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VARIATIONAL ANALYSIS FOR THE BLACK AND SCHOLES EQUATION
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Abstract. We propose a variational analysis for a Black and Scholes equation with stochastic volatil-
ity. This equation gives the price of a European option as a function of the time, of the price of the
underlying asset and of the volatility when the volatility is a function of a mean reverting Orstein-
Uhlenbeck process, possibly correlated with the underlying asset. The variational analysis involves
weighted Sobolev spaces. It enables to prove qualitative properties of the solution, namely a maximum
principle and additional regularity properties. Finally, we make numerical simulations of the solution,
by finite element and finite difference methods.
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1. Introduction

We consider a financial asset whose price is given by the stochastic differential equation

dXt = µXtdt+ σtXtdWt, (1)

where µXtdt is a drift term, (Wt) is a Brownian motion, and (σt) is the volatility. The simplest models (see [16])
for a complete overview) take a constant volatility, but these models are generally to rough to match real prices.
A more realistic model consists in assuming that (σt) is a function of a mean reverting Orstein-Uhlenbeck
process:

σt = f(Yt),
dYt = α(m− Yt)dt+ βdẐt,

(2)

where α, m and β are positive constants, and where (Ẑt) is a Brownian motion. As explained in [5], the law
of Yt knowing Y0 is N

(
m+ (Y0 −m)e−αt, β

2

α (1− e−2αt)
)

. Therefore, m is the limit of the mean value of Yt
as t → +∞, and 1

α is the characteristic time of mean reversion. The parameter α is called the rate of mean
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reversion. The ratio β2

α is the limit of the variance of Yt as t → +∞. For convenience, we introduce the
parameter ν

ν2 =
β2

2α
· (3)

The Brownian motion Ẑt may be correlated with Wt: it can be written as a linear combination of (Wt) and an
independent Brownian motion (Zt):

Ẑt = ρWt +
√

1− ρ2Zt, (4)

where the correlation factor ρ lies in [−1, 1].
Consider a European derivative on this asset, with expiration date T and payoff function h(XT ). Its price at

the time t will depend on t, on the price of the underlying asset Xt, and on Yt. We denote by P (t,Xt, Yt) the
price of the derivative, and by r̃(t) the interest rate. By using the no arbitrage principle and the two dimensional
Itô’s formula, it is possible to prove that there exists a function γ̃ such that the pricing function P satisfies the
partial differential equation

∂P

∂t
+

1
2
f(y)2x2 ∂

2P

∂x2
+ ρβxf(y)

∂2P

∂x∂y
+

1
2
β2 ∂

2P

∂y2

+r̃(t)
(
x
∂P

∂x
− P

)
+
(
α(m− y)− βΛ̃(t, x, y)

) ∂P
∂y

= 0, 0 ≤ t < T, x > 0, y ∈ R,
(5)

where

Λ̃(t, x, y) = ρ
µ− r̃(t)
f(y)

+
√

1− ρ2γ̃(t, x, y), (6)

with the terminal condition P (T, x, y) = h(x). The function γ̃(t, x, y) can be chosen arbitrarily.
The no arbitrage argument can be summarized as follows: we look for the pricing function P by trying

to construct a hedged portfolio of assets. It is not sufficient to hedge only with the underlying asset because
there are two independent sources of randomness: dWt and dZt. So the idea is to take a self-financing hedged
portfolio containing at shares of the underlying asset, one option with expiration date T1 whose price is

P
(1)
t = P (1)(t,Xt, Yt)

and bt options with a larger expiration date T2 > T1, whose price is

P
(2)
t = P (2)(t,Xt, Yt).

The value of the portfolio is ct. The no arbitrage principle yields that for t < T1,

dct = atdXt + dP (1)
t + btdP

(2)
t = r̃tctdt = r̃t(atXt + P

(1)
t + btP

(2)
t )dt. (7)

The two-dimensional Itô formula permits to write dP (1)
t and dP (2)

t as combinations of dt, dWt and dZt. The
left hand side of (7) does not contain dZt so

bt = −
∂P (2)

∂y

∂P (1)

∂y

·
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From the last equation and since the left hand side of (7) does not contain dWt, we have also

at +
∂P (1)

∂x
+ bt

∂P (2)

∂x
= 0.

Comparing the dt terms in (7) and substituting the values of at and bt, we obtain that

1
∂P (1)

∂y

(
∂P (1)

∂t
+

1
2
f(y)2x2 ∂

2P (1)

∂x2
+ ρβxf(y)

∂2P (1)

∂x∂y
+

1
2
β2 ∂

2P (1)

∂y2
+ r̃(t)

(
x
∂P (1)

∂x
− P (1)

))
=

1
∂P (2)

∂y

(
∂P (2)

∂t
+

1
2
f(y)2x2 ∂

2P (2)

∂x2
+ ρβxf(y)

∂2P (2)

∂x∂y
+

1
2
β2 ∂

2P (2)

∂y2
+ r̃(t)

(
x
∂P (2)

∂x
− P (2)

))
.

In the equation above, the left hand side does not depend on T2 and the right hand side does not depend on
T1, so there exists a function of g(t, x, y) such that

1
∂P
∂y

(
∂P

∂t
+

1
2
f(y)2x2 ∂

2P

∂x2
+ ρβxf(y)

∂2P

∂x∂y
+

1
2
β2 ∂

2P

∂y2
+ r̃(t)

(
x
∂P

∂x
− P

))
= g(t, x, y).

Choosing to write g(t, x, y) = α(y−m) + βλ̃(t, x, y) permits to make the infinitesimal generator of the Orstein-
Uhlenbeck process appear explicitly in the last equation and to obtain (5), so that as explained in [5], we can
group the differential operator in (5) as follows:

∂P

∂t
+

1
2
f(y)2x2 ∂

2P

∂x2
+ r̃(t)

(
x
∂P

∂x
− P

)
︸ ︷︷ ︸

BSf(y)

+ ρβxf(y)
∂2P

∂x∂y︸ ︷︷ ︸
correlation

+
1
2
β2 ∂

2P

∂y2
+ α(m− y)

∂P

∂y︸ ︷︷ ︸
Orstein Uhlenbeck

− βΛ̃(t, x, y)
∂P

∂y︸ ︷︷ ︸
premium

· (8)

The premium term is the market price of the volatility risk: the reason to decompose Λ̃ as in (6) is that, in the
perfectly correlated case (|ρ| = 1), it is possible to find the equation satisfied by P by a simpler no arbitrage
argument with a hedged portfolio containing only the option and shares of the underlying assets. In this case,
the equation found for P is:

∂P

∂t
+

1
2
f(y)2x2 ∂

2P

∂x2
+ ρβxf(y)

∂2P

∂x∂y
+

1
2
β2 ∂

2P

∂y2

+ r̃(t)
(
x
∂P

∂x
− P

)
+
(
α(m − y)− βρµ− r̃(t)

f(y)

)
∂P

∂y
= 0, 0 ≤ t < T, x > 0, y ∈ R. (9)

The term µ−r̃(t)
f(y) is called the excess return to risk ratio.

