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NUMERICAL PRECISION FOR DIFFERENTIAL INCLUSIONS
WITH UNIQUENESS
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Abstract. In this article, we show the convergence of a class of numerical schemes for certain maximal
monotone evolution systems; a by-product of this results is the existence of solutions in cases which
had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non
Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of
Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
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1. Introduction and summary

In [1,3] we studied rheological models involving a dry friction term; the natural model is a system of differential
equations with a maximal monotone term and a large number of degrees of freedom; we wrote a numerical
method which was implicit with respect to the multivalued term and explicit with respect to everything else,
and we found those methods to be experimentally of order 1 with respect to the time step, and we observed
that the estimates did not depend on the number of degrees of freedom.

We found very little information in the literature on the order of precision for such methods, with the notable
exception of Lippold [16] who obtained a result relative to the order of precision for somewhat simpler systems.

In the foregoing article, we justify the order properties experimentally found, we generalize Lippold’s result
and a by-product of our analysis is a generalization of some existence and uniqueness result of Brezis [5].

Let V , H and V ′ be three separable Hilbert spaces, equipped with norms and scalar products denoted by
‖.‖, ((., .)), |.|, (., .), ‖.‖′ and ((., .))′. We denote by 〈., .〉 the duality bracket between V and V ′. We assume
that these three spaces constitute a Gelfand triple i.e.

V ↪→ H ↪→ V ′, (1.1)

where we denote by ↪→ a dense and continuous inclusion. V is a dense subspace of H. Let A be a maximal
monotone operator from V to V ′, with non empty domain D(A); its properties are described in detail in [4–6,18].
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Let B be a Lipschitz continuous and coercive mapping from V to V ′, i.e.

∃l ≥ 0 : ∀x, y ∈ V, ‖B(x)−B(y)‖′ ≤ l ‖x− y‖ , (1.2a)

∃α > 0 : ∀x, y ∈ V, 〈B(x) −B(y), x− y〉 ≥ α ‖x− y‖2 . (1.2b)

Let f be a function from [0, T ]×H to V ′, Lipschitz continuous with respect to its second argument and whose
derivative maps the bounded sets of L2(0, T ;V ) into bounded sets of L2(0, T ;V ′), i.e.:

∃L ≥ 0 : ∀t ∈ [0, T ], ∀x1, x2 ∈ H, ‖f(t, x1)− f(t, x2)‖′ ≤ L |x1 − x2| , (1.2c)

and

∀R ≥ 0, Φ(R) = sup

{∥∥∥∥∂f∂t (., v)
∥∥∥∥
L2(0,T ;V ′)

: ‖v‖L2(0,T ;V ) ≤ R
}
< +∞. (1.2d)

Let u0 belong to D(A). We make the following regularity assumption:

∃z ∈ A(u0) : f(0, u0)− z −B(u0) ∈ H. (1.2e)

We will study the differential inclusion

u̇(t) + B
(
u(t)

)
+A

(
u(t)

)
3 f
(
t, u(t)

)
, a.e. on ]0, T [, (1.3)

u(0) = u0, (1.4)

and its numerical approximation, which is defined as follows: let N be a strictly positive integer, let the time-step
be h = T/N , define tp = ph and let Up be the solution of the numerical scheme:

∀p ∈ {0, ..., N − 1}, Up+1 − Up
h

+B
(
Up+1

)
+A

(
Up+1

)
3 f (tp, Up) , (1.5)

U0 = u0. (1.6)

This scheme possesses a unique solution: indeed, A is maximal monotone and B is continuous and coercive; ac-
cording to Zeidler [18], if we denote by j the injection V ↪→ V ′, then, for all λ > 0, the operator (j + λA+ λB)−1

is defined on all of V ′ and single-valued from V ′ to V ; thus, (1.5) is equivalent to

∀p ∈ {0, ..., N − 1}, Up+1 = (j + hA+ hB)−1(
hf (tp, Up) + j (Up)

)
. (1.7)

We denote by uh the linear interpolation of the Up’s at tp. In this paper, we estimate the order of convergence
of the numerical approximation uh of u as h tends to zero.

Brezis proved in [5], the existence and the uniqueness of the solution of the differential inclusion

u̇(t) +B(u(t)) + ∂φ(u(t)) 3 g(t), a.e. on ]0, T [, (1.8)

u(0) = u0, (1.9)

where B is a pseudo-monotone mapping from the Banach space V to its dual V ′, g is a function from L2(0, T ;V ′)
and ∂φ is the sub-differential of a convex proper and lower semi-continuous function φ from V to ]−∞,+∞];
this sub-differential is defined by

∀(x, y) ∈ V × V ′, y ∈ ∂φ(x)⇐⇒ ∀z ∈ V, φ(z)− φ(x) ≥ 〈y, z − x〉 · (1.10)



NUMERICAL PRECISION FOR DIFFERENTIAL INCLUSIONS WITH UNIQUENESS 429

According to Proposition 32.17 p. 860 of [18], the sub-differential ∂φ is a maximal monotone operator from V
to V ′. The functional frame of (1.8) and (1.9) involves Banach spaces, where we use only Hilbert spaces. However,
we consider the case of a right hand side which depends on the unknown u and an operator A which is not
necessarily a sub differential.

If V = H = V ′ and A is a maximal monotone operator whose domain has non empty interior, and non
necessarily equal to a sub-differential, Brezis also proved that there exists a unique solution u ∈ W 1,1(0, T ;H)
of (1.3) and (1.4) (see Prop. 3.13 p. 107 of [6]).

If V = H = V ′, there are a few results on the convergence of uh to u: convergence of non-linear semi-
groups [11], finite difference schemes for variationnal inequalities [12]. The convergence of (1.5), (1.6) has been
proved by Crandall and Evans [7] and by Kartsatos [13] for an m-accretive operator in a Banach space. Here
our functional hypotheses are stronger, which enables us to obtain an order for the convergence.

Finite dimensional results analogous to ours can be found in [9, 10, 14] and [17]. Dontchev studied in [10] a
differential inclusion without uniqueness for which he showed that there exists a discrete solution, approximating
one of the many exact solutions with an order of precision larger than one; however, this result is non constructive
since it does not tell us how to obtain the appropriate discrete solution. The author also proposed a scheme
in order to discretize inclusions similar to (1.3) and (1.4); an order of convergence higher than one holds only
on intervals where the solution is smooth enough, which is seldom true (see Rem. 1.2); without the regularity
assumption, Dontchev obtained error estimates in O(h3/2) or in O(h2), under hypothesis that, for all x in H,
A(x) is compact, which does not hold in our study.

In [16], which inspired this work, Lippold assumed (1.2a), (1.2b), A = ∂φ and

∃λ ≥ 0, ∀x, y ∈ domφ, |φ(x) − φ(y)| ≤ λ‖x− y‖, (1.11)

in order to study the differential inclusion (1.8) and (1.9). Moreover, the right hand side g depends only on t
and belongs to H1(0, T ;V ′); Lippold’s numerical scheme is

∀p ∈ {0, ..., N − 1}, Up+1 − Up
h

+B
(
Up+1

)
+ ∂φ

(
Up+1

)
3 g (tp+1) , (1.12)

U0 = u0,N , (1.13)

and he showed that if |u0 − u0,N | = O
(√

h
)

, then

‖u− uh‖W = O
(√

h
)

; (1.14)

here, the norm ‖.‖W is defined on the Banach space W = L2(0, T ;V ) ∩ C0([0, T ],H) by

∀v ∈W, ‖v‖W = max
t∈[0,T ]

(
|v(t)|2 +

∫ t

0

‖v(s)‖2ds
) 1

2

. (1.15)

Moreover, if

g(0)−B(u0) ∈ H

holds, which is a particular case of (1.2e), and if |u0 − u0,N | = O(h) and φ is the indicatrix of a closed convex
set, i.e.

φ(x) =

{
0 if x ∈ K,
+∞ if x 6∈ K,

(1.16)
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then, Lippold showed

‖u− uh‖W = O(h). (1.17)

The choice of g (tp+1) instead of g (tp) in the right hand side of (1.12) is a minor modification which does not
change the order of convergence.

This paper is organized as follows: in Section 2, we give a simple proof of convergence of (1.5) and (1.6) to
the solution of (1.3) and (1.4), under assumptions (1.2). For this purpose, we prove that ‖uh − uk‖ is bounded
by M

√
h+ k where M does not depend on h and k. Then, we can infer that (uh)h>0 is a Cauchy sequence

and converges; moreover, the order of convergence is 1/2, which generalizes Lippold’s results [16]. This proof
provides also estimates on ‖uh‖ and ‖u̇h‖ uniformly in h which we will use in what follows. In this section,
we also prove the existence and the uniqueness of the solution of the differential inclusion (1.3) and (1.4). In
Section 3, we obtain order of precision 1 of the scheme, if A is the subdifferential of the indicatrix of a closed
convex set, which generalizes Lippold’s results [16].

The relative situation of our result and Lippold’s is more delicate than appears näıvely: assumption (1.2e) is
very strong: we show in Proposition 2.6 that it implies that u̇ belongs to L∞(0, T ;H). We may dispense with
this assumption, provided that

V = H = V ′, (1.18)

then, we find all Lippold’s results; Section 4 shows how to modify the proofs when assumption (1.18) holds; in
this case, assumption (1.2e) is automatically verified. Assumption (1.18) is important for us, since it holds for
Prandtl’s rheological model which however does not involve a coercive term B; assumption (1.18) enables us to
study the numerical scheme

∀p ∈ {0, ..., N − 1}, Up+1 − Up
h

+A
(
Up+1

)
3 f (tp, Up) , (1.19a)

U0 = u0, (1.19b)

which is an approximation of the differential inclusion

u̇(t) +A
(
u(t)

)
3 f
(
t, u(t)

)
, a.e. on ]0, T [, (1.20a)

u(0) = u0, (1.20b)

where A is maximal monotone and f satisfies (1.2c) and (1.2d).
The previous study was purely Hilbertian. In order to apply our results to Prandtl’s model, we sought

estimates in Rn equipped with the lq norm:

∀(u1, ..., un) ∈ Rn, |(u1, ..., un)|q =


(

n∑
i=1

|ui|q
)1/q

if q < +∞,

max
1≤i≤n

|ui| if q = +∞;
(1.21)

we shall denoted by lqn this space. For n = 1, it is not difficult to obtain good estimates; for an arbitrary n, if
K is a Cartesian product of non empty closed intervals

K = K1 × ...×Kn. (1.22)

Then we can obtain lqn estimates for the solution provided that the function f satisfies the following two
properties

∀t ∈ [0, T ], ∀x1, x2 ∈ Rn, |f(t, x1)− f(t, x2)|q ≤ L|x1 − x2|q. (1.23)
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and for all R ≥ 0

sup
|x|q≤R

∥∥∥∥∂f∂t (., v)
∥∥∥∥
L∞(0,T ;lqn)

< +∞. (1.24)

Moreover, in Section 5, we obtain estimates

‖u− uh‖ ≤ Chα (where α = 1/2 or 1)

with C independent of h. In Section 6, we give the exact form of the dependence of C in terms of n, q, T , L,
f(., u0) and ∂f/∂t; this enables us to show in Section 7 that, in the case of Prandtl’s model, the estimates in
maximum norm are uniform with respect to n.

