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Modélisation Mathématique et Analyse Numérique M2AN, Vol. 36, No 4, 2002, pp. 657–691

DOI: 10.1051/m2an:2002029

STABILIZATION OF BERGER–TIMOSHENKO’S EQUATION AS LIMIT
OF THE UNIFORM STABILIZATION OF THE VON KÁRMÁN SYSTEM
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Abstract. We consider a dynamical one-dimensional nonlinear von Kármán model for beams de-
pending on a parameter ε > 0 and study its asymptotic behavior for t large, as ε → 0. Introducing
appropriate damping mechanisms we show that the energy of solutions of the corresponding damped
models decay exponentially uniformly with respect to the parameter ε. In order for this to be true
the damping mechanism has to have the appropriate scale with respect to ε. In the limit as ε → 0 we
obtain damped Berger–Timoshenko beam models for which the energy tends to zero exponentially as
well. This is done both in the case of internal and boundary damping. We address the same problem
for plates with internal damping.
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1. Introduction

In this paper we investigate the decay properties of solutions for various models of damped beams and
plates. Recently, it was proved that the Berger–Timoshenko beam model may be derived as a singular limit of
the von Kármán beam model. This was done in [17, 18] in the conservative case and under various boundary
conditions. Here the same analysis is developed for the corresponding damped systems.

There is a large literature on the problem of uniform rates of decay of solutions of damped beam models.
This problem has been solved both in the case where the damping term is effective in the interior of the beam
or through the boundary conditions. In this direction we can mention, for instance, the work by Lagnese and
Leugering [11]. The works by Puel and Tucsnak [15,16] and the monograph by Lagnese [8] devoted to the initial
boundary value problem and the stabilization of plates are also worth mentioning.

Keywords and phrases. Uniform stabilization, singular limit, von Kármán system, beams, plates.
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It is then natural to raise the following question: Can one obtain the damped Berger–Timoshenko model as
a singular limit of the damped von Kármán beam model so that the decay rates remain uniform as the singular
parameter tends to zero?

To our knowledge, this problem has not been addressed in the literature and the existing developments do
not allow to give an immediate answer to it. Indeed, the analysis in [17, 18] allows to get the convergence of
solutions in bounded intervals of time. However, the decay properties we have in mind require the analysis of
convergence as time goes to infinity as well.

Let us recall that Berger–Timoshenko’s model describes the transversal vibrations of the beam while in
von Kármán’s system one also takes into account longitudinal deformations. Therefore, the problem we are
considering is very closely related to the design of efficient damping mechanisms that guarantee the uniform
decay of both, the longitudinal and transversal components, through the singular limiting process.

The problem we are analysing is only one example of a whole family of problems that arise in the context
of vibration modelling. The connections between the various available models for a given mechanical problem
may be often described precisely in mathematical terms by means of the analysis of the underlying singular
perturbation problem. At this respect, in addition to the works [17, 18] discussed above on the beam models,
we also refer to the monograph by Ciarlet [2] in which various plate models are derived as singular limits from
the equations of 3−d elasticity in thin domains, and to [3] and [22] for the asymptotic analysis of beam models.

In all these situations the problem we address makes sense: What are the damping mechanisms that guarantee
the uniform exponential decay through the singular limiting process? The problem might be easy to solve in the
context of parabolic equations or, more generally, when the underlying models have a strong enough intrinsic
dissipative nature. However, very often, as it is the case in the examples we address here, the models are of
conservative nature and the decay requires using appropriate damping mechanisms at the right scale. Obviously,
for practical purposes, it is desirable to achieve this uniform decay property with a minimal amount of damping
both in what concerns its support and its intensity. Moreover, in the context of coupled systems (as it is the
case in the problem we are addressing here where longitudinal and transversal vibrations are coupled), in order
to achieve the desired decay property, the damping mechanism has to be designed in an appropriate way in
order to capture all the components of the system. For all these reasons the right choice of damping terms is
far from being obvious and requires a careful analysis in each particular case.

The dependence of the decay rate on the amount of damping is also sensitive to the possible presence of
“overdamping” phenomena. Indeed, it is by now well known that, when one increases the amount of damping
beyond a critical limit, the decay rate may decrease, contradicting the first intuition. Therefore, the question
under consideration is even more subtle since, in a first approach, one could think that the problem would be
easily solved putting a large enough amount of damping on the systems under consideration. But, due to this
overdamping phenomena, this is far from reality.

In order to make more precise the problem we have in mind let us recall the essentials of [17, 18]. In these
works the following von Kármán system for the vibrations of a beam occupying the inverval (0, L) was considered




εvtt −
(

vx +
1
2

w2
x

)
x

= 0, 0 < x < L, t > 0

wtt + wxxxx − wxxtt −
(

wx

(
vx +

1
2

w2
x

))
x

= 0, 0 < x < L, t > 0
(1.1)

subject to various boundary conditions. In (1.1) w = w(x, t) represents the transversal deformation, v = v(x, t)
the longitudinal one and ε > 0 is a small parameter that is devoted to tend to zero. With appropriate boundary
conditions and given initial data in suitable spaces, model (1.1) admits a unique finite energy solution (vε, wε),
the energy being given by

Eε(t) =
1
2

∫ L

0

[
εv2

t +
[
vx +

1
2

w2
x

]2
+ w2

t + w2
xx + w2

xt

]
dx. (1.2)
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Moreover, this energy is constant in time. In [17,18] it was proved that, as ε → 0, and for appropriate boundary
conditions, the solution of (1.1) is such that wε converges (in an appropriate topology) towards the solution of
the Berger–Timoshenko model for the transversal vibrations of the beam:

wtt + wxxxx − wxxtt − 1
2L

(∫ L

0

w2
x dx

)
wxx = 0 (1.3)

in which the effect of the longitudinal component has been averaged to give rise to the integral nonlinearity
in (1.3).

It is however important to note that this limiting behaviour is very sensitive to the boundary conditions.
Indeed, as shown in [18], in some cases, the limit w obeys the linear beam equation

wtt + wxxxx − wxxtt = 0. (1.4)

There is a very natural damping term for the scalar beam models (1.3) and (1.4), namely wt − wxxt . Thus,
instead of (1.3, 1.4), we could consider the damped models

wtt + wxxxx − wxxtt − 1
2L

(∫ L

0

w2
x dx

)
wxx + wt − wxxt = 0 (1.5)

and

wtt + wxxxx − wxxtt + wt − wxxt = 0 (1.6)

respectively.
It is well known that, with suitable boundary conditions, the energy of solutions of (1.5) and (1.6) decays

exponentially to zero as t → ∞. Therefore, the following question is in order: What is the damping mechanism
in (1.1) so that when letting ε → 0 one recovers (1.5) or (1.6) and such that the energy of solutions of the
corresponding damped model decays exponentially uniformly (with respect to the parameter ε → 0) to zero?

