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Abstract. This paper is devoted to the spectral analysis of a non elliptic operator A, deriving from
the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of
operator A has been derived, we determine its continuous spectrum. Then, we show that A is un-
bounded from below and that it has a sequence of negative eigenvalues tending to −∞. Using the
Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characteri-
zation, some conditions on the geometrical (large width) and physical (large dielectric permittivity in
modulus) properties of the strip that ensure the existence of positive eigenvalues are derived. Finally,
we analyze the asymptotic behavior of the eigenvalues of A as the dielectric permittivity of the strip
goes to −∞.
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Introduction

The micro-strip transmission line is one of the most commonly used lines in micro-wave integrated circuits,
in order to connect to each other the different micro-electronic components (cf. [7, 12]). It is constituted of
a thin conducting strip located on a dielectric substrate, which is placed on a conducting ground plane. The
line behaves then as an electromagnetic wave-guide, since the energy of the guided modes is confined in the
dielectric area located between the conducting strip and the ground plane. Since the discovery of high-Tc
superconducting materials fifteen years ago, new lines involving superconducting strips have been realized in
order to reduce thermic losses.

As usual in the open wave-guide theory [1,2,4,8], the determination of the guided modes of the superconduct-
ing micro-strip line amounts to solve an eigenvalue problem associated to a non compact operator. Because of
this non-compactness property, the existence of eigenvalues (i.e. the existence of a discrete spectrum), and thus
the existence of guided modes, is not ensured. To answer this question, the procedure classically followed in the
literature is first to show the self-adjointness of the operator involved in the spectral problem, then to determine
its continuous spectrum, and finally to use the Min-Max principle to study the existence of eigenvalues. In
the problem studied in this paper, these steps present several specific difficulties, all of them induced by the
superconducting properties of the strip. Indeed, in the framework of London’s model, superconducting materials
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behave as negative dielectric permittivity materials (cf. [9, 11]). The change of sign of the permittivity in the
line (negative inside the strip and positive outside) destroys the ellipticity properties of the operator A involved
in our spectral problem. The originality of the present work lies in the treatment of this lack of ellipticity
and its consequences on the spectral analysis of A (self-adjointness, continuous spectrum, characterization of
positive eigenvalues). In [5], an elliptic vector model corresponding to a zero thickness strip (i.e. a crack) has
been studied. The superconducting properties of the strip were there taken into account through an impedance
condition written on its boundary. In this paper, we investigate the difficulties induced by the negative value of
the dielectric permittivity of the strip, in the framework of a non elliptic scalar model. Let us emphasize here
that this problem cannot be considered as an approximation of the physical vector one. However, it gives rise
to similar mathematical difficulties and that’s why its study is a necessary preliminary step.

The paper is organized as follows: Section 1 is devoted to the description of the studied scalar model. In
Section 2, we give a sufficient condition on the dielectric permittivity of the strip εS for self-adjointness. This
result is obtained thanks to a perturbation method, using the Dirichlet to Neumann operator. Let us emphasize
here that in [3], more precise results about self-adjointness in non elliptic transmission problems have been
obtained in the paticular case (and simpler compared to the one studied here) where the exterior of the strip
is supposed to be homogeneous (see Rem. 2.5). Section 3 is devoted to the determination of the essential
spectrum. We prove that this continuous spectrum is the same as the one of the operator corresponding to
the perfectly stratified medium obtained after removing the strip. In Section 4, we prove that the operator A
involved in our model has a sequence of negative eigenvalues tending to −∞. Thus, it is not bounded from
below, and the Min-Max principle cannot be applied to it. In Section 5, a method to overcome this difficulty is
proposed. This method is based on the application of the Min-Max principle not to A, but to its inverse A−1.
One of the advantages of this method is that it allows one to characterize the positive eigenvalues, which are the
only interesting ones from the physical viewpoint. Using the characterization derived, we give then sufficient
conditions on the width and the dielectric permittivity of the strip ensuring the existence of a given number of
positive eigenvalues. This is achieved using the properties of the one-dimensional problem corresponding to the
case of an infinitely wide strip. Finally, in Section 6, it is shown that the more standard case (since it is elliptic)
of a perfectly conducting strip can be seen as the asymptotic limit of our problem when the permittivity of the
strip goes to −∞. This asymptotic analysis requires the study of a singular perturbation problem, involving a
skin effect. The results obtained are then used to derive an asymptotic existence result for positive eigenvalues.

1. Mathematical setting of the problem

Let us start by introducing the notations used throughout the paper.
Given an orthonormal system of coordinates (O, x1, x2, x3), let the micro-strip line occupy the half-space

x2 > 0, and suppose that the direction of propagation is x3. We denote by x = (x1, x2) the current point of the
cross section of the line Ω = {x; x2 > 0}.

The superconducting strip, the dielectric substrate and the air are supposed to occupy respectively the
domains having the following sections (see Fig. 1):

• ΩS =
{
x = (x1, x2) , |x1| <

`

2
, h < x2 < h+ d

}
, with boundary ∂ΩS = Γ.

• ΩD = {x = (x1, x2) , 0 < x2 < h}, with boundary ∂ΩD = ΓP ∩Σ where ΓP = {x2 = 0} denotes the cross
section of the perfectly conducting ground plane, and Σ = {x2 = h} the one of the interface between the
dielectric and the air.
• ΩA = Ω \ (ΩD ∪ΩS).

As it has been already said, superconducting materials behave in the framework of London’s model for super-
conductivity (cf. [9,11]) as materials having negative dielectric permittivity. We shall thus assume in the sequel
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Figure 1. The cross section of the micro-strip line.

that the relative dielectric permittivity at any point x = (x1, x2) of the cross section Ω is defined as follows:

ε(x) =

εD > 1, x ∈ ΩD
εS < 0, x ∈ ΩS
εA = 1, x ∈ ΩA.

In the model studied in this paper, the guided modes we are looking for are functions of the form: u (x, x3, t) = u(x)ei(ωt−βx3),

u ∈ L2(Ω) and ω, β ∈ R∗
(1)

satisfying: 
∂2u
∂t2
− div

(
1
ε
∇u
)

= 0 (Ω× R)

∂nu = 0 (ΓP × R)

(2)

where ∂n denotes the normal derivative.

Remark 1.1.
(i) The function u defined by (1) describes a wave propagating in the x3-direction without attenuation nor

deformation, with the velocity ω/β.
(ii) The operator involved in problem (2) is the one that appears in the description of the transverse magnetic

modes of the micro-strip line, in the case of a strip of infinite width.
(iii) The boundary condition on ΓP × R is imposed to take into account the fact that the ground plane is

perfectly conducting.
(iv) In fact, in the complete London’s model for superconductivity, the dielectric permittivity of a supercon-

ducting material is not only negative but also frequency-dependent. More precisely, we have:

εS = εS(ω) = −1/
(
ω2λ2

L

)
,

where λL is called the London’s length and represents the penetration depth of the electromagnetic field inside
the superconducting material. For the sake of simplicity, this dependence of εS upon frequency has been omitted
in the model studied here. Nevertheless, the analysis of the complete model (which is non linear with respect
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to the frequency ω) can be carried out by coupling the arguments developped in this paper to a fixed point
method (cf. [13]).

Substituting (1) into (2) leads immediately to the following eigenvalue problem for the function u describing
the transverse behavior of the guided mode u:

− div
(

1
ε
∇u
)

+
β2

ε
u = ω2u (Ω)

∂nu = 0 (ΓP ) .

(3)

In other words, if β 6= 0 is considered as a parameter, a guided mode can be defined as a solution
(
ω2, u

)
of (3)

satisfying ω2 6= 0 and u 6= 0.
Let us now define a convenient functional framework to study problem (3).
Introduce the unbounded operator A of L2(Ω), with domain:

D(A) =
{
u ∈ H1(Ω), div

(
1
ε
∇u
)
∈ L2(Ω), ∂nu|ΓP = 0

}
,

and such that for u ∈ D(A):

Au = − div
(

1
ε
∇u
)

+
β2

ε
u.