In Section 8, we will present simulations which suggested us the order of convergence proved here: they show
the observation on the order which motivated this work.

Remark 1.1. The order of scheme (1.5) and (1.6) cannot be greater than one. If A = 0, B = 1, f(t, u) =
g(t, u) + u, then we have an ordinary differential equations and (1.3) and (1.4) is nothing but the explicit Euler
method known to be of order one.

Remark 1.2. The solution of (1.3) and (1.4) is not necessarily of class C1, even for a very smooth function f .
We conjecture that none of the classical schemes of order 2 can give an approximation of order 1 for this type
of problem; let us check that for Crank-Nicolson’s scheme, assuming

T = 2, B(u) = u, A = ∂ψR+ , u0 = −1 and f(t, u) = u− 1. (1.25)

The solution of (1.3) and (1.4) is given then by

∀t ∈ [0, 2], u(t) = (1− t)+
,

and the scheme

∀p ∈ {0, ..., N − 1}, Up+1 − Up
h

+ ∂ψR+

(
Up+1 + Up

2

)
3 −1,

U0 = u0,

has a solution given by

∀q ∈ {0, ..., N}, Up =

{
1− ph if p ≤ m,
(−1)p−m(1−mh) if p > m,

(1.26)

where m is the largest integer which is strictly less than 1/h+ 1/2 (see Fig. 1). Then we may write

1
h

= m+ ξ, ξ ∈ ]−1/2, 1/2]

and as h tends to zero, ξ goes through all the values in ]− 1/2, 1/2]; it is plain that∣∣∣∣1−mhh

∣∣∣∣ = |ξ|

and therefore the scheme is at most of order one.
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Figure 1. Exact and approximated solutions of system (1.3) and (1.4) under assumptions (1.25).

2. Convergence, existence, uniqueness and order 1/2

We first prove the uniqueness of the solution of (1.3) and (1.4).

Proposition 2.1. Let A be a maximal monotone operator from V to V ′, u0 ∈ D(A), with f and B verify-
ing (1.2b) and (1.2c). There exists at most one function u belonging to L2(0, T ;V ) whose derivative belongs to
L2(0, T ;V ′) and verifying (1.3) and (1.4).

Proof. This proof is based on Gronwall’s lemma. Let u1 and u2 be two solutions of (1.3) and (1.4), belonging to
L2(0, T ;V ) whose derivatives belongs to L2(0, T ;V ′). We recall that for all function u belonging to L2(0, T ;V )
whose derivative belongs to L2(0, T ;V ′) and for all v in V

〈u̇(.), v〉 =
d
dt

(u(.), v), in D′(]0, T [);

see for example [8]. We multiply the difference between (1.3) applied to u1 and (1.3) applied to u2 by u1 − u2,
we use the monotonicity, we integrate in time and we find

∀t ∈ [0, T ],
1
2
|u1(t)− u2(t)|2 +

∫ t

0

〈B(u1(s))−B(u2(s)), u1(s)− u2(s)〉ds

≤
∫ t

0

〈f(s, u1(s))− f(s, u2(s)), u1(s)− u2(s)〉ds;

According to (1.2b) and (1.2c), we have

∀t ∈ [0, T ],
1
2
|u1(t)− u2(t)|2 + α

∫ t

0

‖u1(s)− u2(s)‖2ds ≤ L
∫ t

0

|u1(s)− u2(s)|‖u1(s)− u2(s)‖ds. (2.1)

Choose ε ≤ α/L in the classical inequality

∀ε > 0, ∀a, b ∈ R, ab ≤ 1
2

(
εa2 +

b2

ε

)
, (2.2)



NUMERICAL PRECISION FOR DIFFERENTIAL INCLUSIONS WITH UNIQUENESS 433

we then obtain

∀t ∈ [0, T ],
1
2
|u1(t)− u2(t)|2 +

α

2

∫ t

0

‖u1(s)− u2(s)‖2ds ≤ L2

2α

∫ t

0

|u1(s)− u2(s)|2ds.

It is immediate now that u1 = u2.

Let us establish now estimates on uh and u̇h independently of h:

Lemma 2.2. We assume that (1.2b), (1.2c), (1.2d) and (1.2e) hold. There exists a constant M depending only
on T , L, α, Φ and u0 such that for all N ∈ N∗,

‖uh − u0‖C0([0,T ],H) ≤M, (2.3)

‖uh − u0‖L2(0,T ;V ) ≤M, (2.4)

‖u̇h‖L∞(0,T ;H) ≤M, (2.5)

‖u̇h‖L2(0,T ;V ) ≤M. (2.6)

Proof. For the discrete solution, a discrete Gronwall’s lemma enables us to estimate Up−u0 and (Up+1−Up)/h.
Let z ∈ A(u0) and

w = z +B(u0)− f(0, u0). (2.7)

The numerical scheme (1.5) can be rewritten under the form

∀p ∈ {0, ..., N − 1}, Up+1 + h
(
B
(
Up+1

)
+A

(
Up+1

))
3 hf (tp, Up) + Up. (2.8)

We multiply the difference between (2.7) and (2.8) by Up+1 − u0 and we obtain

∀p ∈ {0, ..., N − 1}, 〈Up+1 − u0, U
p+1 − u0〉+ h〈B

(
Up+1

)
−B(u0), Up+1 − u0〉 ≤

h〈f (tp, Up)− f(0, u0)− w,Up+1 − u0〉+ 〈Up − u0, U
p+1 − u0〉 ·

Thanks to the classical identification

∀x ∈ H, ∀y ∈ V, 〈x, y〉 = (x, y) , (2.9)

hypotheses (1.2b) and (1.2c), and the triangular inequality, we get∣∣Up+1 − u0

∣∣2 + hα
∥∥Up+1 − u0

∥∥2 ≤ Lh|Up − u0|
∥∥Up+1 − u0

∥∥
+ h‖f (tp, u0)− f (0, u0)− w‖′

∥∥Up+1 − u0

∥∥+
∣∣Up+1 − u0

∣∣|Up − u0|. (2.10)

Each of the three products on the right hand side of (2.10) is smaller than a linear combination of squares as
in (2.2); in each of these combinations we have to choose the parameter ε; after completing the calculations, we
obtain:

∣∣Up+1 − u0

∣∣2 + hα
∥∥Up+1 − u0

∥∥2 ≤ |Up − u0|2 +
2L2h

α
|Up − u0|2 +

2h
α

(
‖f (tp, u0)− f (0, u0)− w‖′

)2
. (2.11)

According to the discrete Gronwall’s lemma, we obtain

∀p ∈ {0, ..., N}, |Up − u0|2 + hα‖Up − u0‖2 ≤
2
α

e2L2T/α
N∑
p=0

h‖f(tp, u0)− f(0, u0)− w‖′2.
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According to assumption (1.2d), the term
∑N
p=0 h

(
‖f(tp, u0)− f(0, u0)− w‖′

)2
is bounded uniformly in N ;

thus, |Up − u0|2 + hα‖Up − u0‖2 is bounded uniformly in N and in p, which gives (2.3). By summing the
estimates (2.11) for p ∈ {0, ..., N − 1}, we can deduce (2.4).

Let us prove now (2.5) and (2.6). Denoting by V p the discrete speed defined by

∀p ∈ {0, ..., N − 1}, V p =
Up+1 − Up

h
, (2.12)

we rewrite the numerical scheme (1.5) under the form

∀p ∈ {0, ..., N − 1}, V p +A
(
Up+1

)
+B

(
Up+1

)
3 f (tp, Up) . (2.13)

We multiply the difference of (2.13) for p with (2.13) for p− 1 by V p:

∀p ∈ {1, ..., N − 1}, 〈V p − V p−1, V p〉+
1
h
〈B
(
Up+1

)
−B (Up) , Up+1 − Up〉 ≤

〈f (tp, Up)− f
(
tp−1, U

p−1
)
, V p〉 · (2.14)

As in (2.11), we obtain easily

∀p ∈ {1, ..., N − 1}, |V p|2 + hα ‖V p‖2 ≤
∣∣V p−1

∣∣2 +
2L2h

α

∣∣V p−1
∣∣2 +

2
αh
‖δp‖′

2
, (2.15)

where

δp = f
(
tp, U

p−1
)
− f

(
tp−1, U

p−1
)
. (2.16)

The discrete Gronwall’s lemma implies:

∀p ∈ {0, ..., N}, |V p|2 + hα ‖V p‖2 ≤ e2L2T/α

(∣∣V 0
∣∣2 + hα

∥∥V 0
∥∥2

+
2
αh

N−1∑
p=1

‖δp‖′
2

)
.

We denote by ṽh the function of L2(0, T ;V ) defined by

∀p ∈ {0, ..., N − 1} , ∀t ∈]tp, tp+1[, ṽh(t) = Up;

according to the Cauchy-Schwarz’s inequality, we obtain

1
h

N−1∑
p=1

‖δp‖′
2 ≤

∫ T

0

∥∥∥∥∂f∂t (s, ṽh(s)
)∥∥∥∥′2ds, (2.17)

and thus, for all p ∈ {0, ..., N}

|V p|2 + hα ‖V p‖2 ≤ e2L2T/α

∣∣V 0
∣∣2 + hα

∥∥V 0
∥∥2

+
2
α

∫ T

0

(∥∥∥∥∂f∂t (s, ṽh(s)
)∥∥∥∥′
)2

ds

 . (2.18)

Therefore, assumption (1.2e) implies that the initial discrete speed V 0 is bounded uniformly in N : indeed,
(1.2e) can be rewritten as

∃w ∈ H, w +B (u0) +A (u0) 3 f(0, u0);
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if we subtract this relation from (2.13) for p = 0, we obtain according to (1.2b),∣∣V 0
∣∣2 + αh

∥∥V 0
∥∥2 ≤ −〈w, V 0〉,

which implies immediately

1
2
|V 0|2 + αh‖V 0‖2 ≤ 1

2
|w|2. (2.19)

Finally, estimate (2.4) implies that the function ṽh belongs to a bounded subset of L2(0, T ;V ); then, thanks to
assumptions (1.2d) and relations (2.18) and (2.19), there exists a C which depends on T , L, α, Φ and u0 such
that

∀p ∈ {0, ..., N} , |V p|2 + hα ‖V p‖2 ≤ C.

