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Abstract. In this work, we analyze hierarchic hp-finite element discretizations of the full, three-
dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution,
we give specific mesh design principles for the hp-FEM which allow to resolve the three-dimensional
boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness ε tends
to zero, the hp-discretization is consistent with the three-dimensional solution to any power of ε in the
energy norm for the degree p = O(|log ε|) and with O(p4) degrees of freedom.
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1. Introduction

The numerical analysis of thin three-dimensional structures such as beams, plates and shells is a basic problem
in engineering. It amounts to solving numerically a problem of three-dimensional elasticity in a ‘thin’ domain.
The classical engineering approach to these problems has been to replace the three-dimensional problem by
simplified, lower-dimensional models which are in turn solved numerically.

Lower dimensional models have been derived roughly speaking in three ways: by kinematical hypothesis,
by asymptotic analysis or by energy projection. We refer to [4] for a survey and references. Alternatively, in
recent years, it has become possible to solve the three-dimensional problems directly by high order finite element
methods which afford anisotropic mesh refinement [1, 2].

In the dimension reduction process, information is necessarily lost and the question arises what the relation
of the dimensionally reduced models to the original, three-dimensional problem is. Numerous models have
been found to be consistent with the three-dimensional problem in the limit of vanishing thickness ε. In the
case of plate models, the order of consistency is, however, only

√
ε, due to the boundary layers of the three-

dimensional problem not being accurately resolved by the plate model. This state of affairs cannot be improved
by incorporation of ‘higher-order’ kinematical hypotheses into the plate model, since near the edge region, the
deformation states are generically three-dimensional, as was shown in full asymptotic analyses of the three-
dimensional plate problem in [20]. The coupling of the limiting plate models in the plate’s interior with fully
three-dimensional finite element methods near the edge region has been proposed in an engineering framework
by [21].
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To achieve higher order asymptotic consistency in plate models, higher order kinematical hypotheses in the
interior of the plate must thus be coupled with full resolution of the three-dimensional effects near the edge of
the plate. This can be done by hp-Finite Element (FE) discretization and was proposed first in [18]. To analyze
the design of a hp-Finite Element Discretization of the three-dimensional plate problem is the purpose of the
present paper.

Relying on the full asymptotics of the three-dimensional solution of the plate problem [6,7,9], we show that
it is possible to achieve consistency of the FE-approximation with the three-dimensional solution to any order
of ε with a properly designed hp-FE discretization. It involves hierarchical plate models which are refined inside
the boundary layer in a vicinity of the edge to resolve the singularities, thereby abandoning the dimensional
reduction point of view. The degree p to achieve this is O(|log ε|) in general, with O(p) elements corresponding
to a number N of degrees of freedom which is bounded by O(p4).

Let us describe our results in more detail. On the family of thin plates ω × (−ε, ε), ε ∈ (0, ε0), such hp-
FE spaces are defined as follows: a fixed mesh τω is designed on the mid-surface ω, so that there exists a
layer of quadrilateral elements along its boundary ∂ω. The tensor three-dimensional mesh T 0

ε := τω × (−ε, ε)
is geometrically refined anisotropicly to the edges ∂ω × {−ε, ε} to obtain the new mesh T p

ε with p layers of
elements. Polynomials of degree p on T p

ε form the discrete space.
If the boundary of ω is analytic, and if an analytic load is fixed, we prove in this paper that the relative

energy error between the three-dimensional solution and its Galerkin approximation in the above described
space is bounded for all K ≥ 1 by

C
(
εK + ε−1e−bp

)
(1.1)

with positive constant C and b independent of ε and p (but depending on K).
We also prove that in certain cases (existence of underlying C1 discrete spaces on ω, or membrane load),

the factor ε−1 in the bound (1.1) can be omitted, which means that, to achieve a given bound to the relative
error, a certain polynomial degree p, corresponding to a certain number N = O(p4) of degrees of freedom fixed
independently of ε are sufficient.

These results are based on the hp FE-approximation of each piece of the two-scale expansion of the solution
displacement u(ε): this expansion has two parts, the outer expansion part

∑
k ε

kvk (regular profiles), and the
inner expansion part

∑
k ε

kwk (boundary layer profiles).
In this paper, we also pay much attention to the transverse degrees of the polynomials involved in the outer

expansion part, which allows in particular to show that (3, 3, 2) transverse degree outside the support of the
load and away from the boundary layer is sufficient to obtain estimate (1.1).

The outline of the paper is as follows: in Section 2, we set the problem and give a rough description of the
inner-outer expansion. Sections 3–5 are devoted to the outer part, whereas Sections 6 and 7 are devoted to the
inner part. We explain in more detail the structure of the outer part study at the beginning of Section 3, and
for the inner part, at the beginning of Section 6. The synthesis and the conclusions are drawn in Section 8.

2. The three-dimensional plate problem

2.1. Domains and coordinates

The plate problem under consideration here is a boundary value problem of three-dimensional elastostatics
which is set in the family of domains

Ωε = ω × (−ε,+ε),

where the midsurface ω is open, bounded and has an analytic boundary ∂ω. Let Γε
−+

be their upper and lower
faces ω × {−+ε} and Γε

0 be their lateral faces ∂ω × (−ε,+ε). If x = (x1, x2, x3) are the cartesian coordinates
in the plates Ωε, we will often denote by x∗ the in-plane coordinates (x1, x2) ∈ ω and by α or β the indices
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in {1, 2} corresponding to the in-plane variables. The dilatation along the vertical axis (X3 = ε−1x3) transforms
Ωε into the fixed reference configuration Ω = ω × (−1,+1):

x = (x∗, x3) ∈ Ωε = ω × (−ε,+ε) �−→ X = (x∗, X3) ∈ Ω = ω × (−1,+1). (2.1)

In general, we will distinguish by a superscript ˜ the vector fields defined in the “physical” domains Ωε, from
the scaled fields defined on Ω.

2.2. Governing equations

We consider linearly elastic deformations of the plate Ωε. The displacement ũ : Ωε → R
3 of the plate satisfies

the equilibrium equations

Bũ = − divσ(ũ) = f̃ in Ωε, (2.2)

where f̃ are volume forces. We assume here that f̃ is the restriction to ω × (−ε,+ε) of a function f which is
analytic in ω× (−ε0,+ε0) for a fixed ε0 > ε. Furthermore, σ(ũ) is the stress tensor. It is expressed in terms of
the infinitesimal strain tensor e(ũ) by Hooke’s law (here summation convention over repeated indices is used)

σij(ũ) = Aijklekl(ũ). (2.3)

We assume homogeneous and isotropic material, i.e. Aijkl = λδijδkl + µ(δikδjl + δilδjk) with λ ≥ 0 and µ > 0
denoting the Lamé-constants. On the faces Γε

−+
= ω × {−+ε} of the plate, zero traction boundary conditions are

given:

Gũ = σ(ũ)n = 0 on Γε
−+ (2.4)

where n denotes the exterior unit normal vector on Γε
−+
.

Problem (2.2–2.4) is completed by boundary conditions on the lateral edge Γε
0. We consider here for simplicity

only Dirichlet boundary conditions, i.e. the plate is hard clamped,

ũ|Γε
0

= 0 (2.5)

and give the proofs of the results in this case. We emphasize, however, that our results will also hold for all
other sets of boundary conditions which lead to a meaningful variational formulation of (2.2–2.4) cf. [9].

2.3. Finite Element Approximation

The variational form of (2.2–2.5) is: Find ũ such that

ũ ∈H : a(ũ, ṽ) = L(ṽ) ∀ṽ ∈H. (2.6)

Here, the bilinear form a(·, ·) and the loading L(·) are given by

a(ũ, ṽ) =
∫

Ωε

Ae(ũ) : e(ṽ) dx, L(ṽ) =
∫

Ωε

f̃ · ṽ dx.

The proper choice of H incorporates the homogeneous essential boundary conditions on Γε
0:

H =
{
ũ ∈ H1(Ωε)3 : ũ|Γε

0
= 0
}
·
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Korn’s inequality implies that the bilinear form a(·, ·) in (2.6) is H1-coercive on H, and hence for every smooth
volume loading f̃ exists a unique weak solution ũ ∈H of (2.6).

Finite Element approximations ũN of ũ are obtained by energy projection: for any finite dimensional subspace
HN ⊂H, we define

ũN ∈HN : a(ũN , ṽN ) = L(ṽN ) ∀ṽN ∈HN . (2.7)

There exists a unique solution ũN of (2.7), and this solution satisfies

∀ṽN ∈HN : ‖ũ− ũN‖
E(Ωε)

≤ ‖ũ− ṽN‖
E(Ωε)

(2.8)

where the energy norm is defined by ‖ũ‖2

E(Ωε)
:= a(ũ, ũ). Note that for all ũ ∈ H we have the bound

‖ũ‖
E(Ωε)

≤ C ‖ũ‖
H1(Ωε)

with a constant C > 0 independent of ε.
In this paper, we propose a hp design for the FE subspace HN and estimate the approximation error (2.8)

in dependence on ε. This is based on a detailed asymptotic analysis of the three-dimensional solution ũ in
dependence on ε.

2.4. Asymptotics of the solution

The complete asymptotics of the solution ũ is easier to describe on the reference configuration Ω and using
the scaled displacement u(ε) and the scaled load f(ε) according to

u(ε)(X) = (ũ1, ũ2, εũ3)(x) and f(ε)(X) =
(
f̃1, f̃2, ε

−1f̃3

)
(x).

Due to our analyticity assumption on the loading f̃ , we have the (convergent) expansion

f (ε) =
∞∑

k=−1

εkfk(X) with


f−1 =

(
0, 0, f3(x∗, 0)

)
fk =

(
Xk

3

k!
∂k
3 f∗(x∗, 0),

Xk+1
3

(k + 1)!
∂k
3 f3(x∗, 0)

)
, k ≥ 0.

(2.9)

It may be deduced from the results in [9] that u(ε) admits the asymptotic expansion at any order

u(ε) ∼
∑

k≥−1

εkuk =
∑

k≥−1

εk
(
vk + χwk

)
. (2.10)

The terms vk constitute the outer expansion part. They essentially satisfy the three-dimensional equilibrium
conditions (2.2–2.4). The complementing terms wk are the boundary layer terms which constitute the inner
expansion part — the function χ(x∗) is a smooth cut-off function which is identically equal to one in a vicinity
of ∂ω. The terms wk compensate nonhomogeneous edge-conditions in (2.5) due to the vk.

To state the estimates satisfied by the expansion (2.10), we introduce the unscaled sequence of displacement
fields on the physical domain Ωε (note that it starts with power ε−2)

ũ−2(x) =
(
0, 0, u−1

3

)
(X), ũk(x) =

(
uk

1 , u
k
2 , u

k+1
3

)
(X), k ≥ −1. (2.11)



hp-FEM FOR THREE-DIMENSIONAL ELASTIC PLATES 601

Theorem 2.1. For every ε > 0 let ũ(x) ∈ H be the unique solution of problem (2.6). Then for every integer
K ≥ 0 there holds for expansion (2.10) the error estimate in energy norm∥∥∥∥∥ũ−

K−1∑
k=−2

εkũk

∥∥∥∥∥E(Ωε)
≤ C εK−1/2 (2.12)

where C > 0 is independent of ε, but depends on K.

Information about the first non-vanishing term in expansion (2.9) yields the behavior as ε→ 0 of the energy
‖ũ‖

E(Ωε)
and allows relative energy error estimates:

Theorem 2.2. (a) If f3(x∗, 0) �≡ 0, ũ is bending dominated, its principal term is a Kirchhoff-Love displace-
ment, and ‖ũ‖

E(Ωε)
 ε−1/2, therefore

∥∥∥∥∥ũ−
K−1∑
k=−2

εkũk

∥∥∥∥∥E(Ωε)
≤ C εK ‖ũ‖

E(Ωε)
. (2.13)

(b) If f3(x∗, 0) ≡ 0 and f∗(x∗, 0) �≡ 0, the principal term of ũ is ũ0, which contains a membrane part and
‖ũ‖

E(Ωε)
 ε1/2, therefore

∥∥∥∥∥ũ−
K∑

k=0

εkũk

∥∥∥∥∥E(Ωε)
≤ C εK ‖ũ‖

E(Ωε)
. (2.14)

Based on (2.8), we will obtain an upper bound for the Finite Element error ‖ũ− ũN‖
E(Ωε)

by the triangle
inequality:

‖ũ− ũN‖
E(Ωε)

≤
∥∥∥∥∥ũ−

K∑
k=−2

εkũk

∥∥∥∥∥E(Ωε)
+ min

�vN ∈HN

∥∥∥∥∥
K∑

k=−2

εkũk − ṽN

∥∥∥∥∥E(Ωε)
. (2.15)

Thus bounding the Finite Element error will be achieved by approximating the asymptotic terms ũk from the
Finite Element space HN .