Obviously, such a damping mechanism has also to damp the longitudinal component vε of the system (1.1).
It is then natural to consider systems of the form




εvtt −
(

vx +
1
2

w2
x

)
x

+ εαvt = 0, 0 < x < L, t > 0

wtt + wxxxx − wxxtt −
(

wx

(
vx +

1
2

w2
x

))
x

+ wt − wxxt = 0, 0 < x < L, t > 0
(1.7)

with α ≥ 0, in which the presence of the term εαvt in the first equation guarantees a certain amount of damping
on the longitudinal component.

In Section 3 we shall address problem (1.7) in detail. We will show that, by choosing 0 < α ≤ 1, the
uniform exponential decay of solutions is guaranteed. To do that we shall employ a classical method consisting
on introducing a suitable perturbation of the energy of the system for which one is able to obtain differential
inequalities leading to the exponential decay (see, for instance, [5] and [23]). In the limit case α = 0 we shall
see that the decay rate is uniform (with respect to ε → 0) for solutions with data in balls of the energy space.
Before doing this, in Section 2, we shall carefully analyze the “toy model”

εutt − uxx + εαut = 0, (1.8)

where explicit spectral computations may be developed. The necessity of choosing 0 ≤ α ≤ 1 appears then
naturally.
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But, as we said above, in practice, one is interested on using damping mechanisms that are localized some-
where in the interior of the beam or on its boundary. In particular, the boundary damping case has attracted a
lot of attention in the last decade. In [11] a damping mechanism for systems of the form (1.1) (with ε = 1) was
introduced and the exponential decay of solutions was proved. It is also by now well known that the solutions of
Berger–Timoshenko’s models (1.3) as well as the one for (1.4) with appropriate boundary damping mechanisms
decay exponentially. Therefore, it is also natural to investigate the behavior of the decay rate as ε → 0 in the
presence of boundary damping terms.

In Section 4 we prove that, by an appropriate scaling of the damping terms introduced in [11], one can prove
an uniform (as ε → 0) decay rate for the solutions of (1.1). However in this case, the limiting problem (as
ε → 0) turns out to be governed by the linear parts of equation (1.3).

In Section 5 we analyze the 2 − D case: The full nonlinear dynamic von Kármán systems with internal
damping. According to the analysis in [19] it is known that the Berger–Timoshenko plate model may be
obtained as a singular limit of the full von Kármán system. Here we obtain an uniform decay rate as ε → 0 as
in Section 3.

Finally, in Section 6 we discuss some related issues and formulate some open problems.

2. The linear wave equation

Let us consider the damped wave equation with homogeneous Dirichlet boundary conditions in the inter-
val (0, π):

{
εutt − uxx + εαut = 0, 0 < x < π, t > 0

u(0, t) = u(π, t) = 0, t > 0.
(2.1)

Here, ε > 0 is a small parameter, devoted to tend to zero.
Our goal is to analyze the values of α ≥ 0 for which the decay rate of the energy of solutions of (2.1), as

t → ∞, is uniform as ε → 0.
Let us recall that the energy in (2.1) is given by

Eε(t) =
1
2

∫ π

0

[
ε u2

t + u2
x

]
dx, (2.2)

with the energy dissipation law being

dEε

dt
(t) = −εα

∫ π

0

u2
t dx. (2.3)

Let us first compute the spectrum of (2.1). We set u = u(x, t) = eλt sin(kx). Then, u solves (2.1) if and only if
λ solves the quadratic equation

ελ2 + k2 + εαλ = 0, (2.4)

i.e.,

λ =
−εα ±√

ε2α − 4εk2

2ε
= −εα−1

2
± 1

2

√
ε2(α−1) − 4k2/ε. (2.5)

When ε2(α−1) ≤ 4k2/ε the real part of the eigenvalue λ in (2.5) is −εα−1/2. Thus, in order to obtain a uniform
(as ε → 0) decay rate it is natural to take α in the range

α ≤ 1. (2.6)
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When ε2(α−1) − 4k2/ε > 0 the eigenvalue in (2.5) with largest real part (and slowest decay) corresponds to the
+ sign. We then get

λ+ = −εα−1

2
+

1
2

√
ε2(α−1) − 4k2/ε =

−2k2/ε

εα−1 +
√

ε2(α−1) − 4k2/ε
≤ −k2

εα
≤ − 1

εα
,

which is in agreement with the uniform decay rate when

α ≥ 0. (2.7)

Consequently, it is natural to conjecture that the energy of solutions of (2.1) decays exponentially to zero
as t → ∞, uniformly as ε → 0, when 0 ≤ α ≤ 1. To show that this is actually the case we employ the
classical method of perturbing the energy Eε to obtain a differential inequality leading to the exponential decay
(see [5, 23]). This will be the main tool for analyzing the nonlinear beam models in the following sections.

We set

Fε(t) = ε

∫ π

0

u ut dx. (2.8)

Then

dFε

dt
=
∫ π

0

ε utt u dx + ε

∫ π

0

u2
t dx = −

∫ π

0

u2
x dx − εα

∫ π

0

u ut dx + ε

∫ π

0

u2
t dx. (2.9)

Given δ > 0 we introduce the perturbed energy:

Gε,δ(t) = Eε(t) + δFε(t). (2.10)

According to (2.3) and (2.9) we have

dGε,δ(t)
dt

= −δ

∫ π

0

u2
x dx − (εα − δε)

∫ π

0

u2
t dx − δεα

∫ π

0

u ut dx. (2.11)

Note that ∣∣∣∣δεα

∫ π

0

u ut dx

∣∣∣∣ ≤ δ

2

∫ π

0

u2 dx +
δε2α

2

∫ π

0

u2
t dx ≤ δ

2

∫ π

0

u2
x dx +

δε2α

2

∫ π

0

u2
t dx. (2.12)