This estimate implies (2.5). By summing (2.15), we obtain (2.6).

Let us prove now the convergence of the numerical scheme, which proves also the existence of the solution
of (1.3) and (1.4).

We might think that the estimates obtained at Lemma 2.2 are sufficient for passing to the limit; define
piecewise constant functions: for all p ∈ {0, ..., N − 1}

vh(t) = Up+1 on [tp, tp+1[, (2.20)

ṽh(t) = Up on [tp, tp+1[, (2.21)

fh(t) = f (tp, Up) on [tp, tp+1[ (2.22)

and let uh be the piecewise linear interpolation taking the value Up at tp. Then uh satisfies the equation

u̇h +A (vh) 3 fh −B (vh) , a.e. on [0, T ]. (2.23)

The classical method for passing to the limit requires at least the following information:

lim sup
h→0+

∫ T

0

〈fh −B (vh)− u̇h, uh〉dt ≤
∫ T

0

〈f −B (v)− u̇, u〉dt.

The term containing the time derivative can be handled by integration; the other terms cannot be handled
unless we know something about the strong convergence of uh in L2(0, T ;H); this would be true if the injection
V ↪→ H were compact. But we did not make this assumption and we do not need it.

We stated that the convergence is of order 1/2; this means that we have metric result, which is much stronger
than a topological result. In particular, we are going to prove that the sequence (uh)h>0 is a Cauchy sequence
and we shall estimate ‖uh − uk‖L∞(0,T ;H) and ‖uh − uk‖L2(0,T ;V ) in term of

√
h+ k. These estimates depend

on a couple of preliminary lemmas which strongly use the regularity assumptions.

Lemma 2.3. If assumptions (1.2b), (1.2c), (1.2d) and (1.2e) hold, then there exists a constant M1 depending
only on T , L, α, Φ and u0 such that for all h > 0

‖uh − vh‖L2(0,T ;H) + ‖uh − vh‖L2(0,T ;V ) + ‖uh − ṽh‖L2(0,T ;H) + ‖uh − ṽh‖L2(0,T ;V ) ≤M1h.

Proof. By definition of uh and vh, on the interval [tp, tp+1[

uh(t)− vh(t) = Up +
t− tp
h

(
Up+1 − Up

)
− Up+1 =

(
Up+1 − Up

)(
−1 +

t− tp
h

)
·
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Therefore, by integration over [tp, tp+1[,

∫ tp+1

tp

|uh(t)− vh(t)|2dt =
∣∣∣∣Up+1 − Up

h

∣∣∣∣2 h3

3

and similarly ∫ tp+1

tp

‖uh(t)− vh(t)‖2dt =
∥∥∥∥Up+1 − Up

h

∥∥∥∥2
h3

3
·

Thanks to (2.5), we see that

∫ T

0

|uh(t)− vh(t)|2dt =
h3

3

N−1∑
p=0

∣∣∣∣Up+1 − Up
h

∣∣∣∣2 ≤ h3

3
N‖u̇h‖L∞(0,T ;H) ≤

h2TM

3
·

Similarly, (2.6) implies

∫ T

0

‖uh(t)− vh(t)‖2dt =
h2

3

N−1∑
p=0

∥∥∥∥Up+1 − Up
h

∥∥∥∥2

h =
h2

3
‖u̇h‖2L2(0,T ;V ) ≤

h2M2

3
·

The estimates pertaining to uh − ṽh are proved in an analogous and left to the reader.

Lemma 2.4. If assumptions (1.2b), (1.2c), (1.2d) and (1.2e) hold, then there exists a constant M2 depending
only on T , L, α, Φ and u0 such that for all h > 0:

‖f (., ṽh)− fh‖L2(0,T ;V ′) ≤M2h.

Proof. The function fh is constant and equal to f (tp, Up) over [tp, tp+1[; therefore, on that interval,

f
(
t, ṽh(t)

)
− fh(t) =

∫ t

tp

∂f

∂t
(s, Up) ds.

We apply Cauchy-Schwarz inequality

(∥∥f(t, ṽh(t)
)
− fh(t)

∥∥′)2

≤ (t− tp)
∫ t

tp

(∥∥∥∥∂f∂t (s, Up)
∥∥∥∥′
)2

ds.

We integrate this inequality over [tp, tp+1[, obtaining

∫ tp+1

tp

(∥∥f(t, ṽh(t)
)
− fh(t)

∥∥′)2

dt ≤ h2

2

∫ tp+1

tp

(∥∥∥∥∂f∂t (s, Up)
∥∥∥∥′
)2

ds.

If we sum these inequalities with respect to p, we get

∫ T

0

(∥∥f(t, ṽh(t)
)
− fh(t)

∥∥′)2

dt ≤ h2

2

∫ T

0

(∥∥∥∥∂f∂t (s, ṽp(s))
∥∥∥∥′
)2

ds;
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otherwise, we have

‖ṽh‖L2(0,T ;V ) ≤ ‖ṽh − uh‖L2(0,T ;V ) + ‖uh − u0‖L2(0,T ;V ) + ‖u0‖L2(0,T ;V ) ≤M1T +M +
√
T‖u0‖.

Then, we have, according to (1.2d),∫ T

0

(∥∥f(t, ṽh(t)
)
− fh(t)

∥∥′)2

dt ≤ h2

2

(
Φ
(
M1T +M +

√
T‖u0‖

))2

,

which concludes the proof of the lemma.

We are now able to estimate the difference uh − uk for all h, k.

Proposition 2.5. If assumptions (1.2b), (1.2c), (1.2d) and (1.2e) hold, then there exists a constant M3 de-
pending only on T , L, α, Φ and u0 such that for all h, k and all t in [0, T ]:

|uh(t)− uk(t)|2 +
∫ t

0

‖uh(s)− uk(s)‖2ds ≤M3(h+ k). (2.24)

Proof. The equations satisfied respectively by uh and uk are

u̇h +Avh +Bvh 3 fh, (2.25)

u̇k +Avk +Bvk 3 fk. (2.26)

If we subtract (2.26) from (2.25), allowing for the usual abuse of notations, and multiply by vh − vk, we obtain
the inequality

(u̇h − u̇k, vh − vk) + α‖vh − vk‖2 ≤ 〈fh − fk, vh − vk〉 · (2.27)

The first term in the left hand side of (2.27) is integrated over [0, t] and rewritten as

1
2
|uh(t)− uk(t)|2 +

∫ t

0

(u̇h − u̇k, vh − uh − vk + uk) ds.

But we can estimate the absolute value of the above integral by Cauchy-Schwarz inequality∣∣∣∣∫ t

0

(u̇h − u̇k, vh − uh − vk + uk) ds
∣∣∣∣

≤
(
‖u̇h‖L2(0,T :H) + ‖u̇k‖L2(0,T :H)

)(
‖vh − uh‖L2(0,T :H) + ‖vk − uk‖L2(0,T :H)

)
≤ 2MM1(h+ k).

In order to estimate the integral over [0, t] of the right hand side of (2.27), we apply the triangle inequality
and (1.2c)

‖fh − fk‖′ ≤ ‖fh − f (., ṽh)‖′ + ‖fk − f (., ṽk)‖′ + L |uh − ṽh|+ L |uk − ṽk|+ L |uh − uk| .

Therefore, by Cauchy-Schwarz inequality,

∫ t

0

〈fh − fk, vh − vk〉ds ≤ 2
(
(M2(h+ k) + LM1(h+ k)

)(∫ t

0

‖vh − vk‖2ds
) 1

2

+ L

∫ t

0

|uh − uk| ‖vh − vk‖ds. (2.28)
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We apply once again the classical inequality (2.2) with parameter ε1 in the first product of the right hand side
of (2.28) and ε2 in the second one; then

1
2
|uh(t)− uk(t)|2 + α

∫ t

0

‖vh(s)− vk(s)‖2ds ≤ 1
ε1

(
(M2 + LM1)(h+ k)

)2
+ ε1

∫ t

0

‖vh(s)− vk(s)‖2ds+
L

2ε2

∫ t

0

|uh(s)− uk(s)|2ds+
Lε2

2

∫ t

0

‖vh(s)− vk(s)‖2ds+ 2MM1(h+ k).

If we chose ε1 and ε2 such that ε1 + Lε2/2 < α, we obtain the following Gronwall’s inequality

1
2
|uh(t)− uk(t)|2 +

(
α−

(
ε1 +

Lε2

2

))∫ t

0

‖vh(s)− vk(s)‖2ds

≤ (h+ k)

(
2MM1 +

(M2 + LM1)2T

ε1

)
+

L

2ε2

∫ t

0

|uh(s)− uk(s)|2ds.

This implies immediately the estimate

1
2
|uh(t)− uk(t)|2 +

(
α−

(
ε1 +

Lε2

2

))∫ t

0

‖vh(s)− vk(s)‖2ds ≤M ′3(h+ k),

where M ′3 depends only on L, T , α, M , Φ and u0. If we wish the estimate
∫ t

0 ‖uh(s)− uk(s)‖2ds, we observe that
we already know estimate on ‖uh − vh‖L2(0,T ;V ), ‖vh − vk‖L2(0,T ;V ) and ‖vk − uk‖L2(0,T ;V ) and the proposition
is proved.