3. Structure of the outer expansion part

In this section, we essentially reformulate the results of Section 3 in [9] providing a solution of equations (2.2–
2.4), i.e. without lateral boundary conditions, in formal series algebras. This yields a general description of the
terms vk in (2.10) as coefficients of a formal series v[ε] satisfying functional equations involving the formal series
f [ε] with the coefficients fk of (2.9) and a formal series ζ[ε] of two-dimensional generators. This “generating
series” ζ[ε] satisfies itself a functional equation inside ω. We describe the four series of operators V[ε], Q[ε],
A[ε] and R[ε] involved in these functional equations.

In Section 4, we will deduce from the formulas stated in Section 3 new results about the properties of the
operators entering the formal series equations, concerning their action on analytic functions in in-plane variables
and polynomials in the transverse variable.

In Section 5, we recall from [9] the series of boundary conditions on ∂ω satisfied by the formal series ζ[ε] of
two-dimensional generators. These boundary conditions complement the functional equation inside ω. We show
that it has a unique analytic solution, which yields that the vk are uniquely determined polynomial functions
in X3 with coefficients in analytic fields on ω. We deduce from this tensorial structure the approximation
properties of a simple p-version FEM on Ωε for the outer part.
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3.1. General structure of the asymptotics

A comprehensive way of solving equations (2.2–2.4) on the reference domain Ω is the use of formal series of
operators and vector functions, as initiated in [11]. The basic notion is the following: if A[ε] is a formal series
with operator coefficients

A[ε] =
∑

k ε
kAk with Ak ∈ L(E,F ),

with E, F functional spaces, and if b[ε] and c[ε] are formal series in E and F

b[ε] =
∑

k ε
kbk, bk ∈ E, and c[ε] =

∑
k ε

kck, ck ∈ F,

the equation A[ε]b[ε] = c[ε] means that

∀k ∈ N,
∑k

�=0A
k−�b� = ck.

As prerequisite, we first expand the operators B and G in equations (2.2–2.4) corresponding to the scaled
problem on Ω and we obtain the following problem without lateral boundary conditions that we write in the
form {

B[ε]v[ε] = f [ε] :=
∑

k≥−1 ε
kfk in Ω,

G[ε]v[ε] = 0 on Γ−+.
(3.1)

Then the results in Section 3 of [9] can be reformulated following the lines of [5, 10, 11]:

Theorem 3.1. (i) There exist a formal series of surface operators A[ε] with coefficients Ak continuous from
C∞(ω)3 into itself and a formal series of reconstruction operators V[ε] with coefficients Vk continuous from
C∞(ω)3 into C∞(Ω)3 such that for any formal series ζ[ε] of two-dimensional generators ζk ∈ C∞(ω)3 satisfying
the equation

A[ε]ζ[ε] = 0,

we obtain a solution v[ε] of problem (3.1) with f [ε] ≡ 0 by setting

v[ε] = V[ε]ζ[ε].

(ii) There exist a formal series of reduction operators R[ε] with coefficients Rk continuous from C∞(Ω)3 into
C∞(ω)3 and a formal series of solution operators Q[ε] with coefficients Qk continuous from C∞(Ω)3 into itself
such that for any formal series ζ[ε] of two-dimensional generators satisfying the equation

A[ε]ζ[ε] = R[ε]f [ε], (3.2)

we obtain a solution v[ε] of problem (3.1) by setting

v[ε] = V[ε]ζ[ε] + Q[ε]f [ε]. (3.3)

3.2. Series V[ε]

This series has only even terms: for all � ∈ N, V2�+1 ≡ 0.
The first term V0 of V[ε] is the Kirchhoff-Love operator: for ζ = (ζ∗, ζ3) ∈ C∞(ω)3 there holds

V0ζ = (ζ∗ −X3∇∗ζ3, ζ3) (3.4)
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and the second non-zero term has the explicit form

(V2ζ)α = p̄2(X3) ∂α div∗ ζ∗ + p̄3(X3) ∂α∆∗ζ3

(V2ζ)3 = p̄1(X3) div∗ ζ∗ + p̄2(X3)∆∗ζ3
(3.5)

with p̄j for j = 1, 2, 3 the polynomials in the variable X3 of degrees j defined as

p̄1 = −pX3, p̄2 =
p

6
(
3X2

3 − 1
)
, p̄3 =

p + 2
6

X3
3 − 5p + 1

6
X3,

where p := λ/(λ+ 2µ). The next ones have the general form, for � = 2, 3, . . .

(V2�ζ)α = s̄2�(X3) ∂α∆�−1∗ div∗ ζ∗ + t̄2�(X3)∆�∗ζα + s̄2�+1(X3) ∂α∆�∗ζ3

(V2�ζ)3 = q̄2�−1(X3)∆�−1
∗ div∗ ζ∗ + q̄2�(X3)∆�

∗ζ3,
(3.6)

with s̄j, t̄j and q̄j polynomials of degree j (note that the definition of these polynomials differs slightly from
those introduced in Sect. 3 of [9], but they play a quite similar role).

3.3. Series Q[ε]

Again, this series has only even terms: for all � ∈ N, Q2�+1 ≡ 0.
The first term Q0 of Q[ε] is zero. The first non-zero term is Q2 and it coincides with the operator G

introduced in Section 3 of [9], that we recall now. For doing this we need two sorts of primitive of an integrable
function u on the interval (−1,+1):

Notation 3.2. Let us introduce:
• The primitive of u with zero mean value on (−1,+1)∮ x3

u dy3 :=
∫ x3

−1

u(y3) dy3 −
1
2

∫ +1

−1

∫ z3

−1

u(y3) dy3 dz3.

• The primitive of u which vanishes in −1 and 1 if u has a zero mean value on (−1,+1) and which is even,
resp. odd, if u is odd, resp. even∫ y3

− u dz3 :=
1
2

(∫ y3

−1

u(z3) dz3 −
∫ +1

y3

u(z3) dz3

)
.

Then for f ∈ C∞(Ω)3, we define Gf as

(Gf )3 = 0

(Gf )α =
1
2µ

∮ x3
[
−2
∫ y3

− fα +
( ∫ +1

−1

fα

)
y3

]
dy3 .

(3.7)

Next Q4 = WG+H , where the operator W : v �→Wv is defined from C∞(Ω)3 into itself by

(Wv)3 = −
∮ x3

(
λ̃

2µ
div∗ v∗ +

λ̃

λ

∫ y3

− ∂βeβ3(v)
)

dy3

(Wv)α = −
∮ x3

(
∂αW3v +

∫ y3

−
(λ
µ
∂α3W3v +

λ+ µ

µ
∂α div∗ v∗ + ∆∗vα

))
dy3.

(3.8)
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In order to define H , we need the auxiliary operator F from C∞(Ω)3 into C∞(ω)3:

(Fv)3 = µ

∫ +1

−1

∂βeβ3(v) dy3 ,

(Fv)α =
λ̃

2

∫ +1

−1

∫ y3

− ∂αβeβ3(v) dz3 dy3 .
(3.9)

Then for f ∈ C∞(Ω)3, we define Hf as

(Hf )3 =
1

2(λ+ 2µ)

∮ x3
[(
−2
∫ y3

− f3
)]

dy3

(Hf )α = −
∮ x3

[
∂αH3 +

1
µ
y3 (FG)α +

λ

µ

∫ y3

−
{
∂α3H3 −

1
2

∫ +1

−1

∂α3H3 dz3

}]
dy3 ,

(3.10)

where, in the last line, H3 denotes (Hf )3 and (FG)α denotes
(
F (Gf )

)
α
.

With the convention that W 0 is the identity and for any k > 0, W−k is zero, we have the general formula
for Q2�

Q2� = W 2�−2G+W 2�−4H. (3.11)

3.4. Series A[ε]

The first term A0 of the formal operator series A[ε] is the block diagonal membrane-flexion operator

A0 =
(
−Lm 0

0 1
3L

b

)
(3.12)

where – we recall that p = λ/(λ+ 2µ):

Lm = µ

(
∆∗ 0
0 ∆∗

)
+ µ(2p + 1)

(
∂1

∂2

)
div∗ and Lb = 2µ(p + 1)∆2

∗ .

The terms of odd rank of A[ε] are zero. The next non-zero term A2 is given by (using the operators W and F
introduced above, and denoting the triple (F1, F2, 0) by F∗)

(A2ζ)α = 0 ,

(A2ζ)3 = −F3(WV2ζ)

and the generic terms of even order are, cf. Table 3.1 in [9]:

(A2�ζ)α = Fα(V2�ζ) ,

(A2�ζ)3 = −F3

(
WV2�ζ − 1

6µ (3X2
3 − 1)F∗(V2�ζ)

)
.
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3.5. Series R[ε]

The first term R0 is given by

(R0f )α =
1
2

∫ +1

−1

fα(x∗, X3) dX3

(R0f )3 =
1
2

∫ +1

−1

(
f3 +X3 div∗ f∗

)
(x∗, X3) dX3 .

The terms of odd rank of R[ε] are zero. Relying again on Table 3.1 in [9], we find successively

(R2f)α = −Fα(Q2f) +
p

2

∫ +1

−1

X3 ∂αf3(x∗, X3) dX3 ,

(R2f)3 = F3(Q4f)

and for � ≥ 2
(R2�f )α = −Fα(Q2�f ) ,

(R2�f )3 = F3

(
Q2�+2f − 1

6µ (3X2
3 − 1)F∗(Q2�f)

)
.

4. Transverse degree and analyticity of the outer expansion operators

The aim of this section is to deduce from the above formulas for the series V[ε], Q[ε], A[ε] and R[ε]
information on the way they act on polynomials in the transverse variable X3 and analytic functions in the
in-plane variables x∗ = (xα). Moreover, by a factorization of certain coefficients of these series, we will exhibit
a simpler equivalent expression for equations (3.2) and (3.3), where properties on polynomials and analytic
functions are easier to deduce.

4.1. In-plane and transverse degrees

We first remark that all the operators Vk and Qk have the generic block form (obtained by spitting the
inplane and transverse components)

C =
(
C∗∗ C∗3
C3∗ C33

)
and that each operator Cij in the above matrix is a linear combination of operators of the form J ◦D where
D is a partial derivative operator in the in-plane variables x∗ with constant coefficients and J is a combination
of derivations, integrations in X3 and multiplication by polynomials in X3. We adopt the following notation:
deg∗(J ◦ D) denotes the degree of the operator D, whereas deg3(J ◦ D) denotes the degree of J acting on
polynomials in X3: if the degree of J is d, then J transforms a polynomial of degree n into a polynomial of
degree n− d. From these definitions, we deduce the natural notion of block degrees for an operator C as above.
Inspecting formulas (3.6)–(3.11), we obtain

Lemma 4.1. For any even number k the block degrees of Vk and Qk are the following

deg∗(V
k) =

(
k k + 1

k − 1 k

)
and deg3(V

k) = −
(

k k + 1
k − 1 k

)
and

deg∗(Q
k) =

(
k − 2 k − 3
k − 3 k − 4

)
and deg3(Q

k) = −
(

k k − 1
k − 1 k − 2

)
.
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In particular Vk is a continuous operator from A(ω)3 into A(Ω)3 and Qk is continuous from A(Ω)3 into itself.
Moreover Vk and Qk are block-homogeneous in x∗.

4.2. Factorization by A0

For � ≥ 2, the operators V2� can be factorized through A0: concerning the action on the transverse component
ζ3 this is clear from formulas (3.6); concerning the action on the in-plane components ζ∗ we note that the
following formulas hold

∆∗ div∗ ζ∗ = 1
2µ(p+1) div∗ Lmζ∗

and

∆2
∗ζα = 1

µ ∆∗(Lmζ∗)α − 2p+1
2µ(p+1) ∂α div∗(Lmζ∗) .