The guided modes we are looking for are then solutions of the spectral problem:{
For β > 0, find (ω, u) ∈ R∗ ×D(A), u 6= 0, such that:

Au = ω2u
(4)

Throughout all this paper, L2(Ω) will be equipped with the scalar product:

(u, v) =
∫

Ω

uv,

and the associated norm will be noted:

‖u‖L2 =
(∫

Ω

|u|2
)1/2

.

With this hilbertian structure, A is the unbounded operator of L2(Ω) associated to the bilinear form a(·, ·)
defined by: 

D(a) = H1(Ω)

a(u, v) =
∫

Ω

1
ε

(
∇u · ∇v + β2uv

)
.

(5)

To carry out the spectral analysis of A, we shall start by studying its self-adjointness.

2. About the self-adjointness of A

Operator A is clearly symmetric since it is associated to the symmetric bilinear form a(·, ·) defined by (5). We
know from classical characterizations of self-adjoint operators that a sufficient condition for self-adjointness of
symmetric operators is their surjectivity. Here, because of the change of sign of the permittivity ε, the bilinear
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form a(·, ·) is not coercive, and the surjectivity of A is far from being obvious. The method we propose to answer
this question is based on a perturbation result. More precisely, we shall prove that for “small” or “large” values
of the dielectric permittivity εS inside the strip, operator A is self-adjoint.

Before stating this result, let us introduce some further notations needed here. We will denote by ΩE = Ω\ΩS
the cross section of the exterior domain, i.e. the domain located outside the strip. The outgoing unitary normal
vector to ΩS is noted n. Throughout this section, vS (respectively vE) will denote for a given function v defined
on Ω its restriction to ΩS (respectively ΩE). In particular, the function defining the dielectric permittivity in
the cross section of the line satisfies thus:

ε(x) =
{
εS < 0 for x ∈ ΩS
εE(x) > 0 for x ∈ ΩE

where εE(x) = εA = 1 in ΩA and εE(x) = εD > 1 in ΩD.
To study the self-adjointness of A, we are going to study the existence of solutions for the equation:

Au = f (6)

where f is a given function in L2(Ω).
To achieve this, the idea is to transform problem (6) into an equivalent one whose unknown will be the

trace ϕ = u|Γ ∈ H1/2(Γ). As a first step, one should notice that problem (6) can be written equivalently as a
transmission problem through the interface Γ, with unknowns u = (uS , uE) ∈ H1 (ΩS)×H1 (ΩE):

(Q)



(
−4+β2

)
uS = εSf (ΩS)

− div
(

1
εE
∇uE

)
+
β2

εE
uE = f (ΩE)

uS − uE = 0 (Γ)

1
εS
∂nuS −

1
εE
∂nuE = 0 (Γ)

∂nuE = 0 (ΓP ) .

Remark 2.1. Since uE ∈ H1 (ΩE) satisfies div
(

1
εE
∇uE

)
∈ L2 (ΩE), its normal derivative

1
εE
∂nuE|Γ can be

defined in H−1/2(Γ) thanks to the following Green formula that holds for any vE ∈ H1 (ΩE):〈
1
εE
∂nuE|Γ, vE|Γ

〉
Γ

= −
∫

ΩE

div
(

1
εE
∇uE

)
vE dx−

∫
ΩE

1
εE
∇uE .∇vE dx,

the brackets 〈·, ·〉Γ denoting here the duality between H−1/2(Γ) and H1/2(Γ).

As a second step, we transform the transmission problem (Q) into an equivalent one, noted (P), in which
the only (non-zero) data appears in the normal derivative transmission condition. To achieve this, we use the
well-posedness of the following elliptic (since β 6= 0) Dirichlet problems respectively in H1 (ΩS) and H1 (ΩE):

{(
−4+β2

)
wS = εSf (ΩS)
wS = 0 (Γ)


− div

(
1
εE
∇wE

)
+
β2

εE
wE = f (ΩE)

wE = 0 (Γ)
∂nwE = 0 (ΓP ) .
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Consequently, the couple (uS , uE) solves (Q) if and only if (vS , vE) = (uS − wS , uE − wE) satisfies:

(P)



(
−4+β2

)
vS = 0 (ΩS)

− div
(

1
εE
∇vE

)
+
β2

εE
vE = 0 (ΩE)

vS − vE = 0 (Γ)

1
εS
∂nvS −

1
εE
∂nvE = g (Γ)

∂nvE = 0 (ΓP )

where we have set:

g = −
(

1
εS
∂nwS −

1
εE
∂nwE

)
|Γ
∈ H−1/2(Γ).

Now, to study the well-posedness of (P), we introduce the Dirichlet to Neumann operators TS and TE, defined
for any trace ϕ in H1/2(Γ) by the relations:

TSϕ = ∂nvS(ϕ)|Γ

TEϕ =
1
εS
∂nvE(ϕ)|Γ

where vS(ϕ) and vE(ϕ) solve respectively the interior and exterior Dirichlet problems with data ϕ:


(
−4+β2

)
vS(ϕ) = 0 (ΩS)

vS(ϕ) = ϕ (Γ)



− div
(

1
εE
∇vE(ϕ)

)
+
β2

εE
vE(ϕ) = 0 (ΩE)

vE(ϕ) = ϕ (Γ)

∂nvE(ϕ) = 0 (ΓP ) .

Note that these problems being well-posed, operators TS et TE define isomorphisms fromH1/2(Γ) ontoH−1/2(Γ).
Solving (P) is then equivalent to solve the following equation:(

1
εS
TS − TE

)
ϕ = g. (7)

We are now able to derive a sufficient condition on εS ensuring the well-posedness of (P):

Lemma 2.2. There exists c > 0 such that for every εS ∈] −∞,−c[∪] − 1/c, 0[, problem (P), and thus prob-
lem (Q), admits a unique solution.

Proof. Since TE is an isomorphism, the invertibility of
(

1
εS
TS − TE

)
is equivalent to the invertibility of(

1
εS
T−1
E TS − Id

)
, which is clearly satisfied if:

∣∣∣∣ 1
εS

∣∣∣∣ ∥∥T−1
E TS

∥∥ < 1.

Consequently, if |εS | >
∥∥T−1

E TS
∥∥, problems (P) and (Q) are well-posed. Applying the same kind of arguments

to the operator Id − εST−1
S TE , we can prove the well-posedness of (P) and (Q) for |εS | <

∥∥T−1
S TE

∥∥−1
. The

lemma is thus proved, with: c = max
(∥∥T−1

E TS
∥∥ ,∥∥T−1

S TE
∥∥) .
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Remark 2.3. Notice that the constant c = max
(∥∥T−1

E TS
∥∥ ,∥∥T−1

S TE
∥∥) satisfies c ≥ 1, since:∥∥T−1

E TS
∥∥ ∥∥T−1

S TE
∥∥ ≥ ∥∥T−1

E TST
−1
S TE

∥∥ = 1.

We immediately deduce from this lemma the main result of this section:

Theorem 2.4. There exists a constant c > 0 such that for:

εS ∈]−∞,−c[∪]− 1/c, 0[, (8)

the symmetric operator A is invertible and thus self-adjoint.

From now on, we will assume that the dielectric permittivity of the strip εS satisfies condition (8), and thus
that A is self-adjoint.

Remark 2.5.
(i) In fact, the result of Theorem 2.4 can be precised in the special case where the exterior of the strip is

supposed to be homogeneous (i.e.: εD = εA). This particular case, and more generally the question of self-
adjointness of non elliptic transmission operators through a regular or polygonal interface between two media
has been investigated in [3]. For regular interfaces, it is proved in [3] that the problem is self-adjoint if and
only if εS/εA 6= −1. For polygonal interfaces, it is proved that for some negative values of the contrast εS/εA
constituting an interval containing −1, the operator A is not self-adjoint. More precisely, if the interface has
only one corner of angle 0 < θ ≤ π, the operator is self-adjoint if and only if

εS
εA

/∈ Iθ =
[
θ − 2π
θ

,
θ

θ − 2π

]
·

This result is directly related to the fact that for these values of the contrast, the domain of the adjoint A∗ of
A contains some corner singularities which are too strong (L2 but not H1) to belong to the domain D(A) of A.

