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hp-FEM FOR THREE-DIMENSIONAL ELASTIC PLATES
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Abstract. In this work, we analyze hierarchic hp-finite element discretizations of the full, three-
dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution,
we give specific mesh design principles for the hp-FEM which allow to resolve the three-dimensional
boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness € tends
to zero, the hp-discretization is consistent with the three-dimensional solution to any power of ¢ in the
energy norm for the degree p = O(|loge|) and with O(p*) degrees of freedom.
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1. INTRODUCTION

The numerical analysis of thin three-dimensional structures such as beams, plates and shells is a basic problem
in engineering. It amounts to solving numerically a problem of three-dimensional elasticity in a ‘thin’ domain.
The classical engineering approach to these problems has been to replace the three-dimensional problem by
simplified, lower-dimensional models which are in turn solved numerically.

Lower dimensional models have been derived roughly speaking in three ways: by kinematical hypothesis,
by asymptotic analysis or by energy projection. We refer to [4] for a survey and references. Alternatively, in
recent years, it has become possible to solve the three-dimensional problems directly by high order finite element
methods which afford anisotropic mesh refinement [1,2].

In the dimension reduction process, information is necessarily lost and the question arises what the relation
of the dimensionally reduced models to the original, three-dimensional problem is. Numerous models have
been found to be consistent with the three-dimensional problem in the limit of vanishing thickness €. In the
case of plate models, the order of consistency is, however, only /¢, due to the boundary layers of the three-
dimensional problem not being accurately resolved by the plate model. This state of affairs cannot be improved
by incorporation of ‘higher-order’ kinematical hypotheses into the plate model, since near the edge region, the
deformation states are generically three-dimensional, as was shown in full asymptotic analyses of the three-
dimensional plate problem in [20]. The coupling of the limiting plate models in the plate’s interior with fully
three-dimensional finite element methods near the edge region has been proposed in an engineering framework
by [21].
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To achieve higher order asymptotic consistency in plate models, higher order kinematical hypotheses in the
interior of the plate must thus be coupled with full resolution of the three-dimensional effects near the edge of
the plate. This can be done by hp-Finite Element (FE) discretization and was proposed first in [18]. To analyze
the design of a hp-Finite Element Discretization of the three-dimensional plate problem is the purpose of the
present paper.

Relying on the full asymptotics of the three-dimensional solution of the plate problem [6,7,9], we show that
it is possible to achieve consistency of the FE-approximation with the three-dimensional solution to any order
of € with a properly designed hp-FE discretization. It involves hierarchical plate models which are refined inside
the boundary layer in a vicinity of the edge to resolve the singularities, thereby abandoning the dimensional
reduction point of view. The degree p to achieve this is O([loge|) in general, with O(p) elements corresponding
to a number N of degrees of freedom which is bounded by O(p*).

Let us describe our results in more detail. On the family of thin plates w x (—¢,¢), € € (0,&0), such hp-
FE spaces are defined as follows: a fixed mesh 7, is designed on the mid-surface w, so that there exists a
layer of quadrilateral elements along its boundary dw. The tensor three-dimensional mesh 70 := 7, x (—¢,¢)
is geometrically refined anisotropicly to the edges Ow x {—e,e} to obtain the new mesh 72 with p layers of
elements. Polynomials of degree p on 72 form the discrete space.

If the boundary of w is analytic, and if an analytic load is fixed, we prove in this paper that the relative
energy error between the three-dimensional solution and its Galerkin approximation in the above described
space is bounded for all K > 1 by

C (X +e7e7?) (1.1)

with positive constant C' and b independent of € and p (but depending on K).

We also prove that in certain cases (existence of underlying C! discrete spaces on w, or membrane load),
the factor e~! in the bound (1.1) can be omitted, which means that, to achieve a given bound to the relative
error, a certain polynomial degree p, corresponding to a certain number N = O(p*) of degrees of freedom fized
independently of € are sufficient.

These results are based on the hp FE-approximation of each piece of the two-scale expansion of the solution
displacement w(e): this expansion has two parts, the outer expansion part ), eFv¥ (regular profiles), and the
inner expansion part >, e*w" (boundary layer profiles).

In this paper, we also pay much attention to the transverse degrees of the polynomials involved in the outer
expansion part, which allows in particular to show that (3,3,2) transverse degree outside the support of the
load and away from the boundary layer is sufficient to obtain estimate (1.1).

The outline of the paper is as follows: in Section 2, we set the problem and give a rough description of the
inner-outer expansion. Sections 3-5 are devoted to the outer part, whereas Sections 6 and 7 are devoted to the
inner part. We explain in more detail the structure of the outer part study at the beginning of Section 3, and
for the inner part, at the beginning of Section 6. The synthesis and the conclusions are drawn in Section 8.

2. THE THREE-DIMENSIONAL PLATE PROBLEM

2.1. Domains and coordinates
The plate problem under consideration here is a boundary value problem of three-dimensional elastostatics
which is set in the family of domains

O =w X (—¢,+e),

where the midsurface w is open, bounded and has an analytic boundary dw. Let I'S be their upper and lower

faces w x {Fe} and I'§ be their lateral faces dw x (—¢,+€). If ¥ = (z1, x2, x3) are the cartesian coordinates
in the plates ¢, we will often denote by z. the in-plane coordinates (z1, z2) € w and by a or § the indices
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in {1, 2} corresponding to the in-plane variables. The dilatation along the vertical axis (X3 = e 'z3) transforms
QF into the fixed reference configuration Q@ = w x (=1, +1):

T = (T, 23) EQL"=w x (—g,4e) — X = (24, X3) €EQ=w x (=1,+1). (2.1)

In general, we will distinguish by a superscript ~ the vector fields defined in the “physical” domains ¢, from
the scaled fields defined on ).

2.2. Governing equations

We consider linearly elastic deformations of the plate °. The displacement @ : 2° — R? of the plate satisfies
the equilibrium equations

Bu=—dive(@)=Ff in O, (2.2)

where } are volume forces. We assume here that } is the restriction to w x (—¢, +¢) of a function f which is
analytic in @ X (—eg, +€9) for a fixed g9 > e. Furthermore, o(w) is the stress tensor. It is expressed in terms of
the infinitesimal strain tensor e(w) by Hooke’s law (here summation convention over repeated indices is used)

oij(u) = Agjriep(u). (2.3)

We assume homogeneous and isotropic material, i.e. A;ju = Adij0m + p(6ikdji + 6:d5,) with A > 0 and p > 0
denoting the Lamé-constants. On the faces I = w x {Te} of the plate, zero traction boundary conditions are
given:

Gu=o(un=0 on I'% (2.4)

where n denotes the exterior unit normal vector on I'].

Problem (2.2-2.4) is completed by boundary conditions on the lateral edge I'§. We consider here for simplicity
only Dirichlet boundary conditions, i.e. the plate is hard clamped,

il =0 (2.5)

and give the proofs of the results in this case. We emphasize, however, that our results will also hold for all
other sets of boundary conditions which lead to a meaningful variational formulation of (2.2-2.4) cf. [9].

2.3. Finite Element Approximation

The variational form of (2.2-2.5) is: Find w such that
ueH: a(u,v) = L(v) Yo e H. (2.6)

Here, the bilinear form a(-,-) and the loading L(-) are given by

a(ﬂ,%):/aAe(ﬂ):e(%)dx, L@) = [ F vde

Qe

The proper choice of H incorporates the homogeneous essential boundary conditions on I'g:

H-= {a € HY Q) - aly, = o} :
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Korn’s inequality implies that the bilinear form a(-,-) in (2.6) is H'-coercive on H, and hence for every smooth
volume loading f exists a unique weak solution u € H of (2.6).

Finite Element approximations uy of u are obtained by energy projection: for any finite dimensional subspace
Hy C H, we define

uy € Hy : a(’lAl',N,%N):L(’IA)'N) Yoy € Hy. (27)
There exists a unique solution @y of (2.7), and this solution satisfies
Yoy € Hy : |"l~l,—’l~l,N||E(Qa) < H’E—%NHE(QE) (2.8)

2(95) = a(u,u). Note that for all u € H we have the bound

) with a constant C' > 0 independent of .

where the energy norm is defined by |ul|

sy < C Il

In this paper, we propose a hp design for the FE subspace Hy and estimate the approximation error (2.8)
in dependence on €. This is based on a detailed asymptotic analysis of the three-dimensional solution = in
dependence on .

[

2.4. Asymptotics of the solution

The complete asymptotics of the solution u is easier to describe on the reference configuration 2 and using
the scaled displacement u(e) and the scaled load f(e) according to

w(e) (X) = (i, iz, €ilg) (v)  and FE)(X) = (Fi. e o) (a).
Due to our analyticity assumption on the loading }, we have the (convergent) expansion

f71 = (Oa 0773(35*” O))

o

fle)= > " HX) with Xk k1 (2.9)
j— fr = (k_?agf*(x*,o), magfg»(x*,o)) , k> 0.

