤ ‖u0‖2L2 .

The next theorem states a uniform estimate for the solution to the intermediate problem.

Theorem 2.2. Let uε be the solution of (2.1), then there exists a constant K (depending on s and d) such that
for ‖u0‖Hs < a

bK , the following uniform estimate in ε holds

sup
t≥0
‖uε‖Hs(Rd) + ‖Duε‖L2(0,∞;Hs(Rd)) ≤ C, (2.9)

where C is a constant independent of ε.

Proof. Applying the differential operator Dα for the multi-index |α| ≤ s, multiplying by Dαuε and integrating
over Rd leads to

1

2

d

dt

∫
Rd

|Dαuε|2dx+ a

∫
Rd

|∇Dαuε|2dx

=

∫
Rd

uεVε ∗ ∇Dαuε · ∇Dαuεdx+

∫
Rd

[Dα, uε]∇(Vε ∗ uε)∇Dαuε

≤ ‖uε‖L∞
∫ ∫

Rd×Rd

∣∣∣Vε(x− y)∇Dαuε(x, t)∇Dαuε(y, t)
∣∣∣dxdy

+
∥∥[Dα, uε]∇(Vε ∗ uε)

∥∥
L2

∥∥∇Dαuε
∥∥
L2 .

The Young’s inequality and (2.3) for the commutator [Dα, uε], we get

1

2

d

dt

∫
Rd

|Dαuε|2dx+ a

∫
Rd

|∇Dαuε|2dx

≤ ‖uε‖L∞‖Vε‖L1

∫
Rd

|∇Dαuε|2dx

+C
(
‖Duε‖L∞‖Ds−1∇(Vε ∗ uε)‖L2 + ‖∇(Vε ∗ uε)‖L∞‖Dsuε‖L2

)
‖∇Dαuε‖L2

≤ ‖uε‖L∞‖Vε‖L1‖∇Dαuε‖2L2 + C‖Vε‖L1‖Duε‖L∞‖Dsuε‖L2‖∇Dαuε‖L2 ,
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where the constant C depends on d and s. The Gagliardo-Nirenberg-Sobolev inequality gives the following two
estimates

‖Dsu‖L2 ≤ K‖u‖
2

2s+2−d

L∞ ‖Ds+1u‖
2s−d

2s+2−d

L2 ,

‖Du‖L∞ ≤ K‖u‖
2s−d

2s+2−d

L∞ ‖Ds+1u‖
2

2s+2−d

L2 ,

where K depends on d and s. Hence, we have the following estimate

d

dt

∫
Rd

|Dαuε|2dx+ 2a

∫
Rd

|∇Dαuε|2dx ≤ K‖Vε‖L1‖uε‖L∞‖Ds+1uε‖2L2 .

After summing up the multi-index |α| ≤ s and the use of the Sobolev embedding theorem Hs ↪→ L∞, we end
up with

d

dt
‖uε‖2Hs + 2a‖∇uε‖2Hs ≤ K‖Vε‖L1‖uε‖L∞‖Ds+1uε‖2L2

≤ K‖Vε‖L1‖uε‖Hs‖Ds+1uε‖2L2 ,

where ‖Vε‖L1 = 2b and K is a constant that only depends on d and s. As a consequence, for initial data
‖u0‖Hs < a

bK , we obtain the global uniform estimate in ε as given by (2.9).

In the next subsection, we discuss the global solvability of the limiting problem to (2.1) for ε→ 0.

2.2. Solvability of the limiting problem

The limiting problem we are interested in is the following macroscopic diffusion-aggregation equation

∂tu−∇(a∇u− 2bu∇u) = 0, x ∈ Rd,
u(x, 0) = u0(x). (2.10)

Similar to our previous investigations, we study the existence and uniqueness of solutions to this equation.

Theorem 2.3. For any initial data u0 ∈ L1(Rd) ∩ L∞(Rd) and ‖u0‖L∞ < a
2b , the Cauchy problem (2.10) has

a non-negative weak solution in L∞(0,∞;L1(Rd) ∩ L∞(Rd)) ∩ L2(0,∞;H1(Rd)) and

‖u(·, t)‖L1(Rd) = ‖u0‖L1(Rd), ‖u(·, t)‖L∞(Rd) <
a

2b
, (2.11)

sup
t≥0
‖u(·, t)‖L2(Rd) + ‖u‖L2(0,∞;H1(Rd)) ≤ C(‖u0‖L2(Rd)). (2.12)

Furthermore, if u0 ∈ Hs(Rd) for s > d
2 + 1 and ‖u0‖Hs < a

bK (from Thm. 2.2), then for any given T , the
solution u ∈ L∞(0, T ;L1(Rd) ∩Hs(Rd)) ∩ L2(0, T ;Hs+1(Rd)) is unique and satisfies

sup
0≤t≤T

‖u(·, t)‖Hs(Rd) + ‖u‖L2(0,T ;Hs+1(Rd)) ≤ C(‖u0‖Hs(Rd)). (2.13)

Proof. For any fixed time interval [0, T ], we know from Theorem 2.1 that there exists a subsequence of uε

(without relabeling) such that

uε ⇀ u, weakly in L2(0, T ;H1(Rd)). (2.14)
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Next, we show that u is a weak solution of (2.10).
Due to the fact that Vε → 2bδ in the sense of distribution, we have that for any ψ ∈ L2(0, T ;L2(Rd))

∣∣∣ ∫ T

0

dt

∫
Rd

ψ(x, t)

∫
Rd

Vε(x− y)∇uε(y, t)dxdy − 2b

∫ T

0

dt

∫
Rd

ψ(x, t)∇u(x, t)dx
∣∣∣

≤
∣∣∣ ∫ T

0

dt

∫
Rd

(∫
Rd

ψ(x, t)Vε(x− y)dx− 2bψ(y, t)
)
∇uε(y, t)dy

∣∣∣
+2b

∣∣∣ ∫ T

0

dt

∫
Rd

ψ(x, t)∇uε(x, t)dx−
∫ T

0

dt

∫
Rd

ψ(x, t)∇u(x, t)dx
∣∣∣→ 0 as ε→ 0.