As a result we find that each operator V := V2� for � ≥ 2, and also V := WV2, can be factorized by A0,
i.e. that there exists a matrix partial differential operator T such that TA0 coincides with V . Combining with
formulas giving A2� for � ≥ 1, we obtain:

Lemma 4.2. For any � ≥ 1, there exists a partial differential operator T 2� in x∗ such that A2� = T 2�A0. The
operator T 2� is block-homogeneous of degree

deg∗ T
2� =

(
2� 2�− 1

2�+ 1 2�

)
.

Therefore the equation (3.2): A[ε]ζ[ε] = R[ε]f [ε], can be written

T [ε]A0ζ[ε] = R[ε]f [ε] where T [ε] = Id +
∑

�≥1 ε
2�T 2�.

The series T [ε], since starting by T 0 = Id, is invertible in the formal series algebra and the 2�-th rank operator
of T [ε]−1 is a block homogeneous partial differential operator in x∗ of the same degrees as T 2�. As R2� is also
a block-homogeneous partial differential operator in x∗ of the same degrees as T 2�, setting R̆[ε] := T [ε]−1R[ε],
we obtain:

Lemma 4.3. There is a series R̆[ε] =
∑

�≥0 ε
2�R̆2� such that equation (3.2) is equivalent to

A0ζ[ε] = R̆[ε]f [ε] (4.1)

The operator R̆2� is block-homogeneous and its block degree deg∗ R̆2� is equal to deg∗ T
2�, cf. Lemma 4.2.

Moreover, since each V2� for � ≥ 2 can be factorized by A0, there exists a formal series of operators,
T ′[ε] =

∑
�≥2 ε

2�T ′ 2� such that

V[ε] = V0 + ε2V2 + T ′[ε]A0.

We check that T ′ 2� is block-homogeneous of degree

deg∗ T
′ 2� =

(
2�− 2 2�− 3
2�− 3 2�− 4

)
.

Combining with the equation (4.1): A0ζ[ε] = R̆[ε]f [ε], we obtain that V[ε]ζ[ε] is equal to (V0 + ε2V2)ζ[ε] +
T ′[ε]R̆[ε]f [ε]. Setting Q̆[ε] := T ′[ε]R̆[ε] + Q[ε], we have obtained:
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Lemma 4.4. There is a series Q̆[ε] =
∑

�≥1 ε
2�Q̆2� such that identity (3.3) can be written in the new form

v[ε] = V̆[ε]ζ[ε] + Q̆[ε]f [ε], where V̆[ε] = V0 + ε2V2, (4.2)

cf. (3.4, 3.5). The operator Q̆2� is block-homogeneous in x∗ and its block degrees are such that deg∗ Q̆2� =
deg∗ T

′ 2�, see above, and deg3 Q̆2� = deg3 V2�, cf. Lemma 4.1.

Using operators G, W and H introduced in (3.7, 3.8, 3.10) we have for the first terms

Q̆2 = G and Q̆4 =
1

λ̃+ 2µ

(
−r̄4∂α div∗ −r̄5∂α

3q̄3 div∗ 3q̄4

)
R0 +WG+H, (4.3)

where q̄3, q̄4, r̄4 and r̄5 are the polynomials of X3 appearing in (3.6).

5. The outer expansion and its p-approximation

In this section we prove that the formal generating series ζ[ε] has analytic coefficients, and we deduce that
the terms vk of the outer expansion part are polynomial in X3 and analytic in x∗. Such a structure allows
approximation by tensor p-version FE at an exponential rate.

5.1. The analyticity of the generators

So far, the formal generating series ζ[ε] is still not completely determined. We know that it has to solve
equation (3.2) which we proved to be equivalent to (4.1): A0ζ[ε] = R̆[ε]f [ε]. Up to now, every equality was
deduced from the elasticity equations on Ωε without lateral boundary conditions. Taking the lateral clamped
condition into account and introducing the two-scale Ansatz of the inner-outer expansion, it can be proved,
see [6, 7, 9], that the series ζ[ε] has also to satisfy boundary conditions on ∂ω.

Let s �→ x∗(s) be an arclength coordinate along ∂ω. By extension, we will also often write s ∈ ∂ω. Translating
the results of [9] with the formalism of [5, 10] we obtain that there exists a formal series of trace operators δ[ε]
with coefficients δk(s; ∂s, ∂r) continuous from C∞(ω)3 into C∞(∂ω)4 and a formal series of trace operators γ[ε]
with coefficients γk(s; ∂s, ∂r, ∂3) continuous from C∞(Ω)3 into C∞(∂ω)4 such that the 2D-generator formal series
ζ[ε] has to solve δ[ε]ζ[ε] = γ[ε]f [ε] on ∂ω.

The dependence on s ∈ ∂ω of the operators δk and γk is only governed by the equation of ∂ω which is
an analytic curve. Therefore δk is continuous from A(ω)3 into A(∂ω)4 and γk is continuous from A(Ω)3 into
A(∂ω)4. The trace operator δ0 is the Dirichlet trace of A0, cf. (3.12):

δ0(ζ) =
(
ζ1, ζ2, ζ3, ∂nζ3

) ∣∣
∂ω
.

and the first terms γ0 = γ1 = 0.
Combining the results of [9] with our Lemmas 4.3 and 4.4 we obtain:

Proposition 5.1. The outer expansion part v[ε] is given by

v[ε] =
(
V0 + ε2V2

)
ζ[ε] + Q̆[ε]f [ε], (5.1)

where ζ[ε] is solution of the series of boundary value problems on ω{
A0ζ[ε] = R̆[ε]f [ε] in ω

δ[ε]ζ[ε] = γ[ε]f [ε] on ∂ω.
(5.2)
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The ellipticity and coercivity of the leading part (A0, δ0) in (5.2) implies, [17], that (A0, δ0) is an isomorphism
from A(ω)3 onto A(ω)3 × A(∂ω)4. Combining this with the analyticity of f gives the analyticity of the ζk

in ω. Moreover the expression (2.9) of the coefficients of f [ε] and the bound on the transverse degrees of the
operators Q̆k, cf. Lemma 4.4, yields that the vk are polynomial in X3 with a bound for their degrees:

Theorem 5.2. The series ζ[ε] of two-dimensional generators solution of (5.2) has coefficients ζk ∈ A(ω)3.
The series v[ε] giving the outer expansion part is determined by formula (5.1). The term vk is polynomial in
X3 of degree deg3 v

k ≤ k + 1, with analytic coefficients:

vk(X) =
k+1∑
�=0

X�
3 η

k,�(x∗), ηk,� ∈ A(ω)3. (5.3)

5.2. Finite transverse degree

If f is a polynomial in all three variables x, the transverse polynomial degree of the profiles vk is in fact
bounded indepently of k. This result is formalized by the notion of finite transverse degree. We say that the
outer expansion part v[ε] has a finite transverse degree if there exists an integer d ≥ 0 such that each term vk is
polynomial in X3 with a degree ≤ d. From formulas (3.7)–(3.11), it is clear that a necessary condition for v[ε]
to have a finite transverse degree is that the series f [ε] defining the right hand side has itself a finite transverse
degree.

For a field f depending polynomially on all variables x1, x2 and X3 we denote by deg∗ f the two component
vector of the in-plane degrees of f∗ and f3, and by deg3 f the two component vector of the transverse degrees.
For a formal series f [ε], deg∗ f [ε] is defined as supk deg∗ f

k, and similarly for deg3 f [ε]. As a consequence of
Lemma 4.2 we obtain:

Theorem 5.3. Let q, p′ ∈ N be two integers with q ≥ 1. If

deg∗ f [ε] ≤
(
2p′ 2p′ − 1

)� and deg3 f [ε] ≤
(
q q − 1

)� (5.4)

then the outer expansion part v[ε] has finite transverse degree and satisfies

deg3 v[ε] ≤
(
2p′ + q + 2 2p′ + q + 1

)�
. (5.5)

Proof. If deg∗ f ≤ (2p′ 2p′ − 1)�, then for any integer � > p′ + 1, Lemma 4.4 yields that there holds Q̆2�f = 0,
since Q̆2� is block-homogeneous of sufficient high degree. Therefore, the transverse degree is provided by the
action of

∑
k≤2(p′+1) ε

kQ̆k on f [ε], whence (5.5).

Remark 5.4.

(a) As all operators Vk and Qk are differential in x∗, therefore local in x∗, the result of Theorem 5.3 can be
localized in x∗: if for a subdomain ω′ ⊂ ω, the series f [ε]

∣∣
ω′×(−1,1)

depends polynomially on x1, x2, X3

and satisfies (5.4) on ω′ × (−1, 1), then (5.5) holds on ω′ × (−1, 1).
(b) In particular, if f [ε]

∣∣
ω′×(−1,1)

≡ 0, then deg3 v[ε] ≤
(
32
)� in ω′× (−1, 1), and for the special value ν = 0

of the Poisson ratio, deg3 v[ε] ≤
(
30
)� in ω′ × (−1, 1).

(c) If moreover, f [ε] represents a membrane volume force, then deg3 v[ε] ≤
(
21
)�

in ω′ × (−1, 1).
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Remark 5.5.
(a) For a constant bending volume force (0, 0, 1) there holds deg3 v[ε] ≤

(
34
)�.

The same is valid in the case when a constant bending load is applied on the upper and lower faces, cf.
the formulas in [9].

(b) For a constant membrane volume force (a, b, 0) there holds deg3 v[ε] ≤
(
21
)�.

This is still valid in the case of a constant membrane load on the upper and lower faces.
(c) Localized versions of all the above statements hold too.

5.3. p-version approximation of the outer expansion

We now discuss the approximation of the unscaled outer expansion part ṽ[ε] in the framework of the p-version
of Finite Elements. Since the series f [ε] starts with the degree k = −1, see (2.9), such is also the case for the
series of generators ζ[ε] solution of problem (5.2). Therefore the outer expansion v[ε] also starts with k = −1,
and the unscaled outer expansion is defined as

ṽ(ε) =
∞∑

k≥−2

εkṽk(X) with

{
ṽ−2(x) =

(
0, 0, v−1

3

)
(X)

ṽk(x) =
(
vk
1 , v

k
2 , v

k+1
3

)
(X), k ≥ −1.

(5.6)

By superposition, it suffices to investigate the approximation of the generic term ṽk from a suitable FE-space.
This will rely on Theorem 5.2 above, which gives the structure of the vk.

Our approximation shall be based on an analytic regular partition τω of ω, which is fixed independently of ε
and k: the mid-surface ω is covered by a curvilinear partition τω of triangular or quadrilateral elements κ, which
are images of a reference element κ̂ under analytic element maps mκ: κ̂ → κ ∈ τω which are diffeomorphisms.
Two different reference elements may be used in the design of τω : a triangular reference element κ̂T and a
square one κ̂Q.

The mesh τω is assumed to be regular, i.e. the intersection of two elements κ, κ′ ∈ τω is either empty, a
vertex or an entire side and in the latter case, the common side γ has the same parametrization from both sides,
i.e. for a common edge γ = κ ∩ κ′ holds: mκ′ ◦mκ(γ) = γ.

Proposition 5.6. Let ω ⊂ R
2 be a bounded domain with analytic boundary curve ∂ω. For any polynomial

degree p, define the FE-space

Sp(ω, τω) =
{
v ∈ C0(ω) : v|κ ◦mκ ∈ Qp(κ̂), κ ∈ τω

}
(5.7)

where Qp denotes the polynomials of total degree p if κ̂ is the triangle κ̂T and of separate degree p if κ̂ is the
square κ̂Q.

Then for any p ≥ 1, there exists an interpolation operator ip : A(ω) → Sp(ω, τω), v �→ ipv such that if
v|∂ω = 0, also ipv|∂ω = 0, and satisfying the uniform estimates

‖v − ipv‖L∞(ω)
+ ‖∇(v − ipv)‖L∞(ω)

≤ Ce−bp (5.8)

where b, C > 0 are independent of p, and b depends only on the domain of analyticity of v.

For a proof of this assertion, we refer to [16], for example.
We define next the FE space for the approximation of the ṽk. To this end, denote by T 0

ε the three dimensional
mesh family in Ωε which corresponds to τω, i.e.