It may be deduced from the results in [9] that u(e) admits the asymptotic expansion at any order

u(e) ~ Z eful = Z ¥ (v* + yw") . (2.10)
k>—1 k>—1
The terms v* constitute the outer expansion part. They essentially satisfy the three-dimensional equilibrium
conditions (2.2-2.4). The complementing terms w* are the boundary layer terms which constitute the inner
expansion part — the function x(z.) is a smooth cut-off function which is identically equal to one in a vicinity
of dw. The terms w* compensate nonhomogeneous edge-conditions in (2.5) due to the v*.
To state the estimates satisfied by the expansion (2.10), we introduce the unscaled sequence of displacement
fields on the physical domain Q¢ (note that it starts with power £~2)

a % (x) = (0,0,u3") (X), " (z) = (uf, uf, ™) (X), k> -1 (2.11)
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Theorem 2.1. For every € > 0 let u(x) € H be the unique solution of problem (2.6). Then for every integer
K > 0 there holds for expansion (2.10) the error estimate in energy norm

K-1
< ekl (2.12)

where C > 0 is independent of €, but depends on K.
Information about the first non-vanishing term in expansion (2.9) yields the behavior as ¢ — 0 of the energy
||'E||E(QE) and allows relative energy error estimates:

Theorem 2.2. (A) If f3(x4,0) # 0, @ is bending dominated, its principal term is a Kirchhoff-Love displace-
ment, and HﬁHE(QE) ~ 712 therefore

K—1
u— E ek

k=-2

Bl < Cek Il e (2.13)

(B) If f3(xs,0) = 0 and f,(v.,0) Z 0, the principal term of u is ", which contains a membrane part and

||'E||E(QE) ~ e'/2 therefore

Blas) < Cef| (2.14)

il e -

K
u— E ekt
k=0

Based on (2.8), we will obtain an upper bound for the Finite Element error ||u — uy||

B©F) by the triangle

inequality:

K

E skﬁk 7’IA)'N

k=—-2

K
u— E ekt

k=—-2

+ min
vNy € Hy

Thus bounding the Finite Element error will be achieved by approximating the asymptotic terms @ from the
Finite Element space Hy .

3. STRUCTURE OF THE OUTER EXPANSION PART

In this section, we essentially reformulate the results of Section 3 in [9] providing a solution of equations (2.2—
2.4), i.e. without lateral boundary conditions, in formal series algebras. This yields a general description of the
terms v* in (2.10) as coefficients of a formal series v[e] satisfying functional equations involving the formal series
fle] with the coefficients f* of (2.9) and a formal series ¢[e] of two-dimensional generators. This “generating
series” ([e] satisfies itself a functional equation inside w. We describe the four series of operators Vie], Q[e],
Ale] and R[e] involved in these functional equations.

In Section 4, we will deduce from the formulas stated in Section 3 new results about the properties of the
operators entering the formal series equations, concerning their action on analytic functions in in-plane variables
and polynomials in the transverse variable.

In Section 5, we recall from [9] the series of boundary conditions on Ow satisfied by the formal series [e] of
two-dimensional generators. These boundary conditions complement the functional equation inside w. We show
that it has a unique analytic solution, which yields that the v* are uniquely determined polynomial functions
in X3 with coefficients in analytic fields on @w. We deduce from this tensorial structure the approximation
properties of a simple p-version FEM on ¢ for the outer part.
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3.1. General structure of the asymptotics

A comprehensive way of solving equations (2.2-2.4) on the reference domain €2 is the use of formal series of
operators and vector functions, as initiated in [11]. The basic notion is the following: if Ale] is a formal series
with operator coefficients

Alel =Y, eF AR with Ag € L(E,F),
with E, F' functional spaces, and if b[¢] and c[e] are formal series in F and F
ble] =, bk, P e B, and cg] =Y, ek, FePF,
the equation Ale]ble] = c[e] means that
VkeN, b, Ayt = ¢,

As prerequisite, we first expand the operators B and G in equations (2.2-2.4) corresponding to the scaled
problem on 2 and we obtain the following problem without lateral boundary conditions that we write in the
form

{B[E]v[€]=f[€] =Yge 1€ im0, (3.1)

Glelvle] =0 on Ty.
Then the results in Section 3 of [9] can be reformulated following the lines of [5,10,11]:

Theorem 3.1. (i) There exist a formal series of surface operators Ale] with coefficients A* continuous from
C>®(w)? into itself and a formal series of reconstruction operators Vle] with coefficients V¥ continuous from
C=(@)? into C®(Q)? such that for any formal series C[€] of two-dimensional generators ¢¥ € C*(@)? satisfying
the equation

(ii) There exist a formal series of reduction operators Rle] with coefficients R* continuous from_C‘X’(ﬁ)?’ into
C>®(w)? and a formal series of solution operators Q|e] with coefficients QF continuous from C=(Q)? into itself
such that for any formal series [e] of two-dimensional generators satisfying the equation

Alelcle] = Rlel flel, (3-2)
we obtain a solution v(e] of problem (3.1) by setting
vle] = V[eCle] + Qle] fle]. (3-3)

3.2. Series V|e]

This series has only even terms: for all £ € N, V2+1 =0,
The first term VO of Ve] is the Kirchhoff-Love operator: for ¢ = ({,,(3) € C*°(w)? there holds

VOC = (C* - X3V*<37 C&) (34)
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and the second non-zero term has the explicit form

(VZ)a = P2(X3) On divi ¢, + P3(X3) 0alils
(V)3 = p1(X3) dive ¢, + DP2(X3) Als

with p; for j = 1,2, 3 the polynomials in the variable X3 of degrees j defined as

2
(3x3-1), =TT xp-

p1 = —pXs, D2 =

[=2] =1

where p := A/(A + 2p). The next ones have the general form, for £ = 2,3, ...

(V28) o = 520(X3) 0 AL dive €, + t20(X3) AL + 52041(X3) 0a AL

3.6
(V)3 = qoe—1(X3) At div, ¢, +  Gou(X3) ALG, (36)

with §;, ¢; and g; polynomials of degree j (note that the definition of these polynomials differs slightly from
those introduced in Sect. 3 of [9], but they play a quite similar role).

3.3. Series QJe]

Again, this series has only even terms: for all £ € N, Q**! = 0.

The first term QY of QJe] is zero. The first non-zero term is Q? and it coincides with the operator G
introduced in Section 3 of [9], that we recall now. For doing this we need two sorts of primitive of an integrable
function w on the interval (—1,+1):

Notation 3.2. Let us introduce:

o The primitive of u with zero mean value on (—1,+1)

T3 T3 1 +1 zZ3
7{ udys = / u(ys) dys — 5/ / u(ys) dys dzs.
-1 -1 Ja1

o The primitive of u which vanishes in —1 and 1 if u has a zero mean value on (—1,+1) and which is even,
resp. odd, if u is odd, resp. even

Y3 1 Y3 +1
][ wdeg = = (/ u(zs) dzs —/ u(z3) d23) )
2 -1 Y3

Then for f € C(Q)?, we define G f as

(Gf)s =0 N y B
(Gf)a = % |:2 fa + (/_1 foz) y3:| dy3 . (37)

Next Q* = WG + H, where the operator W : v + Ww is defined from C>(Q2)? into itself by

Y
(Wo); = 7}{ (ﬂ div, v, + X][ 8ﬁeﬁ3(v))dy3

T3 Y3
(Wo)o = —7{ (%ng +][ (é OasWsv + Atp Oa divi, vy + A*’Ua))dyg.
1 1
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In order to define H, we need the auxiliary operator F' from C>(Q)? into C>(@)3:

(Fv)s = p dpeps(v) dys,

(Fv)e = 5

|
[N
+
=
<
I
QQ?
sy
Cb
sy
w
<
~
oL
N
w
[oh
<
w

Then for f € C*(Q)3, we define H f as

(Hf)s = m}{“ [(_2][?!3 f3)]dy3

T3 1 2\ (U8 1 +1
(H.f)a = *% |:aaH3 + ; Y3 (FG)a + ;][ {aaSHS - 5 aaSHS d23}:| dy3 3

-1

(3.10)

where, in the last line, Hs denotes (H f)3 and (F'G), denotes (F(Gf))a.
With the convention that W9 is the identity and for any & > 0, W~* is zero, we have the general formula
for Q%

Q¥ =Ww*2G 4+ wHH. (3.11)

3.4. Series Ale]

The first term A° of the formal operator series Ale] is the block diagonal membrane-flexion operator

-L™ 0
A = < > (3.12)
0 irp
where — we recall that p = A/(A + 2u):
L™ =p A 0 w(2p +1) O div, and LY =2u(p +1)AZ.
0 A, D2

The terms of odd rank of A[e] are zero. The next non-zero term A2 is given by (using the operators W and F
introduced above, and denoting the triple (F1, F»,0) by Fy)

(AQC)Q =0,
(A%¢)3 = —F3(WV?()

and the generic terms of even order are, ¢f. Table 3.1 in [9]:

(A%C)a = Fa(V%C) )

(A2¢); = —Fy (WV”C ~ & BX3-1)E (V%g)) .
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3.5. Series R[e]
The first term R is given by

0 1 +1
R°f)a = 5 Folzs, X3)dXs
-1

1

+1
_/ (f3+X3 le* .f*)(I*7X3)dX3 .

(Rf)3 2/,

The terms of odd rank of R[e] are zero. Relying again on Table 3.1 in [9], we find successively

+1
(R2f)a = —FulQ) + 5 [ Xs0ufolan. Xy) dXs,

(R2f)s = F3(Q*f) )

and for £ > 2
(R*f)a = —Fa(Q*'f),

(R*f)s = B (Q¥12f = & (3X3 — 1) F.(Q¥F)).

4. TRANSVERSE DEGREE AND ANALYTICITY OF THE OUTER EXPANSION OPERATORS

The aim of this section is to deduce from the above formulas for the series V[e], Q[e], Ale] and Rle]
information on the way they act on polynomials in the transverse variable X3 and analytic functions in the
in-plane variables z, = (x,). Moreover, by a factorization of certain coefficients of these series, we will exhibit
a simpler equivalent expression for equations (3.2) and (3.3), where properties on polynomials and analytic
functions are easier to deduce.