Therefore,

Vε ∗ ∇uε ⇀ 2b∇u, weakly in L2(0, T ;L2(Rd)).

From the uniform estimates in ε (see Thm. 2.1), we can deduce the estimate for the aggregation term by
using Young’s inequality, i.e.

‖uεVε ∗ ∇uε‖L2(0,∞;L2(Rd)) ≤ ‖uε‖L∞(0,∞;L∞(Rd))‖Vε‖L1(Rd)‖∇uε‖L2(0,∞;L2(Rd)) ≤ C, (2.15)

from which we obtain the uniform estimate for the time derivative

‖∂tuε‖L2(0,T ;H−1(Rd)) = ‖∇ · (a∇uε − 2buεVε ∗ ∇uε)‖L2(0,T ;H−1(Rd)) ≤ C.

For any test function ϕ ∈ C∞0 (Rd) with supp(ϕ) ⊂ BR, which is a ball with radius R > 0, and η ∈ C∞([0, T ]),
the weak formulation of the intermediate problem is

∫ T

0

〈∂tuε, ϕ〉〈H1,H−1〉η(t)dt =

∫ T

0

∫
Rd

(a∇uε − 2buεVε∇uε) · ∇ϕdxη(t)dt. (2.16)

For this ball BR, there exists a subsequence (uεR) that strongly converges in L2(0, T ;L2(BR)) due to the compact
embedding H1(BR) ↪→↪→ L2(BR) and Aubin-Lions lemma (for example in [11, 32]). Due to the uniqueness of
the limit, we have

uεR → u strongly in L2(0, T ;L2(BR)),

where u has been obtained in (2.14). For the aggregation term, we have that

uεRVεR ∗ ∇uεR ⇀ 2bu∇u weakly in L1(0, T ;L1(BR)).

Together with the estimate in (2.15), we get that the above weak convergence is in L2(0, T ;L2(BR)). By taking
the limit in (2.16), we obtain that u is a weak solution to the limiting problem (2.10).

The estimates in (2.11), (2.12) and (2.13) follow directly from the uniform estimates in Theorems 2.1 and
2.2.
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In the last step, we prove the uniqueness of the solution. We assume that u1 and u2 are two solutions with
the same initial data u0. The difference u1 − u2 is then used as a test function in the weak solution formulation

1

2

d

dt

∫
Rd

|u1 − u2|2dx ≤
∫
Rd

−(a− 2bu1)|∇(u1 − u2)|2dx+

∫
Rd

(u1 − u2)∇u2 · ∇(u1 − u2)

≤ −η
2

∫
Rd

|∇(u1 − u2)|2dx+ ‖∇u2‖L∞(0,T ;Hs(Rd))

∫
Rd

|u1 − u2|2dx,

from where it follows that

sup
0≤t≤T

‖(u1 − u2)(·, t)‖L2(Rd) ≤ eCT ‖u0 − u0‖L2(Rd) = 0.

We remark that in Section 5, we analyze the condition ‖u0‖L∞ < a
2b from a numerical point of view. That

means, we study the expression a = 2b||u0||L∞η for η ≥ 0, where η > 1 identifies the diffusion and η < 1 the
aggregation regime. In particular, the case η = 1 is carefully evaluated.

2.3. Estimate for uε − u

To finish our investigations on the solvability of the intermediate and macroscopic problem, we give an
estimate for the difference of their solutions. We recall the link between Vε and V here, which is given by
Vε(r) = ε−dV (r/ε).

Lemma 2.4. Let u and uε be the solutions of (2.10) and (2.1) with the same initial data u0 and uniform
estimates in L∞(0, T ;Hs(Rd)) ∩ L2(0, T ;Hs+1(R2)), then the following estimate holds

‖uε − u‖L∞(0,T ;L2(Rd)) + ‖∇(uε − u)‖L2(0,T ;L2(Rd)) ≤ C(T )ε.

Proof. Taking the difference of the two equations (2.10) and (2.1), we obtain

∂t(u
ε − u)−∇ ·

(
a∇(uε − u)− (uε − u)Vε ∗ ∇uε

−u(Vε ∗ ∇(uε − u))− u(Vε ∗ ∇u− 2b∇u)
)

= 0.

Multiplying by uε − u and integrating on Rd leads to

1

2

d

dt

∫
Rd

|uε − u|2dx+ a

∫
Rd

|∇(uε − u)|2dx−
∫
Rd

(uε − u)Vε ∗ ∇uε · ∇(uε − u)dx

−
∫
Rd

u(Vε ∗ ∇(uε − u)) · ∇(uε − u)dx−
∫
Rd

u(Vε ∗ ∇u− 2b∇u) · ∇(uε − u)dx = 0,

from where we obtain

1

2

d

dt

∫
Rd

|uε − u|2dx+ a

∫
Rd

|∇(uε − u)|2dx

≤ ‖uε − u‖L2(Rd)‖Vε‖L1(Rd)‖∇uε‖L∞(Rd)‖∇(uε − u)‖L2(Rd)

+‖u‖L∞(Rd)‖Vε‖L1(Rd)‖∇(uε − u)‖L2(Rd)‖∇(uε − u)‖L2(Rd)

+‖u‖L∞(Rd)‖Vε ∗ ∇u− 2b∇u‖L2(Rd)‖∇(uε − u)‖L2(Rd).
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Due to the fact that ∀g ∈ L2(Rd), it holds

∣∣∣ ∫
Rd

∫
Rd

Vε(x− y)(∇u(y)−∇u(x))g(x)dydx
∣∣∣ ≤ ε

∣∣∣ ∫ 1

0

∫
Rd

∫
Rd

|Vε(z)| · |D2u(rz + y)|g(y + z)dydzdr
∣∣∣

≤ ε‖D2u‖L2(Rd)‖Vε‖L1(Rd)‖g‖L2(Rd),

which means

‖Vε ∗ ∇u− 2b∇u‖L2(Rd) ≤ 2bε‖D2u‖L2(Rd).