Proposition 2.6. Assume that (1.2) holds. There exists a unique solution u of (1.3) and (1.4) in C0([0, T ], V )
such that u̇ belongs to L∞(0, T ;H). Moreover, if we denote by uh the approximation defined by (1.5) and (1.6),
we have

lim
h→0+

max
t∈[0,T ]

|u(t)− uh(t)|2 +
∫ t

0

‖u(s)− uh(s)‖2ds = 0. (2.29)

Proof. The uniqueness of the solution is already proved. Thanks to (2.3) trough (2.6), we extract a subsequence
still denoted by (uh)h>0 which converges in the following sense to a certain function u:

uh ⇀ u in L∞(0, T ;H) weak ∗, (2.30)

uh ⇀ u in L2(0, T ;V ) weak , (2.31)

u̇h ⇀ u̇ in L∞(0, T ;H) weak ∗, (2.32)

u̇h ⇀ u̇ in L2(0, T ;V ) weak . (2.33)

Otherwise, the theory of maximal monotone operators from a Hilbert space V to its dual V ′ is isomorphic to
the standard theory of maximal monotone operators in a Hilbert space H [6]; let indeed I the duality map from
V to V ′ defined by

〈Iu, v〉 = ((u, v)), ∀u, v ∈ V ;

the interpolated space [V, V ′]1/2 coincides with H [15]; it is a classical that the operator I1 which cöıncides
with I on D (I1) = I−1H is a self adjoint and that I1/2 is a isometry from V to H and its extension is also
an isometry from H to V ′. Then A is maximal monotone from V to V ′ if and only if I−1/2

1 AI−1/2
1 is maximal
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monotone in H. Then, Proposition 2.2 p. 23 of [6] can be translated into the following criterion: A is maximal
monotone from V to V ′ if and only if the image of j + A is equal to V ′ where j is the injection V ↪→ V ′; the
proof of this assertion is left to the reader. Similarly, if A is maximal monotone from V to V ′, the operator A
defined by

D(A) =
{
u ∈ L2(0, T ;V ) : u(t) ∈ D(A), a.e

}
and

g ∈ A(u)⇐⇒ a.e g(t) ∈ A
(
u(t)

)
is maximal monotone from L2(0, T ;V ) to L2(0, T ;V ′); see example 2.3.3 p. 25 of [6] for details. Finally, the
weak convergence argument of Proposition 2.5 p. 27 of [6] is also readily translated.

According to Proposition 2.5, (uh)h>0 is a Cauchy sequence in the Banach spaceW = L2(0, T ;V ) ∩ C0([0, T ],H)
and there exists v ∈W such that

lim
h→0

uh = v in W,

for the norm ‖.‖W defined by (1.15). According to (2.30) trough (2.33), we have v = u. Define step functions
vh ∈ L2(0, T ;V ) and fh ∈ L2(0, T ;V ′) by (2.20) and (2.22). It is plain that vh converges strongly to u in
L2(0, T ;V ) and fh converges strongly to f(., u) in L2(0, T ;V ′); u̇h converges weakly to u̇ in L2(0, T ;V ′) and
B(vh) converges strongly to B(u) in L2(0, T ;V ′). We infer from

fh − u̇h −B(uh) ∈ A(uh),

and the strong convergence of uh to u in L2(0, T ;V ) that in the limit

f(., u)− u̇−B(u) ∈ A(u).

According to the initial condition (1.6), we have

u(0) = u0.

Thus, u is solution of (1.3) and (1.4).

We obtain easily the order 1/2 of convergence:

Proposition 2.7. If assumptions (1.2) hold, then scheme is of order 1/2, i.e.: there exists a constant C such
that

∀h > 0, max
t∈[0,T ]

(
|u(t)− uh(t)|2 +

∫ t

0

‖u(s)− uh(s)‖2ds
) 1

2

≤ C
√
h. (2.34)

Proof. Indeed, thanks to estimate (2.24) for k → 0 and (2.29), we obtain

max
t∈[0,T ]

|u(t)− uh(t)|2 +
∫ t

0

‖u(s)− uh(s)‖2ds ≤M3h. �
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3. The scheme is of order one if K is a non empty closed convex subset

of V and if A = ∂ψK

In this section, we assume that K is a non empty closed convex subset of V and that A is the subdifferential
of the indicatrix of the convex K defined by (1.16). In this particular case, definition (1.10) is equivalent to:

∀(x, y) ∈ K × V ′, y ∈ ∂φ(x)⇐⇒ ∀z ∈ K, 〈y, x− z〉 ≥ 0, (3.1)

and

∀x 6∈ K, ∂ψK(x) = ∅. (3.2)

The following characteristic property of ∂ψK holds:

∀x ∈ K, 0 ∈ ∂ψK(x). (3.3)

Proposition 3.1. Let K be a non empty closed convex subset of V and A the maximal monotone operator
∂ψK . If hypotheses (1.2) hold, then the order of the scheme is one, i.e.: there exists C such that

∀h > 0, max
t∈[0,T ]

(
|u(t)− uh(t)|2 +

∫ t

0

‖u(s)− uh(s)‖2ds
) 1

2

≤ Ch. (3.4)

Proof. By using the characteristic property (3.3), we will make difference between numerical scheme and differ-
ential inclusion and we conclude by using a Gronwall’s lemma.

By construction, uh(s) belongs to K; thus, according to (3.3), we have

∂ψK
(
uh(t)

)
3 0, a.e. on [0, T ]. (3.5)

If we multiply the difference between (3.5) and the differential inclusion (1.3) by u(s)− uh(s), we obtain

〈u̇(s), u(s)− uh(s)〉+ 〈B
(
u(s)

)
, u(s)− uh(s)〉 ≤ 〈f

(
s, u(s)

)
, u(s)− uh(s)〉, a.e. on [0, T ]. (3.6)

In the same way, u(s) belongs to K and by using the numerical scheme (2.23), we obtain multiplying by
u(s)− vh(s)

〈−u̇h(s), u(s)− vh(s)〉+ 〈−B
(
vh(s)

)
, u(s)− vh(s)〉 ≤ 〈−fh(s), u(s)− vh(s)〉, a.e. on [0, T ]. (3.7)

By summing (3.6) and (3.7) we obtain

〈u̇− u̇h, u− uh〉+ 〈B(u)−B(uh), u− uh〉 ≤ −〈B(uh)−B(vh), u− uh〉
+ 〈f − fh, u− uh〉+ 〈fh − u̇h −B(vh), vh − uh〉.

We denote

w = u− uh.

By integrating and using Cauchy-Schwarz’s inequality, we obtain, thanks to assumptions (1.2a) and (1.2b)

1
2
|wh(t)|2 + α

∫ t

0

‖wh(s)‖2ds ≤ l

∫ t

0

‖uh(s)− vh(s)‖‖wh(s)‖ds+
∫ t

0

∥∥f(s, u(s)
)
− fh(s)

∥∥′ ‖wh(s)‖ ds

+
∫ t

0

〈fh(s)− u̇h(s)−B
(
vh(s)

)
, vh(s)− uh(s)〉ds.
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As we did in the previous proofs, each product is bounded so that we can write

|wh(t)|2 + α

∫ t

0

‖wh(s)‖2ds ≤ 2l2

α

∫ T

0

‖uh(s)− vh(s)‖2ds+
2
α

∫ t

0

(∥∥f(s, u(s)
)
− fh(s)

∥∥′)2

ds

+2
∫ t

0

〈fh(s)− u̇h(s)−B
(
vh(s)

)
, vh(s)− uh(s)〉ds. (3.8)

We have otherwise, according to assumption (1.2c)

∫ t

0

(∥∥f(s, u(s)
)
− fh(s)

∥∥′)2

ds ≤ 3

(
L2

∫ t

0

|u(s)− uh(s)|2ds+ L2

∫ T

0

|uh(s)− ṽh(s)|2ds

+
∫ T

0

(∥∥f(s, ṽh(s)
)
− fh(s)

∥∥′)2

ds

)
,

and, according to Lemma 2.3 and 2.4, this is bounded by

3L2

∫ t

0

|u(s)− uh(s)|2ds+ 3
(
L2M2

1 +M2
2

)
h2.

Similarly, ∫ T

0

‖uh(s)− vh(s)‖2ds ≤M2
2h

2.

We can then infer from (3.8) that there exists C1 and C2 not depending on N such that

∀t ∈ [0, T ], |wh(t)|2 + α

∫ t

0

‖wh(s)‖2ds ≤ C1h
2 + C2

∫ t

0

|wh(s)|2ds

+ 2
∫ t

0

〈fh(s)− u̇h(s)−B
(
vh(s)

)
, vh(s)− uh(s)〉ds.

We conclude thanks to the Gronwall’s lemma and the following lemma (whose proof is inspired by Lippold [16]).

Lemma 3.2. There exits a constant C such that

∀N ∈ N∗, ∀t ∈ [0, T ],
∫ t

0

〈fh(s)− u̇h(s)−B
(
vh(s)

)
, vh(s)− uh(s)〉ds ≤ Ch2. (3.9)

Proof. Let us first prove that the integrand of (3.9) is non negative; indeed, on the interval ]tp, tp+1[, it is
equal to

h

(
1− s− tp

h

)
〈f (tp, Up)− V p −B

(
Up+1

)
, V p〉 ·

Thanks to (3.1), relation (1.5) is equivalent to

∀p ∈ {0, ..., N − 1}, ∀z ∈ K, 〈f (tp, Up)− V p −B
(
Up+1

)
, Up+1 − z〉 ≥ 0. (3.10)
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If we substitute z = Up in (3.10), we infer immediately the desired positivity. Therefore, it is enough to estimate
from above ∫ T

0

〈fh(s)− u̇h(s)−B
(
vh(s)

)
, vh(s)− uh(s)〉ds

which is equal to

h2

2

N−1∑
p=0

〈f (tp, Up)− V p −B
(
Up+1

)
, V p〉 · (3.11)

We will show now that the sum in (3.11) is bounded independently of h; for that purpose, we will decompose
this sum into a part that can be estimated thanks to previous results and a telescopic part that will sum up
to a simple expression. Let us set z = Up+2 in (3.10); then, changing p into p − 1, we obtain the following
inequality for p ∈ {1, ..., N − 1}:

〈f
(
tp−1, U

p−1
)
− V p−1 −B (Up) , V p〉 ≤ 0. (3.12)

We rewrite the summand in (3.11) as

〈f (tp, Up)− V p −B
(
Up+1

)
− f

(
tp−1, U

p−1
)

+ V p−1 +B (Up) , V p〉+ 〈f
(
tp−1, U

p−1
)
− V p−1 −B (Up) , V p〉 ·

Thanks to (3.12), it suffices now to estimate

N−1∑
p=1

〈f (tp, Up)−B
(
Up+1

)
− f

(
tp−1, U

p−1
)

+B (Up) , V p〉

+
N−1∑
p=1

〈V p−1 − V p, V p〉+ 〈f (0, u0)− V 0 −B
(
U1
)
, V 0〉 · (3.13)