4.1. In-plane and transverse degrees

We first remark that all the operators V¥ and Q* have the generic block form (obtained by spitting the
inplane and transverse components)
C** C*S
C =
<C3* Css

and that each operator C;; in the above matrix is a linear combination of operators of the form J o D where
D is a partial derivative operator in the in-plane variables z, with constant coefficients and J is a combination
of derivations, integrations in X3 and multiplication by polynomials in X3. We adopt the following notation:
deg,(J o D) denotes the degree of the operator D, whereas degs(J o D) denotes the degree of J acting on
polynomials in Xj: if the degree of J is d, then J transforms a polynomial of degree n into a polynomial of
degree n — d. From these definitions, we deduce the natural notion of block degrees for an operator C' as above.
Inspecting formulas (3.6)—(3.11), we obtain

Lemma 4.1. For any even number k the block degrees of V¥ and QF are the following

E k+1 ko k+1
deg*(Vk)(k_1 k) and degg(Vk)(k_1 kz)

and
o (k—2k—3 o kok—1
deg*(Q)<k_3k_4 and deg3(Q") = — E_1k—2)"
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In particular VF is a continuous operator from A@)? into A(Q)* and QF is continuous from A(Q)? into itself.
Moreover VF and QF are block-homogeneous in ..

4.2. Factorization by A°

For ¢ > 2, the operators V¢ can be factorized through A%: concerning the action on the transverse component
(3 this is clear from formulas (3.6); concerning the action on the in-plane components ¢, we note that the
following formulas hold

A, div, ¢, = 2M(P+1) div, L™¢,
and
AzCa - % A*(me*)a - +1) 8 le* (me )

As a result we find that each operator V := V% for £ > 2, and also V := WV?, can be factorized by A,
i.e. that there exists a matrix partial differential operator T such that TA° coincides with V. Combining with
formulas giving A% for ¢ > 1, we obtain:

Lemma 4.2. For any ¢ > 1, there exists a partial differential operator T?" in z, such that A%t = T?*A°. The
operator T2 s block-homogeneous of degree

o [ 20 21
deg, T™ = (2£+1 2¢ ) '
Therefore the equation (3.2): Ale]¢[e] = R[e]f[e], can be written
T[e]A%[e] = R[] f[e] where Tle]=Id+ 3,5, *T*.

The series T'[¢], since starting by T = 1d, is invertible in the formal series algebra and the 2/-th rank operator
of T[]~ is a block homogeneous partial differential operator in . of the same degrees as T2, As R is also
a block-homogeneous partial differential operator in z, of the same degrees as T, setting Rle] := T[] "'R][e],
we obtain:

Lemma 4.3. There is a series Rle] = > >0 e2R2 such that equation (3.2) is equivalent to

A%C[e] = R[)f[e] (4.1)

The operator R s block-homogeneous and its block degree deg, R2¢ s equal to deg, T%, cf. Lemma 4.2.

Moreover, since each V2 for ¢ > 2 can be factorized by AC, there exists a formal series of operators,
T'[e] = oy e2T" 2" such that

Vie] = VO +2V2 + T'[]A°.
We check that T” % is block-homogeneous of degree

o (20-220-3
deg. T (% 3204

Combining with the equation (4.1): A°Cle] = R[] f[e], we obtain that V[e]¢[e] is equal to (VO + e2V?2)¢[e] +
T'[e]R[e] f[e]. Setting Q[e] := T'[e]R]e] + Qle], we have obtained:
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Lemma 4.4. There is a series Qe] = > o> e2Q? such that identity (3.3) can be written in the new form
vle] = VI[elCe] + Qlelfle], where Ve] = VO +£2V?2, (4.2)

cf. (8.4, 3.5). The operator QM is block-homogeneous in x, and its block degrees are such that deg, Q% =
deg, T' %, see above, and degs Q* = degs V*, cf. Lemma 4.1.

Using operators G, W and H introduced in (3.7, 3.8, 3.10) we have for the first terms

QQ =G and Q4 = 1 <F4aa le* *7_’580[

- e P )RO+ WG+ H, 4.3
A+2p \ 3@3dive 3@ > (4.3)
where @3, qa, 74 and 75 are the polynomials of X5 appearing in (3.6).

5. THE OUTER EXPANSION AND ITS p-APPROXIMATION

In this section we prove that the formal generating series {[e] has analytic coefficients, and we deduce that
the terms v* of the outer expansion part are polynomial in X3 and analytic in z,. Such a structure allows
approximation by tensor p-version FE at an exponential rate.

5.1. The analyticity of the generators

So far, the formal generating series ([e] is still not completely determined. We know that it has to solve
equation (3.2) which we proved to be equivalent to (4.1): A%[e] = R[e]f[e]. Up to now, every equality was
deduced from the elasticity equations on Q° without lateral boundary conditions. Taking the lateral clamped
condition into account and introducing the two-scale Ansatz of the inner-outer expansion, it can be proved,
see [6,7,9], that the series ([e] has also to satisfy boundary conditions on dw.

Let s — x.(s) be an arclength coordinate along Ow. By extension, we will also often write s € dw. Translating
the results of [9] with the formalism of [5,10] we obtain that there exists a formal series of trace operators d|[e]
with coefficients 6% (s; d,, d,.) continuous from C*(@)? into C>(dw)* and a formal series of trace operators ~[e]
with coefficients v*(s; 05, 0y, 33) continuous from C>(Q)? into C>(dw)* such that the 2D-generator formal series
¢[e] has to solve d[e]¢[e] = v[e] f[e] on Ow.

The dependence on s € dw of the operators 8" and ~* is only governed by the equation of dw which is
an analytic curve. Therefore 8% is continuous from A(@)? into A(Aw)* and +* is continuous from A(Q)? into
A(Ow)*. The trace operator 8 is the Dirichlet trace of A, cf. (3.12):

(SO(C) = (Cla<2a<3van<3) |8w '

and the first terms v = 4! = 0.
Combining the results of [9] with our Lemmas 4.3 and 4.4 we obtain:

Proposition 5.1. The outer expansion part vle] is given by
vle] = (VO +2V?)([e] + QL fe), (5.1)
where ([e] is solution of the series of boundary value problems on w

{AOC[E]=R[e]f[s] in w
S[elCle] = [l fle]  on Ow.
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The ellipticity and coercivity of the leading part (A, 8°) in (5.2) implies, [17], that (A, 8%) is an isomorphism
from A(@)* onto A@)* x A(dw)?. Combining this with the analyticity of f gives the analyticity of the ¢*
in @. Moreover the expression (2.9) of the coefficients of fle] and the bound on the transverse degrees of the

operators Qk, ¢f. Lemma 4.4, yields that the v* are polynomial in X3 with a bound for their degrees:

Theorem 5.2. The series C[e] of two-dimensional generators solution of (5.2) has coefficients ¢* € A(@)3.
The series v|e] giving the outer expansion part is determined by formula (5.1). The term v* is polynomial in
X3 of degree degs v* < k + 1, with analytic coefficients:

k+1
F(X) =) XinPi(z.), 0P e A@) (5.3)
£=0

5.2. Finite transverse degree

If f is a polynomial in all three variables x, the transverse polynomial degree of the profiles v* is in fact
bounded indepently of k. This result is formalized by the notion of finite transverse degree. We say that the
outer expansion part v[e| has a finite transverse degree if there exists an integer d > 0 such that each term v* is
polynomial in X3 with a degree < d. From formulas (3.7)—(3.11), it is clear that a necessary condition for v|[e]
to have a finite transverse degree is that the series f[e] defining the right hand side has itself a finite transverse
degree.

For a field f depending polynomially on all variables x1, 2 and X3 we denote by deg, f the two component
vector of the in-plane degrees of f, and f3, and by degs f the two component vector of the transverse degrees.
For a formal series f[e], deg, fle] is defined as sup,, deg, f*, and similarly for degs fle]. As a consequence of
Lemma 4.2 we obtain:

Theorem 5.3. Let q, p' € N be two integers with ¢ > 1. If

deg, fle] < (20" 20’ — 1)T and degg fle] < (¢ q— 1)T (5.4)

then the outer expansion part v[e| has finite transverse degree and satisfies
T
degzvle] < (20 +q+22p +q+1) . (5.5)

Proof. If deg, f < (2p’ 2p' — 1) T, then for any integer £ > p’ + 1, Lemma 4.4 yields that there holds QMf =0,

since QM is block-homogeneous of sufficient high degree. Therefore, the transverse degree is provided by the
action of 3 ) o 11) e*QF on fle], whence (5.5). O

Remark 5.4.

(a) As all operators V¥ and QF are differential in x., therefore local in w., the result of Theorem 5.3 can be
localized in z,: if for a subdomain w’ C w, the series fle] WX (—1.1) depends polynomially on 1, z2, X3
and satisfies (5.4) on w’ x (—1,1), then (5.5) holds on w’ x (—1,1).

(b) In particular, if f[e] wix(—11) = 0, then degsvie] < (32)T in w’ x (—1,1), and for the special value v =0
of the Poisson ratio, degsv[e] < (30)—r inw x(—1,1).

(c¢) If moreover, f[e] represents a membrane volume force, then deg;v[e] < (21)T inw x(=1,1).
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Remark 5.5.

(a) For a constant bending volume force (0,0, 1) there holds degs v]e] < (34)T.
The same is valid in the case when a constant bending load is applied on the upper and lower faces, cf.
the formulas in [9].

(b) For a constant membrane volume force (a,b,0) there holds degs v[e] < (21)T.

This is still valid in the case of a constant membrane load on the upper and lower faces.

(c¢) Localized versions of all the above statements hold too.

5.3. p-version approximation of the outer expansion

We now discuss the approximation of the unscaled outer expansion part v[e] in the framework of the p-version
of Finite Elements. Since the series f[e] starts with the degree k = —1, see (2.9), such is also the case for the
series of generators ¢[e] solution of problem (5.2). Therefore the outer expansion v[e] also starts with k = —1,
and the unscaled outer expansion is defined as

v(e) = Y "H(X) with
k>—2

{5 (x) = (0,0,v3 ") (X) (5.6)

o (z) = (U’f,vg,vlgﬂ) (X), k>-1.
By superposition, it suffices to investigate the approximation of the generic term ?" from a suitable FE-space.
This will rely on Theorem 5.2 above, which gives the structure of the v*.