Since ‖u‖L∞(Rd)‖Vε‖L1(Rd) ≤ ( a2b − η) · 2b = a− 2bη and after using Young’s inequality, we end up with

1

2

d

dt

∫
Rd

|uε − u|2dx+ bη

∫
Rd

|∇(uε − u)|2dx

≤ C
∫
Rd

|uε − u|2dx+ Cε2‖D2u(·, t)‖2L2(Rd).

Hence, the desired estimates are obtained by Gronwall’s inequality together with taking the same initial data
u(x, 0) = uε(x, 0) = u0(x).

3. Rigorous derivation of the mean-field limit

In this section, we assume that the solutions for the intermediate problem (2.1) and the limiting problem
(2.10) exist uniquely and satisfy the necessary a priori estimates that are needed in deriving the mean-field
limit. Then, starting from the stochastic particle system (1.2), we rigorously derive the diffusion-aggregation
equation (2.10) by exploiting the intermediate particle system with smooth interaction potential (2.1). The
unique existence and the corresponding estimates can be obtained, for example, by Theorems 2.1–2.3.

3.1. Stochastic particle systems

In the following we use (Bi(t))1≤i≤N as a set of independent standard Brownian motions for each particle i.
The discrete particle model reads

dXi
ε,N (t) =

√
2adBi(t) +

1

N

∑
j 6=i

∇Vε(|Xi
ε,N (t)−Xj

ε,N (t)|)dt, (3.1)

where Vε(r) = ε−dV (r/ε) and

∫
Rd

V (x)dx = 2b. The corresponding initial data is given by

Xi
ε,N (0) = ξi, where ξi are N i.i.d. random variables with pdf u0(x). (3.2)

Since for fixed ε, the gradient ∇Vε is bounded Lipschitz continuous, we can use the following result for the
unique solvability of initial value problems for stochastic particle systems:

Lemma 3.1. For any fixed ε, the problem (3.1)–(3.2) has a unique global solution Xi
ε,N (t).

We note that the trajectory of the intermediate problem (2.1) is

dX̄i
ε(t) =

√
2a dBi(t) +

∫
Rd

∇Vε(|X̄i
ε(t)− y|)uε(y, t)dydt, (3.3)
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where uε(x, t) is the probability density function of random variables X̄i
ε(t), and the trajectory of the limiting

problem (2.10) is

dX̂i(t) =
√

2a dBi(t)− 2b∇u(X̂i(t), t)dt. (3.4)

In order to compare the three problems (3.1), (3.3) and (3.4), we take the same initial data (3.2) for
Xi
ε,N (0), X̄i

ε(0) and X̂i(0), i.e.

Xi
0 = ξi i.i.d. random variables with pdf u0.

With the help of the unique solvability of the problems investigated in Section 2, we also have the existence
and uniqueness of the initial value problems of the intermediate and the limiting trajectory. Namely,

Lemma 3.2. If (2.1) has a unique solution uε with ∇uε ∈ L∞(0,+∞;W 1,∞(Rd)), then the initial value problem
(3.3),(3.2) has a unique global solution (X̄i

ε(t), u
ε(x, t)).

Proof. Let v be the solution of (2.7) which satisfies the initial data v(x, 0) = u0(x). By assumption, we have
that ∇Vε ∗ v = Vε ∗ ∇v is a bounded Lipschitz function. Therefore, the initial value problem

dX̄ε(t) =
√

2a dB(t) + (∇Vε ∗ v)(X̄ε(t))dt,

X̄(0) = ξ given random variable with pdf u0(x)

has a unique global solution X̄ε(t). Let uε be the probability density function. Then, we have from Itô’s formula
for any smooth test function ϕ(x, t) that

ϕ(X̄ε(t), t)− ϕ(ξ, 0) =

∫ t

0

[
∂tϕ(X̄ε(s), s) + (Vε ∗ ∇v)(X̄ε(s), s) · ∇ϕ(X̄ε(s), s))

+a∆ϕ(X̄ε(s), s)
]
ds+

√
2a

∫ t

0

∇ϕ(X̄ε(s), s)dBs.

By taking the expectation, we get∫
Rd

uε(x, t)ϕ(x, t)dx−
∫
Rd

u0(x)ϕ(x, 0)dx

=

∫ t

0

∫
Rd

uε(x, s)
(
∂tϕ(x, s) +∇Vε ∗ v(x, s) · ∇ϕ(x, s) + a∆ϕ(x, s)

)
dxds

which is exactly the weak formulation of (2.7) with v = uε. By the assumption that the solution to this problem
exists uniquely, we obtain that the unique solution is uε, i.e. the probability density of X̄ε. In other words, the
unique solution of (3.3),(3.2) is given by (X̄ε, u

ε).

By the same method, it can be easily shown that the initial value problem of the limiting trajectory is also
uniquely solvable.

Lemma 3.3. If (2.10) has a unique solution u with ∇u ∈ L∞(0,+∞;W 1,∞(Rd)), then the initial value problem
(3.4),(3.2) has a unique global solution (X̄i(t), u(x, t)).

3.2. Convergence estimate for N →∞
As a next step, we follow the ideas in [22, 29, 31] to show the convergence in the large particle case. With the

help of the existence theory and the estimates derived in Section 2, we detect that some of the error estimates
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are different from those in the porous medium context, cf. [22, 29, 31]. Therefore, for completeness, we give
details of the proof.

Let V ∈ C2
0 (Rd) and without loss of generality, let the compact support of V be the unit ball. Thus, we

have suppVε = Bε(0). The first lemma determines an estimate for the difference of the particle system and the
intermediate problem.