(ii) In our problem, we can distinguish two kinds of corners: the upper corners of the strip corresponding to
a two-media interface, and the lower ones, corresponding to a three-media interface. For the upper ones, the
results of [3] can be applied, while for the lower ones, one needs to generalize the method proposed in [3] to the
case of a three-media interface. Nevertheless, note that [3] already shows that our operator A is not self-adjoint
(at least) for εS ∈ Iπ/2 = [−3,−1/3], because of the singularities generated by the upper corners. Consequently,
the constant c in Theorem 2.4 satisfies c > 3.

(iii) In the framework of London’s model, the superconducting material becomes better as εS decreases, and
thus, as the penetration depth of the electromagnetic field inside the strip gets smaller. In particular, the limit
case εS = −∞ corresponds to a zero penetration depth, and can thus be interpreted as the case of a perfectly
conducting strip (cf. Sect. 6).

3. The essential spectrum

Since operator A is self-adjoint, its spectrum is real. Moreover, because Ω is unbounded, the embedding
of D(A) in L2(Ω) is not compact, and thus the spectrum of A has a continuous part, the so-called essential
spectrum. Our aim here is to determine this continuous part. Using the fact that the strip has a bounded
section, we are going to prove that the essential spectrum of A is identical to the one of the operator A∞
associated to the unperturbed medium. Here, we mean by unperturbed medium the medium constituted by the
air and the dielectric subtrate, obtained after the strip has been removed. In other words, the result established
here is a stability result for the essential spectrum, under a compact geometric perturbation. The main difficulty
of the proof is once again due to the loss of coercivity induced by the change of sign of ε.
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Before stating more precisely the main result of this section, let us introduce some notations in order to
define the operator A∞ corresponding to the unperturbed medium. Set:

ε∞(x) = ε∞ (x2) =

{
εD > 1 in ΩD

εA = 1 in Ω \ ΩD.

Note that ε∞ is nothing but the function describing the (relative) dielectric permittivity of the unperturbed
medium. Then, define operator A∞ as follows:

D (A∞) =
{
u ∈ H1(Ω), div

(
1
ε∞
∇u
)
∈ L2(Ω), ∂nu|ΓP = 0

}
A∞u = − div

(
1
ε∞
∇u
)

+
β2

ε∞
u.

(9)

The essential spectrum of A is then given by

Theorem 3.1.

σess(A) = σ (A∞) = [γTM,+∞[

where γTM is defined by the formula:

γTM = inf
u∈H1(R+),u6=0

∫ +∞

0

1
ε∞ (x2)

(∣∣∣∣ du
dx2

∣∣∣∣2 + β2|u|2
)

dx2∫ +∞

0

|u|2dx2

· (10)

Remark 3.2. The equation ω2 = γTM (relating the frequency ω and the wave-number β) is the dispersion rela-
tion of the fundamental transverse magnetic guided mode of the slab waveguide (cf. [10]). From a mathematical
point of view, γTM repesents the first eigenvalue of the self-adjoint operator ATM defined on L2 (R+) by:

D (ATM) =
{
u ∈ H1

(
R+
)

;
d

dx2

(
1
ε∞

du
dx2

)
∈ L2

(
R+
)
,

du
dx2

(0) = 0
}

ATMu = − d
dx2

(
1
ε∞

du
dx2

)
+
β2

ε∞
u.

One can easily check (cf. [10]) that γTM is the first positive solution of the the dispersion relation:

tan(κh) = εDη/κ, (11)

where we have set κ =
√
γTMεD − β2 and η =

√
β2 − γTM. Using this property, one can in particular prove

that γTM satisfies:

β2

εD
< γTM < β2.

To prove Theorem 3.1, we shall successively prove (in Lems. 3.3, 3.4 and 3.5) the following inclusions:

σ (A∞) ⊂ [γTM ,+∞[ , [γTM,+∞[ ⊂ σess(A) , σess(A) ⊂ σess (A∞) . (12)

In fact, the difficulties due to the non ellipticity of A appear only in the proof of the last inclusion, making it
slightly more complicated than the two first ones.
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Lemma 3.3.
σ (A∞) ⊂ [γTM,+∞[ .

Proof. From the definition of γTM, we have for almost every x1 ∈ R and every u ∈ D (A∞):∫
R+

1
ε∞

(∣∣∣∣ du
dx2

∣∣∣∣2 + β2|u|2
)

dx2 ≥ γTM
∫
R+
|u|2dx2.

Integrating this inequality with respect to x1, one obtains that:

(A∞u, u) =
∫

Ω

1
ε∞

(∣∣∣∣ du
dx2

∣∣∣∣2 + β2|u|2
)

dx1dx2 ≥ γTM‖u‖2, ∀u ∈ D (A∞) .

Since A∞ is self-adjoint, we have thus:

inf σ (A∞) = inf
u∈D(A∞),u6=0

(A∞u, u)
‖u‖2 ≥ γTM,

and the lemma is proved.

Let us now prove the second inclusion of (12).

Lemma 3.4.
[γTM,+∞[ ⊂ σess(A).

Proof. We are going to show that we can associate to every λ ≥ γTM a singular sequence of A. To achieve this,
we introduce the function:

k −→ ΓTM(k) = inf
u∈H1(R+),u6=0

∫ +∞

0

1
ε∞ (x2)

(∣∣∣∣ du
dx2

∣∣∣∣2 + k2|u|2
)

dx2∫ +∞

0

|u|2dx2

,

such that: ΓTM(β) = γTM. Then, we notice that the function:

ξ −→ ΓTM

(√
β2 + ξ2

)
is continuous and strictly increasing on R+, and is thus bijective from R+ onto [ΓTM(β),+∞[ = [γTM,+∞[.
Consequently, for every λ ≥ γTM, there exists a unique ξ ≥ 0 such that:

λ = ΓTM(k), k =
√
β2 + ξ2.

To build up a singular sequence associated to λ, we use the planar wave-guide fundamental mode uk associated
to ΓTM(k). More precisely, uk satisfies:

∫ +∞

0

|uk (x2)|2 dx2 = 1,

− d
dx2

(
1
ε∞

duk
dx2

)
+
k2

ε∞
uk = ΓTM(k)uk,

duk
dx2

(0) = 0.

(13)
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Let θ ∈ C∞(R) such that θ|[−`/2,`/2] = 0 (recall that ` is the width of the strip) and
∫ +∞

−∞
|θ (x1)|2 dx1 = 1.

Consider the sequence un of H1(Ω) defined by:

un(x) = θn (x1) eiξx1uk (x2) ,

where:

θn (x1) =
1√
n
θ
(x1

n

)
·

One can easily check that: 
‖un‖L2 = 1,

un ⇀ 0 dans L2(Ω),

un ∈ D(A).

In addition, the second equation of (13) shows that we have in ΩD and ΩA:

Aun = θneiξx1
1
ε∞

(
−d2uk

dx2
2

+ k2uk

)
− 2
ε∞

iξ
dθn
dx1

eiξx1uk −
1
ε∞

d2θn
dx2

1

eiξx1uk

= λun −
2
ε∞

iξ
dθn
dx1

eiξx1uk −
1
ε∞

d2θn
dx2

1

eiξx1uk.

Since
dθn
dx1

and
d2θn
dx2

1

converge strongly to zero in L2(R), we have thus: ‖Aun − λun‖L2 −→ 0. Consequently,

λ = ΓTM

(√
β2 + ξ2

)
belongs to σess(A) for every ξ ≥ 0, and thus [ΓTM(β),+∞[ = [γTM,+∞[ ⊂ σess(A).

To conclude the proof of Theorem 3.1, let us prove the last and most difficult inclusion:

Lemma 3.5.
σess(A) ⊂ σess (A∞) .

Proof. Let λ ∈ σess(A) and un ∈ D(A) be a singular sequence associated to λ:
‖un‖L2 = 1,

un ⇀ 0 in L2(Ω),

‖Aun − λun‖L2 −→ 0.

In order to build up a singular sequence of A∞ associated to λ, set: vn = θun where θ ∈ C∞0 (Ω) satifies:

• ∀x ∈ Ω∞: 0 ≤ θ(x) ≤ 1.
• There exist two open sets O and O′ of Ω such that:ΩS ⊂ O ⊂ O′,

θ = 0 in O,
θ = 1 in Ω \ O′.