Recalling the definition (2.16) of δp and by using assumption (1.2b) and (1.2c), the first summands in (3.13)
are bounded by

‖V p‖
(
Lh
∣∣V p−1

∣∣+ ‖δp‖′
)
. (3.14)

Therefore,

N−1∑
p=1

〈f (tp, Up)−B
(
Up+1

)
− f

(
tp−1, U

p−1
)

+B (Up) , V p〉

≤ Lh
N−1∑
p=1

‖V p‖
∣∣V p−1

∣∣+

(
h
N−1∑
p=1

‖V p‖2
)1/2(N−1∑

p=1

‖δp‖2

h

)1/2

,

≤ L
(
max

∣∣V p−1
∣∣)(T N−1∑

p=1

h ‖V p‖2
)1/2

+

(
h
N−1∑
p=1

‖V p‖2
)1/2(N−1∑

p=1

‖δp‖2

h

)1/2

·
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According to (2.5), (2.6) and (2.17), the right hand side of above expression is bounded uniformly in p and h.
The second sum in (3.13) is estimated by

N−1∑
p=1

(∣∣V p−1
∣∣2 + |V p|2

2

)
−
N−1∑
p=1

|V p|2 ≤
∣∣V 0
∣∣2

2
≤ M2

2
,

according to (2.5). The last term in (3.13) is estimated thanks to assumption (1.2e) which implies that there
exits w ∈ H such that

〈f (0, u0)− w −B
(
U0
)
, V 0〉 ≥ 0,

since 0 ∈ A
(
U1
)

and, thanks to coercivity of B,

〈f (0, u0)− V 0 −B
(
U1
)
, V 0〉 ≤ 〈w − V 0, V 0〉+ 〈B

(
U0
)
−B

(
U1
)
, V 0〉,

≤ 〈w − V 0, V 0〉,
≤ |w|

∣∣V 0
∣∣ ,

≤M |w| ,

and hence the conclusion.

4. Other results of convergence when V = H = V ′

In the mechanical application presented in Section 7, the operatorB is not coercive. Our theory applies to non
coercitive B if V = H = V ′; we assume that (1.2a) holds; assumption (1.2b) is not necessary anymore and (1.2c)
and (1.2d) hold. Assumption (1.2e) holds automatically. The differential inclusion (1.3) is equivalent to

u̇+A(u) 3 g(., u),

where g(t, u) = f(t, u)−B(u). The function g has the same properties as f . Thus, we will study in this section
the convergence of the numerical scheme (1.19) to the solution of the inclusion (1.20) under assumptions (1.2c),
(1.2d) and (1.18).

Let us review briefly the modifications of the results of Sections 2 and 3 needed for the proofs.
The uniqueness is straightforward.
Under assumptions (1.18), (1.2c) and (1.2d), Lemma 2.2 is replaced by

Lemma 4.1. There exists a constant M such that, for all N ∈ N∗,

∀p ∈ {0, ..., N}, |Up − u0| ≤M, (4.1)

∀p ∈ {0, ..., N − 1}, 1
h

∣∣Up+1 − Up
∣∣ ≤M. (4.2)

Proof. In order to prove (4.1), we use again the estimate proved at the beginning of the proof of Lemma 2.2
where the constant α and function B are set equal to zero. As in that proof, we prove, by using the classical
inequality (2.2) and relation (2.10)(

1− h

2T

) ∣∣Up+1 − u0

∣∣2 ≤ (1 + 4L2Th
)
|Up − u0|2 + 4Th|f (tp, u0)− f (0, u0)− w|2.
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Since for all h ∈]0, T ], we have

0 <
(

1− h

2T

)−1

≤ 1 +
5

2T
h, (4.3)

we conclude as we did in the proof of Lemma 2.2 using the discrete Gronwall’s lemma.
Estimate (4.2) is left to the reader.

For what follows, it is enough to estimate ‖u− uh‖C0([0,T ],H). Lemmas 2.3 and 2.4 are valid and we obtain

‖uh − vh‖L2(0,T ;H) + ‖uh − ṽh‖L2(0,T ;H) ≤M1h, (4.4)

and

‖f (., ṽh)− fh‖L2(0,T ;H) ≤M2h. (4.5)

Proposition 2.5 is modified and simplified as follows:

Proposition 4.2. If assumptions (1.2c), (1.2d) and (1.18), hold, there exists a constant C such that for all h,
k and all t in [0, T ]:

|uh(t)− uk(t)| ≤ C
√
h+ k. (4.6)

Proof. We set α = 0 in (2.27), and by integration over [0, t] we obtain the inequality

1
2
|uh(t)− uk(t)|2 ≤

∫ t

0

(u̇h − u̇k, vk − vh + uh − uk) ds+
∫ t

0

〈fh − fk, vh − vk〉 · (4.7)

Each term of the right hand side of (4.7) is treated exactly as in the proof of Proposition 2.5, and we obtain

|uh(t)− uk(t)|2 ≤M5

(
h+ k +

∫ t

0

|uh − uk|2ds
)
,

where M5 is independent of h and k. We conclude with the help of Gronwall’s Lemma.

We state now the existence result: indeed, thanks to Proposition 4.2 (uh) is a Cauchy sequence; results
analogous to those of Propositions 2.6 and 2.7 can be proved; we summarize them as follows:

Proposition 4.3. Assume that (1.2c), (1.2d) and (1.18) hold. There exists a unique solution u of (1.20) in
W 1,∞(0, T ;H). Moreover, we have

lim
h→0+

uh = u in C0([0, T ],H). (4.8)

Proposition 4.4. Under assumptions (1.2c), (1.2d) and (1.18), there exists C such that, for all h > 0,

∀t ∈ [0, T ], |u(t)− uh(t)| ≤ C
√
h. (4.9)

Similarly to Proposition 3.1, we prove the order one of the scheme.

Proposition 4.5. Let K be a convex non empty closed subset of H and let A be the maximal monotone operator
∂ψK . Under assumptions (1.2c), (1.2d) and (1.18), there exists C such that, for all h > 0,

∀t ∈ [0, T ], |u(t)− uh(t)| ≤ Ch. (4.10)
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5. Order one in finite dimension for K a product of n intervals

We now assume that H = lqn, i.e. the space Rn equipped with the norm defined by (1.21). We assume
that (1.22), (1.23) and (1.24) hold, where each Ki is a non empty closed interval of R. In finite dimension,
V = H = V ′ and we keep the frame of Proposition 4.5; thus all the results of Section 4 are valid. In this section,
we prove that the solution of the scheme

∀p ∈ {0, ..., N − 1}, Up+1 − Up
h

+ ∂ψK
(
Up+1

)
3 f (tp, Up) , (5.1)

U0 = u0, (5.2)

converges to the solution of the differential inclusion

u̇(t) + ∂ψK
(
u(t)

)
3 f
(
t, u(t)

)
, a.e. on ]0, T [, (5.3)

u(0) = u0, (5.4)

with a precision one.
For all N ∈ N∗ and for all p ∈ {0, ..., N − 1}, we define vp ∈W 1,∞ (tp, T ;Rn) as the solution of the problem

v̇p(t) + ∂ψK
(
vp(t)

)
3 f
(
t, vp(t)

)
, a.e. on ]tp, T [, (5.5)

vp(tp) = Up. (5.6)

Here is the strategie in order to prove Proposition 5.6: the main point consists in showing that the difference be-
tween Up+1 and vp (tp+1) is quadratic in h; this is a delicate result which depends strongly on assumption (1.22):
this assumption let us decouple the problem as sequence of n-dimensional problems; we first prove that the
error is quadratic when the convex is a half line; this proof (Prop. 5.4) entails the treatment of four cases; it is
suitably modified (Prop. 5.5) to encompass the case of an interval.

In order to obtain this quadratic estimate on the error, we show at Lemma 5.1 an estimate on ‖v̇p‖L∞(tp,tp+1;lqn)

where we emphasize the dependence of the constants of the problem; we deduce at Corollary 5.2 that f (., vp(.))
has a Lipschitz constant independent of N .

Lemma 5.1. Under hypotheses (1.22), (1.23) and (1.24), the derivative v̇p is bounded in L∞(tp, tp+1; lqn)
independently of p and N .

Proof. According to Proposition 3.4 of [6], equation (5.5) implies

v̇p(t+ 0) = f
(
t, vp(t)

)
− proj∂ψK(vp(t))

(
f
(
t, vp(t)

))
,

since f is smooth enough for that result to hold. Let (ei)1≤i≤n be the canonical basis of Rn; we set

∀t ∈ [0, T ], ∀x ∈ Rn, f(t, x) =
n∑
i=1

fi(t, x)ei,

∀t ∈ [0, T ], vp(t) =
n∑
i=1

vpi (t)ei.

We have then the componentwise relation

v̇pi (t+ 0) = fi
(
t, vp(t)

)
− proj∂ψKi (vpi (t))

(
fi
(
t, vp(t)

))
, (5.7)
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which implies that for all i = 1, ..., n, since the section of ∂ψKi vanishes,

|v̇pi (t+ 0)| ≤ 2
∣∣fi(t, vp(t))∣∣ ,

and, hence, for all q ∈ [1,+∞]

|v̇p(t+ 0)|q ≤ 2
∣∣f(t, vp(t))∣∣

q
.

We use the Lipschitz property of f and the triangle inequality to derive an estimate on v̇p

|v̇p(t+ 0)|q ≤ 2L
(
|vp(t)− Up|q + |Up − u0|q

)
+ 2|f(t, u0)|q. (5.8)

By integrating over [tp, t], (5.8) is converted into a Gronwall inequality which implies immediately for t ∈
[tp, tp+1]

|vp(t)− Up|q ≤ 2e2Lh
(
|f(., u0)|L∞(0,T ;lqn) + L |Up − u0|

)
,

and hence the conclusion, thanks to (5.8).