Our approximation shall be based on an analytic regular partition 7, of w, which is fixed independently of €
and k: the mid-surface w is covered by a curvilinear partition 7,, of triangular or quadrilateral elements x, which
are images of a reference element k under analytic element maps my: k — k € 7, which are diffeomorphisms.
Two different reference elements may be used in the design of 7,: a triangular reference element k1 and a
square one Kq.

The mesh 7, is assumed to be regular, i.e. the intersection of two elements k, k¥’ € 7, is either empty, a
vertex or an entire side and in the latter case, the common side 7y has the same parametrization from both sides,
i.e. for a common edge v = & N ' holds: m,s o m,(y) = 7.

Proposition 5.6. Let w C R2? be a bounded domain with analytic boundary curve Ow. For any polynomial
degree p, define the FE-space

SP(w,7,) = {v € CO@) : v|somu € Qp(R), k € T} (5.7)

where QQp denotes the polynomials of total degree p if K is the triangle Kt and of separate degree p if K is the
square Rq.

Then for any p > 1, there exists an interpolation operator iy : A(@) — SP(w,Tw), v +— ipv such that if
V|ow = 0, also iyv|a, =0, and satisfying the uniform estimates

+ [V (v —ipv) | < Cebp (5.8)

Hv_iva Loo(w) =

Lo (w)

where b, C' > 0 are independent of p, and b depends only on the domain of analyticity of v.

For a proof of this assertion, we refer to [16], for example.
We define next the FE space for the approximation of the o". To this end, denote by 7 the three dimensional
mesh family in €2, which corresponds to 7, i.e.

TP ={K=rx(-¢ce):kET}, (5.9)
where K = Mg (K) with the reference element K = 7 x (—1,1) and the element map

z = Mg (%, X3) = (mu(Z.), eX3): K — K. (5.10)
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On 72, we introduce the anisotropic tensor product FE-space
VIO, TO) = 5 (w,7) @ (Py. (—£,2)% X Py (—2,2)) (5.11)

T . .
of transverse degree q = (q*%) . If g = g3 = ¢, we write VP4(QF, 70) instead.
Here follows the approximation result for the unscaled outer expansion:

Lemma 5.7. (i) Under the general assumption made in Section 2.2 — the volume loading is the restriction
of an analytic field f, the generic term 9" in the unscaled outer expansion (5.6) can be approximated from
VPa(QF,TO) at an exponential rate in energy norm:

3%, € VPI(QE, TO)  such that H%’f - 17’1“VHE(QE) < Cem1/2g bminipa}, (5.12)

where C > 0 is independent of €, p and q, but depends on k and f.
If v* depends only on x, the factor e=1/2 in (5.12) can be replaced by gl/2,

(ii) If, moreover, the load f satisfies, with even pr > 0 and with g¢ > 1
T T
deg, f < (prpr—1) and degsf < (qr qr —1) (5.13)

then, provided the transverse degree q satisfies q > (pf +qr+2pr+aqr+ l)T, we have
Foh € VPO, TO)  such that H'Ek - 'T)IfVHE(QE) < CeV2embp, (5.14)

with the same improvement as above if v* depends only on x..
Proof. Let us fix k > —2 and a component 5f of ¥". Let us denote q:=q.,ifi=1,2and q:=q3 if i = 3.

(i) From Theorem 5.2 and in particular representation (5.3), we have the existence of k + 3 functions n* € A(@),

{=0,...,k+ 2 such that
k+2 2oy !
~ ¢
@ =3 (2) ).
£=0
Let us denote by j, an approximation of analytic functions on [—1, 1] by polynomials of degree < g at exponential
rate. We denote by 7¢ the monomial X3 — X% and we set

k+2

(Toa) @) =Y (') (2) (i) (a2),

£=0

with 4, the interpolation operator of Proposition 5.6. It is then obvious that (Ip,qi}f) belongs to SP(w,7,) ®
P,(—e¢,¢) and that there holds

H'U,f: — (Ipﬂ;l\jf) (X)HHl(Q) < Ce—bInin{p,q}.

Going back to €2°, we find, with the same constant C

< Qe 1/2g—bmin{p,a}

||:‘7]‘€ _T ,qﬁﬁfHHl(w,L%faE)) -

i p1q65||L2(w7H1(7576)) + 571 ||:5£C - IP

Estimate (5.12) is easily deduced (with the improvement if v* depends only on z..).
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(i4) Under the assumption (5.13) on f, Theorem 5.3 yields that

-
degsvle] < (pr+aqr +2pr +ar+1) .

The assumption over g gives that the transverse degree of 5f is less than q. Therefore, it suffices to set

q

@)@ =3 (2 (),

=0
to obtain the interpolant satisfying estimate (5.14). O

For K > 0, let us denote by 3% the truncated series of the outer expansion

K
M= 37 et (5.15)
k=—2

As a consequence of Lemma 5.7, and taking into account that v i= (0,0, (:3_1) only depends on z,, we obtain
immediately the estimate for any K > 0:

35%(] c V;IMJ(QE, TEO) such that Hg[K] _ 55\1](] HE(QE) < Ce—3/2o—bmin{p,q} (5.16)

Relying on Theorem 2.2, we can now deduce from (5.16) relative error estimates:

Theorem 5.8. Let K > 0. Let the volume load f be such that f(x.,0) # 0.
(A1) If fa(x4,0) # 0, we have, with constants b, C' > 0 independent of € and (p,q) but depending on K :

(K]

Tl € vPa(Qf TO)  such that HT;[K] — ol < Celertminlval g (5.17)

[0 )
(a.11) If, moreover, there exists a family of interpolation operators i; with values in the subspace of SP(w,7,)
of Ct functions, and still satisfying exponential estimates (5.8), then the approximation bound in (5.17) can be
replaced with Ce~bmin{r.a} ||'E||E(Qa).
(B) If f3(24,0) = 0 and f,(x,0) # 0, then, again, the approximation bound in (5.17) can be replaced with
Cefb min{p,q} ||,l‘2|| . )

(Q9) )
(¢) If, moreover, the conditions of Lemma 5.7(ii) are satisfied, then e~ *™™P:9} can be replaced by e~ every-
where.

Proof. (A) In that case, the energy norm ||u| B°) is equivalent to e ~/2, which, together with (5.16), gives (5.17).

We note that this “low” energy is due to the structure of the first terms in the outer expansion series: Indeed
e 2% 24+ 5_15*_1 = e 2(—23V.(, €)

with ¢ = CgQ(x*). For non-zero (, its energy is O(¢~1/2), whereas, in general the energy of its interpolate
e72(—131,(V.(), i,C¢) is O(73/2), because the interpolate is not a Kirchhoff-Love displacement.

If a C! interpolation operator i, does exist, then we may choose e 2(—x3 V. (iy(), i,¢) as interpolate and,
thus, recover robustness as & — 0.

(B) In the situation of dominating membrane load, the energy norm of & on Q° is equivalent to £'/2 and the

outer expansion series starts with 2" the energy of which is a (9(51/ 2), and, by superposition we obtain from
Lemma 5.7 the bound Ce'/2e=tmin{p.a} for (5.16), whence the statement of Theorem 5.8 (B). O
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6. PROPERTIES OF THE BOUNDARY LAYER PROFILES (INNER EXPANSION)

Now, we study the inner expansion part in (2.10), that is, the sum of the boundary layer terms ehwk. Tt is

in fact easier to consider unscaled terms " defined as:

" = (pF, 05, ¢8) == (wh, wh, wi ™).

In a similar way as for the outer expansion, the terms ¢* are determined as coefficients of a formal series
ple] satisfying functional equations: We first reformulate results from [5,9]. Then we will deduce from these
results, analyticity properties for the profiles in weighted spaces. Finally, in Section 7, we construct the hp-
approximation of the profiles.

6.1. Prerequisite

We introduce in a tubular neighborhood U C w of dw the usual boundary fitted coordinates (s,): if z.(s)
denotes a parametric representation of dw, any x. € U can be written in a unique way as . = x.(s) — rn(s)
for some 0 < s < length(dw) and 0 < r < 7y with ro sufficiently small, if n(s) denotes the exterior unit
normal vector to dw at s. With r, we associate further the stretched variable R = r/e. The terms of the
inner expansion are profiles, i.e. ©* = ¥ (s, R, X3). To the profiles " we associate their (s, R, X3) component
functions (g, ¢k, ).

The boundary condition in (5.2) on the two-dimensional generator series {[e] does not ensure that the outer
expansion part wv[e] satisfies the lateral boundary conditions (2.5), but that the inner-outer expansion does.
There exist operator series ®[¢] and ©|e] such that the ¥ are the coefficients of the series [e] given by

ple] = @[elC[e] + O[e] flel. (6.1)

We first give the functional equations solved by (6.1). Next, we define functional spaces of exponentially
decreasing functions at infinity on X+.

6.1.1. Ezpansion of operators in stretched tubular coordinates

In tubular coordinates (s, r, x3) associated with components (us, u,, us), the interior operator B (2.2) is trans-
formed into an operator B(s,r;ds, Oy, O, ) and the horizontal boundary operator G (2.4) into G(s,r; 05, Or, Ous ).
In the stretched tubular coordinates (s, R, X3), these operators become

B(s,Re; 05,6 *0g, e 10x,), and G(s,Re; 5,6 *0g,e 10x,).

The Taylor expansion at R = 0 of the coefficients of the above operators provides the operator valued formal
series

Ble] = ZEkBk and Gle] = Zskgk
k k

where the B*(s, R; O, 0r, 03) are partial differential systems of order 2 in the stretched domain dw x £+ whereas
the G*(s, R; 05, 0r, 03) are partial differential systems of order 1 on its horizontal boundaries dw x v+, where

v+ = Rt x {X3 = +1} denotes the horizontal boundaries of ¥*; all operators depend polynomially on R.