Finally, with (5), the Itô formula and (6)

dP (t,Xt, Yt) =
(
xf(y)

∂P

∂x
+ βρ

∂P

∂y

)(
µ− r̃
f(y)

dt+ dWt

)
+ β

√
1− ρ2

∂P

∂y
(γ̃dt+ dZt)

so we see that the function γ̃ is the contribution of the second source of randomness dZt to the risk premium.
There remains to choose the function f . In [14], Stein and Stein have considered the case when

f(y) = |y|. (10)

In the following, we will study the equation (5) for f(y) = |y| then for more general functions.
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We will assume hereafter that γ̃ is a bounded function. This assumption is too restrictive: indeed, with (10),
the results below can be generalized to the case when |γ̃(t, x, y)| is only bounded by C

|y| when y → 0, so Λ̃ may

blow up at y = 0. However, even with γ̃ bounded, the premium term still contains the term ρµ−r̃(t)|y| P , so the
difficulty of a singular premium term as y → 0 will be treated in this paper when ρ 6= 0.

With (10) and when ρ 6= 0, it is natural to impose that

P (t, x, 0) = g(t, x), 0 ≤ t < T, x > 0, (11)

where

∂g

∂t
+ r̃(t)

(
x
∂g

∂x
− g
)

= 0 0 ≤ t < T, x > 0, g(t = T ) = h, (12)

because the price of the option will not depend on the volatility near y = 0 (y ∼ 0 and ∂P
∂y ∼ 0 because Λ blows

up); so in this case, it is possible to consider two independent boundary value problems in [0, T [×R+×R+ and
[0, T [×R+ × R−, with the Dirichlet conditions (11).

To our knowledge, no variational analysis has been supplied yet for these boundary value problems. We
believe that such an analysis gives the correct setting to study the qualitative properties of the solutions, to
justify rigorously asymptotic expansions when α is large (see [5]), and to find error estimates for numerical
schemes.

In a first part we describe the changes of variables and unknown that will lead us to the variational formu-
lation. In the second part, we introduce some suitable weighted Sobolev spaces and prove the continuity of the
operator in these spaces. In the third part, we focus on the case when ρ = 0, we prove existence for the weak
formulation and qualitative results by means of a maximum principle adapted to our degenerate operator. In
the fourth part we deal with ρ 6= 0. Then we generalize our approach to arbitrary functions f . In the last part,
we give numerical results obtained by two different codes, with finite elements and a finite difference method.

In this paper, we will not discuss the problem of hedging, which consists in constructing a portfolio containing
shares of the risk-less asset and of the underlying asset in order to hedge (i.e. replicate) the price of the option.
This problem is of course very important for risk management. As shown in [5] and references therein, with the
stochastic volatility model, it is not possible to hedge exactly the option with a self-financed portfolio; indeed,
in order to hedge exactly the option, one has to inject money in the portfolio, so hedging has a cost, and one
problem is to find a good trade-off between the risk due to approximate hedging and the cost of implementing
the hedge. In any case, hedging implies an accurate knowledge of some partial derivatives of the pricing function
and for that reason, it is a challenging problem for numerical computations.

2. Change of variables and unknown

To obtain a forward parabolic equation, we change the sense of time. Also, in order to use a variational
method, we make the change of unknown

u(t, x, y) = P (T − t, x, y)e−(1−η) (y−m)2

2ν2 , (13)

where η is a parameter such that 0 < η < 1, because it can be seen very easily that if Λ̃ = 0 and ρ = 0,

then the function e
(y−m)2

2ν2 satisfies (5). If P is a bounded solution of (5), the function u should decay fast
when y goes to infinity: we will look for u in a weighted Sobolev space (weak solution), and we shall prove
afterward that the function u obtained by this method has the correct behaviour at infinity, so that the function

u(T − t, x, y)e(1−η) (y−m)2

2ν2 is a bounded solution of (5).
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With the notations r(t) = r̃(T − t), γ(t) = γ̃(T − t) and Λ(t) = Λ̃(T − t) the new unknown u satisfies the
degenerate parabolic partial differential equation

∂u

∂t
− 1

2
y2x2 ∂

2u

∂x2
− r(t)

(
x
∂u

∂x
− u
)
− ρβx|y| ∂

2u

∂x∂y
+ 2ρ

α

β
(m− y)x|y|∂u

∂x

−1
2
β2 ∂

2u

∂y2
+ (−α(y −m) + βΛ(t, x, y))

∂u

∂y
+
(

2
α

β
Λ(t, x, y)(y −m)− α

)
u

+η
(

2α(y −m)
∂u

∂y
+ 2ρ

α

β
(y −m)x|y|∂u

∂x
+ 2

α2

β2
(1− η)(y −m)2u− 2

α

β
Λ(y −m)u+ αu

)
= 0,

(14)

or, by expanding Λ and by denoting by Lt,ρ the linear partial differential operator

Lt,ρ(v) = −1
2
y2x2 ∂

2v

∂x2
− 1

2
β2 ∂

2v

∂y2
− ρβx|y| ∂

2v

∂x∂y
+ (−r(t) − 2ρ(1− η)

α

β
(y −m)|y|)x∂v

∂x

+(−(1− 2η)α(y −m) + β(ρ
µ− r(t)
|y| +

√
1− ρ2γ(t, x, y)))

∂v

∂y

+
(
r(t) + 2

α2

β2
η(1− η)(y −m)2 + 2(1− η)

α

β
(y −m)(ρ

µ− r(t)
|y| +

√
1− ρ2γ(t, x, y))− α(1− η)

)
v,

(15)

we obtain

∂u

∂t
+ Lt,ρu = 0. (16)

3. Variational formulation

3.1. Some weighted Sobolev spaces

We denote by Q the open half plane Q = R+×R, and by Q± the open quarter of plane Q± = R+×R±. Let
us consider the weighted Sobolev space V :

V =
{
v :

(√
1 + y2v,

∂v

∂y
, x|y|∂v

∂x

)
∈ (L2(Q))3

}
· (17)

This space with the norm

‖|v|‖V =

(∫
Q

(1 + y2)v2 +
(
∂v

∂y

)2

+ x2y2

(
∂v

∂x

)2
) 1

2

(18)

is a Hilbert space, and it has the following properties:
1. V is separable and reflexive. We call V ′ the dual of V ,
2. D(Q) ⊂ V and D(Q) is dense in V ,
3. V is dense in L2(Q).

In order to prove the point 2, we first make the change of variable (z, y) = (log(x), y), so v ∈ V ⇔ ṽ ∈ Ṽ where
ṽ(z, y) = v(exp(z), y) and

Ṽ =
{
w :

(√
1 + y2w exp(z/2),

∂w

∂y
exp(z/2), |y|∂w

∂z
exp(z/2)

)
∈ (L2(R2))3

}
·
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Proving the point 2 is equivalent to proving that C∞0 (R2) is dense in Ṽ , equipped with the norm ‖w‖Ṽ =(∫
R2 exp(z)

(
(1 + y2)w2 + (∂w∂y )2 + y2(∂w∂z )2

)) 1
2
. But this statement is a consequence of a eneral result by

Friedrichs (Th. 4.2 in [8]).
We also have the estimate

Lemma 1. Let v be a function in V . Then∫
Q

y2v2 ≤ 4
∫
Q

y2x2

(
∂v

∂x

)2

· (19)

so the semi-norm

‖v‖V =

(∫
Q

v2 +
(
∂v

∂y

)2

+ x2y2

(
∂v

∂x

)2
) 1

2

(20)

is in fact a norm in V , equivalent to ‖|.|‖.