• θ (x1, x2) = θ (x1) in the vicinity of the interface Σ = {x2 = h} between the dielectric and the air.
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We shall prove that vn is a singular sequence of A∞ associated to λ.
First, it is clear that vn belongs to the domain D (A∞) of A∞, and that it converges weakly to zero in L2(Ω).

To conclude, it remains to prove that:
(i) vn does not converge (strongly) to zero in L2(Ω).
(ii) A∞vn − λvn converges to zero in L2(Ω).

These results will follow from the properties of operator A stated below.
Theorem 2.4 shows that operator A defines an isomorphism from D(A) onto L2(Ω). As a consequence, there

exists C > 0 such that:

‖u‖H1(Ω) ≤ C‖Au‖L2, ∀u ∈ D(A). (14)

Furthermore, classical regularity results for elliptic transmission problems show that u has an H2-regularity on
both sides of the interface Σ \ (Σ ∩ Γ) between the air and the dielectric substrate. Consequently, if U is an
open set such that U ∩ Γ = ∅, the following estimate holds:

‖u‖H2(U∩ΩD) + ‖u‖H2(U∩ΩA) ≤ C‖Au‖L2, ∀u ∈ D(A).

(i) Applying these results to the sequence un, one obtains that:

‖un‖H1(Ω) ≤ C ‖Aun‖L2 . (15)

On the other hand, since: (Aun, un) = (Aun − λun, un) + λ ‖un‖2L2 , the sequence Aun is bounded in L2(Ω).
Inequality (15) shows that un converges (up to a subsequence) to zero in L2

loc(Ω). Consequently, the function
1− θ having a compact support, we have:

‖vn‖L2 = ‖θun‖L2 = ‖un − (1− θ)un‖L2 −→ 1,

and point (i) is thus proved.

(ii) A straightforward computation shows that:

A∞vn − λvn = θ (Aun − λun)− 1
ε∞

(un4 θ + 2∇θ · ∇un) .

Since 4θ has a compact support and since the sequence un converges to zero in L2
loc(Ω), we have:

lim
n−→+∞

‖un4 θ‖L2 = 0.

If U denotes the support of ∇θ, the regularity results recalled above show that:

‖un‖H2(U∩ΩD) + ‖un‖H2(U∩ΩA) ≤ C ‖Aun‖L2 .

Thus, the sequence un converges to zero in H1(U) and consequently:

lim
n−→+∞

‖∇θ · ∇un‖L2 = 0.

As a consequence:

lim
n−→+∞

‖A∞vn − λvn‖L2 = 0,

and vn is a singular sequence of A∞ associated to λ.
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4. Negative eigenvalues

In this section, we are going to see that A has a sequence of negative eigenvalues that converges to −∞. This
property is directly related to the negative value of the dielectric permittivity in the superconducting strip.

Let us start by proving the following preliminary result:

Proposition 4.1. Operator A is not bounded from below.

Proof. To prove this proposition, we construct a sequence un ∈ D(A) satisfying:
‖un‖L2 = 1, ∀n ≥ 0

lim
n−→+∞

(Aun, un) = −∞.
(16)

Let x0 ∈ ΩS and δ > 0 be such that the ball B = {x, |x− x0| < δ} is contained in ΩS . We define then the
sequence:

un(x) = n θ (n |x− x0|) ,

where θ is a regular radial function with support in B, such that ‖θ‖L2 = 1.

Since Supp un ⊂ {|x− x0| < δ/n} ⊂ ΩS , we have un ∈ D(A). Furthermore:

‖un‖L2 = 1 and ‖∇un‖L2 = n‖∇θ‖L2 .

As a consequence:

(Aun, un) =
1
εS

∫
ΩS

(
|∇un|2 + β2 |un|2

)
=

1
εS

(
n2‖∇θ‖2L2 + β2

)
−→ −∞. �

We immediately deduce from this proposition the:

Corollary 4.2. Operator A admits a sequence of negative eigenvalues tending to −∞.

Proof. Since A is self-adjoint, we have:

inf σ(A) = inf
u∈D(A),u6=0

(Au, u)
‖u‖L2

,

where σ(A) denotes the spectrum of A. Thus, it follows from Proposition 4.1 that: inf σ(A) = −∞. On
the other hand, if σp(A) denotes the point spectrum of A, which is composed of isolated eigenvalues of finite
multiplicity, we have:

σ(A) = σess(A) ∪ σp(A) = [γTM,+∞[ ∪ σp(A).

Consequently: inf σp(A) = −∞. This shows the existence of a sequence λn of negative eigenvalues of A
satisfying: lim

n−→+∞
λn = −∞.

We shall now make use of these results concerning the spectrum of A to prove the existence of positive
eigenvalues of A.
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5. Positive eigenvalues

Applying the Min-Max principle to operator A−1, we derive in the first part of this section a necessary and
sufficient condition for the existence of positive eigenvalues. In the second part, we use the condition previously
derived to prove existence results for positive eigenvalues of A.

5.1. Characterization of the positive eigenvalues of A

The Min-Max principle (cf. [14]) provides a criterion to prove existence of eigenvalues located below the
essential spectrum for self-adjoint bounded from below operators. More precisely, let B be such an operator
with domain D(B) ⊂ L2(Ω), b(·, ·) the bilinear form with domain D(b) associated to it, and γess = inf σess(B).

For m ≥ 1, we introduce the real numbers λm equivalently defined by the two formulas:

λm = inf
Vm∈Vm(D(B))

sup
u∈Vm,u6=0

(Bu, u)
‖u‖2L2

= inf
Vm∈Vm(D(b))

sup
u∈Vm,u6=0

b(u, u)
‖u‖2L2

(17)

where Vm(V ) denotes the set of all m-dimensional subspaces of V .
The Min-Max principle states that operator B has at least m eigenvalues λ satisfying λ < γess if and only if

λm < γess. In other words, if N denotes the number of such eigenvalues, the following assertion holds:

λm < γess ⇐⇒ N ≥ m (18)

Furthermore, if N ≥ m, the m first eigenvalues of B are exactly the numbers λp, 1 ≤ p ≤ m.
In the case studied here, operator A is neither bounded from below (because of its infinite sequence of

negative eigenvalues, cf. Prop. 4.1), and of course, nor from above. Consequently, the Min-Max principle
cannot be applied to it. We have thus to find a new criterion for existence of eigenvalues. Moreover, we have an
extra constraint concerning the construction of this criterion: it must be sharp enough to prove the existence
of positive eigenvalues for A, since these eigenvalues are the only ones of interest from the physical point of
view. To achieve this, the solution we propose is to apply the Min-Max principle to the operator A−1 (recall
that condition (8) is supposed to be satisfied and that A is thus invertible).

Since λ ∈ σ(A) if and only if λ−1 ∈ σ
(
A−1

)
, Theorem 3.1 and Corollary 4.2 lead to:

Proposition 5.1. Operator A−1 is self-adjoint, bounded from below and from above. Moreover, A−1 has a
sequence of negative eigenvalues tending to zero, and its continuous spectrum is

]
0, (γTM)−1

]
.

Figures 2 and 3 below show the structure of the spectra of A and A−1. As it can be seen from these figures,
we have:

λ ∈ σp(A) ∩R+ ⇔ µ = 1/λ ∈ σp
(
A−1

)
and µ > 1/γTM.

Consequently, the determination of the positive eigenvalues of A amounts to the determination of the eigenvalues
of A−1 located above its essential spectrum. Applying the Min-Max principle to the self-adjoint and bounded
from below operator B = −A−1, we obtain the following result:

Theorem 5.2. Let N be the number of positive eigenvalues λ of A satisfying λ < γTM (counted with their
multiplicity), and define:

µm = sup
Vm∈Vm(D(A))

inf
u∈Vm,u6=0

(Au, u)
‖Au‖2L2

· (19)

Then, for all m ≥ 1:

N ≥ m ⇔ µm >
1

γTM
· (20)
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Figure 2. Spectrum of A.

Figure 3. Spectrum of A−1.