Corollary 5.2. Under hypotheses (1.22), (1.23) and (1.24), there exists M such that, for all N ∈ N∗, for all
p ∈ {0, ..., N − 1},

∀τ1, τ2 ∈ [tp, tp+1],
∣∣f(τ1, vp(τ1)

)
− f

(
τ2, v

p(τ2)
)∣∣
q
≤M |τ2 − τ1| . (5.9)

Proof. This is an immediate consequence of Lemma 5.1, since we have, for all τ1, τ2 ∈ [tp, tp+1],

∣∣fi(τ1, vp(τ1)
)
− fi

(
τ2, v

p(τ2)
)∣∣ ≤ ∣∣fi(τ1, vp(τ1)

)
− fi

(
τ1, v

p(τ2)
)∣∣+

∣∣∣∣∫ τ2

τ1

∂fi
∂t

(
s, vp(τ2)

)
ds
∣∣∣∣ ,

which implies

|f (τ1, vp(τ1))− f (τ2, vp(τ2))|q ≤ L
∫ τ2

τ1

|v̇p(s)|qds+
∫ τ2

τ1

∣∣∣∣∂f∂t (s, vp(τ2))
∣∣∣∣
q

ds.

Before we prove Proposition 5.6, we will give a lemma which permits us to determine values of the i-th
component of the right hand side of (5.5) rewritten as

v̇pi (t) + ∂ψKi
(
vpi (t)

)
3 fi

(
t, vp(t)

)
, (5.10)

if vpi (t) is equal to zero:

Lemma 5.3. Let a, b, τ ∈ R such that a < τ < b, let w ∈ W 1,∞(a, b) and let g be a continuous function such
that

ẇ(t) + ∂ψR+(w(t)) 3 g(t) a.e. on ]a, b[. (5.11)

If w(τ) = 0, then g(τ) ≤ 0; moreover, if g(τ) < 0, then there exists an interval ]τ, τ ′[ where w vanishes.
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Proof. Assume g(τ) > 0; there exists an interval ]a′, b′[⊂]a, b[, including τ such that g(s) ≥ g(τ)/2 over ]a′, b′[.
According to Proposition 3.4 p. 69 of [6], we have

∀t ∈]a, b[, ẇ(t+ 0) =

{
g+(t), si w(t) = 0,
g(t), si w(t) > 0,

where g+(t) is the positive part of g(t). Thus, we can integrate the inequality on ]a′, b′[

∀t ∈]a′, b′[, ẇ(t+ 0) ≥ 1
2
g(τ),

which implies

w(τ) ≥ w(a′) +
1
2
g(τ)(τ − a′) > 0,

which contradicts w(τ) = 0.
If g(τ) < 0, then there exists a maximal interval ]τ, τ ′[⊂]a, b[ on which g is strictly negative. We remark that

the zero function ]τ, τ ′[ solves (5.11); since it had the same vanishing initial condition as w at τ by uniqueness
w vanishes over ]τ, τ ′[.

We set

∀p ∈ {0, ..., N}, Up =
n∑
i=1

Upi ei.

In order to show an estimate on
∣∣vp(tp+1)− Up+1

∣∣
q
, it is enough to estimate

∣∣∣vpi (tp+1)− Up+1
i

∣∣∣; this is the object
of two following propositions:

Proposition 5.4. Let i be in {1, ..., n}. Under hypothesis (1.22), (1.23) and (1.24) and if Ki = R+, there
exists Mi, independently of i, N and p such that∣∣∣vpi (tp+1)− Up+1

i

∣∣∣ ≤Mih
2.

Proof. With respect to [6], for all convex non empty closed subset K of Rn, and for all λ > 0, (1 + λ∂ψK)−1 =
projK ; we rewrite then (5.1) under the form

Up+1
i = (hfi(tp, Up) + Upi )+

. (5.12)

We set

Ji = {t ∈]tp, tp+1[: vpi (t) = 0} ·

If Ji is empty

v̇pi (t) = fi
(
t, vp(t)

)
, a.e. on ]tp, tp+1[. (5.13)

We combine the alternatives Ji = ∅ or Ji 6= ∅ and Up+1
i > 0 or Up+1

i = 0 to get four cases, which we study in
turn.
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First case: Ji = ∅ and Up+1
i > 0.

According to (5.12) and (5.13),

∣∣∣vpi (tp+1)− Up+1
i

∣∣∣ =

∣∣∣∣∣
∫ tp+1

tp

fi
(
s, vp(s)

)
− fi

(
tp, U

p
)
ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ tp+1

tp

fi
(
s, vp(s)

)
− fi

(
tp, v

p(tp)
)
ds

∣∣∣∣∣ ,
which implies thanks to Corollary 5.2, ∣∣∣vpi (tp+1)− Up+1

i

∣∣∣ ≤Mh2.

Second case: Ji = ∅ and Up+1
i = 0.

Since vpi (tp+1) is non negative, we obtain, according to (5.13),

∣∣∣vpi (tp+1)− Up+1
i

∣∣∣ =
∫ tp+1

tp

fi
(
s, vp(s)

)
ds+ Upi .

Since Up+1
i =

(
hfi (tp, Up) + Upi

)+ vanishes, we have

Upi ≤ −hfi
(
tp, U

p
)
,

and ∣∣∣vpi (tp+1)− Up+1
i

∣∣∣ ≤ ∫ tp+1

tp

fi
(
s, vp(s)

)
−fi(tp, Up)ds.

We conclude as above.

Third case: Ji 6= ∅ and Up+1
i > 0. We consider again two cases with respect to the value of vpi (tp+1).

First subcase: vpi (tp+1) > 0.
Let τ = inf (Ji) ∈ [tp, tp+1[ and τ ′ = sup (Ji) ∈]tp, tp+1[ be the first and the last zero of vpi in [tp, tp+1]. By

integrating the function v̇pi over [tp, τ ] and [τ ′, tp+1], we obtain

−Upi =
∫ τ

tp

fi
(
s, vp(s)

)
ds and vpi (tp+1) =

∫ tp+1

τ ′
fi
(
s, vp(s)

)
ds.

Since Up+1
i =

(
hif (tp, Up) + Upi

)+ is strictly positive, we have

vpi (tp+1)− Up+1
i =

∫ tp+1

τ ′
fi
(
s, vp(s)

)
ds− hfi (tp, Up)− Upi ,

=
∫ tp+1

τ ′
fi
(
s, vp(s)

)
ds− hfi (tp, Up) +

∫ τ

tp

fi
(
s, vp(s)

)
ds.

τ ′ < tp+1, because vpi (tp+1) > 0 and since vpi is strictly positive on ]τ ′, tp+1] and the function fi(., vp) is
continuous, Lemma 5.3 implies that fi

(
τ ′, vp(τ ′)

)
vanishes; thanks to Corollary 5.2, we obtain

∀t ∈ [tp, tp+1],
∣∣fi(t, vp(t))∣∣ ≤Mh,
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and ∣∣∣vpi (tp+1)− Up+1
i

∣∣∣ ≤Mh(tp+1 − τ ′ + h+ τ − tp),

which implies ∣∣∣vpi (tp+1)− Up+1
i

∣∣∣ ≤ 2Mh2.

Second subcase: vpi (tp+1) = 0.
In this case, τ ′ can be equal to tp+1 and we cannot apply Lemma 5.3. Let wpi ∈ W 1,∞ (tp, tp+1) be the

solution of the following problem, without constraint

ẇpi (t) = fi
(
t, vp(t)

)
, a.e. on ]tp, tp+1[, (5.14a)

wpi (tp) = Upi . (5.14b)

Let us compare wpi (t) to vpi (t) by using (5.7), rewritten as

∀t ∈ [tp, tp+1[, v̇pi (t+ 0) =

{
fi
(
t, vp(t)

)
, if vpi (t) > 0,

f+
i

(
t, vp(t)

)
, if vpi (t) = 0.

Then,

∀t ∈ [tp, tp+1[, ẇpi (t+ 0)− v̇pi (t+ 0) =

{
0, if vpi (t) > 0,
fi
(
t, vp(t)

)
− f+

i

(
t, vp(t)

)
= −f−i

(
t, vp(t)

)
, if vpi (t) = 0.

This expression is always negative and, by integration, we obtain,

∀t ∈ [tp, tp+1[, wpi (t)− vpi (t) ≤ 0.

Thus, wpi (tp+1) ≤ 0 and we have

∣∣∣vpi (tp+1)− Up+1
i

∣∣∣ = Up+1
i ≤ hfi (tp, U

p
i ) + Upi − w

p
i (tp+1) = hfi (tp, U

p
i )−

∫ tp+1

tp

fi (s, vp(s)) ds,

and we conclude as previously.
Fourth case: Ji 6= ∅ and Up+1

i = 0.
If vpi (tp+1) = 0, then the conclusion is immediate. If vpi (tp+1) > 0, we have, as in the first subcase of the

third case

vpi (tp+1) =
∫ tp+1

τ ′
fi
(
s, vp(s)

)
ds, τ ′ ∈]tp, tp+1[ and fi

(
τ ′, vp(τ ′)

)
= 0,

which permits us to conclude as before because

∣∣∣vpi (tp+1)− Up+1
i

∣∣∣ =
∣∣∣∣∫ tp+1

τ ′
fi
(
s, vp(s)

)
− fi

(
τ ′, vp(τ ′)

)
ds
∣∣∣∣ . �
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Proposition 5.5. Let i be in {1, ..., n}. Under hypothesis (1.22), (1.23) and (1.24) and if Ki is a non empty
closed interval of R, there exists Mi independently of i, N and p such that∣∣∣vpi (tp+1)− Up+1

i

∣∣∣ ≤Mih
2. (5.15)

Proof. If Ki is equal to R or [a,+∞[ or ]−∞, a], the result is plain.
If Ki = {a}, then according to (3.1) ∂ψ{a}(a) = R; (5.1) can be rewritten under the form Up+1

i = a and
according to (5.10), vpi (t) = a on [tp, tp+1[.

Assume now that Ki = [a, b] where a < b. Here is how to modify the proof of Proposition 5.4: if K = [a, b],
then (5.12) becomes

Up+1
i = proj[a,b] (hfi(tp, Up) + Upi ) . (5.16)

Set again

Ji = {t ∈]tp, tp+1[: vpi (t) = a or vpi (t) = b} ·

We study again the four cases previously seen whether Ji is empty or not and whether Up+1
i gains the values a

or b or not.

First case: Ji = ∅ and Up+1
i ∈]a, b[.

This case is similar to the first case of the proof of Proposition 5.4, because in this case we study problem
without constraint.

Second case: Ji = ∅ and Up+1
i ∈ {a, b}.

This case is similar to the second case of the proof of Proposition 5.4; indeed, if Up+1
i = a, then Upi − a ≤

−hfi
(
tp, U

p
)

and we obtain ∣∣∣vpi (tp+1)− Up+1
i

∣∣∣ = vpi (tp+1)− a,

=
∫ tp+1

tp

fi
(
s, vp(s)

)
ds+ Upi − a,

≤
∫ tp+1

tp

fi
(
s, vp(s)

)
−fi(tp, Up)ds.