Proof. It is enough to prove (19) for functions in D(Q). Let v be a function in D(Q), we have that∫
Q

y2v2 = −2
∫
Q

xy2 ∂v

∂x
v

and the result stems from the Cauchy-Schwarz inequality. �
Remark 1. The inequality (19) holds when Q is replaced with R+ × I and I is any interval.

It is also possible to define V0,± as the closure of D(Q±) in V and we call V ′0,± the dual of V0,±. We have
the Hardy inequality:

∀v ∈ V0,±, ‖v
y
‖L2(Q±) ≤ 2‖∂v

∂y
‖L2(Q±). (21)

Lemma 2. The operator v → βx∂v∂x is continuous from V into V ′, and from V0,± into V ′0,±.

Proof. Call X and Y the differential operators

X(v) = xy
∂v

∂x
+ β

∂v

∂y
, Y (v) = xy

∂v

∂x
− β ∂v

∂y
, (22)

The operators X and Y are continuous operators from V into L2(Q) and their adjoints are

XT (v) = −xy ∂v
∂x
− β ∂v

∂y
− yv = −X(v)− yv, Y T v = −xy ∂v

∂x
+ β

∂v

∂y
− yv = −Y (v)− yv. (23)

Consider the commutator [X,Y ] = XY − Y X : it can be checked that

[X,Y ](v) = 2βx
∂v

∂x
· (24)

Therefore, for v ∈ V and w ∈ D(Q),〈
2βx

∂v

∂x
,w

〉
= −

∫
Q

Y (v)(X(w) + yw) +
∫
Q

X(v)(Y (w) + yw), (25)
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and from (19), there exists a constant C such that

|〈2βx∂v
∂x
,w〉| ≤ C‖v‖V ‖w‖V .

To conclude, we use the density of D(Q) into V . The proof of the second assertion is identical. �
Proposition 1. Assume that r is a bounded function of time and that γ is bounded by a constant. The operator
Lt,0 is a bounded linear operator from V into V ′ with a constant independent of t.

Proof. Consider 〈Lt,0v, w〉 for v ∈ V and w ∈ D(Q). We have to prove that for a constant C, |〈Lt,0v, w〉| ≤
C‖v‖V ‖w‖V . We consider all the terms in (15) separately. The only term for which the continuity does not stem
from an integration by part, a Cauchy-Schwarz inequalitiy and possibly Lemma 1, is the term 〈−r(t)x∂v∂x , w〉;
but from Lemma 2, the operator x∂v∂x is continuous from V into V ′.

For the second assertion of the Proposition 1, we proceed in the same way, but we need also the Hardy
inequality (21). �

3.2. The uncorrelated case

Proposition 2. Assume that r is a bounded function of time and that γ is bounded by a constant Γ. Assume
that α > β, then there exist two positive constants C and c independent on t and two constants 0 < η1 < η2 < 1
such that, for η1 < η < η2 and for any v ∈ V ,

〈Lt,0v, v〉 ≥ C‖v‖2V − c‖v‖2L2(Q). (26)

Proof. We can write

〈Lt,0v, v〉 =
6∑
i=1

Ii

with

I1 = −1
2

〈
x2y2 ∂

2v

∂x2
v

〉
, I2 = −β

2

2

〈
∂2v

∂y2
, v

〉
, I3 = −r(t)

〈
x
∂v

∂x
, v

〉
,

I4 =
∫
Q

(−α(1− 2η)(y −m) + βγ(t, x, y))v
∂v

∂y
,

I5 =
∫
Q

(
r(t) + 2(1− η)

α

β
(y −m)γ(t, x, y)− α(1− η)

)
v2,

I6 = 2
α2

β2
η(1− η)

∫
Q

(y −m)2v2,

I1 =
1
2

∫
Q

x2y2

(
∂v

∂x

)2

+
∫
Q

xy2v
∂v

∂x
=

1
2

∫
Q

x2y2

(
∂v

∂x

)2

+
1
2

∫
Q

xy2 ∂v
2

∂x
=

1
2

∫
Q

x2y2

(
∂v

∂x

)2

− 1
2

∫
Q

y2v2,

I2 =
β2

2

∫
Q

(
∂v

∂y

)2

, I3 =
r(t)
2

∫
Q

v2,

I4 =
α

2
(1− 2η)

∫
Q

v2 + β

∫
Q

γ(t, x, y)v
∂v

∂y
≥ α

2
(1− 2η)

∫
Q

v2 − 1
2
βΓ
(
ζ‖v‖2L2(Q) +

1
ζ
‖∂v
∂y
‖2L2(Q)

)
,
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where ζ is an arbitrary positive number. Similarly,

I5 = (r(t) − α(1− η))‖v‖2L2(Q) + 2(1− η)
α

β

∫
Q

(y −m)γ(t, x, y)v2

≥ (r(t) − α(1− η)− 2(1− η)
α

β
Γ(|m|+ 1

2
ζ))‖v‖2L2(Q) − (1− η)

αΓ
ζβ
‖yv‖2L2(Q),

and

I6 ≥ 2
α2

β2
η(1− η)

(
‖yv‖2L2(Q) +m2‖v‖2L2(Q) − |m|

(
ζ‖v‖2L2(Q) +

1
ζ
‖yv‖2L2(Q)

))
.

If α > β, it is possible to choose C, 0 < C < 1
2 and η1, η2, 0 < η1 < η2 < 1, such that for any η with η1 < η < η2

and for ζ large enough

2
α2

β2
η(1− η)

(
1− |m|

ζ

)
− 1

2
− (1− η)

αΓ
ζβ

> C

and at the same time

β

2

(
β − Γ

ζ

)
> C.

Then the estimate (26) follows by fixing ζ. �
Consider now the pricing problem for a European vanilla put, whose payoff function is P0(x, y) = (x−K)−.

After the change of unknown (13), the initial condition for u is

u(0, x, y) = u0(x, y) = (x−K)−e−(1−η) (y−m)2

2ν2 . (27)

More generally, it is possible to consider any payoff function such that the corresponding u0 belongs to L2(Q).
The boundary value problem for u is (16), with (27).

Theorem 1. Assume that α > β and that η has been chosen as in Proposition 2. Then there exists a unique
u in L2(0, T ;V ) ∩ C0([0, T ];L2(Q)), with ∂u

∂t ∈ L2(0, T ;V ′) such that, in the sense of the distributions in time,

d
dt

(u, v) + 〈Lt,0u, v〉 = 0 ∀v ∈ V (28)

and

u(t = 0) = u0. (29)

The mapping u0 7→ u is continuous from L2(Q) to L2(0, T ;V )∩C0([0, T ];L2(Q)). Furthermore, u satisfies (16)
in the sense of distributions.

Proof. With Propositions 1 and 2, the proof comes from the general result of J.L. Lions and E. Magenes [2,9].
The fact that u satisfies (16) in the sense of distributions comes from the density of D(Q) in V . �
Remark 2. When Theorem 1 can be applied, the partial differential equation (16) holds in L2(0, T ;V ′).

Remark 3. The ratio α2

β2 is exactly rate of mean reversion
asymptotic variance of the volatility . The assumption in Theorem 1 says

that the rate of mean reversion should not too small compared with the asymptotic variance of the volatility.
Moreover, the condition is usually satisfied in practice, since α is often much larger than the asymptotic
variance β2

α .
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Remark 4. By using (19), it is possible to improve on the condition α
β > 1. Indeed, the condition α

β >
√

3
2 is

sufficient for proving Theorem 1.