In addition, if N ≥ m, the first m eigenvalues λp, p = 1, ..,m, of A are given by the relation:

λp =
1
µp
·

Proof. Denote by λm(B) the min-max of order m of B = −A−1, and by N (B) the number of its eigenvalues
which are smaller than the lower bound − 1

γTM
of its essentiel spectrum. Applying the Min-Max principle to the

self-adjoint bounded from below operator B, we obtain that:

N (B) ≥ m ⇔ λm(B) < − 1
γTM

, (21)

and that, if N (B) ≥ m, the numbers λp(B), p = 1, ...,m are exactly the m first eigenvalues of B.
On the other hand, using the min-max formula, we have:

λm(B) = inf
Vm∈Vm(L2(Ω))

sup
f∈Vm,f 6=0

(
−A−1f, f

)
‖f‖2L2

= − sup
Vm∈Vm(L2(Ω))

inf
f∈Vm,f 6=0

(
A−1f, f

)
‖f‖2L2

= − sup
Vm∈Vm(D(A))

inf
u∈Vm,u6=0

(Au, u)
‖Au‖2L2

= −µm.

Furthermore, N (B) is nothing but N . The equivalence (21) shows thus that:

N ≥ m ⇔ µm >
1

γTM
·

Finally, since the numbers λp(B) = −µp, for p = 1, ...,m are the m first eigenvalues of B = −A−1, the positive
real numbers

(
µ−1
p

)
p=1,...,m

are the m first positive ones of A.
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Remark 5.3.
(i) The existence criterion (20) for positive eigenvalues can also be written:

N ≥ m ⇔
{
∃Vm ∈ Vm(D(A)), such that ∀u ∈ Vm

γTM(Au, u) > ‖Au‖2L2.
(22)

(ii) One may notice that the criterion obtained imposes that the test functions of Vm belong to the domain
D(A) of the operator, and satisfy in particular the suitable transmission conditions at the interfaces. This
constraint makes the construction of such test functions much more complicated than in the usual case of an
operator bounded from below. Indeed, in this last case, the m-dimensional subspaces Vm are not included in
the domain of the operator, but in the one of the bilinear form associated to it.

We shall now use the characterization obtained to prove existence results for positive eigenvalues λ of A
satisfying λ < γTM.

5.2. Existence results for positive eigenvalues

In this section, we are going to show how the criterion derived in Section 5.1 can be used to prove the
existence of positive eigenvalues of the operator A. As stated in the point (i) of Remark 5.3, operator A admits
at least m positives eigenvalues smaller than γTM if and only if there exists an m-dimensional subspace Vm of
D(A) such that:

γTM(Au, u) > ‖Au‖2L2, ∀u ∈ Vm.

We will see that the existence of such a subspace can be proved if the strip is wide enough, and its permittivity
large enough (in modulus). This result is based on the fact that for large strips, the problem is “close” to
the one-dimensional problem corresponding to the case of an infinitely wide strip. On the other hand, and as
we shall see in the next section, this problem can be studied almost explicitely (see [6]), and has at least one
positive eigenvalue for |εS | large enough.

5.2.1. The one-dimensional model (strip of infinite width)

This model is associated to the unbounded operator A1 of L2 (R+), defined by:
D
(
A1
)

=
{
u ∈ H1

(
R+
)
,

d
dx2

(
1
ε

du
dx2

)
∈ L2

(
R+
)
,

du
dx2

(0) = 0
}

A1u = − d
dx2

(
1
ε

du
dx2

)
+
β2

ε
u,

(23)

where, for the sake of simplicity, we still denote by ε the function of x2 defined by:

ε (x2) =

εD > 1 0 < x2 < h
εS < 0 h < x2 < h+ d
εA = 1 x2 > h+ d.

One can then easily check (see [6]) that A1 is self-adjoint for all the values of εS , has a sequence of negative
eigenvalues tending to −∞, and that its essential spectrum is

[
β2,+∞

[
. Furthermore, we have the following

existence result for the first positive eigenvalue:

Proposition 5.4. There exists ε1
S < 0 such that for εS < ε1

S, A1 has (at least) one positive eigenvalue λ1 < β2.
Furthermore, this eigenvalue satisfies: λ1 < γTM.
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Proof. The characterization of positive eigenvalues given in Theorem 5.2 can be applied to the operator A1

studied here. Consequenlty, λ1 exists if and only if there exists a test fuction u ∈ D
(
A1
)

such that:

β2
(
A1u, u

)
>
∥∥A1u

∥∥2

L2 .

Let then u1 be a given function of x2 satisfying (recall that h and d denote respectively the thickness of the
dielectric and the thickness of the strip): u1 ∈ C∞([0,+∞[),

u1
|[0,h] = 1 and u1

|[h+d,+∞[ = 0.
(24)

Since u1 and
1
ε

(
u1
)′

=
1
ε

du1

dx2
are clearly continuous in x2 = h and x2 = h + d, we have u1 ∈ D

(
A1
)
.

Furthermore, one can easily check that:(
A1u1, u1

)
‖A1u1‖2L2

=

(
β2/εD

)
h+ a/εS

(β2/εD)2
h+ b/ε2

S

,

where we have set:

a =
∫ h+d

h

∣∣∣(u1
)′∣∣∣2 + β2

∣∣u1
∣∣2 and b =

∫ h+d

h

∣∣∣− (u1
)′′

+ β2u1
∣∣∣2 .

Thus:

lim
εS−→−∞

(
β2/εD

)
h+ a/εS

(β2/εD)2
h+ b/ε2

S

= εD/β
2.

But as it has been said in Remark 3.2, we have:

εD/β
2 > 1/γTM > 1/β2.

Thus, there exists ε1
S < 0 such that:(

A1u1, u1
)∥∥A1u1

∥∥2

L2(R+)

>
1

γTM
>

1
β2
, ∀εS < ε1

S. (25)

This proves the existence of a positive eigenvalue λ1 of A1 satisfying: λ1 < γTM < β2.

Remark 5.5.
(i) Obviously, some sharper estimates of λ1 can be obtained using more accurate test functions than u1. This

can be achieved thanks to the fact that the computations, although being heavy, are quiet explicit. In fact, our
aim here was only to give an idea of the kind of methods one can use to prove existence of positive eigenvalues
for the one-dimensional problem.

(ii) The fact that λ1 satisfies λ1 < γTM will be useful in the next section, to prove existence results for the
eigenvalues of the two-dimensional problem associated to A.
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5.2.2. Back to the two-dimensional model

The main result of this section is given by the following theorem (recall that ` is the width of the strip):

Theorem 5.6. For every m ≥ 1, there exist ε1
S < 0 and `m > 0 such that the number N of positive eigenvalues

λ of A such that λ < γTM satisfies:

∀εS < ε1
S , ∀` ≥ `m : N ≥ m.

Proof. Theorem 5.2 shows that the result will be proved if there exist ε1
S < 0 and `m > 0 such that for every

εS < ε1
S and every ` ≥ `m, we can find an m-dimensional subspace Vm of D(A) such that:

γTM(Au, u) > ‖Au‖2L2, ∀u ∈ Vm. (26)

To construct such a subspace, we shall use the test function u1 (satisfying (24)) we have used in the study of
the one-dimensional problem (corresponding to ` = +∞).

Let us set:

up,n =
1√
n
θp
(x1

n

)
u1 (x2) and V nm = Vect {up,n, p = 1, ..,m} ,

where: θ1, θ2, .., θm ∈ C∞0 (]− 1, 1[) are supposed to be linearly independant.

Since u1 satisfies the transmission conditions
[
u1
]

=
[

1
ε

du1

dx2

]
= 0 at the interfaces and since Supp (up,n) ⊂

[−n, n], we have:

up,n ∈ D(A), ∀` ≥ n.

Thus:

V nm ⊂ Vm(D(A)), ∀` ≥ n.

Let then un =
m∑
p=1

µpup,n ∈ V nm, with (µ1, .., µm) 6= 0. A straightforward computation shows that for ` ≥ n, we

have:

(Aun, un)
‖Aun‖2

=

(
A1u1, u1

)
+
α′

α

1
n2

(∫ +∞

0

1
ε

∣∣u1
∣∣2)∫ +∞

0

∣∣A1u1
∣∣2 − 2

α′

α

1
n2

(∫ +∞

0

1
ε
u1A1u1

)
+
α′′

α

1
n4

(∫ +∞

0

1
|ε|2

∣∣u1
∣∣2) ,

where we have set:

α =
∫ +∞

−∞
|θ|2, α′ =

∫ +∞

−∞
|θ′|2 , α′′ =

∫ +∞

−∞
|θ′′|2 , θ =

m∑
p=1

µpθp.