The last estimate in (2.12) uses Poincaré’s inequality. Combining (2.11) and (2.12) we deduce that

dGε,δ(t)
dt

≤ − δ

2

∫ π

0

u2
x dx − (εα−1 − δ − δε2α−1/2

)
ε

∫ π

0

u2
t dx. (2.13)

Moreover

|Fε(t)| ≤
√

ε

[
1
2

∫ π

0

u2
x dx +

ε

2

∫ π

0

u2
t dx

]
=

√
εEε(t). (2.14)

Consequently

|Gε,δ(t) − Eε(t)| ≤ δ
√

ε Eε(t). (2.15)
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In view of (2.13), in order to guarantee the uniform (as ε → 0) exponential decay of the energy Eε it is sufficient
to choose δ = δ(ε) satisfying;

(a) δ
√

ε → ` < 1 as ε → 0, so that, in view of (2.15), Gε,δ(t) and Eε(t) are uniformly (as ε → 0) equivalent;
(b) δ ≥ c1 > 0 and 2(εα−1 − δ − δε2α−1/2) ≥ c2 > 0 then, according to (2.13), one will immediately obtain

dGε,δ

dt
≤ −min(c1, c2)Eε(t).

Let us first check (b). In order to have 2(εα−1 − δ − δε2α−1/2) ≥ c2 > 0 it is sufficient to choose δ ≤
min

(
εα−1

4 , ε−α

2

)
which, obviously, is compatible with the fact that δ ≥ c1 > 0 for all 0 ≤ α ≤ 1. At this respect

note that min
(

εα−1

4 , ε−α

2

)
is a constant as ε → 0 when α = 0, 1, while it tends to infinity when 0 < α < 1.

Obviously (a) is also compatible with the previous choice. Overall, it is sufficient to choose

δ ≤ min
[
εα−1

4
,
εα

2
,
ε−1/2

2

]

to guarantee the uniform exponential decay. This is in agreement with the spectral computations made above.
Summarizing, we have seen that, by choosing 0 ≤ α ≤ 1, the uniform (as ε → 0) exponential decay of

the solutions of the damped wave equation (2.1) is guaranteed. We have also shown how the classical method
of introducing suitable perturbations of the energy may be used to prove this result. This is of particular
importance in the context of nonlinear problems in which these results may not be obtained through the
analysis of the spectrum. Although our analysis has been done only for the one-dimensional case, the result
also holds in any dimension. We refer to [5, 7] and [23] for other developments in the context of the decay of
solutions of damped wave equations.

3. Beam models: internal damping

In this section we analyse the beam models discussed in the introduction with hinged boundary conditions
and in the presence of internal damping distributed all along the beam. This is the simplest case and the
analysis we need is close to the one of Section 2 on the linear wave equation but, this time, in order to obtain
a damped Berger–Timoshenko’s model as a singular limit when ε → 0, we assume that α > 0. For α = 0 a
different limit model is obtained (see Sect. 6).

Thus, for any ε > 0 and 0 < α ≤ 1 we consider




εvtt =
[
vx +

1
2

w2
x

]
x

− εαvt, 0 < x < L, t > 0

wtt + wxxxx − wxxtt =
[(

vx +
1
2

w2
x

)
wx

]
x

− wt + wxxt, 0 < x < L, t > 0

v(0, t) = v(L, t) = 0, t > 0

w(0, t) = w(L, t) = wxx(0, t) = wxx(L, t) = 0, t > 0

v(x, 0) = v0(x), vt(x, 0) = v1(x), 0 < x < L

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < L.

(3.1)

System (3.1) is well posed in the energy space

H = H1
0 (0, L) × L2(0, L) × [H2 ∩ H1

0 (0, L)] × H1
0 (0, L). (3.2)
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In other words, for any initial data (v0, v1, w0, w1) belonging to H there exists a unique finite energy solution

(v, vt, w, wt) ∈ C([0,∞); H). (3.3)

The energy of solutions of (3.1) decreases in time. Indeed, the energy is given by

Eε(t) =
1
2

∫ L

0

[
ε v2

t + w2
t + w2

xt + w2
xx +

(
vx +

1
2

w2
x

)2]
dx (3.4)

and obeys the energy dissipation law

dEε(t)
dt

= −
∫ L

0

[
εαv2

t + w2
t + w2

xt

]
dx. (3.5)

Then, for any (v0, v1, w0, w1) ∈ H fixed, the quantities (
√

ε vε
t , v

ε, wε
xx, wε

t ) are uniformly bounded in L∞(R+ ;
L2(0, L) × H1

0 (0, L) × L2(0, L) × H1
0 (0, L)). This uniform boundedness allows to perform the developments

in [17, 18].

3.1. Asymptotic limit as ε → 0

For the sake of completeness, we fix α > 0 and briefly recall the main steps of the proof of the convergence re-
sult in [17,18] for the model under consideration. Here, {vε, wε} denotes the solution-pair of system (3.1). Thus,
it turns out that, according to (3.5), the following sequences (in ε) remain bounded in L∞(0, +∞; L2(0, L)):

{√
ε vε

t

}
,

{
vε

x +
1
2

(wε
x)2
}

,
{
wε

t

}
,
{
wε

xt

}
,
{
wε

xx

} ·
Extracting subsequences (that we still denote by the index ε in order to simplify notations), we deduce that
there exist ξ(x, t), η(x, t) and w(x, t) such that

√
ε vε

t ⇀ ξ weakly * in L∞(0, +∞; L2(0, L)) (3.6)

vε
x +

1
2

(wε
x)2 ⇀ η weakly * in L∞(0, +∞; L2(0, L)) (3.7)

wε ⇀ w weakly * in L∞(0, +∞; H2(0, L)) ∩ W 1,∞(0, +∞; H1
0 (0, L)) (3.8)

as ε → 0.
Clearly, the weak convergence in (3.8) suffices to pass the limit in the linear terms of (3.1). It remains to

identify the weak limit of the nonlinear term[
wε

x

(
vε

x +
1
2

(wε
x)2
)]

x

as ε → 0. Since Eε(t) is bounded, then {wε}ε>0 is uniformly bounded in

L∞(0, +∞; H2 ∩ H1
0 (0, L)) ∩ W 1,∞(0,∞; H1

0 (0, L)).