Third case: Ji 6= ∅ and Up+1
i ∈]a, b[.

We set

Jai = {t ∈]tp, tp+1[: vpi (t) = a} and Jbi = {t ∈]tp, tp+1[: vpi (t) = b} ·

The case where Jai or Jbi is empty reduces to the third case of the proof of Proposition 5.4, since contact takes
place at one end only of Ki.

If Jai 6= ∅ and Jbi 6= ∅, we can assume without loss of generality that there exists θ ∈]tp, tp+1[ and θ′ ∈]tp, tp+1[
such that θ < θ′, vpi (θ) = a and vpi (θ) = b. Thus, by setting

θ1 = sup {t ∈]θ, θ′[: vpi (t) = a} ,
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we observe that vpi (θ1) = a and there exists θ2 ∈]tp, tp+1[ such that for all t ∈]θ1, θ2[, vpi (t) > a. Similarly to
Lemma 5.3, we can prove that fi

(
θ1, v

p(θ1)
)

vanishes; according to Corollary 5.2

∀t ∈ [tp, tp+1],
∣∣fi(t, vp(t))∣∣ ≤Mh.

We conclude as in the first subcase of the third case of Proposition 5.4: let τ = inf (Ji) ∈ [tp, tp+1[ and
τ ′ = sup (Ji) ∈]tp, tp+1] be the first and the last zero of vpi in [tp, tp+1]; we have

vpi (tp+1)− Up+1
i =

∫ tp+1

τ ′
fi
(
s, vp(s)

)
ds− hfi (tp, Up) +

∫ τ

tp

fi
(
s, vp(s)

)
ds.

Fourth case: Ji 6= ∅ and Up+1
i ∈ {a, b}.

If vpi is strictly smaller than b (resp. strictly greater than a) on ]tp, tp+1[, the proof is similar to that of the
fourth case of Proposition 5.4 since there is no contact at b (resp. a).

Otherwise, we can assume that vpi reaches at least once the value a on ]tp, tp+1[ and that Up+1
i = b. Since

proj[a,b] (hfi(tp, Up) + Upi ) = b, we have hfi(tp, Up) + Upi ≥ b; furthermore, vpi (tp+1) ≤ b; thus∣∣∣vpi (tp+1)− Up+1
i

∣∣∣ = b− vpi (tp+1) ≤ hfi(tp, Up) + Upi − v
p
i (tp+1).

This reduces to the third case above since vpi reaches at least once the value a on ]tp, tp+1[.

Proposition 5.6. If assumptions (1.22), (1.23) and (1.24) hold, there exists C such that

∀N ∈ N∗, ‖u− uh‖C0([0,T ],lqn) ≤ Ch.

Proof. The i-th component of vk and vk−1 satisfy respectively the equations

dvki
dt

+ ∂ψKi
(
vki
)
3 fi

(
., vk

)
,

dvk−1
i

dt
+ ∂ψKi

(
vk−1
i

)
3 fi

(
., vk−1

)
,

over [tk, T ]. By monotonicity, we see that

1
2

d
dt

∣∣vki − vk−1
i

∣∣2 ≤ ∣∣vki − vk−1
i

∣∣ ∣∣fi (., vk)− fi (., vk−1
)∣∣ ,

which implies

d
dt

∣∣vki − vk−1
i

∣∣ ≤ ∣∣fi (., vk)− fi (., vk−1
)∣∣ ,

and therefore by integrating over [tk, t]

∣∣(vk − vk−1
)

(t)
∣∣
q
≤
∣∣(vk − vk−1

)
(tk)

∣∣
q

+
∫ t

tk

∣∣f (., vk)− f (., vk−1
)∣∣
q
ds.

This is a Gronwall inequality, from which we derive the estimate∣∣(vk − vk−1
)

(tk)
∣∣
q
≤ eLTMh2,



452 J. BASTIEN AND M. SCHATZMAN

where we have used estimate (5.15) which implies∣∣(vk − vk−1
)

(tk)
∣∣
q

=
∣∣Uk − vk−1(tk)

∣∣
q
≤Mh2. (5.17)

Therefore, because v0 = u,

|uh (tp)− u (tp)|q ≤ |U
p − vp (tp)|q +

p∑
k=1

∣∣vk(tp)− vk−1 (tp)
∣∣
q
,

≤ pMh2eLT .

Moreover, for t ∈ [tp, tp+1], since the derivate of u is integrable, we have

|uh (t)− u (t)|q ≤ Ch. �

6. Dependence on the data of the error estimate

We are in the frame of the previous section. We will give now an explicit value of the constant C of
Proposition 5.6 in terms of the n, q, L, T , ‖f(., u0)‖C0([0,T ],lqn) and sup

x∈G
‖∂f/∂t(., x)‖L∞(0,T ;lqn) where G is a

bounded subset of lqn.
In order to simplify the following proposition, we set n1/q = 1 if q = +∞ and we define the function P0 from

R+ × R+ to R+ and the functions P1 and P2 from N∗ × [1,+∞]× R+ × R+ to R+ by

P0(L, T ) = 4 max(LT, 1)e2LT ,

P1 (n, q, L, T ) = 96n1/q(max(LT, 1))3e4LT ,

P2 (n, q, L, T ) = 2Tn1/qeLT .

Proposition 6.1. Assume that assumptions (1.22), (1.23) and (1.24) hold. Let G be the bounded subset of lqn
defined by

G =
{
y ∈ lqn : |y − u0|q ≤ ‖f(., u0)‖C0([0,T ],lqn) P0 (L, T )

}
· (6.1)

Then

∀N ∈ N∗, ‖u− uh‖C0([0,T ],lqn) ≤ Ch, (6.2)

where

C = ‖f(., u0)‖C0([0,T ],lqn) P1 (n, q, L, T ) + sup
x∈G

∥∥∥∥∂f∂t (., x)
∥∥∥∥
L∞(0,T ;lqn)

P2 (n, q, L, T ) .

Proof. The proof consists in walking trough the proofs of Section 5.
Let us give first an estimate of ‖u− u0‖C0([0,T ],lqn) and ‖u̇‖L∞(0,T ;lqn) in terms of data. As in (5.7), we obtain

∀t ∈ [0, T [, |u̇i(t+ 0)| ≤ 2
∣∣fi(t, u(t)

)∣∣ . (6.3)

As in the beginning of the proof of Lemma 5.1, we obtain

|u(t)− u0|q ≤ 2L
∫ t

0

|u(s)− u0|qds+ T‖f(., u0)‖C0([0,T ],lqn).
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Thanks to the Gronwall’s Lemma, we have

‖u− u0‖C0([0,T ],lqn) ≤ T‖f(., u0)‖C0([0,T ],lqn)e
2LT ,

and according to (6.3)

‖u̇‖L∞(0,T ;lqn) ≤ 2‖f(., u0)‖C0([0,T ],lqn)

(
LT e2LT + 1

)
. (6.4)

The reader will then check that (6.2) can be deduced from (6.4).

Remark 6.2. The estimate of Proposition 6.1 does not depend on the set of constraints.

In the statement of Proposition 6.1, there is a term n1/q which is unbounded as n tends to infinity; indeed,
in order to prove (5.17) we have summed the local errors componentwise (5.15). We can give a more accurate
estimate without the n1/q term if we replace our assumption (1.23) on f by the following stronger hypothesis:
for all i, there exists Li ∈ R+ such that

∀t ∈ [0, T ], ∀x1, x2 ∈ Rn, |fi(t, x1)− fi(t, x2)| ≤ Li|x1 − x2|q. (6.5)

We set

L = |(L1, ..., Ln)|q. (6.6)

If we define

Q1 (L, T ) = 96(max(LT, 1))3e4LT ,

Q2 (L, T ) = 2T eLT ,

we can prove the following proposition:

Proposition 6.3. We assume that (1.22), (1.24), (6.5) and (6.6) hold. Let G be the bounded set lqn defined
by (6.1). Then

∀N ∈ N∗, ‖u− uh‖C0([0,T ],lqn) ≤ Ch (6.7)

where

C = ‖f(., u0)‖C0([0,T ],lqn)Q1 (L, T ) + sup
x∈G

∥∥∥∥∂f∂t (., x)
∥∥∥∥
L∞(0,T ;lqn)

Q2 (L, T ) .

Proof. We may apply here again the ideas of Proposition 6.1 and the reader will check the foregoing formula.

7. A mechanical example: the generalized Prandtl rheological model

Let us review the Prandtl model with a finite number of degrees of freedom as presented in [1, 3] which
motivated this work, since we observed the order one precision before proving them.

The Prandtl model consists of a material point connected with a finite parallel association of series associations
made out of one spring and one dry friction or Saint-Venant element (see Fig. 2). Let x be the abscissa of the
material point, let ui be the displacement of the i-th spring (with stiffness ki) and let vi be the displacement of
the i-th Saint-Venant element (with threshold αi). The material point of mass m is submitted to an external
force F . Denote by fi the force exerted by the i-th spring. The constitutive law of the i-th spring is

τi = −kiui. (7.1)
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1k 1α

2k 2α

F
m

k0

kn αn

Figure 2. The generalized Prandtl rheological model with linear hardening.

We write the constitutive law of the i-th Saint-Venant element under the form

τi ∈ −αiσ(v̇i), (7.2)

where the maximal monotone graph σ is given by

σ(x) =


−1 if x < 0,
1 if x > 0,
[−1, 1] if x = 0.