Therefore, each coefficient of the matrices B* and G* is a finite sum of terms of the form a(s)R”é)ﬁ@ﬂ@é, with
i+ j + £ less than 2 for B* and less than 1 for G¥. As a consequence of the analyticity of the boundary of w,
the coefficients s — a(s) belong to A(0w).
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The first terms B° and G° are explicitly given by:

(B%%)s = 11 AR 30s, (G%)s = O35 -
(B°@)r = 1 Arspr + (A + 1) Or(Orer + 03ps),  (G°@)r = (s or + Ores),
(B%p)s = uApsps + (A + p) 03(0rpr + 0303), (G%)3 = (AN +21) D53 + A OrpR -
We note the splitting into 2D-Laplace and 2D-Lamé operators in variables (R, x3) with Neumann boundary

conditions.
The series ¢le] is associated with zero volume and surface loads, which is written as:

{B[E](,O[E] =0 in OwxXxt, 62)

Glelple] =0 on Ow x ~y+.

6.1.2. Spaces of exponentially decreasing functions

The profiles ¢* (s, R, X3) are exponentially decreasing as R — oo and belong to a class of weighted spaces
in XT. These spaces depend on two real parameters § > 0 and 3 € (0,1). The parameter § describes the
exponential decay at infinity and 3 the regularity near the two corners (0, 1) of XF.

We denote by p+ the distance to the corners (0, +1) and set p = min{1, pyp_}. Let first H75(X) be the
space of C*°(X™1) functions ¢, which are smooth up to any regular point of the boundary of ¥, are exponentially
decreasing as R — oo and satisfy the growth estimates near (0,+1) in the following sense

Ry e L?(nh) and Ve e N? [f) >0, e plt-1=F 0}5]390 c LA(xH).

Then we define the corresponding displacement space $57;(2%) := 95 (H)3.
The space for the right hand sides is defined along similar lines. Let ﬁ%f’é(Eﬁ‘) be the space of triples
(U, %) € C(X+) x C®(v+) which satisfy

Ve e N2, Ot pltl+1=7 8}‘57‘3‘11 € L*(¥") and eOF pltl+1/2-5 8}‘531% € L3(vy1).
Then we define the corresponding space for right hand sides:
ﬁ?,}é(zﬂ = {(‘I’ﬂ/’) € ﬁ?ﬂs(zﬂs}'

These spaces are convenient to solve problem (6.2) coupled with lateral boundary conditions because there hold
the two following lemmas.

Lemma 6.1. Let 6 > 0 and § € (0,1) be fized. For any k and any ¢ € C= (0w, H55(X1)), there holds:
(B¥p,G%p) € A(Ow, 8T 5/ (S7))  for any &' < 6.

This is a straightforward consequence of the structure of the coefficients of the operators B* and G* (analytic
in s and polynomial in R).

Lemma 6.2. Let 6o > 0 be the smallest exponent arising from the Papkovich-Fadle eigenfunctions, see [12].
Let By € (0,1) be the smallest real part of the corner singularity exponents associateed with the corners (0,11)
of 7t for the operator (B°,G°) with Dirichlet boundary conditions on R = 0, see [8,15]. For any 0 < 3 < By
and 0 < § < &g, for any (¥,1) € K 5(XT), and any P € C*°([—1,1])? there exist a unique ¢ € HF5(ET) and
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a unique rigid displacement Z such that
Blp+¥ =0 in XNt
G+ =0 in U~y (6.3)
(p—2)|py+P =0
This result is proved in [5,7,9]. Let us denote by

RO(®, 4, P) the solution ¢ of problem (6.3).

If (¥, 1)) belongs to A(dw, R 5(X1)) and P belongs to A(dw,C>®([-1,1])%), then s — RO(¥(s), % (s), P(s))
defines an element ¢ € A(Jw, H3 5 (X71)), which is still denoted by R°(¥, ), P). In particular, if the right hand
side (¥, ), P) has a tensor product form

a(s) (‘Il/(Ra XS)a ’I/JI(R), P/(XB))
then RO(®, 1, P) = a(s)p’(R, X3) with ¢’ = RO(¥' 4’ P’) since (BY,G°) does not depend on s.

6.2. Series ®[e] and Ole]

As the boundary layer profiles are expressed in unscaled components, we have to define the unscaled version
of operators V[e] and QJe]. This only consists in dividing the transverse component by . This amounts to
define

V[e] = D[]VE] and Q[e] = DE]Qe]
where we have set D[e] = e 'D_; + Dy, with
D_i(us,ug) = (0,uz) and Do(us,usg) = (us,0).

Note that for any &k > 1, V* and Qk are nonzero operators.

We have now all material for the definition of the formal operator series ®[¢] and ©[e] present in (6.1).
Beyond the equations Be]®[e] = 0, Gle]®[e] = 0, B[e]O[¢] = 0, G[e]O[¢] = 0 corresponding to system (6.2),
they satisfy that ®[e] + V[e] and ©[e] + Q[e] takes their values in a rigid displacement series.

The zero-order operators ®° and ©° vanish. For any k > 1, there holds

k k
vCec@)?, ef¢=R(Y B¢, Y g'etie, Vil ) (6.4)
=1 =1
and
k k _
vfecx@?, eff =R B'Of, Y g'O T, QFF ). (6.5)
=1 =1

Gathering all information about the structure of series V]e] and Qe] the decomposition of operators B and
G* in tensor product terms, and of solutions of problems (6.3) we obtain:
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Lemma 6.3. Let 8 and § be as in Lemma 6.2.

1) For any wnteger k > 1, there exists an integer L = and for any £ = 1,..., L exponentially decreasing
) F ; k>1,th ; ; L=1L(k d (=1 L ally d 3
fields ™" € 9F5(ST) and partial differential operators 6%*(s;0s,0,) on dw with analytic coefficients on Ow

such that

L

B¢ =3 M (R, X3) 6" (5;,0,,0,)¢ | .,
=1

Each @** is the solution RO(\IIk’Z,'Q/Jk’E,Pk’é) of problem (6.3) where the P**(X3) are triples of polynomials,
and (\Pk’e,wk’e) =(b Pt gcpklvl/) with k' < k, ¢/ < L(k'), and b, g matriz operators with coefficients of the
form R”@g@ (with |m| <2 for b and <1 for g).

(i) If f depends polynomially on X3 (with degree degs f), for any integer k > 1, there exists an integer
J = J(k,degs f) and for any j =1,...,J exponentially decreasing fields 0 ¢ 955(X1) and partial differential
operators % (s; 0y, 0p, 03) on Ow x (—1,1) with analytic coefficients on Ow such that

J
OF f = 0"(R, X3) v (s 04,0y, 0s

j=1

)‘f|8w><(—1,1)'

Each 0% is the solution RO(BFI Prd P*J) of a problem (6.3) where the P*3(X3) are triples of polynomials,
and (\Ilk’j,wk’j) =(b 07 gg~i ) with k' < k, j' < J(K',degs f), and b, g matriz operators as above.

6.3. Analytic regularity of the boundary layer profiles

Lemma 6.3 states that the generating layer profiles ¢**(R, X3) and 8" (R, X3) are solutions of problem (6.3)
with sets of data coming from generating terms of lower degree. Therefore, we obtain by recursion that they are
analytic in the interior of 7. To estimate the rate of convergence of hp-FE approximations of the boundary
layer profiles, however, we quantify the analytic regularity of ¢*¢ and 8% in the interior of . We need for
this an analytic version of the spaces $ 75 and &5.

Definition 6.4. For real parameters 0 < § <1, > 0, define the space .ﬁég(EJr) as the set of all p € 5’)%?“2*)
for which there exists a constant C' > 0 such that

Ve e N, [¢) >0 He‘mp"i‘*lfﬁagw‘

Lagney S O (6.6)

Analogously, we denote by ﬁé, s(X7) the space of triples (¥,4*) for which there exist C' > 0 such that

2 S e

Lagney < O (6.7)

and

Ve € N2 He‘mp‘z‘ﬂm_ﬁaﬁ,gwt

- SO (6.8)

L2 (v

As before, we denote by $75(5T) = H75(57)? and likewise 87 5(3).

With these definitions we can now prove the two following lemmas, which are the analytic version of lem-
mas 6.1 and 6.2.

Lemma 6.5. Let 6 > 0 and 3 € (0,1) be fized. For any k and any @ € A(@w,ﬁéé(Eﬂ), there holds:
(B*p,G*p) € A(Ow, B 5/(E1)) for any &' < 5.
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Lemma 6.6. Withd >0 and 8 € (0,1) as in Lemma 6.2, for any (¥, ) € ﬁéé(ﬁﬁ), and any P € A([—1,1])3
the solution ¢ = R (¥, 4, P) belongs to 53?76(2"’).

Proof. To this end, for p, ¢ € N, we define 3, ; = (p,q) x (—=1,1), £, = (p,00) x (—1,1), fy;q = (p,q)x {*1} and
fy; := (p,00) x {f1}. Then we may split for example XF in ¥ 2 U¥5. We establish the analytic regularity (6.6)

in 3,2 and in ¥, separately.
Step (i): Analytic estimates in the half-strip Yo = (2,00) x (=1, 1).

For any 3 € R and B°, G as in (6.3), we have the equivalence

Bp+®¥ =0 in T Bg(eﬁRtp) +efRr =0 in T
Po+1p =0 in v U~ G Bp) +ePRyp =0 in v U~

where (Bg, gg) is an elliptic operator pencil depending on 3 with constant coefficients and principal part (B°, G°).