T 0
ε :=

{
K = κ× (−ε, ε) : κ ∈ τω

}
, (5.9)

where K = MK(K̂) with the reference element K̂ = κ̂× (−1, 1) and the element map

x = MK(x̂∗, X3) = (mκ(x̂∗), εX3) : K̂ → K . (5.10)
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On T 0
ε , we introduce the anisotropic tensor product FE-space

V p,q(Ωε, T 0
ε ) = Sp(ω, τω) ⊗

(
Pq∗(−ε, ε)2 × Pq3(−ε, ε)

)
(5.11)

of transverse degree q =
(
q∗q3

)�. If q∗ = q3 = q, we write V p,q(Ωε, T 0
ε ) instead.

Here follows the approximation result for the unscaled outer expansion:

Lemma 5.7. (i) Under the general assumption made in Section 2.2 — the volume loading is the restriction
of an analytic field f , the generic term ṽk in the unscaled outer expansion (5.6) can be approximated from
V p,q(Ωε, T 0

ε ) at an exponential rate in energy norm:

∃ṽk
N ∈ V p,q(Ωε, T 0

ε ) such that
∥∥∥ṽk − ṽk

N

∥∥∥
E(Ωε)

≤ Cε−1/2e−b min{p,q}, (5.12)

where C > 0 is independent of ε, p and q, but depends on k and f .
If vk depends only on x∗, the factor ε−1/2 in (5.12) can be replaced by ε1/2.

(ii) If, moreover, the load f satisfies, with even pf ≥ 0 and with qf ≥ 1

deg∗ f ≤
(
pf pf − 1

)� and deg3 f ≤
(
qf qf − 1

)� (5.13)

then, provided the transverse degree q satisfies q ≥
(
pf + qf + 2 pf + qf + 1

)�, we have

∃ṽk
N ∈ V p,q(Ωε, T 0

ε ) such that
∥∥∥ṽk − ṽk

N

∥∥∥
E(Ωε)

≤ Cε−1/2e−bp, (5.14)

with the same improvement as above if vk depends only on x∗.

Proof. Let us fix k ≥ −2 and a component ṽk
i of ṽk. Let us denote q := q∗ if i = 1, 2 and q := q3 if i = 3.

(i) From Theorem 5.2 and in particular representation (5.3), we have the existence of k+3 functions η� ∈ A(ω),
� = 0, . . . , k + 2 such that

ṽk
i (x) =

k+2∑
�=0

(x3

ε

)�

η�(x∗).

Let us denote by jq an approximation of analytic functions on [−1, 1] by polynomials of degree ≤ q at exponential
rate. We denote by π� the monomial X3 �→ X�

3 and we set

(
Ip,q ṽ

k
i

)
(x) =

k+2∑
�=0

(
jqπ

�
)(x3

ε

) (
ipη

�
)
(x∗),

with ip the interpolation operator of Proposition 5.6. It is then obvious that
(
Ip,q ṽ

k
i

)
belongs to Sp(ω, τω) ⊗

Pq(−ε, ε) and that there holds ∥∥vk
i −

(
Ip,q ṽ

k
i

)
(X)
∥∥

H1(Ω)
≤ Ce−b min{p,q}.

Going back to Ωε, we find, with the same constant C∥∥ṽk
i − Ip,q ṽ

k
i

∥∥
L2(ω,H1(−ε,ε))

+ ε−1
∥∥ṽk

i − Ip,q ṽ
k
i

∥∥
H1(ω,L2(−ε,ε))

≤ Cε−1/2e−b min{p,q}.

Estimate (5.12) is easily deduced (with the improvement if vk depends only on x∗).
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(ii) Under the assumption (5.13) on f , Theorem 5.3 yields that

deg3 v[ε] ≤
(
pf + qf + 2 pf + qf + 1

)�
.

The assumption over q gives that the transverse degree of ṽk
i is less than q. Therefore, it suffices to set

(
Ipṽ

k
i

)
(x) =

q∑
�=0

(x3

ε

)� (
ipη

�
)
(x∗),

to obtain the interpolant satisfying estimate (5.14).

For K ≥ 0, let us denote by ṽ[K] the truncated series of the outer expansion

ṽ[K] =
K∑

k=−2

εkṽk. (5.15)

As a consequence of Lemma 5.7, and taking into account that ṽ−2 = (0, 0, ζ−1
3 ) only depends on x∗, we obtain

immediately the estimate for any K ≥ 0:

∃ṽ[K]
N ∈ V p,q(Ωε, T 0

ε ) such that
∥∥∥ṽ[K] − ṽ[K]

N

∥∥∥
E(Ωε)

≤ Cε−3/2e−b min{p,q}. (5.16)

Relying on Theorem 2.2, we can now deduce from (5.16) relative error estimates:

Theorem 5.8. Let K ≥ 0. Let the volume load f be such that f(x∗, 0) �≡ 0.
(a.i) If f3(x∗, 0) �≡ 0, we have, with constants b, C > 0 independent of ε and (p, q) but depending on K:

∃ṽ[K]
N ∈ V p,q(Ωε, T 0

ε ) such that
∥∥∥ṽ[K] − ṽ[K]

N

∥∥∥
E(Ωε)

≤ Cε−1e−b min{p,q} ‖ũ‖
E(Ωε)

. (5.17)

(a.ii) If, moreover, there exists a family of interpolation operators i′p with values in the subspace of Sp(ω, τω)
of C1 functions, and still satisfying exponential estimates (5.8), then the approximation bound in (5.17) can be
replaced with Ce−b min{p,q} ‖ũ‖

E(Ωε)
.

(b) If f3(x∗, 0) ≡ 0 and f∗(x∗, 0) �≡ 0, then, again, the approximation bound in (5.17) can be replaced with
Ce−b min{p,q} ‖ũ‖

E(Ωε)
.

(c) If, moreover, the conditions of Lemma 5.7(ii) are satisfied, then e−b min{p,q} can be replaced by e−bp every-
where.

Proof. (a) In that case, the energy norm ‖ũ‖
E(Ωε)

is equivalent to ε−1/2, which, together with (5.16), gives (5.17).
We note that this “low” energy is due to the structure of the first terms in the outer expansion series: Indeed

ε−2ṽ−2 + ε−1ṽ−1
∗ = ε−2(−x3∇∗ζ, ζ)

with ζ = ζ−2
3 (x∗). For non-zero ζ, its energy is O(ε−1/2), whereas, in general the energy of its interpolate

ε−2(−x3 ip(∇∗ζ), ipζ) is O(ε−3/2), because the interpolate is not a Kirchhoff-Love displacement.
If a C1 interpolation operator i′p does exist, then we may choose ε−2(−x3 ∇∗(i′pζ), i′pζ) as interpolate and,

thus, recover robustness as ε→ 0.

(b) In the situation of dominating membrane load, the energy norm of ũ on Ωε is equivalent to ε1/2 and the
outer expansion series starts with ṽ0 the energy of which is a O(ε1/2), and, by superposition we obtain from
Lemma 5.7 the bound Cε1/2e−b min{p,q} for (5.16), whence the statement of Theorem 5.8 (b).
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6. Properties of the boundary layer profiles (inner expansion)

Now, we study the inner expansion part in (2.10), that is, the sum of the boundary layer terms εkwk. It is
in fact easier to consider unscaled terms ϕk defined as:

ϕk = (ϕk
1 , ϕ

k
2 , ϕ

k
3) := (wk

1 , w
k
2 , w

k+1
3 ).

In a similar way as for the outer expansion, the terms ϕk are determined as coefficients of a formal series
ϕ[ε] satisfying functional equations: We first reformulate results from [5, 9]. Then we will deduce from these
results, analyticity properties for the profiles in weighted spaces. Finally, in Section 7, we construct the hp-
approximation of the profiles.

6.1. Prerequisite

We introduce in a tubular neighborhood U ⊂ ω of ∂ω the usual boundary fitted coordinates (s, r): if x∗(s)
denotes a parametric representation of ∂ω, any x∗ ∈ U can be written in a unique way as x∗ = x∗(s) − rn(s)
for some 0 ≤ s < length(∂ω) and 0 ≤ r ≤ r0 with r0 sufficiently small, if n(s) denotes the exterior unit
normal vector to ∂ω at s. With r, we associate further the stretched variable R = r/ε. The terms of the
inner expansion are profiles, i.e. ϕk = ϕk(s,R,X3). To the profiles ϕk we associate their (s,R,X3) component
functions (ϕk

s , ϕ
k
R, ϕ

k
3).

The boundary condition in (5.2) on the two-dimensional generator series ζ[ε] does not ensure that the outer
expansion part v[ε] satisfies the lateral boundary conditions (2.5), but that the inner-outer expansion does.
There exist operator series Φ[ε] and Θ[ε] such that the ϕk are the coefficients of the series ϕ[ε] given by

ϕ[ε] = Φ[ε]ζ[ε] + Θ[ε]f [ε]. (6.1)

We first give the functional equations solved by (6.1). Next, we define functional spaces of exponentially
decreasing functions at infinity on Σ+.

6.1.1. Expansion of operators in stretched tubular coordinates

In tubular coordinates (s, r, x3) associated with components (us, ur, u3), the interior operator B (2.2) is trans-
formed into an operator B(s, r; ∂s, ∂r, ∂x3) and the horizontal boundary operator G (2.4) into G(s, r; ∂s, ∂r, ∂x3).
In the stretched tubular coordinates (s,R,X3), these operators become

B(s,Rε ; ∂s, ε
−1∂R, ε

−1∂X3), and G(s,Rε ; ∂s, ε
−1∂R, ε

−1∂X3).

The Taylor expansion at R = 0 of the coefficients of the above operators provides the operator valued formal
series

B[ε] =
∑

k

εkBk and G[ε] =
∑

k

εkGk

where the Bk(s,R ; ∂s, ∂R, ∂3) are partial differential systems of order 2 in the stretched domain ∂ω×Σ+ whereas
the Gk(s,R ; ∂s, ∂R, ∂3) are partial differential systems of order 1 on its horizontal boundaries ∂ω × γ−+, where
γ−+ = R

+ × {X3 = −+1} denotes the horizontal boundaries of Σ+; all operators depend polynomially on R.
Therefore, each coefficient of the matrices Bk and Gk is a finite sum of terms of the form a(s)Rn∂i

s∂
j
R∂

l
3, with

i+ j + � less than 2 for Bk and less than 1 for Gk. As a consequence of the analyticity of the boundary of ω,
the coefficients s �→ a(s) belong to A(∂ω).
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The first terms B0 and G0 are explicitly given by:

(B0ϕ)s = µ∆R,3ϕs, (G0ϕ)s = µ∂3ϕs .

(B0ϕ)R = µ∆R,3ϕR + (λ+ µ) ∂R(∂RϕR + ∂3ϕ3), (G0ϕ)R = µ(∂3ϕR + ∂Rϕ3),

(B0ϕ)3 = µ∆R,3ϕ3 + (λ+ µ) ∂3(∂RϕR + ∂3ϕ3), (G0ϕ)3 = (λ+ 2µ)∂3ϕ3 + λ∂RϕR .

We note the splitting into 2D-Laplace and 2D-Lamé operators in variables (R, x3) with Neumann boundary
conditions.

The series ϕ[ε] is associated with zero volume and surface loads, which is written as:{
B[ε]ϕ[ε] = 0 in ∂ω × Σ+,

G[ε]ϕ[ε] = 0 on ∂ω × γ−+.
(6.2)

6.1.2. Spaces of exponentially decreasing functions

The profiles ϕk(s,R,X3) are exponentially decreasing as R → ∞ and belong to a class of weighted spaces
in Σ+. These spaces depend on two real parameters δ > 0 and β ∈ (0, 1). The parameter δ describes the
exponential decay at infinity and β the regularity near the two corners (0,−+1) of Σ+.

We denote by ρ−+ the distance to the corners (0,−+1) and set ρ = min{1, ρ+ρ−}. Let first H∞
β,δ(Σ

+) be the
space of C∞(Σ+) functions ϕ, which are smooth up to any regular point of the boundary of Σ+, are exponentially
decreasing as R → ∞ and satisfy the growth estimates near (0,−+1) in the following sense

eδR ϕ ∈ L2(Σ+) and ∀� ∈ N
2, |�| > 0, eδR ρ|�|−1−β ∂

|�|
R,3ϕ ∈ L2(Σ+).

Then we define the corresponding displacement space H∞
β,δ(Σ+) := H∞

β,δ(Σ
+)3.