We shall prove that for n and |εS | large enough, we have:

(Aun, un)
‖Aun‖2L2

>
1

γTM
·

First, notice that the functionals α′/α and α′′/α are bounded on the linear subspace Vθ spanned by the functions
(θp)p=1,..,m, since α′ and α′′ are continuous on the compact subset of Vθ defined by

∫ +∞
−∞ |θ|2 = 1. Consequently,
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we have:

ξ1
n ≤

(Aun, un)

‖Aun‖2L2

≤ ξ2
n, (27)

where ξ1
n et ξ2

n are two sequences (which do not depend on `) satisfying:

lim
n−→+∞

ξ1
n = lim

n−→+∞
ξ2
n =

(
A1u1, u1

)∥∥A1u1
∥∥2

L2

·

It follows then from (25) and (27) that there exist N > 0 and ε1
S < 0 such that for ` ≥ N , we have:

uN ∈ D(A) and
(AuN , uN )
‖AuN‖2L2

>
1

γTM
, ∀εS < ε1

S .

Thus inequality (26) holds, with Vm = V Nm .

6. The asymptotic limit εS −→ −∞
Making use of the Min-Max principle, we have shown in the previous section that for |εS | large enough and

for large superconducting strips, operator A admits positive eigenvalues. In this section, we investigate the
asymptotic behavior of the discrete spectrum of A as εS goes to −∞. We will see that as expected from the
physical context of the problem (cf. Rem. 2.5), the limit case εS = −∞ corresponds to the case of a perfectly
conducting strip. If AE denotes the operator associated to this problem, we will show here that we can find
in the neighborhood of every positive eigenvalue of AE at least one eigenvalue of A for |εS | large enough. The
main advantage of this asymptotic result lies in the fact that contrary to A, operator AE is elliptic and thus its
spectral analysis is much more standard than the one of A.

This section is organised as follows. In Section 6.1, the case of a perfectly conducting strip is studied. In
Section 6.2, we will see precisely in what sense the operator A is close to AE for large values of |εS |. Finally, in
Section 6.3, we shall use the results obtained in the previous section to prove existence of positive eigenvalues
for A, once again for |εS| large enough.

6.1. The perfectly conducting micro-strip line

Here, the Neumann boundary condition is imposed on both the strip’s and the ground’s plane boundaries.
The associated operator AE is thus defined as follows:

D (AE) =
{
u ∈ H1 (ΩE) , div

(
1
εE
∇u
)
∈ L2 (ΩE) , ∂nu = 0 on Γ ∪ ΓP

}
,

AEu = − div
(

1
εE
∇u
)

+
β2

εE
u.

(28)

Since this operator is symmetric and elliptic, it is positive and self-adjoint. Furthermore, following the proof
of Theorem 3.1, one can easily check that its continuous spectrum is the interval ]γTM,+∞[. Finally, using
the Min-Max principle, some sufficient conditions (on the characteristics of the line) ensuring the existence of
m positive eigenvalues in ]0, γTM[ can be derived very easily. Indeed, using for instance the m-dimensional
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subspace spanned by the m functions (up)p=1,..,m defined by:

up (x1, x2) =


sin
(pπ

2`
(2x1 + `)

)
for |x1| < `/2 and 0 < x2 < d

0 elsewhere,

we obtain that the min-max of order m satisfies:

λm ≤ sup
u∈Vm,u6=0

(AEu, u)
‖u‖2L2(ΩE)

=
(AEum, um)
‖um‖2L2(ΩE)

=
1
εD

(
m2π2

`2
+ β2

)
.

Consequently, the Min-Max principle shows that AE has at least m eigenvalues in ]0, γTM[ as soon as the
following condition is satisfied:

1
εD

(
m2π2

`2
+ β2

)
< γTM.

Note that for fixed values of εD and β, this condition is satistfied for strips that are large enough.
To conclude this section, let us give a characterization of these positive eigenvalues of AE using the exterior

Dirichlet to Neumann operator. This characterization will be very useful to compare the discrete spectra of A
and AE when εS −→ −∞.

For λ ∈ ]0, γTM[ consider the operator TE(λ) : H1/2(Γ) −→ H−1/2(Γ) defined for any trace ϕ ∈ H1/2(Γ) by:

TE(λ)ϕ = ∂nvE|Γ, (29)

where vE ∈ H1 (ΩE) is the solution of the boundary value problem:
− div

(
1
εE
∇vE

)
+
(
β2

εE
− λ
)
vE = 0 (ΩE)

vE = ϕ (Γ)
∂nvE = 0 (ΓP ) .

(30)

Before going further, let us emphasize that TE(λ) is well defined for every λ ∈ [0, γTM[. To check this, it suffices
to prove that problem (30) is well-posed for such values of λ. Introducing the solution wE ∈ H1 (ΩE) of the
well-posed boundary value problem:

− div
(

1
εE
∇wE

)
+
β2

εE
wE = 0 (ΩE)

wE = ϕ (Γ)
∂nwE = 0 (ΓP ) ,

one sees that the well-posedness of (30) is equivalent to the well-posedness of the boundary value problem:
− div

(
1
εE
∇ϕE

)
+
(
β2

εE
− λ
)
ϕE = f (ΩE)

ϕE = 0 (Γ)
∂nϕE = 0 (ΓP ) ,

(31)

where we have set: f = −λwE ∈ L2 (ΩE).
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Now, problem (31) has a unique solution if and only if the operator
(
ADE − λId

)
is invertible, where ADE is

the operator defined by:
D
(
ADE
)

=
{
u ∈ H1 (ΩE) , div

(
1
εE
∇u
)
∈ L2 (ΩE) , u|Γ = 0 , ∂nu|ΓP = 0

}
,

ADEu = − div
(

1
εE
∇u
)

+
β2

εE
u.

The invertibility of ADE for λ ∈ [0, γTM[ follows now immediately from:

Lemma 6.1.
σ
(
ADE
)

= σess

(
ADE
)

= [γTM,+∞[ .

Proof.
(i) For every u ∈ D

(
ADE
)
, we have:

(
ADEu, u

)
=
∫

ΩE

1
εE

(
|∇u|2 + β2|u|2

)
=
∫

Ω

1
ε∞

(
|∇ũ|2 + β2|ũ|2

)
= (A∞ũ, ũ) ,

where ũ is the extension of u to Ω by 0 (notice that ũ ∈ H1(Ω) since u ∈ H1
0 (ΩE)) and A∞, defined by (9),

is the operator corresponding to the unperturbed medium. It follows then from the study of A∞ (see Th. 3.1)
that: (

ADEu, u
)

= (A∞ũ, ũ) ≥ γTM‖ũ‖2L2(Ω) = γTM‖u‖2L2(ΩE),

and thus (since ADE is self-adjoint):

inf σ
(
ADE
)

= inf
u∈D(ADE),u6=0

(
ADEu, u

)
‖u‖2L2(ΩE)

≥ γTM,

showing that:
σ
(
ADE
)
⊂ [γTM,+∞[ .

(ii) The converse inclusion can be proved by constructing for every λ ≥ γTM a singular sequence of ADE
associated to λ.

Summing up, we have shown that for λ ∈ [0, γTM[, problem (30) has a unique solution vE ∈ H1 (ΩE) for
every ϕ ∈ H1/2(Γ), and thus that the operator TE(λ) such that TE(λ)ϕ = ∂nvE|Γ is well defined for such values
of λ.

Remark 6.2. In fact, we have proved that TE(λ) is well defined on C \ [γTM,+∞[.

Using this operator, one can see that λ = λE is an eigenvalue of AE if and only if:

∃ϕ ∈ H1/2(Γ) such that: TE (λE)ϕ = 0.

In other words, we have the following characterization for the eigenvalues of AE in terms of TE(λ):

Proposition 6.3. λE ∈ ]0, γTM[ is eigenvalue of AE if and only if ξ = λE is a pole of the operator-valued
fonction TE(ξ)−1 of the complex variable ξ.
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6.2. Asymptotic spectral analysis of A: a boundary formulation

Let us first introduce some notations needed in the sequel. We define the positive real parameter:

δ = −1/εS.