By the ellipticity and analyticity of the data ¥, 1) in ¥, we have for any p > 3 and every £ = ({g, £3) € N?
for @ := e’Fyp the analytic regularity estimate, see [17]

1 ~ Lo, (B0¢ 7
a0l oy SO D IR s,y I,
ml<(lel=2)+
1
l€]+1 — ||op"(G%¢ /
e | |<(|zel:1) n! HaR (gﬁw)HL?(’Y;j—z,erﬁ - H(’0|‘L2(’V§72,p+2)
n|< +

where the constant C' depends on 3, but not on p > 3 or on £. Summing up for p > 3, we get that

1 : 1 g ~
g 1Pl < 50 SOk g + 120 s,
In|<(1€]-2)+
R — 7
2achil D DR /355 ol S -
InI<(e-1)+

which also reads

1 1
g 108 ) o,y < CHL D 0k B sy + Il s,
! n<(lel-2)+
Lo
L B DI e e s

[n|<(le[-1)+
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Noting that 8§,3(eﬁR<p) = ePR(Or + B) 205 p, we can deduce from the last estimate that

1 1 n
o 17030l sy < COHL D0 S [ROR (B0 Lo,y e s
[n|<(]€]-2)+
1
wol S e @R, el
nl<(E-1)4 1 1

Whence ¢ € $7 5(32) if (B%, G%) belongs to &7 5(£1) and if eF¢ is in L2(X).
Step (i1): Analytic estimates in g 2.

Since the differential operators B, G% in (6.3) have constant coefficients and are in divergence form, and since
P is analytic on R = 0, | X3| < 1, the regularity theory of Babuska and Guo [13,14] (see also Th. IV.1 in [3])
implies that ¢ € 53;3476(20,2). O

Then, combining Lemma 6.5 and Lemma 6.6 we prove by induction on k£ > 1:

Lemma 6.7. Notations are as in Lemma 6.3 and 3 and § as in Lemma 6.2. Then for any integer k > 1 all
the boundary layer profiles @** and 87 belong to 5§5(2+) and estimates (6.6) hold with a constant C > 0
depending on k.

7. hp—APPROXIMATION OF THE BOUNDARY LAYER PROFILES

Unscaling expansion (2.10) we obtain that the terms @" (2.11) of the expansion of & are the sum of the outer
terms ¥" and of the inner terms x¢". In this section, we investigate the approximation of the inner expansion
terms y* by mapped piecewise polynomials.

7.1. hp-Approximation of layer profiles on the half-strip X+

For the approximation of the profiles ¥, we subdivide £ into three regions
o= (0,2) x (=1,1), = (2,R) x (=1,1), f;:=(R,00) x (—1,1) (7.1)

where R > 3 is an integer at our disposal which will be selected below. In each subregion ¥}, v € {I,11, 111},
we introduce a FE-mesh M, as follows.

In EI+ , we need a parameter n which is an integer > 1: M7 consists of axiparallel quadrilaterals with hanging
nodes which are geometrically refined toward the “corners” of X+ with n layers and a grading ratio o € (0,1),
cf. (7.19) below (see Chap. 4 in [19], for more details on geometric meshes with hanging nodes).

In Eﬁ, we define

Miu o= {(i,i+1) x (-1,1):i=2,... ,R—1} (7.2)
and finally, My = {(R,00) x (—1,1)}. The mesh M™ in ¥ is the union of the meshes in the subregions:
M"™ = M? U M U M.

We next define the hp-FE space in 1 which we will use to approximate the profiles. Let p be an integer > 1.
We denote by Q, the usual spaces of polynomials of degree p in each variable and we define

SP(SF, M™) = {ga e HY(SY) : gl € Qu(K) VK € M™,p(R,") = 0for R > J?z} : (7.3)
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X3:—1

~

> R=2 Sk R i

FIGURE 7.1. The regions X, v € {I,II, 111}, of ¥* and the meshes M} with n = 3, ¢ = 0.5,
MH and MIII-

~

7

FIGure 7.2. @ and notation.

The next theorem addresses the approximation of the boundary layer profile space )’_)“5%(2"’) from SP(L+, M™)
and is the main result of this subsection.

Theorem 7.1. Let p € 5§5(E+) for B € (0,1) and 6 > 0, be a boundary layer profile. Then there exist C > 0
and b > 0 such that, for any p > 1

Jp, € SP(ET,MP)? such that || — ‘*%HHI(W) <C(e™™+ e*‘sﬁ). (7.4)

Remark. Note that the number n of layers in the geometric mesh M7 is taken equal to p.
Proof. To prove Theorem 7.1 we construct ¢,, separately in each subdomain ¥F, for v in {I,ILIII}. The
following Lemma of approximation on the model square @ = (—1,1) x (=1,1) will be used throughout.

(i) ESTIMATES IN THE MODEL SQUARE

Lemma 7.2. Notation as in Figure 7.2. Let m) : L*(=1,1) — Qp(—1,1) denote the L?-projection and define
mpu foru € H'(=1,1) by

(rhu)(e) == u-1)+ | "0y (€) de

-1
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X3

FIGURE 7.3. Geometric mesh M in EI+ with hanging nodes.

and denote by ﬁp = 71'11, ﬂz the tensor product interpolant on @ (here ﬂz is the analogue of 71'11, in the vertical

direction). Then, for any u € HHk(@), k > 0, holds

~

Iyu =u at the vertices of Q. (7.5)

ﬁpu‘ﬁ_ = ﬂ;(um), i=1,3 and ﬁpu|ﬁ_ = wﬁ(u 5,), 1=2,4 (7.6)
and, for any p > 1 and 0 < s < min(p, k) the estimates
T 2 s+1, 1|2
V(=T 7.g) < COw5) [0 a5 g, - (7.7)
7 2 (I)(p’ S) s+1 2

Here HDkuHi?@) = Z|a\:k HDO‘uHi?@). The constant C > 0 is independent of s and p, and ® is given by

(p—s) 1 (p—s+1)!
(p+s)  plp+1) p+s—1

D(p,s) = 0<s<p.

(ii) ESTIMATES IN ¥

Next, we address the interpolation on geometric meshes.

Lemma 7.3. In X} = (0,2) x (—1,1), consider the geometric mesh M} shown in Figure 7.3. Then, for
u € HY(X[) and p > 1, exists lu € SP(S], M}) such that Tlu is continuous in X{ and that there hold the
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(—1,1) (1,1)

& (~1,0) (1,0)

& = =

(—1,-1) (1,-1)

FIGURE 7.4. Mesh patch with hanging node.

following estimates for any 0 < s < min(p, k)

~ |2 hi Zs+2 D(p, s) s 2
Hu—Hu‘ 125 <C Kg/[n (7) 1 |D +1UHL2(K) ; (7.9)
I
~ 2 < hi 2 s+1 2
HV(u—Hu)‘ e SC O (5] ews) [0 ]Sy, (7.10)
KeMmyp

Proof. For K € M7, let Fk : @ — K be the affine element map. Define
(TTu) |k = (ﬁp (quK)) OFI;I.

Then applying Lemma 7.2 elementwise and a scaling argument imply (7.9, 7.10). By (7.5, 7.6), ITu is continuous
across edges which do not contain hanging nodes. It remains therefore to remove jumps of the interpolant on
edges with hanging nodes.

Assume now that we are on an edge with hanging node as shown in Figure 7.4.
Denote v;; := K:n IA{]- and by [u — Iul;; = —[mul;; the jump of u — Iu across ;.
By (7.6), [u — Hulas = 0 and [Tu];; € Q,(7i;). We remove the discontinuity by lifting [ITu]. Put

[Mu)12(£1) on Ky,

V = —(<2 1 ~
(&) = —(&+ ){[Hu]w(&) on By

Now [ITu]a3 = 0 implies that V € C° (Eg U Egg) and

HVVH L2(IA(2UI?3) < ¢ H |:7T’U;:| HH1/2(712U’Y13) ! (711)
with C' independent of p. The Trace Theorem in K implies
||[7Tu]||H1/2(712U’y13) = ||[U - ,/TU]H H/2(y13U713)
+ —_
< = T A = T (7.12)

3
§ C Zi:l HU7HU”H1(}A{Z) .
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Put

~ IIu in I?l
Ty := N N (7.13)
V +1u in Ko U K3.

Then IIu € C°(K) by construction and from (7.11)~(7.12) we obtain

va—ﬁm‘

3
L2(K) < Cz; HV(U - HU)HL2(}?I) :
=

Concerning the L? estimate we have

HV||L2(I?2UI?3) SC ||[u - HU]HL2(712U,),13)
_ + _ -
=¢ {H(u TTu) ||L2(712U713) +I(w — TIu) ||L2(712U’Yla)}
3 1/2 1/2
<C ¥y (=Tl o ) + e = Tl 25 19 (= )2 )

and we arrive at

1/2

d 3 1/2
o= Tt 2,20 Sy (o= Tl o )+ = Tl 2 IV (0= T2 )

Now assume that K; are of size h. To obtain error estimates, we first use (7.7, 7.8) and then we scale IA{,
K; to this size. Summing over all patches in Figure 6.3 gives (7.9, 7.10) since in the geometric mesh M} the
modification V in (7.11) is applied at most twice per element. [l

Later on, we have the problem that if K € M7 abuts at the vertices (0, 11), then the layer profile ¢ does not
belong to H2(K)3, in general. Let us denote by K, the element K € M} such that (0,1) € K, and likewise
for K{; with (0,—1). Put

SHe=9\ (K UKy ), Mp={KeM}: K#K;}.