Then we can use the Aubin-Lions compactness criteria (see e.g. [21]) to deduce that

wε → w strongly in L∞(0, T ; H2−δ(0, L)) (3.9)
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as ε → 0, for any δ > 0 and T < ∞. Combining (3.7) and (3.9), it follows that

wε
x

[
vε

x +
1
2

(wε
x)2
]

⇀ wxη weakly in L2((0, L) × (0, T )) (3.10)

as ε → 0 for any T < ∞. The next step is to identify the weak limit η in (3.7). Again, we use the boundedness
of Eε(t) to observe that {vε

x} is bounded in L2((0, L) × (0, T )). Consequently, we can extract a subsequence
such that

vε
x ⇀ ρ weakly in L2((0, L) × (0, T )) (3.11)

as ε → 0 for some ρ = ρ(x, t). From (3.9) and (3.11), we deduce that

vε
x +

1
2

(wε
x)2 ⇀ ρ +

1
2

w2
x weakly in L2((0, L) × (0, T )) (3.12)

which, together with (3.7), implies that

η = ρ +
1
2

w2
x . (3.13)

We claim that η is independent of x. In fact, since α > 0, due to (3.5) and Poincaré’s inequality we can bound
{vε} in L∞(0, T ; H1

0 (0, L)) to obtain that

εαvt ⇀ 0 weakly in H−1(0, T ; H1
0 (0, L)) (3.14)

as ε → 0. On the other hand, due to (3.6),

εvtt ⇀ 0 weakly in H−1(0, T ; L2(0, L)) (3.15)

as ε → 0. From the first equation in (3.1, 3.14, 3.15) and (3.12) it follows that

ηx =
[
ρ +

1
2

w2
x

]
x

= 0,

which proves our claim. Thus η = η(t). Integrating identity (3.13) from x = 0 to x = L, we get

η(t)L =
∫ L

0

ρ dx +
1
2

∫ L

0

w2
x dx =

1
2

∫ L

0

w2
x dx

because
∫ L

0 ρ dx = 0. Indeed,

∫ L

0

ρ dx = lim
ε→0

∫ L

0

vε
x dx = 0,

since vε(0, t) = vε(L, t) = 0 and (3.11) holds. Hence

ηwx =
(

1
2L

∫ L

0

w2
x dx

)
wx .
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Consequently,

[
wε

x

(
vε

x +
1
2

(wε
x)2
)]

x

⇀

(
1

2L

∫ L

0

w2
x dx

)
wxx weakly in L2(0, T ; H−1(0, L))

as ε → 0.
To conclude our result, it suffices to identify the initial data of the limit system: we know that wε(x, 0) =

w0(x), 0 < x < L and 0 < ε < 1. On the other hand, since wε → w in C([0, T ]; H2−δ(0, L)) as ε → 0, for any
δ > 0 and T < ∞, wε(x, 0) → w(x, 0), 0 < x < L. Combining these facts we get w(x, 0) = w0(x), 0 < x < L.
In order to prove that wt(x, 0) = w1(x) we proceed in a similar way, using that wε

t (x, 0) = w1(x), 0 < x < L
and 0 < ε < 1, and that wε

t → wt in C([0, T ]; L2(0, L)). To obtain this last convergence we use the Aubin-Lions
criteria (see [21]) since

{wε
t } is bounded in L∞(0, T ; H1

0 (0, L))

and

{wε
tt} is bounded in L∞(0, T ; L2(0, L))

for 0 < T < ∞. The last bound can be easily obtained using identity

wtt = −
(

I − d2

dx2

)−1(
wxxxx − wt − wxxt −

[(
vx +

1
2

w2
x

)
wx

]
x

)
,

together with the boundary conditions satisfied by wε and taking into acount that wε, wε
t and

(
vε

x + 1
2 (wε

x)2
)
wε

x

are bounded in L∞(0, T ; H2(0, L)), L∞(0, T ; H1(0, L)) and L∞(0, T ; H1(0, L)) respectively.
The above convergences hold along suitable subsequences. However, taking into account that the limit w has

been identified as the unique solution of

wtt − wxxtt + wxxxx −
(

1
2L

∫ L

0

w2
x dx

)
wxx + wt − wxxt = 0 in (0, L) × (0, +∞)

w(0, t) = w(L, t) = wxx(0, t) = wxx(L, t) = 0, t > 0

w(x, 0) = w0(x) , wt(x, 0) = w1(x), x ∈ (0, L)

(3.16)

we deduce that the whole family converges as ε → 0. The energy of the limit system (3.16) is given by

E(t) =
1
2

∫ L

0

[
w2

t + w2
xx + w2

xt

]
dx +

1
8L

[∫ L

0

w2
x dx

]2
, (3.17)

and it is dissipated according to the law

dE

dt
(t) = −

∫ L

0

[w2
t + w2

xt]dx. (3.18)

It is easy to see that both, for system (3.1) and (3.16), the energy decays exponentially as t → +∞. Our goal
here is to show that, actually, the decay rate is uniform (as ε → 0), provided 0 < α ≤ 1 and locally uniformly
for bounded data when α = 0. Although, as we said above, when α = 0 the limit system as ε → 0 is different.
This will be analized in Section 6.
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3.2. Uniform stabilization as ε → 0

The following result holds:

Theorem 3.1. Let {v, w} be the global solution of problem (3.1) with initial data in the space H. Assume that
0 ≤ α ≤ 1. Then, there exist positive constants c > 0, µ > 0, such that

Eε(t) ≤ cEε(0)e−
µ

1+εαEε(0) t, ∀ t > 0 (3.19)

for all 0 < ε < 1.

Remark. As a limit of (3.19) when ε → 0, we obtain the following decay rates for the limit system (3.16):
There exist positive constants c, µ > 0 such that

• If α = 0 : E(t) ≤ ce−
µ

1+E(0) t E(0), ∀ t > 0, (3.20)

• If α > 0 : E(t) ≤ ce−µt E(0), ∀ t > 0, (3.21)

for every solution with initial data in the energy space. Obviously (3.21) is better than (3.20) since it holds
uniformly on all solutions while (3.20) is only uniform on bounded sets of the energy space. However, as we
shall see in Section 6, when α = 0, the limit equation is not (3.16). Note also that, for ε > 0, the decay
estimate (3.19) is only uniform in bounded sets of initial data. However, when α > 0, as ε → 0, the dependence
on the data is weaker and, in the limit, we get the uniform decay property (3.21).