Let us now discuss the special case when r is constant. In this case, it is possible to use results on semi-
groups in order to get more information on u. So let us call (D,At = −Lt,0) the family of unbounded operators
in L2(Q):

At = A1 +A2,t (30)

A1v =
1
2
y2x2 ∂

2v

∂x2
+

1
2
β2 ∂

2v

∂y2
+ rx

∂v

∂x
− 2

α2

β2
η(1− η)y2v + α(1− 2η)y

∂v

∂y

A2,tv = −((1− 2η)m+ β(γ(t, x, y)))
∂v

∂y

−
(
r + 2

α2

β2
η(1− η)(−2my +m2) + 2(1− η)

α

β
(y −m)γ(t, x, y)− α(1− η)

)
v

and D is the domain of At:

D = {v ∈ V ;A1v ∈ L2(Q)}·

Note that A2,t is a bounded operator from V to L2(Q), with a constant independent of t. It is clear that D is
dense in L2(Q) because D contains D(Q).

From (26), there exists a constant c > 0 large enough and a constant C > 0 such that for all t, ((cI −
At)v, v)L2(Q) ≥ C‖v‖2V for all v in D. Thus the operator (D,−cI +At) is dissipative in L2(Q), see [2, 3].

Also for all f ∈ L2(Q) the Lax-Milgram Theorem tells us that there exists a unique u ∈ V such that
(cI + Lt,0)u = f and that f 7→ u is a bounded operator from L2(Q) to V , with a constant independent of t.
This implies that A1u ∈ L2(Q), therefore u ∈ D and the mapping f 7→ u is bounded from L2(Q) to D, with a
constant independent on t. Thus the graph of −cI + At is closed, and the operator −cI + At is m-dissipative,
so if t is fixed −cI +At is the infinitesimal generator of a contraction semi-group, see [2,3]. Furthermore, since
At is a lower order perturbation of the constant in time operator A1, it is possible to use the general results of
Kato (see for example [10], Th. 3.1, p. 135).

Theorem 2. With the assumptions of Theorem 1, suppose that r is constant and γ belongs to C0([0, T ], L∞(Q)).
If u0 belongs to D then the solution of (28) and (29) given by Theorem 1 belongs also to C1((0, T );L2(Q)) ∩
C0([0, T ];D) and satisfies the equation

d
dt
u−Atu = 0 (31)

for each t ∈ (0, T ].

From now on, we shall suppose that the assumptions of Theorems 1 and 2 are satisfied.

Remark 5. It is possible to prove the same result when the rate r is a Lipschitz continuous function of time.
For that, we need to study more precisely the domain of At. This will be the topic of a forthcoming work, [1].
In particular, if r is bounded from below by a positive constant, and on slightly stronger condition on α

β , it is
possible to characterize the domain of At.

Remark 6. Unfortunately, the higher order part of the operator At namely A1 is not a lower order perturbation
of an autodjoint operator. Therefore, it does not seem possible to use the results on analytic semi-groups
(see [3, 10]), and to prove a smoothing effect.
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With the assumptions of Theorem 1, let us call P the function

P = u(T − t, x, y)e(1−η) (y−m)2

2ν2

where u is the solution of (28), (29). It is clear that P is a solution of (5), (11) in a weak sense.
In order to prove bounds on P , we need to state a weak maximum principle: for this, we need to truncate

the domain in the y-direction. We call QM the half-strip QM = R+ × (−M,M) and VM the Hilbert space

VM =
{
v :

(
v,
∂v

∂y
, x|y|∂v

∂x

)
∈ (L2(QM ))3

}
(32)

and V0,M the completion of D(QM ) in VM .

Remark 7. The bound (26) holds in V0,M , with the same constants.

Thanks to Remark 7, we obtain a similar result as Theorem 1, replacing V by V0,M :

Lemma 3. There exists a unique function uM in L2(0, T ;V0,M)∩C0([0, T ];L2(QM )), with ∂uM
∂t ∈ L2(0, T ;V ′0,M)

such that, in the sense of the distributions

∂uM
∂t

+ Lt,0uM = 0 (33)

and

uM(t = 0, x, y) = u0(x, y). (34)

We extend uM by zero in Q\QM and we still call uM the extension. Thanks to Remark 7, its is possible to
prove:

Lemma 4. Under the same assumptions as in Theorem 1, the sequence uM converges to the solution u of (28),
(29) in L2(0, T ;V ) ∩ C0([0, T ];L2(Q)), as M → +∞.

Lemma 5 (maximum principle). With the same assumptions as in Theorem 2, let p be a function such that
for any parameter ε > 0, pe−ε log2(x) ∈ C0([0, T ], L2(QM )) ∩ L2(0, T ;VM) ∩ C1((0, T ], L2(QM )), ∂p

∂t e
−ε log2(x) ∈

L2(0, T ;V ′M) and such that

p(0, x, y) ≤ 0 a.e.,

p(t, x,±M) ≤ 0,

and

∂p

∂t
+ Lt,0p ≤ 0,

in D′((0, T )×QM ). Then p(t, x, y) ≤ 0 a.e.

Proof. The proof is done by adapting an argument in [13]. It consists of taking e−
ζ

2T−t log2(x)−ztp+1t>τ as a
test-function in the equation satisfied by p, where 0 < ζ < 1, and z > 0. For brevity, we call φ the function

φ(x, t) =
ζ

2T − t log2(x)− zt,
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and χ the function χ = e−
φ
2 p+. After some computations, we obtain that∫ t

τ

∫
QM

1
2
∂χ2

∂t
+
∫ t

τ

〈Lt,0χ, χ〉+
∫ t

τ

∫
QM

κ(t, x, y)χ2 ≤ 0, (35)

where κ is given by

κ(t, x, y) =
1
2
z +

ζ2

2(2T − t)2
log2(x)

(
1
ζ
− y2

)
− (y2 − r) ζ

(2T − t) log(x) + ξ(t, x, y)

and ξ is a bounded function, independent of ζ and z. We choose two values x1 < 1 and x2 > 1 such that, for
x ∈ (0, x1) ∪ (x2,+∞), 4T |y2 − r| < 1

2 | log(x)|. We call S1 the set S1 = (0, x1) ∪ (x2,+∞) and S2 = [x1, x2]

κ(t, x, y) ≥ ζ

2(2T − t)2
log2(x)

(
1− ζy2 − 4T max

x∈S1

|y2 − r|
| log(x)|

)
+

1
2
z −max |ξ(t, x, y)| − ζ max

x∈S2

∣∣∣∣ y2 − r
(2T − t) log(x)

∣∣∣∣ .
But 4T maxx∈S1

|y2−r|
| log(x)| ≤

1
2 , so if we choose ζ small enough, 1 − ζy2 − 4T maxx∈S1

|y2−r|
| log(x)| ≥ 0 for all y ∈

(−M,M). For such a ζ, we choose z large enough such that

〈Lt,0χ, χ〉+
∫
QM

(
1
2
z −max |ξ(t, x, y)| − ζ max

x∈S2

∣∣∣∣ y2 − r
(2T − t) log(x)

∣∣∣∣)χ2 ≥ 0

for all values of t in (0, T ). For these choices of ζ and z, the equation (35) implies that

1
2

(
‖χ(t)‖2L2(QM ) − ‖χ(τ)‖2L2(QM )

)
≤ 0.