Then if u € H*t () we obtain like for Lemma 7.3 that the interpolation estimates (7.9, 7.10) hold with M}
replaced by M7 and ¥ by ¥ .
To deal with the corner singularities we rely on, see e.g. [19]:

Lemma 7.4 (Hardy-type estimate). Let Q = (0,h)? and assume that u € H(Q) satisfies for a v € (0,1):

[ul / r?7 |D?ul?dz < oo (7.14)
Q

2 Pp—
H3(Q)
Then u € C°(Q) and the bilinear interpolant Jou satisfies the estimate

lu — Joul| < ChY™7 |ul (7.15)

HY(Q) H2(Q)

We proceed to hp-approximation. Let ¢ belong to ﬁé5(2+) for € (0,1) and 6 > 0. We note that ¢ belongs
to H%(Q)3 fory=1-7. - -
Without loss of generality, we consider only Mf',, the upper half X35 > 0 of M{'. We number the elements

in this mesh by K;;, 1 <i<mnand j=1if i =1 (vertex element) and 1 < j < 3 otherwise, where ¢ = 2 in the
layer surrounding the vertex element, i = n in the largest element layer. For any K;;, i > 2, denote by

hij = dlam(K”), Tij = dlSt (Kij; (0, 1)) . (716)
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Then there exists A € (0, 1), independent of n, s.t.
hij S )\Tij and Vo € Kij; Tij § p(l‘) § Tij + 2}1” S (2 + )\) Tij - (717)

Now consider a layer profile ¢ € 53;3 5(2T). Then a typical term in the error bounds (7.10) can be estimated as
follows:

h 2s A 2s
(5) ‘1>(p,s)/ Dl d < (%) <I>(p,8)7“’2(5’1’ﬁ)/ PP D P da
ij R Kij (7.18)
_ s 1— N 2
< (3) oo

Now, since the mesh is geometric with grading ratio 0 < o < 1, for all 2 < ¢ <n and 1 < j < 3, we also have
o <y < V20" (7.19)

Summing the error over all K;; gives with (7.18) and (7.19) in (7.10) with the regularity (6.6) that

HV(‘P—ﬁ‘P)‘

n 2s
@ SO (%) O(p, 5) o2 1A =D O 2 (5 4 1)1
=2
2542
< Co(p,s) (7) (s 4 1)12 g2t D(=B) 57 5=2(1-B)i
2542
< Co(p,s) (7) (s+1)12.

If we take s = ap for an a € (0, 1), Stirling’s formula implies that

AC\*  (p—s)! AC\ T s=ap
i n? (=) < —= ne? (= < Cp* (F(a,AC/2))"
posrve () <P erne () TS es (reac)
where
(1-a)t=e 2
F = d)“> .
(0.) = {7 agrea (o)
Since for d > 1
in F(a,d) = F(omin,d) = Fin < 1 ~—#<1
03221 Oé, - amln; - min b amln - \/H_—ClQ Y
Sin we get
2ap
Then
~ 2 _
HV(QD—HQD)‘ L2 < Cp*Fpy, < Ce??
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since Fpin < 1, for some C, b > 0 independent of p. Analogous bounds hold for the L? norm of ¢ — ﬁcp.
Summarizing, we obtain that there exist C' and b > 0, such that for any ¢ € 5§5(2+) and any n and p

~ 2 =~ 2 _
o =T fasr + [V - T faspy < 7. (7.20)

It remains to estimate the error on Ki;, the vertex element: recalling that any ¢ in 53;3476(2*) belongs to
Hg(Ku) for v =1 — 3, we deduce from Lemma 7.4 that

I = Tac @l gy < C ™0 (7.21)

Now a continuous interpolant in Efr is obtained by joining the bilinear interpolant Jg,, ¢ and ﬁcp continuously

on K1 N Efr, by liftings in K91 U Ka3. Finally, estimates (7.20) and (7.21) yield the hp type approximation
estimate if we choose

(iii) ESTIMATES IN Y}

Consider now the approximation in %7} = (2, R) x (—=1,1). We write

R
2 2
e — C‘OP||H1(EI+I) = Z e - ‘PpHHl(Ki)
=2

where K; = (4,7 + 1) x (=1,1) € M. Applying again Lemma 7.2, we construct ¢, elementwise. By (7.6), ¢,
is continuous in Efg and

2 s+1 2
H‘P—‘f’p”m(m <Co(p,s) ||D ‘P||L2(Ki) :
The analytic regularity 3’_)23476 of ¢ in o, cf. (6.6), then gives

2 s —201
H‘,O - <PPHH1(K7;) < C(p,s) o +1)(3 + 1)!2 e (7.22)
Choosing again s = qyi, p as in Ef", we find
2 —2(bp+8i) D
||<pf<pp||H1(Ki)§Ce bptod) i —9 R. (7.23)
Summing (7.23) over all i, we get for constants C', b > 0 independent of Rand e
2 —2b
||‘10_‘Pp||H1(zI+I) <Ce 7. (7.24)

Remark. The bound (7.23) indicates that the polynomial degree p necessary for the boundary layer approx-
imation in Efﬁ may actually decrease with i: we only need bp; + di > pmax, Wwhence p; > b_l(pmax — 01) for
i=2,...,R is sufficient to ensure (7.24).

(iv) ESTIMATES IN X7,

Finally, we discuss the region i, = (1/% +1,00) x (=1,1). Here we choose ¢,, = 0 and get from (6.6) with
0 =1

—925R
H‘P - ‘ppH?{l(g;I) = H‘Pll?{l(gﬁl) <Ce o (7'25)
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The choice ¢, =0 in EEI introduces a jump
0#[p—¢,]=—lp,] € Qp(~1,1) on {R=R+1} x (~1,1).
We lift this jump into the last element Kz = (E, R+ 1) x(-1,1) € Efi by
V(R X3) = (R - R)gy)(Xs), (R.X3) € Kp. (7.26)
Then, (¢, — V)(E + 1, X3) =0, and there is C > 0 independent of R and of p, such that

VI i1 sy < C @M L2 (a1 x-1,1))

Since cpp|EI+H = 0, we have by the trace theorem in Kz

el 22 snyo ory = 162 = @0l poqsny oy

(725 (7.27)

23) .
<C HCP - <PPHHl(Kﬁz) < Ceortriof),

(v) CONCLUSION

This yields a continuous approximation ¢, € S? (3T, MP) which satisfies (7.4), if we combine all 3 approxi-
mations in 3,7, Theorem 7.1 is proved. |

Corollary 7.5. Let ¢ € f_)éé(E*) for 8 € (0,1) and § > 0, be a boundary layer profile. On the scaled strip
eX T, let @ be defined as @°(r,x3) := p(e~tr,eta3). Then, if we take R= p, we have

Je, € SP(exT,eMP)3  such that Hcp8 — "OZHH1(52+) <Ce P,

Proof. Let ¢, be the approximant of ¢ given by Theorem 7.1, and let ¢, be defined as 5 (1, 23) = ¢, (e7tr e tus).
Scaling r = ¢ R, x5 = € X3 implies dRdX3 = ¢~ 2 dr dzs and there holds
_ -1 £ € _ 5 5
H‘p*‘ppup(zﬂ =€ ||<p *‘/’pHp(gzﬂ and ‘¢7¢P|H1(2+) - |<p *‘/’p‘Hl(Ezﬂ'
Theorem 7.1 implies the assertion. ([l

7.2. hp-Finite Element space in Q¢

To prove approximation results in the three dimensional domain Q¢ for layer profiles @ of the tensor form
P =v(s)p(R, X3) with v € A(Ow) and ¢ € 53?76(2"’), we define first the Finite Element space.

Our approximation shall be based on a regular partition 7,, of w like that used in Section 5.3, with the new
request that 7., has one layer of quadrilateral elements along its boundary as we are going to describe. Let us
define the tubular layer

wp = {zs €w: dist(zy, 0w) < po} (7.28)

where pg is chosen less than one half of the minimal radius of curvature of dw.
Let L be the length of the curve dw and let s — (:El(s),:cg(s)) be an analytic, L-periodic parametric
representation of dw. The mapping m(s,r) given by

m(s,r) = (z1(s) — r5(s), z2(s) + ral(s)) (7.29)
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5S4

ST = So
FIGURE 7.5. Boundary fitted mesh 7, in the midsurface w.

is an analytic map of (0, L) x (0, pg) onto wy.

In w, a fixed, regular partition 7, is introduced as follows, see Figure 7.5: partition the interval (0, L) in a fixed
number of subintervals 7; := (s;_1,8;),i=1,...,1,0=89 < 81 < --- < sy = L, and set k! = m(n X (O,po)),
i =1,...,I. The remaining interior wp := w\wy, is then covered by a fixed curvilinear partition 7, of triangular
or quadrilateral elements s which are images of a reference element % under analytic element maps mf:
R — KY€ Ty

For each integer n > 1 we define now a three-dimensional mesh 7" corresponding to the mesh M"™ in the
half-strip ¥ constructed in the previous subsection to resolve the layer profiles, c¢f. Figure 7.1:

(a) In Qf = wy X (—¢,¢), we pick tensorized elements K} = ki x (—¢,¢), ki, € 7., which are fixed, i.e.
independent of n (their number is also independent of ¢).

(b) In the three-dimensional boundary layer region Qf = wy, X (—¢,¢), we select 7" to be the tensor product
of e M™ in the (r, z3)-plane times the intervals 7; along dw:

T s = m(7o, ® eM™) N, (7.30)
where 79, = {1, : 1 =1,...,I} and m(s,r,x3) = (m(s,r),xg). In order for this mesh to be well defined,
we assume

eR < po, (7.31)

which ensures that the internal boundary ﬁ‘f) N Q¢ is covered by m(e M ® Taw).

Each element K € 7] is then the image of a hexahedral or prismatic reference element under an analytic
element map

xTr = MK(f*,X;g) = (mK(f*), EaK(Xg)), (732)

where mg is analytic and ax(-) is affine.
The hp-FE spaces SP(2¢,7") are then defined by

SP(QF,T) = {u € HY(Q%): wo Mg € QP(K), K € T} (7.33)

where K denotes a hexahedral or prismatic reference element of unit size.
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7.3. hp-Boundary layer approximation in Q¢

Let us define now the approximations of the profiles ©» = ~(s)p(r/e, x5/¢). Here ¥(s) is an analytic, L-
periodic function independent of e, therefore can be approximated by polynomials at an exponential rate:

Lemma 7.6. Let v be analytic and L-periodic in s. Let Sger(é)w,mw) denote the space of continuous, L-

periodic piecewise polynomial functions of degree p in (0,L). Then for any integer p > 1 there exist interpolants
JpY € SBer (0w, Tay,) such that

1Y = 37 g g1y < Ce™™ (7.34)

Here b > 0 depends only on the domain of analyticity of ~y.
We can now construct the hp-approximation of a generic boundary layer profile 1.