Proof of Theorem 3.1. In order to simplify notations we write w = wε and v = vε. We will prove the theorem
in three steps:

Step 1. Let us consider the functional

Fε(t) = ε

∫ L

0

vvt dx +
1
2

∫ L

0

[wwt + wxwxt] dx. (3.22)

Using the equations in (3.1) it follows that

dFε(t)
dt

= ε

∫ L

0

v2
t dx + ε

∫ L

0

vvtt dx +
1
2

∫ L

0

[w2
t + w2

xt]dx +
1
2

∫ L

0

[wwtt + wxwxtt]dx

= ε

∫ L

0

v2
t dx +

∫ L

0

v

[
vx +

1
2

w2
x

]
x

dx − εα

∫ L

0

vvt dx +
1
2

∫ L

0

[w2
t + w2

xt]dx

+
1
2

∫ L

0

w

[
− wxxxx +

[(
vx +

1
2

w2
x

)
wx

]
x

− wt + wxxt

]
dx

= ε

∫ L

0

v2
t dx −

∫ L

0

[
vx +

1
2

w2
x

]2
dx +

1
2

∫ L

0

[w2
t + w2

xt]dx

− 1
2

∫ L

0

w2
xx dx +

1
2

∫ L

0

w[wxxt − wt]dx − εα

∫ L

0

vvt dx. (3.23)

Moreover ∣∣∣∣∣
∫ L

0

wwt dx

∣∣∣∣∣ ≤ c

∫ L

0

[
η w2

xx +
1
η

w2
t

]
dx (3.24)
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for all η > 0, since ||wxx||L2(0,L) defines a norm in H2 ∩ H1
0 (0, L) which is equivalent to the one induced by

H2(0, L). On the other hand,∣∣∣∣∣
∫ L

0

wwxxt dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ L

0

wxwxt dx

∣∣∣∣∣ ≤ c

∫ L

0

[
η w2

xx +
1
η

w2
xt

]
dx (3.25)

and

εα

∣∣∣∣∣
∫ L

0

vvt dx

∣∣∣∣∣ ≤ εα

2η

∫ L

0

v2
t dx +

εαη

2

∫ L

0

v2 dx. (3.26)

Moreover,

∫ L

0

v2 dx ≤ c

∫ L

0

v2
x dx ≤ 2c

∫ L

0

[[
vx +

1
2

w2
x

]2
+ w4

x

]
dx

≤ c1

[ ∫ L

0

[
vx +

1
2

w2
x

]2
dx +

(∫ L

0

w2
xx dx

)2]

≤ c1

[ ∫ L

0

[
vx +

1
2

w2
x

]2
dx + Eε(0)

∫ L

0

w2
xx dx

]
(3.27)

for some positive constant c1 .

Step 2. Now, we set

Gε,δ(t) = Eε(t) + δFε(t) (3.28)

with δ > 0. Combining (3.5) and (3.23) up to (3.27) we obtain

dGε,δ(t)
dt

≤ −
(

εα−1 − δ − δεα−1

2η

)
ε

∫ L

0

v2
t dx −

(
1 − c1δ

η

)∫ L

0

[w2
t + w2

xt]dx

− δ(1 − c1ε
αη)

∫ L

0

[
vx +

1
2

w2
x

]2
dx − δ

2
(1 − c1η(1 + εαEε(0)))

∫ L

0

w2
xx dx. (3.29)

We now choose η of the order of

η =
λ

1 + εαEε(0)
(3.30)

with λ > 0 (small enough but independent of ε and Eε(0)) so that (3.29) reads as follows:

dGε,δ

dt
(t) ≤ −

(
εα−1 − δ − δ

2λ
(1 + εαEε(0))εα−1

)
ε

∫ L

0

v2
t dx

−
(

1 − c1δ

λ
(1 + εαEε(0))

)∫ L

0

[w2
t + w2

xt]dx

− δ

2

∫ L

0

[
vx +

1
2

w2
x

]2
dx − δ

2
(1 − c1λ)

∫ L

0

w2
xx dx (3.31)

(because η ≤ (c1ε
α)−1).
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Let us impose the following restrictions on δ:

c1

λ
δ(1 + εαEε(0)) ≤ 1

2
(3.32)

and

εα−1 − δ − 1
2λ

δ(1 + εαEε(0))εα−1 ≥ 1
2
· (3.33)

If these conditions hold, in view of (3.31), we deduce that

dGε,δ(t)
dt

≤ −min(1, δ)Eε(t). (3.34)

Conditions (3.32, 3.33) hold when

δ ≤ c min
[

1
1 + εαEε(0)

, εα−1

]
(3.35)

with c > 0 small enough, independent of 0 < ε < 1 and the solution. Observe that (3.34) holds automatically if

δ ≤ c

1 + εαEε(0)
(3.36)

with c > 0 small but independent of 0 < ε < 1 and the solution.

Step 3. To get the exponential decay of Eε using (3.34) we need to compare Eε and Gε,δ . To do that we
use (3.24, 3.25) and (3.27) to obtain

|Fε(t)| ≤ ε

2

∫ L

0

v2
t dx +

ε

2

∫ L

0

v2 dx + c

∫ L

0

(w2
t + w2

xt + w2
xx)dx

≤ c
[
Eε(t) + εE2

ε (t)
] ≤ c

[
1 + εEε(0)

]
Eε(t) (3.37)

with c > 0 independent of 0 < ε < 1 and the solution. Consequently

|Gε,δ(t) − Eε(t)| = δ|Fε(t)| ≤ cδ(1 + εEε(0))Eε(t). (3.38)

Then, with the choice of δ as above and taking, if needed, c > 0 smaller, we can guarantee that

|Gε,δ(t) − Eε(t)| ≤ 1
2

Eε(t) (3.39)

and therefore, in view of (3.34),

dGε,δ

dt
(t) ≤ −1

2
min(1, δ)Gε,δ(t). (3.40)

As a consequence of (3.40), (3.39) and the choice of δ in (3.36) we deduce the existence of positive constants
c̃ > 0 and µ > 0 such that

Eε(t) ≤ c̃Eε(0)e−
µt

1+εαE(0) , ∀ t > 0

for every solution of (3.1) and every 0 < ε < 1.
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3.3. Other boundary conditions

Theorem 3.1 remains valid when we consider model (3.1) with Neumann conditions on v and clamped ends
for w: {

vx(0, t) = vx(L, t) = 0, ∀ t > 0

w(0, t) = w(L, t) = wx(0, t) = wx(L, t) = 0, ∀ t > 0.
(3.41)