Lemma 3.4. For any fixed 0 < δ � 1 and time t > 0, let ε such that 1
ε2d+4 ≤ δ lnN , then

E
(

sup
0≤s≤t

sup
i=1,...,N

∣∣Xi
ε,N (s)− X̄i

ε(s)
∣∣2) ≤ C(t)

N1−C(t)δ
,

where C(t) is a constant only depending on t, ‖V ′′‖L∞ and ‖uε‖L∞(0,∞;Hs(Rd)).

Proof. The fact ‖Vε‖W 2,∞ ≤ 1
εd+2 ‖V ′′‖∞ is used within the proof several times. Let

S(t) = sup
i=1,...,N

∣∣Xi
ε,N (s)− X̄i

ε(s)
∣∣2.

By taking the difference of the two problems (3.1) and (3.3), we obtain

sup
i=1,...,N

∣∣Xi
ε,N (t)− X̄i

ε(t)
∣∣2 ≤ ∫ t

0

t

N2
sup

i=1,...,N

∣∣∣ N∑
l=1

(
∇Vε(Xi

ε,N (s)−X l
ε,N (s))−∇Vε ∗ uε(X̄i

ε(s), s)
)∣∣∣2ds.

Applying the expectation leads to

E(S(t)) ≤
∫ t

0

t

N2
E
(

sup
i=1,...,N

∣∣∣ N∑
l=1

(
∇Vε(Xi

ε,N (s)−X l
ε,N (s))−∇Vε ∗ uε(X̄i

ε(s), s)
)∣∣∣2)ds

≤ t

N2

∫ t

0

{
E
(

sup
i=1,...,N

∣∣∣ N∑
l=1

(
∇Vε(Xi

ε,N (s)−X l
ε,N (s))−∇Vε(Xi

ε,N (s)− X̄ l
ε(s))

)∣∣∣2)
+E
(

sup
i=1,...,N

∣∣∣ N∑
l=1

(
∇Vε(Xi

ε,N (s)− X̄ l
ε(s))−∇Vε(X̄i

ε(s)− X̄ l
ε(s))

)∣∣∣2)
+E
(

sup
i=1,...,N

∣∣∣ N∑
l=1

(
∇Vε(X̄i

ε(s)− X̄ l
ε(s))−∇Vε ∗ uε(X̄i

ε(s), s)
)∣∣∣2)}ds

= I1 + I2 + I3.

Now, we derive the estimates for I1, I2 and I3 separately.

|I1| ≤
t

N2

∫ t

0

‖V ′′‖2∞
ε2d+4

E
(( N∑

l=1

∣∣X l
ε,N (s)− X̄ l

ε(s)
∣∣)2)ds

≤ t‖V ′′‖2∞
ε2d+4

∫ t

0

E
(

sup
l=1,...,N

∣∣X l
ε,N (s)− X̄ l

ε(s)
∣∣2)ds

≤ t‖V ′′‖2∞
ε2d+4

∫ t

0

E(S(s))ds.
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The second term can be handled similarly,

|I2| ≤
t

N2

∫ t

0

‖V ′′‖2∞
ε2d+4

E
(

sup
i=1,...,N

(
N
∣∣Xi

ε,N (s)− X̄i
ε(s)

∣∣)2)ds

≤ t‖V ′′‖2∞
ε2d+4

∫ t

0

E
(

sup
i=1,...,N

∣∣Xi
ε,N (s)− X̄i

ε(s)
∣∣2)ds

≤ t‖V ′′‖2∞
ε2d+4

∫ t

0

E(S(s))ds.

The third term is estimated as follows

|I3| ≤
t

N2

∫ t

0

E
[

sup
i=1,...,N

N∑
l=1

(
∇Vε(X̄i

ε(s)− X̄ l
ε(s))−∇Vε ∗ uε(X̄i

ε(s), s))

×
N∑
m=1

(
∇Vε(X̄i

ε(s)− X̄m
ε (s))−∇Vε ∗ uε(X̄i

ε(s), s))
]
ds

=
t

N2

N∑
l=1

N∑
m=1

∫ t

0

E
[

sup
i=1,...,N

(
∇Vε(X̄i

ε(s)− X̄ l
ε(s))−∇Vε ∗ uε(X̄i

ε(s), s))

×
(
∇Vε(X̄i

ε(s)− X̄m
ε (s))−∇Vε ∗ uε(X̄i

ε(s), s))
]
ds,

where for l 6= m the expectation is zero. Hence,

|I3| ≤
t

N2

N∑
l=1

∫ t

0

E
[

sup
i=1,...,N

(
∇Vε(X̄i

ε(s)− X̄ l
ε(s))−∇Vε ∗ uε(X̄i

ε(s), s)
)2]

ds ≤ Ct2

N
,

while exploiting the fact that ‖∇Vε ∗ uε‖L∞ ≤ ‖Vε‖L1‖∇uε‖L∞ ≤ C‖uε‖Hs ≤ C.
Summarizing, we end up with

E(S(t)) ≤ 2||V ′′||2∞t
ε2d+4

∫ t

0

E(S(s))ds+
Ct2

N
,

from which we obtain

E(S(t)) ≤ t C
N

(√
π

2

εd+2

||V ′′||∞
et

2||V ′′||2∞ε
−2d−4

+ t

)
. (3.5)

Now, for any fixed 0 < δ � 1, we can choose N so large that e
1

ε2d+4 ≤ Nδ. By taking the supremum in time on
both sides, we have the conclusion.

Note that the estimate (3.5) plays an important role for the numerical simulation of the stochastic particle
system in Section 5 to determine a valid number of particles.

The next lemma intends to give an estimate on the difference of the intermediate and limiting problem.

Lemma 3.5. Let s > d
2 + 2 and any fixed time t > 0, then

E
(

sup
0≤s≤t

∣∣X̄ε(s)− X̂(s)
∣∣) ≤ C(t)ε.
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where C(t) is a constant only depending on t, ‖V ′′‖L∞ and ‖uε‖L∞(0,∞;Hs(Rd)).