Therefore, by letting τ tend to zero, we obtain that χ(t) = 0 a.e. in x, because χ(t = 0) = 0 and χ ∈
C0([0, T ], L2(QM )). �
Proposition 3. Under the same assumptions as in Theorem 2, the function

P = u(T − t, x, y)e(1−η)
(y−m)2

2ν2

where u is the solution of (28), (29), satisfies(
x−Ke−r(T−t)

)
−
≤ P (t, x, y) ≤ Ke−r(T−t). (36)

Proof. The proof is done with the maximum principle (Lem. 5). Let us prove the upper bound first: let

us call χM the function χM = uM − Ke−rte−(1−η) (y−m)2

2ν2 . It can be seen that χM (t = 0) ≤ 0 and that
∂χM
∂t + Lt,0χM = 0 in the sense of distributions. Also, χM (t, x,±M) ≤ 0. To apply Lemma 5, we need

that ∂χM
∂t ∈ C0((0, T ], L2(QM )), which is not true in general. However, it is possible to approximate u0 in

L2(QM) by a smooth function ū0 vanishing near y = ±M and in the domain of the operator and such that

ū0 ≤ e−(1−η) (y−m)2

2ν2 . Calling ūM the solution of the Cauchy problem with data ū0, it is possible to apply

Lemma 5 thanks to a result similar to Theorem 2, and to prove that a.e. ūM −Ke−rte−(1−η) (y−m)2

2ν2 ≤ 0. Since
the mapping u0 7→ u is continuous from L2(QM) to C0([0, T ], L2(QM )) ∩ L2([0, T ], V0,M), we also have χM ≤ 0
a.e.

The upper bound in (36) follows by passing to the limit when M goes to infinity, thanks to Lemma 4.
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The lower bound is obtained in the same way: we call ũM the function in L2(0, T ;VM)∩C0([0, T ];L2(QM )),
with ∂uM

∂t ∈ L2(0, T ;V ′0,M) such that, in the sense of the distributions in time,〈
∂ũM
∂t

, v

〉
+ 〈Lt,0ũM , v〉 = 0 ∀v ∈ V0,M ,

ũM (t, x,±M) = (Ke−rt − x)+e−(1−η) (M−m)2

2ν2

and

ũM(t = 0, x, y) = u0(x, y).

It is possible to extend ũM by (Ke−rt−x)+e−(1−η) (y−m)2

2ν2 out of QM and the extension belongs to L2(0, T ;V )∩
C0([0, T ];L2(Q)). We still call ũM the extension. Under the same assumptions as in Theorem 1, the sequence
ũM converges to the solution u of (28), (29) in L2(0, T ;V ) ∩ C0([0, T ];L2(Q)), as M → +∞. We call χ̃M the

function χ̃M = ũM − (Ke−rt − x)e−(1−η) (y−m)2

2ν2 . Here again, χ̃(t = 0) ≥ 0, χ̃(t, x,±M) ≥ 0 and ∂χ̃
∂t +Lt,0χ̃ = 0

in the sense of distributions. By reproducing the argument above, we conclude exactly as above that χ̃ ≥ 0.
By taking also e−θtu− for θ ≥ 0 large enough, as a test-function in the equation satisfied by u, we obtain that

u ≥ 0. Therefore u ≥ (x−Ke−rt)−e−(1−η) (y−m)2

2ν2 and the lower bound is obtained. �
In the remaining part of Section 3.2, we shall prove additional regularity: we take formally the derivative

with respect to x of the equation satisfied by P , then we study the solution of this new problem, and deduce
regularity for P .

Hereafter, we assume for simplicity that γ̃ does not depend on x. calling R = ∂P
∂x , and taking formally the

derivative with respect to x of the equation satisfied by P , we obtain

∂R

∂t
+

1
2
y2 ∂

∂x

(
x2 ∂R

∂x

)
+

1
2
β2 ∂

2R

∂y2
+ rx

∂R

∂x
+ (α(m− y)− βγ̃(t, y))

∂R

∂y
= 0, 0 ≤ t < T, x > 0, y ∈ R. (37)

We call w the function w(t, x, y) = R(T − t, x, y)e−(1−η) (y−m)2

2ν2 : we have

∂w

∂t
+Ht,0w = 0, (38)

where

Ht,0(w)= − 1
2y

2 ∂
∂x

(
x2 ∂w

∂x

)
− 1

2β
2 ∂2w
∂y2 + (βγ(t, y)− (1− 2η)α(y −m))∂w∂y

− rx∂w∂x +
(

(1− η)
(

2α
2

β2 η(y −m)2 + 2αβ (y −m)γ(t, y)
)
− α(1− η)

)
w.

(39)

Proposition 4. Under the same assumptions as in Theorem 1, the equation (38), with the initial condition

w(t = 0, x, y) = −1{x≤K}e
−(1−η)

(y−m)2

2ν2 (40)

has a unique weak solution in L2(0, T ;V ) ∩ C0([0, T ];L2(Q)), with ∂w
∂t ∈ L2(0, T ;V ′).

Proof. The proof follows the same lines as that of Theorem 1. Concerning the partial differential operator, the
term − 1

2y
2 ∂
∂x

(
x2 ∂w

∂x

)
is in divergence form, so we have no additional restrictions on α and β. �
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Also, the analogue of Theorem 2 can be applied, so if the condition (40) is replaced by w(t = 0) = w0 where
w0 ∈ D then the weak solution given by Proposition 4 belongs to C1((0, T ], L2(Q)) ∩ C0([0, T ], D) (we have
assumed that γ is continuous in time).

Lemma 6. Under the same assumptions as in Proposition 4, there exists a unique wM in L2(0, T ;V0,M) ∩
C0([0, T ];L2(QM )), with ∂wM

∂t ∈ L2(0, T ;V ′0,M) defined as the weak solution of

∂wM
∂t

+Ht,0wM = 0, in QM, (41)

with the initial condition

wM (t = 0, x, y) = −1{x≤K}e
−(1−η) (y−m)2

2ν2 , in QM. (42)

We extend wM by zero in Q\QM and we still call wM the extension.

Lemma 7. Under the same assumptions as in Proposition 4, the sequence wM converges to the weak solution
w of (38), (40) in L2(0, T ;V ) ∩ C0([0, T ];L2(Q)), as M → +∞.