Thanks to (3.5) we obtain uniform bounds for the solution which allow us to pass to the limit as ε → 0 as in
the previous section. Again, the only difficulty to determine the weak limit is the identification of the limit of
the nonlinear term wε

x

(
vε

x + 1
2 (wε

x)2
)
. Proceeding as in the previous section it follows that

wε
x

(
vε

x +
1
2

(wε
x)2
)

⇀ wx

(
ρ +

1
2

w2
x

)

weakly in L2((0, L) × (0, T )) as ε → 0, and η = ρ + 1
2 w2

x is independent of x. It remains to identify the
value of η(t). We take the derivative in x in the first equation of (3.1) and multiply the result by a(x) =
1
4 L2 − (x − 1

2 L
)2. Integration (in space) from zero to L followed by integration by parts yields

ε
d2

dt2

∫ L

0

v2
x a(x)dx =

∫ L

0

[
vε

x +
1
2

(wε
x)2
]

xx

a(x)dx − εα d
dt

∫ L

0

v2
x a(x)dx

= −2
∫ L

0

[
vε

x +
1
2

(wε
x)2
]
dx − εα d

dt

∫ L

0

v2
x a(x)dx. (3.42)

Note that, when integrating by parts, no boundary terms appear since a = 0 at x = 0, L and also because of
the boundary conditions that vε and wε satisfy which guarantee us that vε

x + 1
2 (wε

x)2 = 0 at x = 0, L. Since
a ∈ L2(0, L), passing to the limit as ε → 0, we have

∫ L

0

vε
x a(x)dx ⇀

∫ L

0

ρ a(x)dx weakly in L2(0, T ).

On the other hand,

ε
d2

dt2

∫ L

0

vε
x a(x)dx ⇀ 0 and

d
dt

εα

∫ L

0

vε
x dx ⇀ 0

in D′(0, T ) as ε → 0. Finally, passing to the limit in identity (3.42) we deduce that

−2Lη(t) = 0.

Thus η ≡ 0. Consequently all the analysis of this section may be carried out under the boundary condition (3.41).
The uniform exponential decay of the energy holds when 0 < α ≤ 1. However, there is a difference with respect
to the previous case since the limit equation is now linear:


wtt + wxxxx − wxxtt + wt − wxxt = 0, 0 < x < L, t > 0

w(0, t) = w(L, t) = wx(0, t) = wx(L, t) = 0, t > 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < L.
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4. Boundary damping on the transversal and longitudinal components

In this section we will analyze the beam model in the case where the energy of the transversal deformation
as well as the longitudinal component v are dissipated by means of boundary damping mechanisms. We use
the same damping terms as in [11]:



ε vtt =
[
vx +

1
2

w2
x

]
x

, 0 < x < L, t > 0

wtt + wxxxx − wxxtt =
[(

vx +
1
2

w2
x

)
wx

]
x

, 0 < x < L, t > 0

v(0, t) = w(0, t) = wx(0, t) = 0, t > 0[
vx +

1
2

w2
x

]
(L, t) = −εαvt(L, t), t > 0

wxx(L, t) = −wxt(L, t), t > 0[
wxxx − wxtt −

(
vx +

1
2

w2
x

)
wx

]
(L, t) = wt(L, t), t > 0

v(x, 0) = v0(x), vt(x, 0) = v1(x), 0 < x < L

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < L.

(4.1)

The energy of this system is dissipated and, as we shall see, the analysis of the uniform (with respect to ε with
0 < ε < 1) exponential decay of the energy may be performed as in the previous sections. On the other hand,
proceeding as in [17, 18] and Section 3.2 we show that the limit of solutions of (4.1) as ε → 0 is the solution
of the linear Berger–Timoshenko beam model with boundary dissipation when α > 0. The limit model when
α = 0 is again of different nature and will be discussed in Section 6.

Let us now briefly recall the well-posedness of system (4.1).

4.1. Existence and uniqueness of solutions

We introduce the Hilbert space

H = V × L2(0, L) × W × V

where

V = {ϕ ∈ H1(0, L) : ϕ(0) = 0}, W = {ϕ ∈ H2(0, L) : ϕ(0) = ϕx(0) = 0} ·

The norm in H is given by

||(v, y, w, z)||2H = ||v||2H1(0,L) + ε||y||2 + ||wxx||2 + ||z||2H1(0,L)

for any (v, y, w, z) ∈ H . Here, || · || denotes the norm in L2(0, L).
In the sequel, we present some basic results obtained in [11] concerning existence and uniqueness of solutions

for system (4.1). Concerning strong solutions, the following holds:

Theorem 4.1 (Strong solutions). Let (v0, v1, w0, w1) ∈ [H2(0, L)∩V ]×V × [H3(0, L)∩W ]×W with v0,x(L)+
1
2 (w0,x(L))2 = −εαv1(L) and w0,xx(L) = w1,x(L). Then, there exists only one pair {v, w} satisfying

v ∈ L∞
loc(0, +∞; H2(0, L) ∩ V ), vt ∈ L∞

loc(0, +∞; V )

w ∈ L∞
loc(0, +∞; H3(0, L) ∩ W ), wt ∈ L∞

loc(0, +∞; W )
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and

ε vtt =
[
vx +

1
2

w2
x

]
x

, a.e. in (x, t) ∈ (0, L) × (0,∞) (4.2)

(wtt, φ)H1(0,L) + (wxtt, φx) − (wxxx, φx) + wt(L, t)φ(L) = −
([

vx +
1
2

w2
x

]
wx, φx

)
, ∀φ ∈ V

and the boundary conditions[
vx +

1
2

w2
x

]
(L, t) = −εαvt(L, t) and wxx(L, t) = −wxt(L, t), a.e., t > 0.

Observe that strong solutions, as above, are not quite classical solutions of the system (4.1). Indeed, the first
equation in (4.1), the boundary conditions in x = 0 and the first two boundary conditions in x = L are satisfied
in the classical sense, but the second equation and the last boundary condition in x = L are satisfied in a
weaker, variational sense.

Let us analyze weak, finite energy solutions of (4.1): As in [11], we shall say that t 7→ U(t) : [0,∞) → H is a
weak solution of (4.1) if there is a sequence Un(t) of strong solutions such that Un → U in C([0, T ]; H) for each
T > 0. In what concerns weak solutions, taking into account that the set

ϑ =




(v0, v1, w0, w1) ∈ [H2(0, L) ∩ V ] × V × [H3(0, L) ∩ W ] × W :

v0,x(L) +
1
2

(w0,x(L))2 = −εαv1(L) and w0,xx(L) = −w1,xx(L)




is dense in H in the strong topology, the following result was obtained:

Theorem 4.2 (Weak solutions). Let (v0, v1, w0, w1) ∈ H. Then, system (4.1) has a unique weak solution with

{v, vt} ∈ C
(
[0,∞); V × L2(0, L)

)
, {w, wt} ∈ C([0,∞); W × V ).