The space for the right hand sides is defined along similar lines. Let K∞
β,δ(Σ

+) be the space of triples
(Ψ, ψ−+) ∈ C∞(Σ+) × C∞(γ−+) which satisfy

∀� ∈ N
2, eδR ρ|�|+1−β ∂

|�|
R,3Ψ ∈ L2(Σ+) and eδR ρ|�|+1/2−β ∂

|�|
R,3ψ

−+ ∈ L2(γ−+).

Then we define the corresponding space for right hand sides:

K∞
β,δ(Σ

+) :=
{
(Ψ,ψ) ∈ K∞

β,δ(Σ
+)3
}
·

These spaces are convenient to solve problem (6.2) coupled with lateral boundary conditions because there hold
the two following lemmas.

Lemma 6.1. Let δ > 0 and β ∈ (0, 1) be fixed. For any k and any ϕ ∈ C∞(∂ω,H∞
β,δ(Σ+)), there holds:

(Bkϕ,Gkϕ) ∈ A(∂ω,K∞
β,δ′(Σ+)) for any δ′ < δ.

This is a straightforward consequence of the structure of the coefficients of the operators Bk and Gk (analytic
in s and polynomial in R).

Lemma 6.2. Let δ0 > 0 be the smallest exponent arising from the Papkovich-Fadle eigenfunctions, see [12].
Let β0 ∈ (0, 1) be the smallest real part of the corner singularity exponents associateed with the corners (0,−+1)
of Σ+ for the operator (B0,G0) with Dirichlet boundary conditions on R = 0, see [8, 15]. For any 0 < β < β0

and 0 < δ < δ0, for any (Ψ,ψ) ∈ K∞
β,δ(Σ+), and any P ∈ C∞([−1, 1])3 there exist a unique ϕ ∈ H∞

β,δ(Σ+) and
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a unique rigid displacement Z such that
B0ϕ+ Ψ = 0 in Σ+

G0ϕ+ψ = 0 in γ+ ∪ γ−
(ϕ−Z)

∣∣
R=0

+ P = 0.

(6.3)

This result is proved in [5, 7, 9]. Let us denote by

R0(Ψ,ψ,P) the solution ϕ of problem (6.3).

If (Ψ,ψ) belongs to A(∂ω,K∞
β,δ(Σ

+)) and P belongs to A(∂ω, C∞([−1, 1])3), then s �→ R0(Ψ(s),ψ(s),P(s))
defines an element ϕ ∈ A(∂ω,H∞

β,δ(Σ
+)), which is still denoted by R0(Ψ,ψ,P). In particular, if the right hand

side (Ψ,ψ,P) has a tensor product form

a(s)
(
Ψ′(R,X3),ψ′(R),P′(X3)

)
then R0(Ψ,ψ,P) = a(s)ϕ′(R,X3) with ϕ′ = R0(Ψ′,ψ′,P′) since (B0,G0) does not depend on s.

6.2. Series Φ[ε] and Θ[ε]

As the boundary layer profiles are expressed in unscaled components, we have to define the unscaled version
of operators V[ε] and Q[ε]. This only consists in dividing the transverse component by ε. This amounts to
define

Ṽ[ε] = D[ε]V[ε] and Q̃[ε] = D[ε]Q[ε]

where we have set D[ε] = ε−1D−1 +D0, with

D−1(u∗, u3) = (0, u3) and D0(u∗, u3) = (u∗, 0).

Note that for any k ≥ 1, Ṽk and Q̃k are nonzero operators.
We have now all material for the definition of the formal operator series Φ[ε] and Θ[ε] present in (6.1).

Beyond the equations B[ε]Φ[ε] = 0, G[ε]Φ[ε] = 0, B[ε]Θ[ε] = 0, G[ε]Θ[ε] = 0 corresponding to system (6.2),
they satisfy that Φ[ε] + Ṽ[ε] and Θ[ε] + Q̃[ε] takes their values in a rigid displacement series.

The zero-order operators Φ0 and Θ0 vanish. For any k ≥ 1, there holds

∀ζ ∈ C∞(ω)3, Φkζ = R0
( k∑

�=1

B�Φk−�ζ ,

k∑
�=1

G�Φk−�ζ , Ṽkζ
∣∣
Γ0

)
(6.4)

and

∀f ∈ C∞(Ω)3, Θkf = R0
( k∑

�=1

B�Θk−�f ,

k∑
�=1

G�Θk−�f , Q̃kf
∣∣
Γ0

)
. (6.5)

Gathering all information about the structure of series V[ε] and Q[ε] the decomposition of operators Bk and
Gk in tensor product terms, and of solutions of problems (6.3) we obtain:
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Lemma 6.3. Let β and δ be as in Lemma 6.2.
(i) For any integer k ≥ 1, there exists an integer L = L(k) and for any � = 1, . . . , L exponentially decreasing
fields ϕk,� ∈ H∞

β,δ(Σ
+) and partial differential operators δk,�(s; ∂s, ∂r) on ∂ω with analytic coefficients on ∂ω

such that

Φkζ =
L∑

�=1

ϕk,�(R,X3) δk,�(s; ∂s, ∂r)ζ
∣∣
∂ω
.

Each ϕk,� is the solution R0(Ψk,�,ψk,�,Pk,�) of problem (6.3) where the Pk,�(X3) are triples of polynomials,
and (Ψk,�,ψk,�) = (bϕk′, �′, gϕk′, �′) with k′ < k, �′ ≤ L(k′), and b, g matrix operators with coefficients of the
form Rn∂

|m|
R,3 (with |m| ≤ 2 for b and ≤ 1 for g).

(ii) If f depends polynomially on X3 (with degree deg3 f), for any integer k ≥ 1, there exists an integer
J = J(k, deg3 f ) and for any j = 1, . . . , J exponentially decreasing fields θk,j ∈ H∞

β,δ(Σ+) and partial differential
operators γk,j(s; ∂s, ∂r, ∂3) on ∂ω × (−1, 1) with analytic coefficients on ∂ω such that

Θkf =
J∑

j=1

θk,j(R,X3) γk,j(s; ∂s, ∂r, ∂3)f
∣∣
∂ω×(−1,1)

.

Each θk,j is the solution R0(Ψk,j ,ψk,j ,Pk,j) of a problem (6.3) where the Pk,j(X3) are triples of polynomials,
and (Ψk,j ,ψk,j) = (bθk′, j′, g θk′, j′ ) with k′ < k, j′ ≤ J(k′, deg3 f), and b, g matrix operators as above.

6.3. Analytic regularity of the boundary layer profiles

Lemma 6.3 states that the generating layer profiles ϕk,�(R,X3) and θk,j(R,X3) are solutions of problem (6.3)
with sets of data coming from generating terms of lower degree. Therefore, we obtain by recursion that they are
analytic in the interior of Σ+. To estimate the rate of convergence of hp-FE approximations of the boundary
layer profiles, however, we quantify the analytic regularity of ϕk,� and θk,j in the interior of Σ+. We need for
this an analytic version of the spaces H∞

β,δ and K∞
β,δ.

Definition 6.4. For real parameters 0 ≤ β ≤ 1, δ > 0, define the space HA
β,δ(Σ

+) as the set of all ϕ ∈ H∞
β,δ(Σ

+)
for which there exists a constant C > 0 such that

∀� ∈ N
2, |�| > 0

∥∥∥eδRρ|�|−1−β∂�
R,3ϕ

∥∥∥
L2(Σ+)

≤ C|�|+1�! (6.6)

Analogously, we denote by KA
β,δ(Σ

+) the space of triples (Ψ, ψ−+) for which there exist C > 0 such that

∀� ∈ N
2
∥∥∥eδRρ|�|+1−β∂�

R,3Ψ
∥∥∥

L2(Σ+)
≤ C|�|+1�! (6.7)

and

∀� ∈ N
2
∥∥∥eδRρ|�|+1/2−β∂�

R,3ψ−+
∥∥∥

L2(γ−+)
≤ C|�|+1�! (6.8)

As before, we denote by HA
β,δ(Σ

+) = HA
β,δ(Σ

+)3 and likewise KA
β,δ(Σ

+).

With these definitions we can now prove the two following lemmas, which are the analytic version of lem-
mas 6.1 and 6.2.

Lemma 6.5. Let δ > 0 and β ∈ (0, 1) be fixed. For any k and any ϕ ∈ A(∂ω,HA
β,δ(Σ+)), there holds:

(Bkϕ,Gkϕ) ∈ A(∂ω,KA
β,δ′(Σ+)) for any δ′ < δ.
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Lemma 6.6. With δ > 0 and β ∈ (0, 1) as in Lemma 6.2, for any (Ψ,ψ) ∈ KA
β,δ(Σ

+), and any P ∈ A([−1, 1])3

the solution ϕ = R0(Ψ,ψ,P) belongs to HA
β,δ(Σ+).

Proof. To this end, for p, q ∈ N, we define Σp,q = (p, q)×(−1, 1), Σp = (p,∞)×(−1, 1), γ−+
p,q := (p, q)×{−+1} and

γ−+
p := (p,∞)×{−+1}. Then we may split for example Σ+ in Σ0,2∪Σ2. We establish the analytic regularity (6.6)

in Σ0,2 and in Σ2 separately.

Step (i): Analytic estimates in the half-strip Σ2 = (2,∞) × (−1, 1).

For any β ∈ R and B0,G0 as in (6.3), we have the equivalence

{
B0ϕ+ Ψ = 0 in Σ+

G0ϕ+ψ = 0 in γ+ ∪ γ−
⇐⇒

{
B0

β(eβRϕ) + eβRΨ = 0 in Σ+

G0
β(eβRϕ) + eβRψ = 0 in γ+ ∪ γ−

where (B0
β,G0

β) is an elliptic operator pencil depending on β with constant coefficients and principal part (B0,G0).
By the ellipticity and analyticity of the data Ψ,ψ in Σ1, we have for any p ≥ 3 and every � = (�R, �3) ∈ N

2

for ϕ̃ := eβRϕ the analytic regularity estimate, see [17]

1
�!

∥∥∂�
R,3ϕ̃

∥∥
L2(Σp−1,p+1)

≤ C|�|+1

 ∑
|n|≤(|�|−2)+

1
n!

∥∥∂n
R,3(B0

βϕ̃)
∥∥

L2(Σp−2,p+2)
+ ‖ϕ̃‖

L2(Σp−2,p+2)


+C|�|+1

 ∑
|n|≤(|�|−1)+

1
n!

∥∥∂nR

R (G0
βϕ̃)
∥∥

L2(γ−+
p−2,p+2)

+ ‖ϕ̃‖
L2(γ−+

p−2,p+2)


where the constant C depends on β, but not on p ≥ 3 or on �. Summing up for p ≥ 3, we get that

1
�!

∥∥∂�
R,3ϕ̃

∥∥
L2(Σ2)

≤ C|�|+1

 ∑
|n|≤(|�|−2)+

1
n!

∥∥∂n
R,3(B0

βϕ̃)
∥∥

L2(Σ1)
+ ‖ϕ̃‖

L2(Σ1)


+C|�|+1

 ∑
|n|≤(|�|−1)+

1
n!

∥∥∂nR

R (G0
βϕ̃)
∥∥

L2(γ−+
1 )

+ ‖ϕ̃‖
L2(γ−+

1 )


which also reads

1
�!

∥∥∂�
R,3(e

βRϕ)
∥∥

L2(Σ2)
≤ C|�|+1

 ∑
|n|≤(|�|−2)+

1
n!

∥∥∂n
R,3(e

βRB0ϕ)
∥∥

L2(Σ1)
+
∥∥eβRϕ

∥∥
L2(Σ1)


+C|�|+1

 ∑
|n|≤(|�|−1)+

1
n!

∥∥∂nR

R (eβRG0ϕ)
∥∥

L2(γ−+
1 )

+
∥∥eβRϕ

∥∥
L2(γ−+

1 )

 .
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Noting that ∂�
R,3(e

βRϕ) = eβR(∂R + β)nR∂n3
3 ϕ, we can deduce from the last estimate that

1
�!

∥∥eβR∂�
R,3ϕ

∥∥
L2(Σ2)

≤ C|�|+1

 ∑
|n|≤(|�|−2)+

1
n!

∥∥eβR∂n
R,3(B0ϕ)

∥∥
L2(Σ1)

+
∥∥eβRϕ

∥∥
L2(Σ1)


+C|�|+1

 ∑
|n|≤(|�|−1)+

1
n!