We introduce the function Ψ ∈ C0([0, T ];L2(−M,M)) ∩ C1((0, T ];L2(−M,M)) ∩ L2(0, T ;H1
0 (−M,M)) as

the weak solution of the parabolic problem

∂Ψ
∂t
− 1

2
β2 ∂

2Ψ
∂y2

+ (−α(y −m) + βγ(t, y))
∂Ψ
∂y

= 0, t ∈ (0, T ), y ∈ (−M,M),

Ψ(0, y) = K y ∈ (−M,M).
(43)

Note that Ψ ≥ 0 a.e.
By using the maximum principle, we can prove

Lemma 8. The function uM defined by (33), (34) satisfies

(Ψ(t, y)e−rt − x)+e−(1−η) (y−m)2

2ν2 ≤ uM(t, x, y) ≤ Ψ(t, y)e−(1−η) (y−m)2

2ν2 e−rt. (44)

It can be checked that the function ũM(t, x, y) = Ψ(t, y)e−(1−η) (y−m)2

2ν2 e−rt+
∫ x

0 wM (t, ξ, y)dξ is such that for all
ε > 0, ũMe−ε log2(x) ∈ L2(0, T ;V0,M)∩C0([0, T ];L2(QM )) and that ∂

∂t ũMe−ε log2(x) ∈ L2(0, T ;V ′0,M). Moreover,
for any φ ∈ C∞([0, T ]×QM), with compact support in (x, y),〈

∂ũM
∂t

+ Lt,0ũM ,
∂φ

∂x

〉
= 0. (45)

This proves that ∂ũM
∂t + Lt,0ũM = g(t, y). Furthermore

ũM(t = 0) = uM(t = 0),

and

ũM(t, x,M) = ũM(t, x,−M) = 0.
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Again, by using the maximum principle, it is possible to prove that ũM = uM + f(t, y), where

∂f

∂t
− 1

2
β2 ∂

2f

∂y2
+ (−(1− 2η)α(y −m) + β(γ(t, y)))

∂f

∂y

+
(
r + 2α

2

β2 η(1− η)(y −m)2 + 2(1− η)αβ (y −m)γ(t, y)− α(1− η)
)
f = g(t, y),

f(0, y) = 0 y ∈ (−M,M),
f(t,±M) = 0.

(46)

Also, from (44), we have f = 0. We have proved:

Lemma 9. The functions uM and wM defined above satisfy

uM(t, x, y) = Ψ(t, y)e−(1−η) (y−m)2

2ν2 e−rt +
∫ x

0

wM (t, ξ, y)dξ. (47)

Lemma 10. The functions u and w defined respectively by (28), (29) and (38), (40) satisfy

u(t, x, y) = Ke−(1−η) (y−m)2

2ν2 e−rt +
∫ x

0

w(t, ξ, y)dξ. (48)

Proof. From Lemmas 4 and 7, we can pass to the limit in (47). �
Finally we have proved that:

Theorem 3. Under the same assumptions as in Theorem 2 and if γ does not depend on x, the solution
of (28), (29) belongs to C0(0, T ;W1) and to L2(0, T ;W2), where W1 = H1(Q) and W2 = {w ∈ V, ∂w∂x ∈ V }.
Remark 8. It is not possible to iterate the arguments above to prove a stronger global regularity result, because
the second derivative of the initial condition with respect to x is not a square integrable function. Indeed, the
initial condition is not regular near the strike.

Remark 9. As a consequence of Theorem 3, it is possible to use standard finite elements to approximate u.

Remark 10. If γ is smooth enough, it is also possible to prove better local regularity results away from the
strike. In particular, these results show that, when using finite difference or finite element methods, it is not
necessary to refine the mesh near x = 0, as it is commonly done in the quantitative finance codes.

3.3. The correlated case

We consider now the case when ρ 6= 0.

Proposition 5. Assume that r is a bounded function of time and that γ is bounded by a constant. Assume that
the ratio ω = α

β satisfies

ω4 − 3
2
|ρ|ω3 − ω2 +

9
8
ρ2ω − 9

16
ρ2 > 0 (49)

and that

β > 4
|ρ|

1− |ρ| sup
t
|µ− r(t)|, (50)

then there exist two positive constants C and c independent on t and two constants 0 < η1 < η2 < 1 such that,
for η1 < η < η2 and for any v ∈ V0,±, where the space V0,± is defined in Section 3.3

〈Lt,ρv, v〉 ≥ C‖v‖2V0,± − c‖v‖
2
L2(Q±). (51)
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Proof. We choose v ∈ V0,+. The arguments are identical for v ∈ V0,−. We can write

〈Lt,ρv, v〉 =
10∑
i=1

Ii

where

I1 =
1
2

∥∥∥∥xy ∂v∂x
∥∥∥∥2

L2(Q+)

− 1
2
‖yv‖2L2(Q+), I2 =

β2

2

∥∥∥∥∂v∂y
∥∥∥∥2

L2(Q+)

, I3 =
r(t)
2
‖v‖2L2(Q+),

I4 =
∫
Q+

(−α(1− 2η)(y −m) +
√

1− ρ2βγ(t, x, y))v
∂v

∂y
,

I5 =
∫
Q+

(
r(t) + 2(1− η)

α

β
(y −m)

√
1− ρ2γ(t, x, y)− α(1− η)

)
v2,

I6 = 2
α2

β2
η(1− η)

∫
Q+

(y −m)2v2,

I7 = −ρβ
〈
xy

∂2v

∂x∂y
, v

〉
, I8 = 2ρ

α

β
(1− η)

∫
Q+

(m− y)xyv
∂v

∂x
,

I9 = ρβ

∫
Q+

µ− r(t)
y

v
∂v

∂y
, I10 = 2ρ(1− η)

α

β

∫
Q+

(y −m)
µ− r(t)

y
v2.

The quantities I1–I6 are bounded from below exactly as in the proof of Proposition 2, and

I7 = ρβ

∫
Q+

yx
∂v

∂y

∂v

∂x
− ρβ

2

∫
Q+

v2 ≥ −|ρ|β
2

2

∥∥∥∥∂v∂y
∥∥∥∥2

L2(Q+)

− |ρ|
2

∥∥∥∥xy ∂v∂x
∥∥∥∥2

L2(Q+)

− |ρ|β
2
‖v‖2L2(Q+),

I8 = ρ
α

β
(1− η)

∫
Q+

|y|(y −m)v2 ≥ −3
2
|ρ|α
β

(1− η)‖yv‖2L2(Q+) − |ρ|m2α

β
(1− η)‖v‖2L2(Q+).

By the Hardy’s inequality,

I9 =
ρβ

2
(µ− r(t))

∫
Q+

(
v

y

)2

≥ −2|ρ|β|µ− r(t)|
∥∥∥∥∂v∂y

∥∥∥∥2

L2(Q+)

,

I10 ≥ −2|ρ|(1− η)
α

β
|µ− r(t)|

((
1 +
|m|ζ

2

)
‖v‖2L2(Q+) + 2

|m|
ζ

∥∥∥∥∂v∂y
∥∥∥∥2

L2(Q+)

)
,

by assembling the estimates above, we obtain an equality of the type

a1

∥∥∥∥xy ∂v∂x
∥∥∥∥2

L2(Q+)

+ a2

∥∥∥∥∂v∂y
∥∥∥∥2

L2(Q+)

+ a3‖yv‖2L2(Q+) + a4‖v‖2L2(Q+) ≥ 0.

Clearly a1 = 1
2 (1−ρ) > 0. We have to bound from below the coefficients a2 and a3. The condition (49) says that

maxη limζ→∞ a3 > 0 and the condition (50) says that limζ→∞ a2 > 0. If the conditions (49), (50) are satisfied,
it is possible to choose C, 0 < C < 1

2 and η1, η2, 0 < η1 < η2 < 1, such that, for any η with η1 < η < η2 and
for ζ large enough,

a3 = −1
2

+ (1− η)
α

β

(
2
α

β
η(1− |m|

ζ
)− 3

2
|ρ| −

√
1− ρ2

Γ
ζ

)
> C,
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and at the same time,

a2 =
β

2

(
(1− |ρ|)β −

√
1− ρ2

Γ
ζ
− 4|ρ||µ− r(t)|

)
− 4|ρ|(1− η)

α

β

|m|
ζ
|µ− r(t)| > C.