Proof. Taking the difference between the intermediate (3.3) and the limiting problem (3.4) and considering

J (t) =
∣∣X̄ε(t)− X̂(t)

∣∣,
allows for the following representation:

E(J (t)) ≤
∫ t

0

E
(∣∣∣2b∇u(X̂(s), s)−∇Vε ∗ uε(X̄ε(s), s)

∣∣∣)ds

≤
∫ t

0

E
(∣∣∣2b∇u(X̂(s), s)− Vε ∗ ∇u(X̂(s), s)

∣∣∣)ds

+

∫ t

0

E
(∣∣∣Vε ∗ ∇u(X̂(s), s)− Vε ∗ ∇uε(X̂(s), s)

∣∣∣)ds

+

∫ t

0

E
(∣∣∣Vε ∗ ∇uε(X̂(s), s)− Vε ∗ ∇uε(X̄ε(s), s)

∣∣∣)ds

= J1 + J2 + J3.

The estimate for J1 is

J1 =

∫ t

0

∫
Rd

∣∣∣ ∫
Rd

Vε(x− y)(∇u(x, s)−∇u(y, s))dy
∣∣∣u(x, s)dxds

=

∫ t

0

∫
Rd

∣∣∣ ∫ 1

0

dr

∫
Rd

Vε(x− y)∂r∇u(rx+ (1− r)y, s)dydr
∣∣∣u(x, s)dxds

≤ ε

∫ t

0

∫ 1

0

∫
Rd

∫
Rd

|Vε(x− y)| · |D2u(rx+ (1− r)y, s)|u(x, s)dydxdrds

= ε

∫ t

0

∫ 1

0

∫
Rd

∫
Rd

|Vε(z)| · |D2u(rz + y, s)| · |u(y + z, s)|dydzdrds

≤ 2bε

∫ t

0

‖D2u(·, s)‖2L2(Rd)‖u(·, s)‖2L2(Rd)ds

≤ 2bε‖u‖2L∞(0,t;L2(Rd))‖D
2u‖2L2(0,t;L2(Rd)).

The expression J2 can be estimated with the help of Lemma 2.4:

J2 =

∫ t

0

∫
Rd

∣∣∣ ∫
Rd

Vε(x− y)(∇u(y, s)−∇uε(y, s))dy
∣∣∣u(x, s)dxds

≤ ‖Vε‖L1(Rd)

∫ t

0

‖(∇u−∇uε)(·, s)‖L2(Rd)‖u(·, s)‖L2(Rd)ds

≤ 2b‖∇u−∇uε‖L2(0,t;L2(Rd))‖u‖L2(0,t;L2(Rd))

≤ Cε.

Finally, the estimate for J3 is

J3 ≤ ‖Vε ∗D2uε‖L∞
∫ t

0

E(J (s))ds ≤ C
∫ t

0

E(J (s))ds.
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Then, by Gronwall’s inequality, we get

E(Jt) ≤ C(t)ε.

The conclusion is obtained by taking the supremum in time on both sides.

Collecting the results from Lemmas 3.4 and 3.5 combined with the existence result in Section 2, we are able
to state the main theorem of this section on the mean-field limit.

Theorem 3.6. Assume u0 ∈ L1(Rd)∩Hs(Rd) for s > d
2 + 2 and ‖u0‖Hs < a

bK , then for 1
ε2d+4 ≤ δ lnN it holds

that

E
(

sup
0≤s≤t

sup
i=1,...,N

∣∣Xi
ε,N (s)− X̂i(s)

∣∣2) ≤ C(t)ε2,

where C(t) is a constant only depending on t, ‖V ′′‖L∞ and ‖u0‖Hs(Rd).

Remark 3.7. Using the results on the convergence of trajectories, we can also get the corresponding propagation
of chaos results (which means that the empirical measure 1

N

∑N
i=1 δXi

ε,N (t) converges weakly to the measure with

probability density u(x, t)), see for example Theorem 3.1 in [31].

The next sections are devoted to the numerical investigations of the diffusion-aggregation problem (2.10) and
comparisons to the stochastic particle system.

4. Numerical discretization schemes

Starting from the stochastic particle system (3.1)–(3.2), we introduce a straightforward discretization and
explain the numerical implementation. We also develop a suitable, positive preserving discretization scheme for
the diffusion-aggregation problem (2.10). Numerical results are then discussed in Section 5.

4.1. Discretization of the stochastic particle system

To approximate the stochastic particle model (3.1)–(3.2), we use the Euler-Maruyama method, see for example
[23]. Let {0 = t0 < t1 < · · · < tS = T} be a time discretization of [0, T ] for some T ≥ 0. Furthermore, let
∆tn = tn+1 − tn be the corresponding step-sizes and ∆Bin = Bi(tn+1) − Bi(tn) the Brownian increments for
n = 0, . . . , S − 1. We denote by Y in the approximated solution of the system (3.1)–(3.2) at time tn satisfying

Y in+1 = Y in +∆Bin
√

2a+ ∆tn
1

N

∑
j 6=i

∇Vε(|Y in − Y jn |), (4.1)

Y i0 = ξi, (4.2)

for every i = 1, . . . , N and n = 0, . . . , S − 1. The sequence (Yn)n of random variables is called Euler-Maruyama
approximation for the initial value problem (3.1)–(3.2).