Moreover, the time derivative of Eε(t) associated to solutions of (4.1) satisfies

dEε

dt
(t) = −εαv2

t (L, t) − w2
t (L, t) − w2

xt(L, t).

As a consequence of the energy dissipation law above

Eε(t) ≤ Eε(0)

for all t ≥ 0. This implies that, for any ε > 0, ||(v, vt, w, wt)||H is bounded for t ≥ 0 since Eε(t) is equivalent to
||(v, vt, w, wt)||H for all ε > 0. Furthermore, it could be shown that weak solutions are in fact strong solutions
if the initial data have additional regularity and satisfy some compatibility conditions.

4.2. Asymptotic limit as ε → 0

According to Section 4.1, problem (4.1) has an unique finite-energy solution. Moreover, the energy is de-
creasing in time. This provides uniform bounds for the solutions {vε, wε} which allow us to pass to the limit as
ε → 0 as in Section 3.2. The only difficulty once again is to identify the weak limit of the nonlinear term. We
have that

wε
x

(
vε

x +
1
2

(wε
x)2
)

⇀ ηwx weakly in L2((0, L) × (0, T ))
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as ε → 0, where

η = ρ +
1
2

w2
x

and η = η(t). Multiplying the first equation in (4.1) by a(x) = x
L and integrating in space we obtain

ε
d2

dt2

∫ L

0

vεa(x)dx =
∫ L

0

[
vε

x +
1
2

(wε
x)2
]

x

a(x)dx

= −εαvε
t (L, t) − 1

L

∫ L

0

[
vε

x +
1
2

(wε
x)2
]
dx.

The left-hand side tends to zero in D′(0, T ) as ε → 0. On the other hand, the right-hand side converges to −η(t)
because the boundary term tends to zero as ε → 0. Indeed, thanks to the energy dissipation we have

εα

∫ T

0

|vε
t (L, t)|2 dt ≤ Eε(0)

for all T > 0, and therefore εα/2 vε
t (L, t) is bounded in L2(0, T ). Consequently, εα vε

t (L, t) → 0 in D′(0, T ) as
ε → 0 since α > 0. Thus, η = 0 and we deduce that the limit of wε satisfies:

w ∈ L∞([0, +∞; W ) ∩ W 1,∞([0, +∞); V )

and

−
∫ T

0

(wt, φt)dt −
∫ T

0

(wxt, φxt)dt +
∫ T

0

(wxx, φxx)dt −
∫ T

0

w(L, t)φt(L, t)dt −
∫ T

0

wx(L, t)φxt(L, t)dt = 0,

for all φ ∈ C([0, T ]; W ), such that φ(x, 0) = φ(x, T ) = φx(x, 0) = φ(x, T ) = 0. Furthermore arguing as in
Section 3.1 we have that

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < L.

Thus, w ∈ L∞([0, +∞; W ) ∩ W 1,∞([0, +∞); V ) is a weak solution of




wtt − wxxtt + wxxxx = 0 0 < x < L, t > 0

w(0, t) = wx(0, t) = 0, t > 0

wxx(L, t) = −wxt(L, t), t > 0

[wxxx − wxtt](L, t) = wt(L, t), t > 0

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < L.

(4.3)

System (4.3) is the generator of a semigroup of contractions in W × V that we denote by S(·). Then, when
{w0, w1} ∈ W ×V , (4.3) has an unique global weak solution S(t){w0, w1} ∈ C([0,∞); W )∩C1([0,∞); V ). Note
that the solution of (4.3) we have obtained in the limit is not, in principle, continuous in time with values
in W and C1 with values in V . Thus, in order to conclude that the weak solution obtained in the limit is the
semigroup solution we need a further argument.

The semigroup S may be extended to a semigroup of contractions T (t) in E = V × L2(0, L), where
T (t)|W×V = S(t). It is easy to see that the solution we have obtained in the limit coincides with the one the
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semigroup T provides. Indeed, using the equation in (4.3) and the regularity L∞([0, +∞; W )∩W 1,∞([0, +∞); V )
it is easy to see that w ∈ C([0, +∞; V )∩C1([0, +∞); L2(0, L)) and that w satisfies the weak formulation of (4.3)
corresponding to the solutions given by the semigroup T (·). Thus (w(t), wt(t)) = T (t)(w0, w1). Since, (w0, w1)
belongs to W×V and T is an extension of the original semigroup S(·) we deduce that (w(t), wt(t)) = S(t)(w0, w1)
and, as a consequence of that, the fact that w ∈ C([0,∞); W ) ∩ C1([0,∞); V ).

Note that the energy in (4.3) is given by

E(t) =
1
2

∫ L

0

[w2
t + w2

xt + w2
xx] dx

with the energy dissipation law being

dE

dt
(t) = −w2

t (L, t) − w2
xt(L, t).

There is a large literature on this model concerning existence, uniqueness and asymptotic behavior (see [9]
and the references therein). In particular, it is by now well known that the energy of solutions of (4.3) tends
exponentially uniformly to zero as t goes to infinity. Thus, it is natural to expect the energy of solutions of (4.1)
to tend exponentially to zero, uniformly with respect to the parameter ε.

4.3. Uniform stabilization as ε → 0

The following result holds:

Theorem 4.3. Let {v, w} be the global (weak) solution of system (4.1) obtained in Theorem 4.2. Assume that
0 ≤ α ≤ 1. Then, there exist positive constants c, µ > 0 such that

Eε(t) ≤ cE(0)e−
µ

1+εαE(0) t, a.e. t > 0 (4.4)

for all 0 < ε < 1.

We will prove (4.4) for strong solutions since, by density, the result then holds for all weak solutions.

Remark. As a consequence of (4.4), by letting ε → 0, we recover the exponential decay property of the solutions
of (4.3). This is in agreement with the results obtained in [9].