Then the estimate (51) follows by fixing ζ. �
Remark 11. Here again, the assumption on the ratio α

β is usually satisfied in practice. It can be slightly
relaxed by using (19).

Consider a European vanilla put, whose payoff function is h(x, y) = (x −K)−. We have seen that if ρ 6= 0,
we have to impose the boundary condition P (t, x, 0) = (x − Ke−

R
T
t
r̂(ξ)dξ)−, which is the solution of (12) if

h(x) = (x−K)−. After the change of unknown (13), the initial condition for u is (27). Let us call

ū(t, x, y) = e−(1−η) (y−m)2

2ν2 (x−Ke−
R
t
0 r(ξ)dξ)−. (52)

Proposition 6.

∂ū

∂t
+ Lt,ρū ∈ L2(0, T ;V ′0,±).

Proof. The proof is similar as that of Proposition 1. �
Theorem 4. If the assumptions of Proposition 5 are satisfied, and if η is chosen as in Proposition 5, there
exists a unique u± in L2(0, T ;V0,±) ∩ C0([0, T ];L2(Q±)), with ∂u±

∂t ∈ L2(0, T ;V ′0,±) such that, in the sense of
the distributions,

∂u±

∂t
+ Lt,ρu± = −∂ū

∂t
−Lt,ρū (53)

and

u±(t = 0) = 0. (54)

Proof. The proof stems from the general results of [9]. �
Call u the function obtained by gluing together the functions u± and by adding to the result the function ū.

The function P (t, x, y) = u(T − t, x, y)e(1−η) (y−m)2

2ν2 satisfies (5) in Q+ and Q−.

Proposition 7. Under the assumption of Theorem 4, and if r is constant in time and γ is continuous in time,
the function P satisfies

(x−Ke−r(T−t))− ≤ P (t, x, y) ≤ Ke−r(T−t). (55)

Proof. The proof follows the same lines as that of Proposition 3. �

4. Generalization

It is possible to generalize all the results above and carry out a variational analysis for the equation (5) where
f is an arbitrary function such that:

1. f ∈W 2,∞(R), and in particular we assume that |f ′′| ≤M a.e.
2. The zeros of f are simple and there is a finite number of zeros.
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3. There exists a constant c such that

max(|f(y)|, |f ′(y)|) ≥ c. (56)

We shall not reproduce all the arguments above: instead, we shall focus on the case where ρ = 0 and only give
details for the proof of the analogue of Lemma 2. All the other results are proved exactly in the same way as
for f(y) = |y|. When ρ 6= 0, the analysis mimics exactly what has been presented above: one has to introduce
Dirichlet conditions where f(y) vanishes, and use the Hardy inequality.

So let us take ρ = 0 and consider the weighted Sobolev space V :

V =
{
v :

(√
y2 + 1v,

∂v

∂y
, xf(y)

∂v

∂x

)
∈ (L2(Q))3

}
· (57)

This space with the norm

‖v‖V =

(∫
Q

(y2 + 1)v2 +
(
∂v

∂y

)2

+ x2f(y)2

(
∂v

∂x

)2
) 1

2

(58)

is a Hilbert space, and it has the following properties:
1. V is separable and reflexive. We call V ′ the dual of V .
2. D(Q) ⊂ V and D(Q) is dense in V , (by using a result of Franchi et al. [6]).
3. V is dense in L2(Q).

We look for the weak solution of the degenerate parabolic equation

∂u

∂t
+ Lt,0u = 0,

u(t = 0) = (x−K)−e(1−η) (y−m)2

2ν2

where

Lt,0(v) = −1
2
f(y)2x2 ∂

2v

∂x2
− 1

2
β2 ∂

2v

∂y2
− r(t)x∂v

∂x
+ (−(1− 2η)α(y −m) + βγ(t, x, y))

∂v

∂y

+
(
r(t) + 2

α2

β2
η(1− η)(y −m)2 + 2(1− η)

α

β
(y −m)γ(t, x, y)− α(1− η)

)
v.

We have the estimate:

Lemma 11. Let v be a function in V . Then∫
Q

f(y)2v2 ≤ 4
∫
Q

f(y)2x2

(
∂v

∂x

)2

. (59)

Also,

Lemma 12. The operator v → βx∂v∂x is continuous from V into V ′.

Proof. Call X and Y the differential operators

X(v) = xf(y)
∂v

∂x
+ β

∂v

∂y
, Y (v) = xf(y)

∂v

∂x
− β ∂v

∂y
, (60)
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The operators X and Y are continuous operators from V into L2(Q) and their adjoints are

XT (v) = −xf(y)∂v∂x − β
∂v
∂y − f(y)v = −X(v)− f(y)v,

Y T v = −xf(y)∂v∂x + β ∂v∂y − f(y)v = −Y (v)− f(y)v.
(61)

Consider the commutator [X,Y ] = XY − Y X : it can be checked that

[X,Y ](v) = 2βxf ′(y)
∂v

∂x
· (62)

Suppose for simplicity that f has only one zero y0. When the number of zeros is not one, the modifications to
the proof are easy. There exists three positive constants c c′ and ξ such that |f ′(y)| > c and |f(y)| ≥ c|y − y0|
if |y − y0| < ξ and f(y) > c′ if |y − y0| ≥ ξ

2 . Let ψ be a smooth function such that:
1. 0 ≤ ψ ≤ 1,
2. ψ(y) = 1 if |y − y0| ≤ ξ

2 ,
3. ψ(y) = 0 if |y − y0| ≥ ξ.

For v ∈ V and w ∈ D(Q),∣∣∣∣c〈2βx
∂v

∂x
, ψ(y)w

〉∣∣∣∣ =
c

|f ′(y0)|

∣∣∣∣〈2βf ′(y0)x
∂v

∂x
, ψ(y)w

〉∣∣∣∣
≤
∣∣∣∣〈2βf ′(y0)x

∂v

∂x
, ψ(y)w

〉∣∣∣∣
≤
∣∣∣∣〈2βf ′(y)x

∂v

∂x
, ψ(y)w

〉∣∣∣∣+ 2|β|M
∫
|y − y0|ψ(y)

∣∣∣∣x∂v∂x
∣∣∣∣ |w|

≤
∣∣∣∣〈2βf ′(y)x

∂v

∂x
, ψ(y)w

〉∣∣∣∣+ 2β
M

c

∫
|f(y)|ψ(y)

∣∣∣∣x∂v∂x
∣∣∣∣ |w|.

(63)

But

|〈2βf ′(y)x
∂v

∂x
, ψ(y)w〉| = | −

∫
Q

Y (v)(X(ψ(y)w) + f(y)ψ(y)w) +
∫
Q

X(v)(Y (ψ(y)w) + f(y)ψ(y)w)|,

and ∫
|f(y)|ψ(y)

∣∣∣∣x∂v∂x
∣∣∣∣ |w| ≤ ‖v‖V ‖w‖L2(Q)

and from (59), there exists a constant C such that∣∣∣∣〈2βx
∂v

∂x
, ψ(y)w

〉∣∣∣∣ ≤ C‖v‖V ‖w‖V .
Also ∣∣∣∣〈2βx

∂v

∂x
, (1− ψ(y))w

〉∣∣∣∣ ≤ 1
c′
〈2β|f(y)|

∣∣∣∣x∂v∂x
∣∣∣∣ , (1− ψ(y))|w|〉 ≤ C‖v‖V ‖w‖V . (64)

To conclude, we add the previous two estimates and we use the density of D(Q) into V . �
With Lemma 12, it is possible to prove:

Proposition 8. Assume that r is a bounded function of time and that γ is bounded by a constant. The operator
Lt,0 is a bounded linear operator from V into V ′ with a constant independent of t.
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Thanks to Lemma 12, we can prove also the analogue of Theorem 1 for the case ρ = 0, with the same
assumption, namely α > β.