Furthermore, operator A will be noted Aδ throughout this section. Our aim here is to prove that for small values
of δ, the eigenvalue problems associated to Aδ and AE are “close”. The main difficulty in defining rigourously
this property comes from the fact that the operators Aδ and AE do not have the same domains. To overcome
this difficulty, we use the boundary formulation (on Γ) of the two eigenvalue problems, obtained thanks to the
Dirichlet to Neumann operators.

Let us start by writing the eigenvalue problem Aδu = λu as an equivalent problem satisfied by the new
unknown: ϕ = u|Γ. First, note that:

Aδu = λu ⇔



−δ4 uS +
(
δβ2 + λ

)
uS = 0 (ΩS)

− div
(

1
εE
∇uE

)
+
(
β2

εE
− λ
)
uE = 0 (ΩE)

uS − uE = 0 (Γ)

δ∂nuS +
1
εE
∂nuE = 0 (Γ)

∂nuE = 0 (ΓP ) .

As a consequence, λ ∈ ]0, γTM[ is an eigenvalue of Aδ if and only if there exists ϕ = uS|Γ = uE|Γ ∈ H1/2(Γ)
such that:

T (δ, λ)ϕ := (δ TS(δ, λ) + TE(λ))ϕ = 0,

where TE(λ) is defined by (29) and (30), and TS(δ, λ) : H1/2(Γ) −→ H−1/2(Γ) is defined by:

TS(δ, λ)ϕ = ∂nv
δ
S|Γ, (32)

where vδS ∈ H1 (ΩS) is the unique solution of the Dirichlet boundary value problem:{
−δ4 vδS +

(
δβ2 + λ

)
vδS = 0 (ΩS)
vδS = ϕ (Γ).

(33)

Using the boundary operators TS(δ, λ) and TE(λ), we have the following characterization of the eigenvalues
of Aδ:

Proposition 6.4. The real number λ ∈ ]0, γTM[ is an eigenvalue of Aδ if and only if ξ = λ is a pole of the
operator-valued fonction:

ξ −→ T (δ, ξ)−1 = (δ TS(δ, ξ) + TE(ξ))−1
.

The next step is to prove that operator T (δ, λ) = δ TS(δ, λ) + TE(λ) converges to TE(λ) (in the space of
continuous operators from H1/2(Γ) onto H−1/2(Γ)) as δ tends to 0, or equivalently, that δ TS(δ, λ) converges to
0 as δ tends to 0. To prove this result, we have to estimate the normal derivative of the function vδS ∈ H1 (ΩS)
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defined by (33). The main difficulty here is that problem (33) is a singular perturbation problem when δ tends
to 0. Indeed, a detailed study of this problem (which is achieved in the appendix) shows that the normal
derivative of vδS on Γ is not bounded as δ goes to 0 (this is due to the so called skin effect). More precisely, we
have the following result:

Lemma 6.5. Let vδS ∈ H1 (ΩS) be the solution of the boundary value problem (33) for a given trace ϕ ∈ H1/2(Γ)
and a constant λ > 0.

Then, for every ν ∈]0, 1/2[, there exists a constant C > 0 (independent of ϕ and δ) such that the following
estimates hold: ∥∥vδS∥∥H1 ≤ C‖ϕ‖H1/2(Γ) δ

−1/2 ,
∥∥4vδS∥∥L2 ≤ C‖ϕ‖H1/2(Γ) δ

−1+ν .

As a consequence, we have: ∥∥∂nvδS∥∥H−1/2(Γ)
≤ C‖ϕ‖H1/2(Γ) δ

−1+ν .

For the proof of this lemma (which is rather technical), see the appendix.
The key point now is that although the normal derivative ∂nvδS becomes infinite, δ∂nvδS remains bounded.

This allows us to prove the following theorem, showing that the eigenvalue problems associated to Aδ and AE
are close:

Theorem 6.6. Operator T (δ, λ) := δ TS(δ, λ)+TE(λ), where TE(λ) and TS(δ, λ) are respectively defined by (29,
30) and (32, 33), satisfies:

∀ν ∈]0, 1/2[, ∃C > 0, such that: ‖T (δ, λ)− TE(λ)‖ = ‖δTS(δ, λ)‖ ≤ Cδν , (34)

where the norm is taken in the space of bounded operators from H1/2(Γ) to H−1/2(Γ).

Proof. The result is a direct consequence of Lemma 6.5, since for every ϕ ∈ H1/2(Γ), we have:

‖(T (δ, λ)− TE(λ))ϕ‖H−1/2 = δ ‖TS(δ, λ)ϕ‖H−1/2

= δ
∥∥∂nvδS∥∥H−1/2(Γ)

≤ C‖ϕ‖H1/2(Γ)δ
ν

where 0 < ν < 1/2.

Remark 6.7. The constant C in Theorem 6.6 depends only on ν and λ. But as it can be seen from the proof
of Lemma 6.5 detailed in the appendix, C depends continuously on λ, and is thus bounded if λ is contained in
a bounded region of the complex plane.

6.3. An asymptotic existence result for positive eigenvalues of A

Using the result of Theorem 6.6, we are going to prove that we can find in the vicinity of every positive
eigenvalue of AE , a positive eigenvalue of Aδ, for δ small enough. This result can be stated more precisely as
follows:

Theorem 6.8. Let λE ∈ ]0, γTM[ be an eigenvalue of the operator AE defined by (28), and DE ⊂ C a disk of
center λE . We assume that the only eigenvalue of AE contained in DE is λE .

Then, for δ = −1/εS small enough, the disk DE contains at least one eigenvalue λ of Aδ = A.

Before showing this theorem, note that this eigenvalue λ is necessarily real (and positive if DE is small
enough), and consequently, Theorem 6.8 gives in particular the existence result obtained in Theorem 5.6.
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Proof. We are going to use here the characterization of the eigenvalue problems associated to AE and Aδ,
respectively given by Propositions 6.3 and 6.4.

So assume that TE(ξ)−1 has a pole at ξ = λE , and let us prove that there exists δ0 > 0 such that for
0 < δ < δ0, (T (δ, ξ))−1 = (δTS(δ, ξ) + TE(ξ))−1 has at least one pole in the disk DE .

If not, there would exist a sequence δn tending to 0, such that the family of operators
(
T (δn, ξ)

−1
)
n∈N

is

holomorphic on DE. Thus, if C is a closed curve included in DE and containing λE , then:∫
C
T (δn, ξ)

−1 dξ = 0, ∀n ∈ N. (35)

The idea now is to take the limit n −→ +∞ in this relation.
The key point of the proof is that operator T (δn, ξ)

−1 converges to TE(ξ)−1 as n tends to +∞ uniformly
on C. To prove this assertion, one should first notice that:

T (δn, ξ)
−1 − TE(ξ)−1 = T (δn, ξ)

−1 (TE(ξ) − T (δn, ξ))TE(ξ)−1. (36)

Now, taking for instance ν = 1/4 in Theorem 6.6, one obtains the existence of a positive constant C (independent
of ξ, see Rem. 6.7) such that:

‖TE(ξ)− T (δn, ξ)‖ ≤ Cδ1/4
n , ∀ξ ∈ C. (37)

On the other hand, we have: ∥∥TE(ξ)−1
∥∥ ≤ C, ∀ξ ∈ C.

Thus, to conclude, it remains to check that the family
(
T (δn, ξ)

−1
)
n∈N

is uniformly bounded on C. But:

T (δn, ξ)
−1 = (TE(ξ) + δnTS (δn, ξ))

−1 = TE(ξ)−1
(
Id + δnTS (δn, ξ)TE(ξ)−1

)−1
,

and by Theorem 6.6, there exists C > 0 such that:∥∥δnTS (δn, ξ)TE(ξ)−1
∥∥ ≤ Cδ1/4

n .

Thus, using the Neumann series of Id + δnTS (δn, ξ)TE(ξ)−1 one obtains the existence of N > 0 (independent
of ξ) such that for n ≥ N the following estimate holds:∥∥∥(Id + δnTS (δn, ξ)TE(ξ)−1

)−1
∥∥∥ ≤ 1

1− ‖δnTS (δn, ξ)TE(ξ)−1‖ ≤
1

1− Cδ1/4
n

, ∀ξ ∈ C.