∥∥eβR∂nR

R (G0ϕ)
∥∥

L2(γ−+
1 )

+
∥∥eβRϕ

∥∥
L2(γ−+

1 )

 .

Whence ϕ ∈ HA
β,δ(Σ2) if (B0ϕ,G0ϕ) belongs to KA

β,δ(Σ1) and if eβRϕ is in L2(Σ1).

Step (ii): Analytic estimates in Σ0,2.
Since the differential operators B0,G0 in (6.3) have constant coefficients and are in divergence form, and since

P is analytic on R = 0, |X3| ≤ 1, the regularity theory of Babuška and Guo [13, 14] (see also Th. IV.1 in [3])
implies that ϕ ∈ HA

β,δ(Σ0,2).

Then, combining Lemma 6.5 and Lemma 6.6 we prove by induction on k ≥ 1:

Lemma 6.7. Notations are as in Lemma 6.3 and β and δ as in Lemma 6.2. Then for any integer k ≥ 1 all
the boundary layer profiles ϕk,� and θk,j belong to HA

β,δ(Σ
+) and estimates (6.6) hold with a constant C > 0

depending on k.

7. hp-Approximation of the boundary layer profiles

Unscaling expansion (2.10) we obtain that the terms ũk (2.11) of the expansion of ũ are the sum of the outer
terms ṽk and of the inner terms χϕk. In this section, we investigate the approximation of the inner expansion
terms χϕk by mapped piecewise polynomials.

7.1. hp-Approximation of layer profiles on the half-strip Σ+

For the approximation of the profiles ϕk, we subdivide Σ+ into three regions

Σ+
I := (0, 2) × (−1, 1), Σ+

II := (2, R̂) × (−1, 1), Σ+
III := (R̂,∞) × (−1, 1) (7.1)

where R̂ ≥ 3 is an integer at our disposal which will be selected below. In each subregion Σ+
ν , ν ∈ {I, II, III},

we introduce a FE-mesh Mν as follows.
In Σ+

I , we need a parameter n which is an integer ≥ 1: Mn
I consists of axiparallel quadrilaterals with hanging

nodes which are geometrically refined toward the “corners” of Σ+ with n layers and a grading ratio σ ∈ (0, 1),
cf. (7.19) below (see Chap. 4 in [19], for more details on geometric meshes with hanging nodes).

In Σ+
II, we define

MII :=
{
(i, i+ 1) × (−1, 1) : i = 2, . . . , R̂− 1

}
(7.2)

and finally, MIII = {(R̂,∞) × (−1, 1)}. The mesh Mn in Σ+ is the union of the meshes in the subregions:

Mn = Mn
I ∪MII ∪MIII .

We next define the hp-FE space in Σ+ which we will use to approximate the profiles. Let p be an integer ≥ 1.
We denote by Qp the usual spaces of polynomials of degree p in each variable and we define

Sp(Σ+,Mn) :=
{
ϕ ∈ H1(Σ+) : ϕ|K ∈ Qp(K) ∀K ∈ Mn, ϕ(R, ·) = 0 forR > R̂

}
· (7.3)
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Figure 7.1. The regions Σ+
ν , ν ∈ {I, II, III}, of Σ+ and the meshes Mn

I with n = 3, σ = 0.5,
MII and MIII.
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Figure 7.2. Q̂ and notation.

The next theorem addresses the approximation of the boundary layer profile space HA
β,δ(Σ

+) from Sp(Σ+,Mn)
and is the main result of this subsection.

Theorem 7.1. Let ϕ ∈ HA
β,δ(Σ

+) for β ∈ (0, 1) and δ > 0, be a boundary layer profile. Then there exist C > 0
and b > 0 such that, for any p ≥ 1

∃ϕp ∈ Sp(Σ+,Mp)3 such that
∥∥ϕ− ϕp

∥∥
H1(Σ+)

≤ C
(
e−bp + e−δ �R

)
. (7.4)

Remark. Note that the number n of layers in the geometric mesh Mn
I is taken equal to p.

Proof. To prove Theorem 7.1 we construct ϕp separately in each subdomain Σ+
ν , for ν in {I, II, III}. The

following Lemma of approximation on the model square Q̂ = (−1, 1)× (−1, 1) will be used throughout.

(i) Estimates in the model square

Lemma 7.2. Notation as in Figure 7.2. Let π0
p : L2(−1, 1) → Qp(−1, 1) denote the L2-projection and define

π1
pu for u ∈ H1(−1, 1) by

(π1
pu)(x) := u(−1) +

∫ x

−1

(π0
p−1u

′)(ξ) dξ ,
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fig6.3.ps
120 × 64 mm

X3

R

Figure 7.3. Geometric mesh Mn
I in Σ+

I with hanging nodes.

and denote by Π̂p := π1
p π

2
p the tensor product interpolant on Q̂ (here π2

p is the analogue of π1
p in the vertical

direction). Then, for any u ∈ H1+k(Q̂), k > 0, holds

Π̂pu = u at the vertices of Q̂ , (7.5)

Π̂pu
∣∣
�γi

= π1
p(u|

�γi
), i = 1, 3 and Π̂pu

∣∣
�γi

= π2
p(u|

�γi
), i = 2, 4 (7.6)

and, for any p ≥ 1 and 0 ≤ s ≤ min(p, k) the estimates∥∥∥∇(u− Π̂pu)
∥∥∥2

L2( �Q)
≤ C Φ(p, s)

∥∥Ds+1u
∥∥2

L2( �Q)
, (7.7)∥∥∥u− Π̂pu

∥∥∥2

L2( �Q)
≤ C

Φ(p, s)
p(p+ 1)

∥∥Ds+1u
∥∥2

L2( �Q)
. (7.8)

Here
∥∥Dku

∥∥2

L2( �Q)
=
∑

|α|=k ‖Dαu‖2

L2( �Q)
. The constant C > 0 is independent of s and p, and Φ is given by

Φ(p, s) :=
(p− s)!
(p+ s)!

+
1

p(p+ 1)
(p− s+ 1)!
(p+ s− 1)!

, 0 ≤ s ≤ p .

(ii) Estimates in Σ+
I

Next, we address the interpolation on geometric meshes.

Lemma 7.3. In Σ+
I = (0, 2) × (−1, 1), consider the geometric mesh Mn

I shown in Figure 7.3. Then, for
u ∈ Hk+1(Σ+

I ) and p ≥ 1, exists Π̃u ∈ Sp(Σ+
I ,Mn

I ) such that Π̃u is continuous in Σ+
I and that there hold the
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fig6.4.ps
112 × 39 mm

ξ1

ξ2
(1, 0)

K̂3K̂2

(1,−1)

(1, 1)

K̂1

(−1, 0)

(−1, 1)

(−1,−1)

Figure 7.4. Mesh patch with hanging node.

following estimates for any 0 ≤ s ≤ min(p, k)

∥∥∥u− Π̃u
∥∥∥2

L2(Σ+
I )

≤ C
∑

K∈Mn
I

(
hK

2

)2s+2 Φ(p, s)
p+ 1

∥∥Ds+1u
∥∥2

L2(K)
, (7.9)

∥∥∥∇(u− Π̃u)
∥∥∥2

L2(Σ+
I )

≤ C
∑

K∈Mn
I

(
hK

2

)2s

Φ(p, s)
∥∥Ds+1u

∥∥2

L2(K)
. (7.10)

Proof. For K ∈ Mn
I , let FK : Q̂→ K be the affine element map. Define

(Πu)|K :=
(
Π̂p (u ◦ FK)

)
◦ F−1

K .

Then applying Lemma 7.2 elementwise and a scaling argument imply (7.9, 7.10). By (7.5, 7.6), Πu is continuous
across edges which do not contain hanging nodes. It remains therefore to remove jumps of the interpolant on
edges with hanging nodes.

Assume now that we are on an edge with hanging node as shown in Figure 7.4.
Denote γij := K̂i ∩ K̂j and by [u− Πu]ij = −[πu]ij the jump of u− Πu across γij .
By (7.6), [u− Πu]23 ≡ 0 and [Πu]ij ∈ Qp(γij). We remove the discontinuity by lifting [Πu]. Put

V (ξ) := −(ξ2 + 1)

{
[Πu]12(ξ1) on K̂2 ,

[Πu]13(ξ1) on K̂3 .

Now [Πu]23 = 0 implies that V ∈ C0(K̂2 ∪ K̂3) and

‖∇V ‖
L2( �K2∪ �K3)

≤ C
∥∥[πu]∥∥

H1/2(γ12∪γ13)
, (7.11)

with C independent of p. The Trace Theorem in K̂ implies

‖[πu]‖
H1/2(γ12∪γ13)

= ‖[u − πu]‖
H1/2(γ12∪γ13)

≤ ‖(u − Πu)+‖
H1/2(γ12∪γ13)

+ ‖(u − Πu)−‖
H1/2(γ12∪γ13)

≤ C
∑3

i=1 ‖u− Πu‖
H1( �Ki)

.

(7.12)
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Put

Π̃u :=

{
Πu in K̂1

V + Πu in K̂2 ∪ K̂3 .
(7.13)

Then Π̃u ∈ C0(K̂) by construction and from (7.11)–(7.12) we obtain

∥∥∥∇(u− Π̃u)
∥∥∥

L2( �K)
≤ C

3∑
i=1

‖∇(u − Πu)‖
L2( �Ki)

.

Concerning the L2 estimate we have

‖V ‖
L2( �K2∪ �K3)

≤C ‖[u− Πu]‖
L2(γ12∪γ13)

≤C
{
‖(u − Πu)+‖

L2(γ12∪γ13)
+ ‖(u − Πu)−‖

L2(γ12∪γ13)

}
≤C

∑3
i=1

(
‖u− Πu‖

L2( �Ki)
+ ‖u− Πu‖1/2

L2( �Ki)
‖∇(u− Πu)‖1/2

L2( �Ki)

)
and we arrive at∥∥∥u− Π̃u

∥∥∥
L2( �K)

≤C
∑3

i=1

(
‖u− Πu‖

L2( �Ki)
+ ‖u− Πu‖1/2

L2( �Ki)
‖∇(u− Πu)‖1/2

L2( �Ki)

)
.

Now assume that Ki are of size h. To obtain error estimates, we first use (7.7, 7.8) and then we scale K̂,
K̂i to this size. Summing over all patches in Figure 6.3 gives (7.9, 7.10) since in the geometric mesh Mn

I the
modification V in (7.11) is applied at most twice per element.

Later on, we have the problem that if K ∈ Mn
I abuts at the vertices (0,−+1), then the layer profile ϕ does not

belong to H2(K)3, in general. Let us denote by K+
11 the element K ∈ Mn

I such that (0, 1) ∈ K, and likewise
for K−

11 with (0,−1). Put

Σ̃+
I := Σ+

I \
(
K+

11 ∪K−
11

)
, M̃n

I :=
{
K ∈ Mn

I : K �= K−+
11

}
.

Then if u ∈ Hk+1(Σ̃+
I ) we obtain like for Lemma 7.3 that the interpolation estimates (7.9, 7.10) hold with Mn

I

replaced by M̃n
I and Σ+

I by Σ̃+
I .

To deal with the corner singularities we rely on, see e.g. [19]:

Lemma 7.4 (Hardy-type estimate). Let Q = (0, h)2 and assume that u ∈ H1(Q) satisfies for a γ ∈ (0, 1):

|u|2
H2

γ(Q)
:=
∫

Q

r2γ |D2u|2 dx <∞ . (7.14)

Then u ∈ C0(Q) and the bilinear interpolant JQu satisfies the estimate

‖u− JQu‖H1(Q)
≤ Ch1−γ |u|

H2
γ (Q)

. (7.15)

We proceed to hp-approximation. Let ϕ belong to HA
β,δ(Σ+) for β ∈ (0, 1) and δ > 0. We note that ϕ belongs

to H2
γ(Q)3 for γ = 1 − β.