We aim to analyze the behavior of the particle system when the initial values ξi are i.i.d. and the latter
distribution is given by a density which is a superposition of Barenblatt profiles. We choose the following
normalized Barenblatt profile as a basic component:

B̃T,x0
(x) :=

√
3

8

(
T

2
3 − (x− x0)2

12

)
+

, (4.3)
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which satisfies ||B̃T,x0 ||L1(R) = 1, supp(B̃T,x0) = [x0 −
√

12T
2
3 , x0 +

√
12T

2
3 ] and ||B̃T,x0 ||∞ =

√
3

8 T
2
3 . We set

u0(x) =

m∑
l=1

αlβlB̃Tl,x0,l
(βlx)

as a weighted linear combination of rescaled and normalized Barenblatt profiles with αl ≥ 0,
∑m
l=1 αl = 1, βl > 0

for l = 1, . . . ,m, m ∈ N. Then, u0 is again a probability density function and due to the composition method,
see for example [1], we only need a simulation method for the random variables with density βlB̃Tl,x0,l

(βlx).
To generate these random variables, we use the inverse transformation method. In detail, if U ∼ U([0, 1]) is a
uniformly distributed random variable and

F (z) :=

∫
(−∞,z]

B̃T,0(x)dx

the cumulative distribution function (cdf), then ξ = F−1(U) has the cdf F . Note that F−1 is a right-continuous
pseudo-inverse

F−1(v) = inf{z : F (z) ≥ v}

for every v ∈ [0, 1]. A computation shows that the cdf for B̃T,0 is given by

F (z) =


0 for z < −

√
12T

2
3 ,

√
3

8

(
z

T
1
3
− z3

36T

)
+ 1

2 for z ∈ [−
√

12T
2
3 ,
√

12T
2
3 ),

1 for z ≥
√

12T
2
3 .

To determine the pseudo-inverse of F , we let v ∈ (0, 1) and consider the cubic equation

√
3

8

(
z

T
1
3

− z3

36T

)
+

1

2
= v ⇔ z3 + pz + q = 0

with

p = −36T
2
3 and q =

(
v − 1

2

)
96
√

3T.

The discriminant of the equation is

∆ =
(q

2

)2

+
(p

3

)3

= T 2123

(
4

(
v − 1

2

)2

− 1

)
< 0

since (v − 1
2 )2 ∈ [0, 1

4 ) and we get three real-valued solutions using Cardano’s method. From the shape of the
function we know that we need the second root

z = −
√
−4

3
p cos

(
1

3
arccos

(
−q

2

√
−27

p3

)
+
π

3

)
.
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Consequently, we have

F−1(v) =


−∞ for v = 0,

−
√
− 4

3p cos
(

1
3 arccos

(
− q2
√
− 27
p3

)
+ π

3

)
for v ∈ (0, 1),√

12T
2
3 for v = 1.

By defining F−1
l (v) = F−1(v)

βl
+x0,l, we obtain F−1

l (U) ∼ B̃Tl,x0,l
(βlx) and the complete simulation algorithm

for the initial random variables reads:

(1) Generate a random number I ∼
∑m
l=1 αlδl.

(2) Generate a random number U ∼ U([0, 1]) and use ξi = F−1
I (U) ∼ u0.

4.2. Discretization of the diffusion-aggregation equation

Next, we derive a numerical scheme for the macroscopic equation (2.10) restricted to one space dimension
here. The latter equation is a positivity-preserving conservation law and from Theorem 2.3 we know that there
exists a global solution if η := a

2b||u0||L∞ > 1. We additionally have u(·, t) ∈ H1(Rd), such that the product uxu

is well-defined. We rewrite the equation as follows

∂tu+ 2b(uxu)x = auxx.

One has to be careful in the case η ≤ 1, where we may be concerned with a bad regularity of the solution. In this
case, a numerical scheme based on the last reformulation can behave badly, see e.g. [21]. From the assumptions
a, b ≥ 0, we can identify the classical heat equation ∂tu = auxx and an advection equation ∂tu+ 2b(uxu)x = 0,
where the flux also depends on the derivative of the solution, see e.g. [25]. The reinterpretation of a nonlinear
heat equation as conservation law has been studied for degenerated parabolic partial differential equations in
[5, 8, 27, 30].

We use a fractional step method [25] to separately solve the classical linear diffusion and the advection part
in one time step. This approach is suitable for our numerical simulations, since we are not interested in the
long-time behavior of solutions, where well-balanced schemes, see e.g. [36] are used.

The classical linear diffusion is aprroximated by the explicit first order method H(1) : RZ → RZ with

(H(1)(u))i = ui + a∆tD+D−(u)i, (4.4)

where

D+D−(u)i =
ui+1 − 2ui + ui−1

(∆x)2

is the finite difference approximation of the second derivative. From literature we know that this linear method
is || · ||∞-stable, i.e. ||H(1)(u)||∞ ≤ ||u||∞ if

a
∆t

(∆x)2
≤ 1

2
. (4.5)

In a second step, we approximate the advection part by an adapted upwind-scheme H(2) : RZ → RZ in
conservative form

(H(2)(u))i = ui −
∆t

∆x
(Fi+ 1

2
(u)−Fi− 1

2
(u)) (4.6)
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with numerical fluxes Fi− 1
2
(u). Since the flux function depends on the derivative of the solution, we first

approximate the first derivative with the central difference

D0(u)i :=
ui+1 − ui−1

2∆x

and set

∂i+ 1
2
(u) :=

D0(u)i+1 +D0(u)i
2

as the approximation of ux at the right boundary of the cell [xi− 1
2
, xi+ 1

2
]. The numerical flux is then defined by

Fi+ 1
2
(u) :=

{
2b∂i+ 1

2
(u)ui if ∂i+ 1

2
(u) ≥ 0,

2b∂i+ 1
2
(u)ui+1 if ∂i+ 1

2
(u) < 0.

To ensure that the analytic domain of dependence is included in the numerical domain of dependence, the CFL
condition

∆t

∆x
max
i∈Z
{|2b∂i+ 1

2
(u)|} ≤ 1 (4.7)

must be satisfied in each iteration-step. Fusing both discretization approaches for the diffusion and advection
part leads to the numerical scheme H : RZ → RZ defined by H := H(1) ◦ H(2).

Provided the initial data is positive, the solution of the diffusion-aggregation equation remains positive, see
Theorem 2.3. This property shall be also hold for the numerical scheme and thus we must guarantee that H
is positive-preserving, cf. [12, 13] for the chemotaxis model. In contrast to a straightforward approximation of
the diffusion-aggregation equation, the numerical scheme we propose is positive-preserving independent of the
choice of the parameters a, b ≥ 0, see Theorem 4.1. This allows to numerically evaluate the transition from the
diffusion to the aggregation regime in Section 5.