5. Numerical solution

5.1. Description of the method

All the computations below are done with f(y) = |y| and γ̃ = 0.

5.2. An uncorrelated case

We want to price a European put with the following parameters

r = 0.05, ρ = 0, α = 1, ν = 0.5, m = 0.2 K = 20, T = 1 year.

Remark 12. The choice of α = 1 is not quite realistic from a financial viewpoint, if the asset is linked to actions,
because the mean reversion rate is generally larger. When the asset corresponds to interest rates, smaller values
of α are reasonable. Larger values of α will be addressed below. When the mean reversion rate is large, it is
possible to carry out an asymptotic expansion of the solution as in [5] and we believe that the variational setting
introduced above permits to justify fully these expansions. This will be the topic of a forthcoming work. For
smaller mean reversion rates, such expansions cannot be done, and the numerical computations are useful to
understand the qualitative properties of the solutions.

The aim is to approximate P in the domain (0, x̄)× (−1.5, 1.5) for t smaller than 1. We choose x̄ = 600. For
computing the solution, we discretize the equation (5) in the larger domain (0, 600)× (−4, 4). We use artificial
Dirichlet conditions on the boundaries y = ±4. These conditions, which are obviously not satisfied by P , induce
nevertheless small errors on P in the smaller domain (0, 600)×(−1.5, 1.5) because the advection terms are strong
near the top and bottom boundaries, and directed outward, so the artificial boundary conditions just produce
a boundary layer. Indeed, the advection term in the y-direction, namely α(y−m)∂P∂y dominates very much the

diffusion term −β
2

2
∂2P
∂y2 , except in a small boundary layer, because for y = ±4 the ratio 2α(y−m)

β2 = y−m
ν2 ∼ 16.

On the boundary x = x̄, we impose ∂u
∂x (x̄) = 0. No boundary condition is needed on x = 0, because of the

degeneracy of the equation.
We have used two methods in order to discretize the problem:
1. A piecewise linear conforming finite element method on an unstructured triangular mesh. The time scheme

is a first order implicit Euler scheme and the advection terms (first order partial derivatives in x, y) are
discretized by the method of the characteristics, see [4]. One important advantage of the method of
characteristics is that it is unconditionally stable in the L2 norm. The computations were done by using
the free software FreeFem from O. Pironneau and F. Hecht [11,12].
The time step used in these calculations is one day. The mesh is refined adaptively every ten days and the
refinement is done according to the metric generated by the Hessian of the computed solution, see [12].
The method is first order accurate in time and second order accurate in the x, y variables. It is possible
to improve the method of characteristics to have also second order accuracy in time, but it has been done
here.

2. A finite difference method on a uniform mesh. The time scheme is a second order Crank-Nicolson scheme,
and the first order partial derivatives in x, y are discretized by a first order upwind scheme. Upwinding is
very important because when |y| is large, the equation is advection-dominated. A centered scheme yields
blow-up of the solution. The method is second order accurate in time and only first order accurate in x, y
because of upwinding.
The time step was set to 3.33 days, the x-step was 1, and the y-step was 0.1.
The large sparse linear systems arising in the scheme are solved iteratively by means of a bicg-stab
method [15].
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Figure 1. The price of the put for x ∈ (0, 600), y ∈ (−4, 4), computed by the finite element
method. The values of y greater than one are useless from a financial point of view, but since
we use an artificial boundary condition, the boundary of the computational domain i.e. y = ±4
needs to be far enough from the zone of practical interest. The solution has been successively
represented at ten days before the expiration date, and at t = 0. Note that the effect of the
artificial boundary conditions is limited to boundary layers. On the bottom, the adapted mesh
at these two dates.

Remark 13. A priori error estimates for finite elements for the rather similar degenerate operator ∂2

∂y2 +y2 ∂2

∂x2

are available in [7]. In this paper, Franchi et al. prove that if the mesh points are distributed uniformly in

x (xi = i
n ) and with a special law in the y-direction (yi =

√
i
n ) then the error in the operator-norm decays

like 1√
n

. In our case, we have 1
2x

2y2 ∂2

∂x2 instead of y2 ∂2

∂x2 , but we believe that in the case of interest, this
additional degeneracy will not modify the estimates of [7], because the solution is very regular near x = 0. Of
course, in order to derive estimates for the problem described in this paper, one has also to take into account
all the lower order partial differential operators in (5). This will done in a forthcoming work.

In Figure 1, we show the solutions obtained with the finite element method at different times. In Figure 2,
we show the same solution obtained with the finite difference method. The difference between the computed
solutions is not visible, but it is clear that mesh adaption in the finite element method permits a greater accuracy.
In Figure 3, we show the solutions obtained at different times where all the parameters except α are unchanged
and α = 250: here we have used the finite element method described above. The solution has a very little
dependency on y. As in [5] it should be possible to carry out an asymptotic expansion for large values of α and
to find that up to leading order, the solution satisfies an equation independent on y.
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Figure 2. On top, the price of the put for x ∈ (0, 600), y ∈ (−4, 4) computed by a Crank
Nicolson scheme with an upwinded finite difference method. The solution is represented at ten
days before the expiration date, and at t = 0. These results are in good agreement with those
obtained by the finite element method. The finite element results are more accurate because
the mesh is adaptively refined. Also, thanks to adaptive refinment, the simulation based on
finite elements takes less than a tenth of the computing time needed by the finite difference
scheme. On the bottom, zooms in the region x ∈ (0, 150), y ∈ (−1.5, 1.5). Note that the
solution is not symmetric in the variable y because m 6= 0.

Figure 3. The price of the put for y ∈ (−4, 4) and x ∈ (0, 100). The solution has been
successively represented ten days before the expiration date, and at t = 0. On the bottom, the
adapted meshes at these dates.
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Figure 4. The price of the put for x ∈ (0, 600), y ∈ (0, 4). On top, the solution computed
by a finite element method has been successively represented at 10 days before the expiration
date, and at t = 0. The solution is not correct in the upper part in the domain but the error
is restricted to a boundary layer. In the center, the mesh is adapted during the time stepping
scheme. On the bottom, the price P computed by a finite difference method one year before
the expiration date and a zoom for x ∈ (0, 150), y ∈ (0, 1.5). The two computations are in
good agreement.

5.3. A correlated case

We consider the price of a European put with the following parameters

r = 0.05, ρ = −0.5, α = 1, ν = 0.5, m = 0.2 µ = 0.15, K = 20, T = 1 year.

The function γ is taken to be zero.
In Figure 4, we show the solutions obtained at different times for positive values of y. As above, they are

computed by using a finite element method with adapted meshes.
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Figure 5. The price of the put for x ∈ (0, 100) and y ∈ (0, 1.5). The solution has been
successively represented at: ten days before the expiration date, and at t = 0.

The solution is computed in the domain (0, 600)× (0, 4).
In Figure 5, we show the solutions obtained at different times where all the parameters except α are unchanged

and α = 250. The solution varies very little with respect to time.
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