Without loss of generality, we consider only M̃n
I,+, the upper half X3 > 0 of M̃n

I . We number the elements
in this mesh by Kij , 1 ≤ i ≤ n and j = 1 if i = 1 (vertex element) and 1 ≤ j ≤ 3 otherwise, where i = 2 in the
layer surrounding the vertex element, i = n in the largest element layer. For any Kij , i ≥ 2, denote by

hij = diam(Kij), rij = dist
(
Kij , (0, 1)

)
. (7.16)
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Then there exists λ ∈ (0, 1), independent of n, s.t.

hij ≤ λ rij and ∀x ∈ Kij , rij ≤ ρ(x) ≤ rij + 2hij ≤ (2 + λ) rij . (7.17)

Now consider a layer profile ϕ ∈ HA
β,δ(Σ

+). Then a typical term in the error bounds (7.10) can be estimated as
follows: (

h

2

)2s

Φ(p, s)
∫

Kij

|Ds+1ϕ|2 dx ≤
(
λr

2

)2s

Φ(p, s) r−2(s−1−β)

∫
Kij

ρ2(s−1−β)|Ds+1ϕ|2 dx

≤
(
λ

2

)2s

Φ(p, s) r2(1−β)
∥∥ρs−1−βDs+1ϕ

∥∥2

L2(Kij)
.

(7.18)

Now, since the mesh is geometric with grading ratio 0 < σ < 1, for all 2 ≤ i ≤ n and 1 ≤ j ≤ 3, we also have

σn−i+1 ≤ rij ≤
√

2σn−i+1. (7.19)

Summing the error over all Kij gives with (7.18) and (7.19) in (7.10) with the regularity (6.6) that

∥∥∥∇(ϕ− Π̃ϕ)
∥∥∥2

L2(�Σ+
I )

≤ C

n∑
i=2

(
λ

2

)2s

Φ(p, s)σ2(1−β)(n−i+1) C2s+2(s+ 1)!2

≤ C Φ(p, s)
(
λC

2

)2s+2

(s+ 1)!2 σ2(n+1)(1−β)
∑n

i=2 σ
−2(1−β)i .

≤ C Φ(p, s)
(
λC

2

)2s+2

(s+ 1)!2 .

If we take s = αp for an α ∈ (0, 1), Stirling’s formula implies that

Φ(p, s)(s+ 1)!2
(
λC

2

)2s

≤ (p− s)!
(p+ s)!

(s+ 1)!2
(
λC

2

)2s+2 s = αp

≤ C p3
(
F (α, λC/2)

)p
where

F (α, d) :=
(1 − α)1−α

(1 + α)1+α
(αd)2α .

Since for d > 1

min
0<α<1

F (α, d) = F (αmin, d) = Fmin < 1, αmin =
1√

1 + d2
< 1 ,

Sin we get

Φ(p, αp)(s+ 1)!2
(
λd

2

)2αp

≤ C p3 F p
min .

Then ∥∥∥∇(ϕ− Π̃ϕ)
∥∥∥2

L2(�Σ+
I )

≤ C p3 F p
min ≤ C e−2bp
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since Fmin < 1, for some C, b > 0 independent of p. Analogous bounds hold for the L2 norm of ϕ − Π̃ϕ.
Summarizing, we obtain that there exist C and b > 0, such that for any ϕ ∈ HA

β,δ(Σ
+) and any n and p∥∥∥ϕ− Π̃ϕ

∥∥∥2

L2(�Σ+
I )

+
∥∥∥∇(ϕ− Π̃ϕ)

∥∥∥2

L2(�Σ+
I )

≤ C e−2bp . (7.20)

It remains to estimate the error on K11, the vertex element: recalling that any ϕ in HA
β,δ(Σ

+) belongs to
H2

γ(K11) for γ = 1 − β, we deduce from Lemma 7.4 that

‖ϕ− JK11ϕ‖H1(K11)
≤ C σn(1−β) . (7.21)

Now a continuous interpolant in Σ+
I is obtained by joining the bilinear interpolant JK11ϕ and Π̃ϕ continuously

on K11 ∩ Σ̃+
I , by liftings in K21 ∪ K23. Finally, estimates (7.20) and (7.21) yield the hp type approximation

estimate if we choose

n = p .

(iii) Estimates in Σ+
II

Consider now the approximation in Σ+
II = (2, R̂) × (−1, 1). We write

∥∥ϕ−ϕp

∥∥2

H1(Σ+
II)

=
�R∑

i=2

∥∥ϕ−ϕp

∥∥2

H1(Ki)

where Ki = (i, i+ 1) × (−1, 1) ∈ MII. Applying again Lemma 7.2, we construct ϕp elementwise. By (7.6), ϕp

is continuous in Σ+
II and ∥∥ϕ−ϕp

∥∥2

H1(Ki)
≤ C Φ(p, s)

∥∥Ds+1ϕ
∥∥2

L2(Ki)
.

The analytic regularity HA
β,δ of ϕ in Σ+

II, cf. (6.6), then gives∥∥ϕ−ϕp

∥∥2

H1(Ki)
≤ C Φ(p, s)C2(s+1)(s+ 1)!2 e−2δi . (7.22)

Choosing again s = αmin p as in Σ+
I , we find∥∥ϕ−ϕp

∥∥2

H1(Ki)
≤ C e−2(bp+δi), i = 2, . . . , R̂ . (7.23)

Summing (7.23) over all i, we get for constants C, b > 0 independent of R̂ and ε∥∥ϕ−ϕp

∥∥2

H1(Σ+
II)

≤ C e−2bp. (7.24)

Remark. The bound (7.23) indicates that the polynomial degree p necessary for the boundary layer approx-
imation in Σ+

II may actually decrease with i: we only need bpi + δi ≥ pmax, whence pi ≥ b−1(pmax − δi) for
i = 2, . . . , R̂ is sufficient to ensure (7.24).

(iv) Estimates in Σ+
III

Finally, we discuss the region Σ+
III = (R̂ + 1,∞) × (−1, 1). Here we choose ϕp ≡ 0 and get from (6.6) with

|�| = 1

‖ϕ−ϕp‖2
H1(Σ+

III)
= ‖ϕ‖2

H1(Σ+
III)

≤ C e−2δ �R . (7.25)
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The choice ϕp ≡ 0 in Σ+
III introduces a jump

0 �= [ϕ−ϕp] = −[ϕp] ∈ Qp(−1, 1) on {R = R̂ + 1} × (−1, 1) .

We lift this jump into the last element K
�R = (R̂, R̂+ 1) × (−1, 1) ∈ Σ+

II by

V (R,X3) = (R− R̂)[ϕp](X3), (R,X3) ∈ K
�R . (7.26)

Then, (ϕp − V )(R̂ + 1, X3) = 0, and there is C > 0 independent of R̂ and of p, such that

‖V ‖
H1(K

�R)
≤ C

∥∥[ϕp]
∥∥

L2({�R+1}×(−1,1))
.

Since ϕp|Σ+
III

≡ 0, we have by the trace theorem in K
�R∥∥[ϕp]

∥∥
L2({�R+1}×(−1,1))

=
∥∥[ϕ−ϕp]

∥∥
L2({�R+1}×(−1,1))

≤ C
∥∥ϕ−ϕp

∥∥
H1(K

�R)

(7.23)

≤ C e−(bp+δ �R) .
(7.27)

(v) Conclusion

This yields a continuous approximation ϕp ∈ Sp(Σ+,Mp) which satisfies (7.4), if we combine all 3 approxi-
mations in Σ+

ν . Theorem 7.1 is proved.

Corollary 7.5. Let ϕ ∈ HA
β,δ(Σ

+) for β ∈ (0, 1) and δ > 0, be a boundary layer profile. On the scaled strip
εΣ+, let ϕε be defined as ϕε(r, x3) := ϕ(ε−1r, ε−1x3). Then, if we take R̂ = p, we have

∃ϕε
p ∈ Sp(εΣ+, εMp)3 such that

∥∥ϕε −ϕε
p

∥∥
H1(εΣ+)

≤ C e−bp .

Proof. Let ϕp be the approximant ofϕ given by Theorem 7.1, and let ϕε
p be defined asϕε

p(r, x3) := ϕp(ε−1r, ε−1x3).
Scaling r = εR, x3 = εX3 implies dR dX3 = ε−2 dr dx3 and there holds∥∥ϕ−ϕp

∥∥
L2(Σ+)

= ε−1
∥∥ϕε −ϕε

p

∥∥
L2(εΣ+)

and
∣∣ϕ−ϕp

∣∣
H1(Σ+)

=
∣∣ϕε −ϕε

p

∣∣
H1(εΣ+)

.

Theorem 7.1 implies the assertion.

7.2. hp-Finite Element space in Ω�

To prove approximation results in the three dimensional domain Ωε for layer profiles ψ of the tensor form
ψ = γ(s)ϕ(R,X3) with γ ∈ A(∂ω) and ϕ ∈ HA

β,δ(Σ+), we define first the Finite Element space.
Our approximation shall be based on a regular partition τω of ω like that used in Section 5.3, with the new

request that τω has one layer of quadrilateral elements along its boundary as we are going to describe. Let us
define the tubular layer

ωb =
{
x∗ ∈ ω : dist(x∗, ∂ω) < ρ0

}
(7.28)

where ρ0 is chosen less than one half of the minimal radius of curvature of ∂ω.
Let L be the length of the curve ∂ω and let s �→

(
x1(s), x2(s)

)
be an analytic, L-periodic parametric

representation of ∂ω. The mapping m(s, r) given by

m(s, r) :=
(
x1(s) − r x′2(s), x2(s) + rx′1(s)

)
(7.29)
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Figure 7.5. Boundary fitted mesh τω in the midsurface ω.

is an analytic map of (0, L) × (0, ρ0) onto ωb.
In ω, a fixed, regular partition τω is introduced as follows, see Figure 7.5: partition the interval (0, L) in a fixed

number of subintervals τi := (si−1, si), i = 1, . . . , I, 0 = s0 < s1 < · · · < sI = L, and set κi
b := m

(
τi × (0, ρ0)

)
,

i = 1, . . . , I. The remaining interior ω0 := ω\ωb is then covered by a fixed curvilinear partition τω of triangular
or quadrilateral elements κi

0 which are images of a reference element κ̂ under analytic element maps mi
0:

κ̂→ κi
0 ∈ τω .

For each integer n ≥ 1 we define now a three-dimensional mesh T n
ε corresponding to the mesh Mn in the

half-strip Σ+ constructed in the previous subsection to resolve the layer profiles, cf. Figure 7.1:
(a) In Ωε

0 := ω0 × (−ε, ε), we pick tensorized elements Ki
0 := κi

0 × (−ε, ε), κi
0 ∈ τω , which are fixed, i.e.

independent of n (their number is also independent of ε).
(b) In the three-dimensional boundary layer region Ωε

b ≡ ωb × (−ε, ε), we select T n
ε to be the tensor product

of εMn in the (r, x3)-plane times the intervals τi along ∂ω:

T n
ε |Ωε

b
:= m

(
τ∂ω ⊗ εMn

)
∩ Ωε

b , (7.30)

where τ∂ω = {τi : 1 = 1, . . . , I} and m(s, r, x3) =
(
m(s, r), x3

)
. In order for this mesh to be well defined,

we assume

εR̂ < ρ0 , (7.31)

which ensures that the internal boundary Ωε
b ∩ Ωε

0 is covered by m(εMIII ⊗ τ∂ω).
Each element K ∈ T n

ε is then the image of a hexahedral or prismatic reference element under an analytic
element map

x = MK

(
x̂∗, X3) = (mK(x̂∗), εaK(X3)

)
, (7.32)

where mK is analytic and aK(·) is affine.
The hp-FE spaces Sp(Ωε, T n

ε ) are then defined by

Sp(Ωε, T n
ε ) =

{
u ∈ H1(Ωε) : u ◦MK ∈ Qp(K̂), K ∈ T n

ε

}
(7.33)

where K̂ denotes a hexahedral or prismatic reference element of unit size.
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7.3. hp-Boundary layer approximation in Ω�

Let us define now the approximations of the profiles ψ = γ(s)ϕ(r/ε, x3/ε). Here γ(s) is an analytic, L-
periodic function independent of ε, therefore can be approximated by polynomials at an exponential rate:

Lemma 7.6. Let γ be analytic and L-periodic in s. Let Sp
per(∂ω, τ∂ω) denote the space of continuous, L-

periodic piecewise polynomial functions of degree p in (0, L). Then for any integer p ≥ 1 there exist interpolants
jpγ ∈ Sp

per(∂ω, τ∂ω) such that

‖γ − jpγ‖H1(0,L)
≤ Ce−bp . (7.34)

Here b > 0 depends only on the domain of analyticity of γ.