Thus, for n ≥ N , we have: ∥∥∥T (δn, ξ)
−1
∥∥∥ ≤ C, ∀ξ ∈ C. (38)

Using (37) and (38) in (36), we get:∥∥∥T (δn, ξ)
−1 − TE(ξ)−1

∥∥∥ ≤ Cδ1/4
n , ∀ξ ∈ C.

One can thus take the limit in (35) and obtain:∫
C
TE(ξ)−1dξ = 0. (39)
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The contradiction comes now from the fact that since operator TE(ξ)−1 has a pole at ξ = λE , we have:∫
C
TE(ξ)−1dξ = 2iπRes

(
TE(ξ)−1, ξ = λE

)
6= 0,

where Res
(
TE(ξ)−1, ξ = λE

)
denotes the residue of TE(ξ)−1 at ξ = λE .

Thus, T (δ, ξ)−1 has necessarily a pole in DE for δ small enough, and Theorem 6.8 is proved.

Remark 6.9. In fact, the proof of Theorem 6.8 also shows that if the disk DE does not contain any eigenvalue
of AE , then it contains no eigenvalues of Aδ. Indeed, if TE(ξ)−1 is bounded for some ξ by a constant CE , then
for δ small enough, we have:

∥∥T (δ, ξ)−1
∥∥=

∥∥∥TE(ξ)−1
(
Id + δTS(δ, ξ)TE(ξ)−1

)−1
∥∥∥≤ CE

1− Cδ1/4
≤ CE ,

and T (δ, ξ)−1 is thus bounded.

Appendix

This appendix is devoted to the proof of Lemma 6.5, which gives an estimate of the normal derivative ∂nvδS|Γ
of the solution vδS of the boundary value problem:{

−δ4 vδS +
(
δβ2 + λ

)
vδS = 0 (ΩS)
vδS = ϕ (Γ).

More precisely, we have to prove that for every ν ∈]0, 1/2[, there exists a constant C > 0 (independent of ϕ
and δ) such that: ∥∥vδS∥∥H1 ≤ C‖ϕ‖H1/2(Γ) δ

−1/2 ,
∥∥4vδS∥∥L2 ≤ C‖ϕ‖H1/2(Γ) δ

−1+ν ,∥∥∂nvδS∥∥H−1/2(Γ)
≤ C‖ϕ‖H1/2(Γ) δ

−1+ν .

Throughout this appendix, we will denote by ‖ · ‖L2 and ‖ · ‖H1 the usual norms in L2 (ΩS) and H1 (ΩS), and
by (·, ·) the canonical scalar product of L2 (ΩS). Furthermore, for the sake of simplicity, C will always denote
a constant which is independent of ϕ and δ.

First, note that the last estimate follows immediately from the two first ones, since by Green’s formula, we
have: ∥∥∂nvδS∥∥H−1/2(Γ)

≤ C
(∥∥4vδS∥∥L2 +

∥∥vδS∥∥H1

)
.

To obtain the two first estimates, we introduce the solution wS ∈ H1 (ΩS) of the following elliptic boundary
value problem: {

−4 wS + β2wS = 0 (ΩS)
wS = ϕ (Γ).

Note that wS satisfies

‖wS‖H1 + ‖4wS‖L2 ≤ C‖ϕ‖H1/2(Γ). (40)
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Then vδS solves problem (33) if and only if wδS = vδS − wS satisfies:−δ4 wδS +
(
δβ2 + λ

)
wδS = f (ΩS)

wδS = 0 (Γ),
(41)

where:
f = −δ4 wS +

(
δβ2 + λ

)
wS = λwS ∈ H1(Ω),

and thus:

‖f‖L2 ≤ C‖ϕ‖H1/2(Γ). (42)

It follows then from (40) that Lemma 6.5 will be proved if we can show that:

(i)
∥∥wδS∥∥H1 ≤ C‖ϕ‖H1/2(Γ) δ

−1/2.

(ii)
∥∥4wδS∥∥L2 ≤ C‖ϕ‖H1/2(Γ) δ

−1+ν .

To prove (i), we use the variational formulation of problem (41), which reads:

aδ
(
wδS , w

)
= (f, w), ∀w ∈ H1

0 (ΩS) . (43)

where:
aδ(u, v) = δ

∫
ΩS

(
∇u · ∇v + β2uv

)
+ λ

∫
ΩS

uv.

Choosing w = wδS in (43), one gets: 
δ
∥∥∇wδS∥∥2

L2 ≤ ‖f‖L2

∥∥wδS∥∥L2 ,

λ
∥∥wδS∥∥L2 ≤ ‖f‖L2.

Plugging the second inequality into the first one shows that:
δ
∥∥∇wδS∥∥2

L2 ≤ λ−1‖f‖2L2,

λ
∥∥wδS∥∥L2 ≤ ‖f‖L2.

Using (42), we obtain that: 
δ1/2

∥∥∇wδS∥∥L2 ≤ C‖ϕ‖H1/2∥∥wδS∥∥L2 ≤ C‖ϕ‖H1/2

(44)

and the estimate (i) is thus proved .

To prove (ii), we proceed as follows.

Step 1: We first notice that from (41):

4wδS = δ−1
(
λwδS − f

)
+ β2wδS . (45)
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Since
∥∥wδS∥∥L2 ≤ C‖ϕ‖H1/2 , we only have to obtain an estimate on:

eδ = λwδS − f.

Step 2: Let us show that eδ satisfies:

δ−νeδ ⇀ 0 weakly in L2 (ΩS) , for 0 < ν < 1/2. (46)

Tha variational formulation (43) shows that:

(λwS − f, w) = −δ1/2
(
δ1/2∇wδS ,∇w

)
− δβ2

(
wδS , w

)
, ∀w ∈ H1

0 (ΩS) ,

or equivalently: (
δ−νeδ, w

)
= −δ1/2−ν

(
δ1/2∇wδS ,∇w

)
− δ1−νβ2

(
wδS , w

)
, ∀w ∈ H1

0 (ΩS) .

Property (46) is then a direct consequence of the estimates (44).

Step 3: The previous step shows in particular that δ−νeδ is bounded in L2 (ΩS). Thus, the family Eδ of linear
continuous operators defined by:

Eδ : ϕ ∈ H1/2(Γ) −→ Eδ(ϕ) = δ−νeδ = δ−ν
(
λwδS − f

)
∈ L2 (ΩS)

satisfies:

∀ϕ ∈ H1/2(Γ), ∃C(ϕ) > 0 such that:
∥∥Eδ(ϕ)

∥∥
L2 ≤ C(ϕ), ∀δ ≤ 1.

The Banach-Steinhaus theorem shows then that in fact the family is uniformly bounded (with respect to ϕ).
In other words:

∃C > 0 such that:
∥∥Eδ(ϕ)

∥∥
L2 ≤ C‖ϕ‖H1/2 , ∀δ ≤ 1, ∀ϕ ∈ H1/2(Γ).

We have thus proved that for 0 < ν < 1/2:

∃C > 0 such that:
∥∥λwδS − f∥∥L2 ≤ C‖ϕ‖H1/2δν , ∀δ ≤ 1, ∀ϕ ∈ H1/2(Γ).

Summing up these results and using (45) and (44), we have proved that for every 0 < ν < 1/2:∥∥4wδS∥∥L2 ≤ C‖ϕ‖H1/2(Γ)δ
−1+ν ,

which is nothing but (ii).

References

[1] A. Bamberger and A.-S. Bonnet, Mathematical Analysis of the Guided Modes of an Optical Fiber. SIAM J. Math. Anal. 21
(1990) 1487–1510.
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(1995) 505–575.
[9] J.G. Ma and I. Wolff, Modeling the Microwave Properties of Superconductors. IEEE Trans. Microwave Theory Tech. 43

(1995) 1053–1059.
[10] D. Marcuse, Theory of Dielectric Optical Waveguide. Academic Press, New-York (1974).
[11] K.K Mei and G. Liang, Electromagnetics of Superconductors. IEEE Trans. Microwave Theory Tech. 44 (1991) 1545–1552.
[12] A.D. Olver, Microwave and Optical Transmission. J. Wiley & Sons Ed. (1992).
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