Lemma 4.1. The numerical scheme H is positive-preserving if

∆t ≤ min

{
(∆x)2

2a
,

∆x

4bmaxi∈Z{|∂i+ 1
2
(u)|}

}
, (4.8)

i.e. for all u ∈ RZ with u ≥ 0 it follows H(u) ≥ 0.

Proof. If both methodsH(1) andH(2) are positive-preserving, then the compositionH is also positive preserving.
Let u ∈ RZ with u ≥ 0 be given. We have

H(1)(u)i = ui + a
∆t

(∆x)2
(ui+1 − 2ui + ui−1)

= ui(1− 2a
∆t

(∆x)2
) + a

∆t

(∆x)2
(ui+1 + ui−1)

≥ 0
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Figure 1. Pdf’s of the initial distribution with parameters from left to the right: α =
( 1

4 ,
1
2 ,

1
4 ), β = (1, 1, 1); α = ( 1

4 ,
1
2 ,

1
4 ), β = (2, 1, 2).

due to condition (4.5) and a ≥ 0. This shows H(1)(u) ≥ 0. To prove that H(2)(u) ≥ 0, we consider the following
estimate

H(2)(u)i = ui − 2b
∆t

∆x
(∂i+ 1

2
(u)ui − ∂i− 1

2
(u)ui)

= ui
(
1− 2b

∆t

∆x
(|∂i+ 1

2
(u)|+ |∂i− 1

2
(u)|)

)
.

From (4.8) we know that

2b
∆t

∆x

(
|∂i+ 1

2
(u)|+ |∂i− 1

2
(u)|

)
≤ 1,

and consequently H(2)(u)i ≥ 0.

In the next section, we present numerical results based on the discretizations proposed for the stochastic
particle system and the diffusion-aggregation equation.

5. Numerical results

5.1. Results for the stochastic particle system

We consider the Euler-Maruyama scheme (4.1)–(4.2) for the stochastic particle system and fix b = 1 in the
following and vary a according to the relation a = 2b||u0||L∞η for η ≥ 0. Theorem 2.3 motivates to distinguish
two cases for the diffusion-aggregation equation: we call η > 1 the diffusion and η < 1 the aggregation case. We
choose the initial densities as the superposition of normalized Barenblatt profiles introduced in Section 4.1. In
detail, we use m = 3 profiles with

x0 =

(
−
√

12T
2
3

1

(
1 +

1

β1

)
, 0,

√
12T

2
3

3

(
1 +

1

β3

))



MODELING OF A DIFFUSION WITH AGGREGATION 587

Figure 2. Results for the stochastic particle system with N = 555 particles, initial distribution
1 and different values for η.

such that the corresponding supports are disjoint and set Tl = 2 for l = 1, 2, 3. The two different initial
distributions u0 we consider in the following are given in Figure 1.

Furthermore, the interaction kernel V is chosen as the density of a standard normal distribution with weight

b, i.e. V (x) = b√
2π
e−

x2

2 .

Note that the parameters ε and N significantly influence the results of the stochastic particle system and
need to be chosen in an appropriate way to provide results which are close to the diffusion-aggregation equation.
We use the estimate (3.5) which states an upper bound on the squared L2-distance between the particle and
intermediate model.

We choose the time horizon T = 7, the parameter ε = 1.5 and determine ||V ′′||∞ = b√
2π

for the interaction

kernel V . Then, a particle number of N = 555 ensures that the squared L2-distance between the stochastic
particle and intermediate model is smaller than 0.3 · C, where C is the constant in (3.5).
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Figure 3. Results for the stochastic particle system with N = 555 particles, initial distribution
2 and different values for η.

In Figures 2 and 3 the mean density of 1000 Monte-Carlo samples for both initial distributions u0 is shown.
In the cases η = 0.1 and η = 0.2, we can observe the aggregation at local maxima, whereas in the cases η = 0.6
and η = 1 we observe a more diffusive behavior.

This is emphasized by Figure 4, where the running supremum t 7→ sup{||u(s, ·)||∞ : s ≤ t} is drawn.
For this choice of parameters, we expect the threshold between aggregation and diffusion to be between

η = 0.2 and η = 0.6. The maximal value of the sampled mean density behaves almost linear in time and is
directly related to the value of η. Concerning the different initial values, there is no severe difference between
the shapes of the running supremum.

Since we are not in the limiting regime ε→ 0 and N →∞, we already observe diffusion for η � 1. In detail,
the diffusion in the mean density arising from the Brownian motion is independent of the number of particles,
whereas the aggregation highly depends on the number of particles N and the range of strong interactions
measured by ε.
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Figure 4. Running supremum of the stochastic particle density with N = 555 particles, initial
distribution 1 (left) and 2 (right) and different values for η.

Figure 5. Mean density for initial data 1 (left) and 2 (right).

5.2. Results for the diffusion-aggregation equation

Now, we apply the numerical scheme from Section 4.2 to both initial profiles, see Figure 1. In particular, we
aim to analyze the threshold η = 1 which is not covered by the theoretical results. A simulation result for this
choice of η can be found in Figure 5 and indicates a diffusive behavior for each initial data. The results rely on
a fine-scale resolution with spatial step-size ∆x = 2−8 and time step-size according to (4.8).
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Table 1. Numerical convergence for η = 1 and ∆x = 2−11 as reference step-size for the initial
density 1 and 2.