We can now construct the hp-approximation of a generic boundary layer profile ψ.

Proposition 7.7. For ρ0 as in (7.28), assume that the integer p satisfies

εp < ρ0 , (7.35)

and that the mesh Mp in Σ+ is such that R̂ = p. Let ψ = γ(s)ϕ(R,X3) with γ ∈ A(∂ω) and a layer profile
ϕ ∈ HA

β,δ(Σ
+) with β ∈ (0, 1) and δ > 0. Let ψε be defined as ψε(s, r, x3) := ψ(s, ε−1r, ε−1x3). Then there

exists an interpolant

Jpψ
ε ∈ Sp(Ωε, T p

ε )3, with support in Ωε
b

such that there holds the error bound, with constants C, b > 0 independent of ε and p

‖ψε − Jpψ
ε‖

H1(Ωε)
≤ C e−bp . (7.36)

Proof. Define in Ωε
b

(Jpψ
ε)(s, r, x3) := (jpγ)(s)ϕε

p(r, x3) (7.37)

with jp defined in Lemma 7.6 and ϕε
p in Corollary 7.5. Evidently, condition (7.35) implies that the support of

Jpψ
ε is contained in Ωε

b, and we have the estimate

‖ψε − Jpψ
ε‖

H1(Ωε
0)

= ‖ψε‖
H1(Ωε

0)
≤ Ce−δρ0/ε ≤ Ce−δp

where we used (7.35) and the exponential decay of the profile ϕ(R,X3) with respect to R.
In the boundary layer Ωε

b, we may go back to the stretched tubular coordinates (s,R,X3). The application
x �→ (s,R,X3) maps Ωε

b onto the product (0, L) × (0, ρ0/ε) × (−1, 1). With

(Jpψ)(s,R,X3) := (jpγ)(s)ϕp(R,X3)

there holds (Jpψ
ε)(s, r, x3) = (Jpψ)(s, ε−1r, ε−1x3), hence

‖ψε − Jpψ
ε‖

H1(Ωε
b)

 ‖ψ − Jpψ‖H1((0,L)×(0,ρ0/ε)×(−1,1))

≤ ‖ψ − Jpψ‖H1((0,L)×Σ+)
.
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Therefore, it is sufficient to bound the right hand side. There holds

‖ψ − Jpψ‖H1((0,L)×Σ+)
=
∥∥γϕ− (jpγ)ϕp

∥∥
H1((0,L)×Σ+)

≤ ‖(γ − jpγ)ϕ‖
H1((0,L)×Σ+)

+
∥∥γ(ϕ−ϕp)

∥∥
H1((0,L)×Σ+)

≤ ‖γ − jpγ‖H1(0,L)
‖ϕ‖

H1(Σ+)
+ ‖γ‖

H1(0,L)

∥∥ϕ−ϕp

∥∥
H1(Σ+)

Lemma 7.6 and Theorem 7.1 with R̂ = p yield finally the exponential bound Ce−bp.

For K ≥ 0, let us denote by w̃[K] the truncated series of the inner expansion

w̃[K] =
K∑

k=0

εkχ(r)ϕk(s, ε−1r, ε−1x3), (7.38)

where the profiles ϕk are the coefficients of the series ϕ[ε] = Φ[ε]ζ[ε] +Θ[ε]f [ε], see (6.1). Note that, although
the series ζ[ε] and f [ε] start with k = −1, the series ϕ[ε] starts with k = 0 because the operators Φk and Θk

are zero for any k ≤ 0.
The final result on the hp approximation of the inner expansion now reads

Theorem 7.8. For the definition of the discrete space Sp(Ωε, T p
ε ) we assume that εp < ρ0 and R̂ = p. Let

K ≥ 0. Let the volume load f be such that f (x∗, 0) �≡ 0. Then we have, with constants b, C > 0 independent
of ε and p but depending on K:

∃w̃[K]
N ∈ Sp(Ωε, T p

ε ) such that
∥∥∥w̃[K] − w̃[K]

N

∥∥∥
E(Ωε)

≤ Cε1/2e−bp ‖ũ‖
E(Ωε)

. (7.39)

Proof. (i) Let us take k ≤ K. First recall that according to (6.1), ϕk =
∑k

�=1 Φ�ζk−� + Θ�fk−� and that
according Lemmas 6.3 and 6.7 each term of the above sum is itself a linear combination of terms of the form
ψ = γ(s)ϕ(R,X3) with γ ∈ A(∂ω) and ϕ ∈ HA

β,δ(Σ+) for β ∈ (0, 1) and some δ > 0. Therefore Proposition 7.7
applies. We note that χ can be chosen such that χ(r) ≡ 1 for 0 ≤ r ≤ ρ0, χ(r) ≡ 0 for r ≥ 2ρ0. Therefore, as
in Ωε

b, χ(r)ϕk ≡ ϕk, there holds∥∥χ(r)ϕk − Jpϕ
k
∥∥

E(Ωε
b)

=
∥∥ϕk − Jpϕ

k
∥∥

E(Ωε
b)

≤ C
∥∥ϕk − Jpϕ

k
∥∥

H1(Ωε
b)

≤ C e−bp.

In Ωε
0, Jpϕ

k ≡ 0 by construction. Therefore∥∥χ(r)ϕk − Jpϕ
k
∥∥

E(Ωε
0)

≤
∥∥χ(r)ϕk

∥∥
H1(Ωε

0)
≤ Ce−δ �R.

Whence the upper bound C e−bp on Ωε
0 since R̂ = p.

(ii) By superposition we find that for any K0 ≤ K the partial sum satisfies:∥∥∥∥∥
K∑

k=K0

εkχ(r)ϕk −
K∑

k=K0

εkJpϕ
k

∥∥∥∥∥E(Ωε)
≤ CεK0e−bp

(iii) If f3(x∗, 0) �≡ 0, then the energy norm of ũ is equivalent to ε−1/2 and the inner expansion starts with
K0 = 0, whence (7.39).

(iv) If f3(x∗, 0) ≡ 0, then f∗(x∗, 0) �≡ 0 and then the energy norm of ũ is equivalent to ε1/2. Moreover the
inner expansion starts with K0 = 1, whence (7.39).
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8. hp-Approximation of 3-d plates

To obtain the hp-approximation of the full problem (2.2–2.5), it suffices to combine the results of Theorems 5.8
and 7.8.

For this, we only have to note that for any n ≥ 1 the geometric boundary layer meshes T n
ε defined in

Section 7.2 are refinements of the regular mesh T 0
ε defined in Section 5.3, provided T 0

ε is based on the same
boundary fitted mesh τω on ω. Moreover we have the inclusion

V p,q(Ωε, T 0
ε ) ⊂ Sp(Ωε, T n

ε ) (8.1)

for all q ≤ p, n ≥ 1, and ε > 0.
As a corollary of Theorems 5.8 and 7.8, we obtain our main results, namely a-priori estimates for hp-

approximations of the three-dimensional plate problem.

Theorem 8.1. Let Ωε = ω × (−ε, ε) be a plate of thickness 2ε and midsurface ω with analytic boundary, and
let f̃ = f

∣∣
Ωε be a volume loading where f is analytic in ω × (−ε0, ε0) for some ε0 > ε > 0 and such that

f
∣∣
ω×{0} is not identically 0. We consider the hp-approximation ũN of the three dimensional solution ũ of the

hard clamped plate problem (2.2)–(2.5) based on the subspace of dimension N = O(p4)

HN =
{
ṽN ∈ Sp(Ωε, T p

ε )3, ṽN

∣∣
∂ω×(−ε,ε)

= 0
}
· (8.2)

(i) There holds for every K ≥ 0 the error bound

‖ũ− ũN‖
E(Ωε)

≤ CK(εK + ε−1 e−bp) ‖ũ‖
E(Ωε)

(8.3)

for some b, CK > 0 independent of ε, p as ε→ 0, p→ ∞.

(ii) If the condition of Theorem 5.8 (a.ii) is satisfied, or if f3

∣∣
ω×{0} ≡ 0, then we have the robust estimate of

the error bound

‖ũ− ũN‖
E(Ωε)

≤ CK(εK + e−bp) ‖ũ‖
E(Ωε)

. (8.4)

Proof. Using Theorem 2.1 and the triangle inequality (2.15), we only have to estimate the hp-approximation of
the asymptotic expansion

∑K
k=−2 ε

kũk of the three-dimensional solution ũ. Since, according to notations (5.15)
and (7.38), we have

K∑
k=−2

εk ũk = ṽ[K] + w̃[K]

the sum ṽ
[K]
N + w̃[K]

N of the interpolants constructed in Theorems 5.8 and 7.8 yields an interpolant ũ[K]
N in the

space Sp(Ωε, T p
ε )3. It remains the problem of the trace of ũ[K]

N on Γε
0 which could be non-zero.

By construction, for any k ≥ −2, the trace of ṽk + w̃k on Γε
0 is zero. In particular, the traces of ṽ−2 and ṽ−1

are zero, and thanks to the property of the interpolation operator ip in ω, cf. Proposition 5.6, the interpolants
ṽk

N of ṽk for k = −2,−1 can be chosen with zero traces on Γε
0 with the same error bound. We have the same

situation for k = 0 in the case when f3(x∗, 0) ≡ 0. Therefore we have to consider the trace:

K∑
k=K0

εk(ṽk +ϕk)
∣∣
Γε

0
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with K0 = 0 if f3(x∗, 0) �≡ 0 and K0 = 1 otherwise. Let us fix k ≥ K0. Inspecting the constructions and
proofs in Section 5.3 and Sections 7.1, 7.3, and taking advantage that in the layer Ωε

b the finite elements are
tensorial in the three directions, we find that there also hold error bounds in the norm H1(Γε

0). When scaled
to ∂ω × (−1, 1), these estimates are uniform with respect to ε, and scaled back to Γε

0 = ∂ω × (−ε, ε) their
behavior in ε is O(ε−1/2). In p, we still have the exponential rate, cf. (5.14) and (7.36), which means that the
interpolants ṽk

N and w̃k
N satisfy∥∥∥(ṽk − ṽk

N )
∣∣
Γε

0

∥∥∥
H1(Γε

0)
≤ C ε−1/2e−bp and

∥∥∥(ϕk − w̃k
N )
∣∣
Γε

0

∥∥∥
H1(Γε

0)
≤ C ε−1/2e−bp,

whence, as (ṽk +ϕk)
∣∣
Γε

0
= 0: ∥∥∥(ṽk

N + w̃k
N )
∣∣
Γε

0

∥∥∥
H1(Γε

0)
≤ C ε−1/2e−bp.

Let us consider the lifting

�kN(s, r, x3) := (ṽk
N + w̃k

N )(s, 0, x3) (1 − r/ρ0) in Ωε
b and 0 in Ωε

0.

This defines an element of Sp(Ωε, T p
ε )3 which also satifies the estimate∥∥�kN∥∥H1(Ωε)

≤ C ε−1/2e−bp.

Then the element of Sp(Ωε, T p
ε )3 defined as ṽk

N +w̃k
N −�kN is an interpolant of ũk inHN . The extra contribution

to the error is ∥∥∥∥∥
K∑

k=K0

εk�kN

∥∥∥∥∥E(Ωε)
≤ C εK0−1/2e−bp.

Combining with the behavior of the energy of ũ in Ωε as ε→ 0, we finally obtain (8.3) and (8.4).

Corollary 8.2. For every K ≥ 0 there is C∗ > 0 such that

‖ũ− ũN‖
E(Ωε)

≤ C εK ‖ũ‖
E(Ωε)

as ε→ 0 , (8.5)

provided that p ≥ C∗ | log ε| in the general case (i) of Theorem 8.1 and provided p ≥ C∗ in the case (ii) of the
same theorem.

The preceding results assumed that the transverse degree of Sp(Ωε, T n
ε ) is increased uniformly throughout

the domain. If, however, the volume load f [ε] vanishes or is constant in subdomains, substantial simplifications
are possible, if the transverse polynomial degree is taken variable.

Remark 8.3.
(i) If the plate deforms due to a constant bending volume force (0, 0, 1), (8.3)–(8.5) hold even if deg3(HN ) =(

3
4

)
in all κi

0 ⊂ ω0.
(ii) For a constant membrane volume force (a, b, 0) throughout Ωε, (8.3)–(8.5) hold if deg3(HN ) =

(
2
1

)
in ω0.
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