Proposition 7.7. For po as in (7.28), assume that the integer p satisfies

ep < po, (7.35)

and that the mesh MP in $+ is such that R = p. Let ¢ = v(s)p(R, X3) with v € A(Ow) and a layer profile
p < 5§5(2+) with 3 € (0,1) and § > 0. Let ¥° be defined as ¥°(s,r,x3) = ¥ (s,e " 'r,e tas). Then there
exists an interpolant
Tpb® € SP(0,TP)?,  with support in Qf
such that there holds the error bound, with constants C, b > 0 independent of € and p
5 € —b,

H¢ - jpw HHl(Qa) <Ce P (736)

Proof. Define in Qf

(Tp%) (5,7, 3) := (3p7) () 3, (1, 23) (7.37)

with j, defined in Lemma 7.6 and ¢j, in Corollary 7.5. Evidently, condition (7.35) implies that the support of
Jp¥° is contained in 5, and we have the estimate

I = Tl 1 ) = 1851 ) < Coe/% < G

where we used (7.35) and the exponential decay of the profile ¢ (R, X3) with respect to R.
In the boundary layer Qf, we may go back to the stretched tubular coordinates (s, R, X3). The application
x — (s, R, X3) maps Qf onto the product (0,L) x (0, po/e) x (—1,1). With
(\71)"/))(57 R, X3) = (.710,7)(5) Sop(R7 X3)
there holds (J,%°)(s, 7, 23) = (Jp¥)(s,e " 'r,e1z3), hence
H"b - jp"b HHl(QE) = ||¢ - jp’l/)HHl((O,L)X(O,po/E)X(fl,l))
< H"/) - jp"/)"Hl((O,L)XE*) :
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Therefore, it is sufficient to bound the right hand side. There holds

||¢ - jp¢||H1((O,L)><Z+) = H’Y‘P - (]pf)/) Sop}’Hl((O,L)XZ*)
< ||(7 - jp7)¢|‘H1((O,L)XE+) + Hf}/((p - C‘OP)HHl((O,L)XZ*)

< ||’Y - jp,YHHl(O’L) ||(’0HH1(E+) + ||,YHH1(O,L) HSO - ‘10;1;HH1(2+)

Lemma 7.6 and Theorem 7.1 with R = p vield finally the exponential bound Ce~?7. O

For K > 0, let us denote by @™ the truncated series of the inner expansion

K
@ = Zekx(r)cpk(s,eflr,eflxg), (7.38)
k=0

where the profiles ¥ are the coefficients of the series [e] = ®[¢]¢[e] + Ole] f[e], see (6.1). Note that, although
the series ¢[¢] and fle] start with k = —1, the series le] starts with k = 0 because the operators ®" and @*
are zero for any k < 0.

The final result on the hp approximation of the inner expansion now reads

Theorem 7.8. For the definition of the discrete space SP(Q°,TP) we assume that ep < po and R = p. Let
K > 0. Let the volume load f be such that f(x.,0) #Z 0. Then we have, with constants b, C > 0 independent
of € and p but depending on K :

Jwl) € 5P(QF, TP)  such that Hm[KLﬁ%ﬂ ey < CV2e 70 il (7.39)

[ sia

Proof. (i) Let us take k < K. First recall that according to (6.1), p* = Zle ®¢F ! + O F* and that
according Lemmas 6.3 and 6.7 each term of the above sum is itself a linear combination of terms of the form
P =v(s)p(R, X3) with v € A(Ow) and ¢ € 5“54,5(2"’) for 5 € (0,1) and some § > 0. Therefore Proposition 7.7

applies. We note that x can be chosen such that x(r) =1 for 0 < r < pg, x(r) = 0 for r > 2pg. Therefore, as
in QF, x(r) ¢ = p*, there holds

[x(r) @* — Jp‘PkHE(Qi) = |l* - jp‘PkHE(Qi) <C e - jp‘PkHHl(Qi) <Ce™.
In Qg, jpapk = 0 by construction. Therefore
[x(r) @* — JpkaE(Qg) < |Ix(r) ga’“HHl(Qg) < Ce R,

Whence the upper bound C e~ on € since R= p.
(#1) By superposition we find that for any Ky < K the partial sum satisfies:

K K
S et 3 et < O
k=K, k=Ko

(i4i) If f5(24,0) # 0, then the energy norm of u is equivalent to e~1/2

Ky =0, whence (7.39).

(i) If f3(x.,0) = 0, then f,(x,,0) # 0 and then the energy norm of @ is equivalent to £'/2. Moreover the
inner expansion starts with Ky = 1, whence (7.39). ([l

and the inner expansion starts with
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8. hp-APPROXIMATION OF 3-D PLATES

To obtain the hp-approximation of the full problem (2.2-2.5), it suffices to combine the results of Theorems 5.8
and 7.8.

For this, we only have to note that for any n > 1 the geometric boundary layer meshes 7" defined in
Section 7.2 are refinements of the regular mesh 7 defined in Section 5.3, provided 7 is based on the same
boundary fitted mesh 7,, on w. Moreover we have the inclusion

VPIQF,TO) C SP(OF, T (8.1)

forall¢g <p,n>1,and e > 0.
As a corollary of Theorems 5.8 and 7.8, we obtain our main results, namely a-priori estimates for hp-
approximations of the three-dimensional plate problem.

Theorem 8.1. Let QO = w X (—¢,¢) be a plate of thickness 2¢ and midsurface w with analytic boundary, and
let f=7F

ﬂwx{o} is not identically 0. We consider the hp-approximation uy of the three dimensional solution w of the

o- be a volume loading where f is analytic in © x (—eo,e0) for some g9 > ¢ > 0 and such that

hard clamped plate problem (2.2)—~(2.5) based on the subspace of dimension N = O(p*)
Hy = {'EN € Sp(Qsﬂ,]:;‘p)Sa %N|8w><(—a,€) = 0} : (82)
(i) There holds for every K > 0 the error bound

< Og(ef +e7ter)

B(Q) = (8.3)

Ji — i il e,

for some b, Cx > 0 independent of £,p as € — 0, p — oco.

(ii) If the condition of Theorem 5.8 (A.11) is satisfied, or if f3‘
the error bound

wx {0} = 0, then we have the robust estimate of

| = @] gy < Ok (X +e77) (8.4)

il g,

Proof. Using Theorem 2.1 and the triangle inequality (2.15), we only have to estimate the hp-approximation of

k

the asymptotic expansion Zsz_Q k" of the three-dimensional solution . Since, according to notations (5.15)

and (7.38), we have

K
PRCAARSC R TR
k=—2

the sum 5%(] + HJE\I](] of the interpolants constructed in Theorems 5.8 and 7.8 yields an interpolant 17%(] in the

space SP(QF, 7P)3. Tt remains the problem of the trace of ﬁg{,{] on I'§ which could be non-zero.

By construction, for any k& > —2, the trace of " + " on I'§ is zero. In particular, the traces of v 2and o !
are zero, and thanks to the property of the interpolation operator ¢, in w, cf. Proposition 5.6, the interpolants
5];\, of " for k = —2, —1 can be chosen with zero traces on I'§ with the same error bound. We have the same

situation for £ = 0 in the case when f,(x.,0) = 0. Therefore we have to consider the trace:

K
S @+

k=Ko

5
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with Ko = 0 if f(x.,0) # 0 and Ko = 1 otherwise. Let us fix & > Kj. Inspecting the constructions and
proofs in Section 5.3 and Sections 7.1, 7.3, and taking advantage that in the layer ()} the finite elements are
tensorial in the three directions, we find that there also hold error bounds in the norm H'(I'§). When scaled
to Ow x (—1,1), these estimates are uniform with respect to ¢, and scaled back to I'§ = Ow X (—e,¢&) their
behavior in € is O(¢~'/2). In p, we still have the exponential rate, ¢f. (5.14) and (7.36), which means that the
interpolants o5 and wh; satisfy

S 05_1/2e_bp,

[CAREIS

< Ce V27 and H(cpk — k)

5| HY(TY) Tg||HY(TE)

whence, as (3" 4 ¢*)

=0:
rg

< Cel/2e7bp,

~k ~ k
H(UN +wN) HY(Ig) =

5
Let us consider the lifting

05 (s,r,w3) := (B% + @) (s,0,23) 1 —7/pp) in € and 0 in QF.
This defines an element of SP(Q°, 7)? which also satifies the estimate

I, , S CemtZetr,

[y
Then the element of S?(QFf, 7)3 defined as v +w'h; — (%, is an interpolant of @" in Hy. The extra contribution
to the error is

K

Z ekok,

k=Ko

Ko—1/2_,—bp
B(Q°) <Ce e P,

Combining with the behavior of the energy of w in Q° as e — 0, we finally obtain (8.3) and (8.4). O
Corollary 8.2. For every K > 0 there is C, > 0 such that

e —un| < Ce"lul

BE(Qe) = as € — 0, (8.5)

B(Q°)
provided that p > C. |loge| in the general case (i) of Theorem 8.1 and provided p > C, in the case (ii) of the
same theorem.

The preceding results assumed that the transverse degree of SP(Q°,7") is increased uniformly throughout
the domain. If, however, the volume load f[e] vanishes or is constant in subdomains, substantial simplifications
are possible, if the transverse polynomial degree is taken variable.

Remark 8.3.

(i) If the plate deforms due to a constant bending volume force (0,0, 1), (8.3)—(8.5) hold even if deg;(Hy) =
(i) in all k) C wo.
(i1) For a constant membrane volume force (a,b,0) throughout Q¢, (8.3)—(8.5) hold if degs(Hy) = (?) in wo.
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