The graph σ is the inverse of the graph ∂ψ[−1,1] thus, (7.2) is equivalent to

v̇i ∈ ∂ψ[−1,1]

(
− τi
αi

)
· (7.3)

Since we consider a parallel association of series associations, the total displacement of the series associations
does not depend on i, that is

∀i ∈ {1, ..., P}, x = ui + vi, (7.4)

and the fundamental Theorem of dynamics gives

mẍ = F − k0x+
P∑
i=1

τi. (7.5)

Define

∀i ∈ {1, ..., P}, ηi = αi/ki. (7.6)
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Equations (7.1), (7.3), (7.4) and (7.5) are equivalent to the following differential system:

ẋ(t) = y(t), a.e. on [0, T ], (7.7a)

ẏ(t) =
1
m

(
F (t)− k0x(t)−

P∑
i=1

kiui(t)

)
, a.e. on [0, T ], (7.7b)

∀i ∈ {1, ..., P}, u̇i(t) + ∂ψ[−ηi,ηi](ui(t)) 3 y(t), a.e. on [0, T ], (7.7c)

with initial conditions

x(0) = x0, y(0) = y0, ∀i ∈ {1, ..., P}, ui(0) = u0,i ∈ [−ηi, ηi]. (7.7d)

The system (7.7) can be rewritten under the form

u̇(t) + ∂ψK(u(t)) 3 f(t, u(t)), a.e. on ]0, T [, (7.8)

u(0) = u0, (7.9)

where the convex non empty closed subset K of Rn+2, the function f from [0, T ]×Rn+2 to Rn+2, the function
u from [0, T ] to Rn+2, the vector u0 ∈ K are defined by

K = R× R× [−η1, η1]× ...× [−ηn, ηn],

f (t, x, y, u1, ..., un) =

(
0,

1
m

(
F (t)− k0x−

n∑
i=1

kiui

)
, y, . . . , y

)
,

u(t) =
(
x(t), y(t), u1(t), . . . , un(t)

)
,

u0 = (x0, y0, u1,0, . . . , un,0) .

In what follows, we assume that

F ∈W 1,∞(0, T ). (7.10)

By setting

g(t) =
(

0,
1
m
F (t), 0, . . . , 0

)
and

C =


0 0 0 . . . 0

k0/m 0 k1/m . . . kn/m
0 −1 0 . . . 0
...

...
... . . .

...
0 −1 0 . . . 0

 , (7.11)

we can see that, for all t ∈ [0, T ], for all X ∈ Rn+2

f(t,X) = g(t)− CX,

and

sup
x∈Rn+2

∥∥∥∥∂f∂t (., x)
∥∥∥∥
L∞(0,T ;lqn+2)

=
∥∥∥Ḟ∥∥∥

L∞(0,T )
. (7.12)
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Thus assumptions (1.2c), (1.2d) and (1.18) hold with

L = |||C|||2, (7.13)

where |||C||||2 denote the operator norm subordinate to the l2n norm.
According to Proposition 4.5, for all n ∈ N∗, there exists Cn such that, for all h > 0,

∀t ∈ [0, T ], |u(t)− uh(t)|2 ≤ Cnh.

The constant Cn is depending a priori on n. In order to study its dependence on n, let us use the results of
Section 6; we can easily determine Lipschitz constant of each component of f and we use then Proposition 6.3,
which is more accurate than Proposition 6.1.

Let us set

S1(k) =
n∑
i=1

ki, S2(k) =

√√√√n
n∑
i=1

k2
i and S2(η) =

√√√√ 1
n

n∑
i=1

η2
i . (7.14)

According to the Cauchy-Schwarz inequality, we have

n∑
i=1

kiui ≤
1√
n
S2(k)

√√√√ n∑
i=1

u2
i . (7.15)

Let q ∈ {2,+∞}; adopting notations (6.5) and (6.6), we have then

L1 = 0,

L2 =
1
m

(
k0 +

1√
n
S2(k)

)
, if q = 2, L2 =

1
m

(
k0 + S1(k)

)
, if q = +∞,

Lj = 1, ∀j ∈ {3, n+ 2},

and

L =


(
n+

1
m2

(
k0 +

1√
n
S2(k)

)2
) 1

2

, if q = 2,

max
(

1,
1
m

(k0 + S1(k))
)
, if q = +∞.

(7.16)

Since |ui,0| ≤ ηi, we have according to (7.15)

‖f(., u0)‖C0([0,T ],lqn+2) =



(
ny2

0 +
1
m2

(
‖F‖C0([0,T ]) + k0 |x0|+ S2(k)S2(η)

)2
) 1

2

, if q = 2,

max
(
|y0| ,

1
m

(
‖F‖C0([0,T ]) + k0 |x0|+ S2(k)S2(η)

))
, if q = +∞.

(7.17)

Thus, assumptions (1.22), (1.24), (6.5) and (6.6) hold for q ∈ {2,+∞} and, according to Proposition 6.3, for
all n ∈ N∗, there exists Cn,q such that

∀N ∈ N∗, ‖u− uh‖C0([0,T ],lqn+2) ≤ Cn,qh. (7.18)
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Moreover, we may clarify expression of Cn,q in terms of n, q, u0 and f . Assume that there exists positive
functions η, k and u0 in L2(0, 1) such that

∀i ∈ {1, ..., n}, ki = k(i/n)/n, (7.19a)

ηi = η(i/n), (7.19b)

ui,0 = u0(i/n). (7.19c)

We have

lim
n→+∞

S1(k) = ‖k‖L1(0,1), lim
n→+∞

S2(k) = ‖k‖L2(0,1), lim
n→+∞

S2(η) = ‖η‖L2(0,1).

Thus, according to (7.12), (7.16) and (7.17), sup
x∈Rn+2

‖∂f/∂t(., x)‖, L and ‖f(., u0)‖C0([0,T ],lqn+2) are bounded

uniformly in n when q = +∞; thus, according to (6.7), the constant Cn,+∞ is bounded by a constant C
uniformly in n such that

∀n ∈ N∗, ∀N ∈ N∗, ‖u− uh‖C0([0,T ],l+∞n+2) ≤ Ch. (7.20)

On the contrary, the expressions L and ‖f(., u0)‖C0([0,T ],lqn+2) tend to infinity as n tends to infinity with q = 2
and we have not uniform estimates in n of the constant Cn,2.

Remark 7.1. The result proved by Lippold in [16] (see estimate (1.17)) is not valid here; indeed, we may write
the system (7.8) and (7.9) under the form (1.8) and (1.9) with B replaced by C, because C is not positive.
Indeed, if x = (1,−1, 0, ..., 0),

〈B(x), x〉 = −k0/m.

8. Numerical simulations

We choose for these numerical simulations functions η, k and u0 defined by

∀s ∈ [0, 1], η(s) = s+ 0.1, (8.1a)

k(s) = 1, (8.1b)

u0(s) = 0. (8.1c)

The values of (ηi)i, (ki)i and (ui,0)i are defined by (7.19) and we choose

m = 1, T = 500, k0 = x0 = ẋ0 = 0, F (t) = 0.45 cos(0.5t). (8.1d)

One of the features of rheological models is the existence of hysteresis cycles; they are plotted in the (x, F −mẍ)
plane, the second component being the reaction of the system (composed of springs and dry friction elements,
without mass) to exterior forces. We did indeed observe these cycles, as reported in [1].

We discretized the system (7.8) and (7.9) by the numerical scheme (5.1) and (5.2) choosing

N = 1 000 000 and n ∈ {3, 10, 100, 700, 1500} ·

Five of the curves obtained are presented in Figures 3, 4 and 5.
We look secondly for an empirical order of convergence of the numerical scheme. We expect the error to be

of the form

‖u− uh‖C0([0,T ],lqn+2) ≈ Cn,qhαn,q . (8.2)
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Table 1. Values αn,q, Cn,q and rn,q for different values of n, for q = +∞ and q = 2 for estimate (8.2).

q n αn,q Cn,q rn,q

+∞ 3 1.00162 0.71734 0.999998
10 1.00166 0.75184 0.999998
100 1.00177 0.83276 0.999998
700 1.00125 0.83106 0.999999
1500 1.00164 0.83188 0.999998

2 3 1.00165 0.75175 0.999998
10 1.00278 0.85304 0.999996
100 1.00196 1.34671 0.999998
700 1.00215 2.00740 0.999998
1500 1.00215 2.36276 0.999998

and we try to identify the numbers Cn,q and αn,q. Define

εn,q(h) =
∥∥uh − uh/2∥∥C0([0,T ],lqn+2)

;

then, formally

log (εn,q(h)) ≈ αn,q log(h) + log(2Cn,q).

A log-log plot of εn,q(h) versus h gives an estimates of Cn,q and αn,q.
We choose

R = 99, hmin = 10−6, hmax = 10−2, q ∈ {2,+∞}, ∀j ∈ {0, ..., R}, hj = h
R−j
R

min h
j
R
max,

and the same physical parameters as above. Table 1 gives the values of αn,q, Cn,q and the correlation of set of
points rn,q, versus different values of n.

We first see that the empirical order αn,q and the correlation rn,q are close to one, which comforts esti-
mates (7.18).

Otherwise, we can see in this table that the constant Cn,+∞ seems to reach a limit value C ≈ 0.831, what is
coherent with the uniform estimate (7.20). However, we see that the constant Cn,2 seems to increase without
limit as n increases.

More precisely, we can prove that if ki, ηi and ηi,0 are defined by (7.19), then S2(k) and S2(η) defined
at (7.14) are bounded independently of n and we infer from (7.16) and (7.17) the equivalents

‖f(., u0)‖C0([0,T ],l2n+2) ∼ |y0|
√
n and L ∼

√
n as n tends to infinity.

Thus, according to (6.7), there exists c such that

log (Cn,2) ∼ c
√
n. (8.3)

Table 1 shows also that for q = 2 and n ∈ {100, 700, 1500},

log (Cn,2)√
n

≈ 0.02,

what is again coherent with (8.3).
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Figure 3. Curves {x(t), F (t) −mẍ(t)}400≤t≤500 for n = 3 (a) and n = 10 (b).
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Figure 4. Curves {x(t), F (t) −mẍ(t)}400≤t≤500 for n = 100 (a) and n = 700 (b).

9. Conclusion and perspectives

In this paper, we extended the existence and uniqueness results of Brezis [5] to the differential inclusion (1.3)
and (1.4) (its functional frame is more restricted but its form is more general).

We generalized Lippold’s results of convergence [16] by proving the convergence of (1.5) and (1.6) to the
solution of (1.3) and (1.4); this enables us to study the convergence of a numerical scheme adjusted to dynamical
study of elastoplastic Prandtl model.

Figures 3, 4 and 5 show that the hysteresis cycles obtained seem to tend to a limit cycle as n tends to infinity.
We will prove in a later work [2] that this limiting hysteresis cycle corresponds to the hysteresis cycle of a
continuous Prandtl model with an infinite number of degrees of freedom. This model is defined by a spectrum
of stiffness and threshold and it is equal to the limit of Prandtl model defined in Section 7 as n tends to infinity.
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Figure 5. Curve {x(t), F (t) −mẍ(t)}400≤t≤500 for n = 1500.
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plastiques. Ph.D. Thesis, Université Lyon I (2000). number: 96-2000.
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