Step-size err case 1 EOC case 1 err case 2 EOC case 2

∆x = 2−1 20.505 · 10−3 − 48.908 · 10−3 −
∆x = 2−2 9.255 · 10−3 1.148 27.220 · 10−3 0.845
∆x = 2−3 4.439 · 10−3 1.060 14.571 · 10−3 0.902
∆x = 2−4 2.241 · 10−3 0.986 8.102 · 10−3 0.847
∆x = 2−5 1.019 · 10−3 1.137 3.561 · 10−3 1.186
∆x = 2−6 0.481 · 10−3 1.083 1.571 · 10−3 1.181
∆x = 2−7 0.228 · 10−3 1.077 0.710 · 10−3 1.146

To experimentally verify the convergence of the numerical scheme, we take the reference solution computed
with step-size ∆x = 2−11 and study the experimental order of convergence (EOC) with the step-sizes ∆x =
2−ι, ι = 1, . . . , 7. We choose the discrete L1-error

err = max
j

∆x
∑
i∈Z
|uref
i (tj)− ui(tj)|

to measure the difference.
The second and third column of Table 1 contain the error and EOC for case 1 (left picture in Fig. 5) and

columns four and five the results for case 2 (right picture in Fig. 5), respectively. In both cases, the EOC seems
to be at least of order one and the numerical scheme appears to work well regarding the L1-error.

Due to numerical diffusion arising from the upwind scheme, we cannot expect a strict regime switch at the
theoretical threshold η = 1. Depending on the mesh-size, the threshold is expected to be lower than 1.

We examine the threshold by the running supremum t 7→ sup{||u(s, ·)||∞ : s ≤ t}. Figure 6 shows the running
supremum for different values of η close to 1.

From the values of η and the shape of the corresponding running supremum, we observe a strict distinction of
the diffusion and aggregation regime as theoretically assumed. Additionally, if η is decreased a blow-up occurs
and conversely, if η is increased, the diffusion dominates the supremum.

In the cases, where the solution follows a diffusive behavior, we observe an increasing supremum until the
time t = 12 which occurs at the center of the given profiles, see left picture in Figure 7.

In the case of initial data 2, the approximated solution increases first at the left and right maxima, see right
picture in Figure 7, which is due to the higher slope close to the peaks. The effect of first increasing and then
decreasing solutions might be the result of numerical diffusion.

In Figure 8, the simulation results for the aggregation regime are shown. However, once the values are above
a
2b , the numerical approximation starts to peak and blows up, i.e. the numerical solution collapses completely.

5.3. Convergence of the stochastic particle system to the diffusion-aggregation equation

In the previous part, we have analyzed the performance of numerical solutions separately. Since in the
diffusive regime, i.e. η > 1, the density of the particle system is expected to converge to the density of the
diffusion-aggregation model, we now study the convergence numerically.

Let X̂i,m
j be the m-th sample of Xi

tj for m = 1, . . . ,M . We define

uji =
1

M

M∑
m=1

1

N∆x

N∑
k=1

χ[xi−∆x/2,xi+∆x/2)(X̂
k,m
j )
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Figure 6. Running supremum for initial value 1 (left) and 2 (right).

Figure 7. Aggregation and then diffusion for initial data 1 (left); zoom-in at the small
aggregation in the case of initial data 2 (right).

as the density estimator for the particle system. Let ũji denote the macroscopic density approximation on the

same time-space grid. We define the error by eji := uji − ũ
j
i and use the following norms

||e||∞ = max
i,j
{|eji |}, ||e||p = max

j

(
∆x
∑
i

|eji |
p

) 1
p

to measure the distance between both approximations. We consider the diffusion case η = 1.5 and study the
convergence of the estimated particle to the macroscopic density regarding the number of particles N . Even for
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Figure 8. Aggregation for η = 0.97 and initial data 1 (left) and 2 (right).

Table 2. Numerical convergence in N with respect to different norms for initial distribution
1, η = 1.5,∆x = 2−3 and time horizon T = 7.

|| · ||∞ EOC || · ||1 EOC || · ||2 EOC

N = 50 2.199 · 10−2 − 7.518 · 10−2 − 2.026 · 10−2 −
N = 100 1.508 · 10−2 0.544 6.365 · 10−2 0.240 1.725 · 10−2 0.232
N = 200 1.383 · 10−2 0.125 5.691 · 10−2 0.161 1.539 · 10−2 0.165
N = 400 1.150 · 10−2 0.266 5.114 · 10−2 0.154 1.413 · 10−2 0.123
N = 800 1.111 · 10−2 0.050 5.057 · 10−2 0.016 1.381 · 10−2 0.033
Mean EOC − 0.248 − 0.143 − 0.138

the rough spatial discretization ∆x = 2−3 and 1000 Monte-Carlo runs, we observe a convergence in all norms
as Table 2 shows.

The EOC decreases as the number of particles increases, which is the result of the rough spatial discretization
and the high value of ε. We note that this gap cannot be reduced by a higher number of particles. If the range
of strong interaction ε and the spatial discretization is reduced, we would need a very large number of particles
(see (3.5)) as well as a small time step-size to obtain meaningful results since the computation time increases
at least quadratically in the number of particles.
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[33] A.-S. Sznitman, Topics in propagation of chaos, in École d’Été de Probabilités de Saint-Flour XIX – 1989. Vol. 1464 of Lect.
Notes Math. Springer, Berlin (1991) 165–251.

[34] C.M. Topaz, A.L. Bertozzi and M.A. Lewis, A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68
(2006) 1601–1623.

[35] G. Toscani, One-dimensional kinetic models of granular flows. ESAIM: M2AN 34 (2000) 1277–1291.
[36] Y. Xing, C.-W. Shu and S. Noelle, On the advantage of well-balanced schemes for moving-water equilibria of the shallow water

equations. J. Sci. Comput. 48 (2010) 339–349.

https://arxiv.org/pdf/1703.04376.pdf

	Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation
	1 Introduction
	2 Solvability and uniform estimates
	2.1 Solvability of the intermediate problem
	2.2 Solvability of the limiting problem
	2.3 Estimate for u-u

	3 Rigorous derivation of the mean-field limit
	3.1 Stochastic particle systems
	3.2 Convergence estimate for N

	4 Numerical discretization schemes
	4.1 Discretization of the stochastic particle system
	4.2 Discretization of the diffusion-aggregation equation

	5 Numerical results
	5.1 Results for the stochastic particle system
	5.2 Results for the diffusion-aggregation equation
	5.3 Convergence of the stochastic particle system to the diffusion-aggregation equation


	References