Proof of Theorem 4.3. As before, in order to simplify notations we will write w = wε, v = vε. Let δ > 0 and
consider the “perturbed” energy Gε,δ(t) given by

Gε,δ(t) = Eε(t) + δFε(t)

and show that Gε,δ enjoy the properties

c1 Gε,δ(t) ≤ Eε(t) ≤ c2 Gε,δ(t) (4.5)

and

dGε,δ(t)
dt

≤ −c3Eε(t) (4.6)

for some positive constants c1, c2 and c3 that will be computed explicitly below.
In this case Fε(t) is given by

Fε(t) =
∫ L

0

[
x(εvxvt + wxwt) + wxt(xwx)x − 5

8
(wwt + wxwxt) − ε

4
vvt

]
dx.
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The first step to prove (4.5) and (4.6) is to estimate the time derivative of Fε(t):

dFε

dt
(t) =

∫ L

0

x[εvxtvt + εvxvtt + wxtwt + wxwtt]dx

+
∫ L

0

[wxtt(xwx)x + wxt(xwxt)x]dx − 5
8

∫ L

0

[w2
t + wwtt]dx

− 5
8

∫ L

0

[w2
xt + wxwxtt]dx − ε

4

∫ L

0

[v2
t + vvtt]dx.

Integration by parts give us that

∫ L

0

wxtt(xwx)x dx − 5
8

∫ L

0

wxwxtt dx = wxtt(L, t)
[
Lwx(L, t) − 5

8
w(L, t)

]
−
∫ L

0

wxxtt

(
xwx − 5

8
w

)
dx. (4.7)

Now, we use the equations of system (4.1) and replace εvtt and wtt to obtain

dFε

dt
(t) =

∫ L

0

(
vx +

1
2

w2
x

)
x

(
xvx − 1

4
v

)
dx

+
∫ L

0

[
− wxxxx +

[
wx

(
vx +

1
2

w2
x

)]
x

](
xwx − 5

8
w

)
dx

+ ε

∫ L

0

xvxtvt dx +
∫ L

0

xwxtwt dx +
∫ L

0

wxt(xwxt)x dx

− 5
8

∫ L

0

[w2
t + w2

xt]dx − ε

4

∫ L

0

v2
t dx

+ wxtt(L, t)
[
Lwx(L, t) − 5

8
w(L, t)

]
. (4.8)

The following identities (4.9) up to (4.15) are devoted to estimate the integrals in (4.8):

∫ L

0

(
vx +

1
2

w2
x

)
x

(
xvx − 1

4
v

)
dx = −εαvt(L, t)

[
Lvx(L, t) − 1

4
v(L, t)

]

−
∫ L

0

(
vx +

1
2

w2
x

)(
xvxx +

3
4

vx

)
dx, (4.9)

∫ L

0

[(
vx +

1
2

w2
x

)
wx

]
x

(
xwx − 5

8
w

)
dx =

(
vx +

1
2

w2
x

)
(L, t)wx(L, t)

[
Lwx(L, t) − 5

8
w(L, t)

]

−
∫ L

0

(
vx +

1
2

w2
x

)
wx

(
xwxx +

3
8

wx

)
dx. (4.10)
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Adding (4.9) with (4.10) we obtain the identity

∫ L

0

(
vx +

1
2

w2
x

)
x

(
xvx − 1

4
v

)
dx +

∫ L

0

[(
vx +

1
2

w2
x

)
wx

]
x

(
xwx − 5

8
w

)
dx

= −3
4

∫ L

0

(
vx +

1
2

w2
x

)2

dx − 1
2

∫ L

0

x

[(
vx +

1
2

w2
x

)2]
x

dx

− εαvt(L, t)
[
Lvx(L, t) − 1

4
v(L, t)

]
+
(

vx +
1
2

w2
x

)
(L, t)wx(L, t)

[
Lwx(L, t) − 5

8
w(L, t)

]

≤ −1
4

∫ L

0

(
vx +

1
2

w2
x

)2

dx +
L

2
εαv2

t (L, t) − εαvt(L, t)
[
Lvx(L, t) − 1

4
v(L, t)

]

+
(

vx +
1
2

w2
x

)
(L, t)wx(L, t)

[
Lwx(L, t) − 5

8
w(L, t)

]
. (4.11)

We also have

−
∫ L

0

wxxxx

(
xwx − 5

8
w

)
dx = −wxxx(L, t)

[
Lwx − 5

8
w

]
(L, t) +

∫ L

0

wxxx

(
xwxx +

3
8

wx

)
dx

= −wxxx(L, t)
[
Lwx − 5

8
w

]
(L, t) +

L

2
w2

xx(L, t) +
3
8

wxx(L, t)wx(L, t)

− 7
8

∫ L

0

w2
xx dx. (4.12)

To conclude this step we compute three more terms in (4.8): First,

ε

∫ L

0

xvxtvt dx =
ε

2

∫ L

0

x
[
v2

t

]
x

dx =
ε

2
Lv2

t (L, t) − ε

2

∫ L

0

v2
t dx

≤ εα

2
Lv2

t (L, t) − ε

2

∫ L

0

v2
t dx (4.13)

since 0 < ε < 1 and 0 ≤ α ≤ 1. On the other hand,

∫ L

0

xwxtwt dx =
L

2
w2

t (L, t) − 1
2

∫ L

0

w2
t dx (4.14)

and

∫ L

0

wxt(xwxt)x dx =
L

2
w2

xt(L, t) +
1
2

∫ L

0

w2
xt dx. (4.15)
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Returning to (4.8) and using equalities (4.11) up to (4.15), we obtain

dFε

dt
(t) ≤ −1

4

∫ L

0

(
vx +

1
2

w2
x

)2

dx − 7
8

∫ L

0

w2
xx dx − 3ε

4

∫ L

0

v2
t dx

− 1
2

∫ L

0

w2
t dx +

1
2

∫ L

0

w2
xt dx − 5

8

∫ L

0

w2
t dx − 5

8

∫ L

0

w2
xt dx

−
(

wxxx − wxtt −
(

vx +
1
2

w2
x

)
wx

)
(L, t)

(
Lwx − 5

8
w

)
(L, t)

− εαvt(L, t)
[
Lvx(L, t) − 1

4
v(L, t)

]
+

L

2
w2

xx(L, t)

+
3
8

wxx(L, t)wx(L, t) +
Lεα

2
v2

t (L, t)

+
L

2
w2

t (L, t) +
L

2
w2

xt(L, t). (4.16)

In view of the boundary conditions in (4.1), the boundary terms can be estimated as follows:

∣∣∣∣−
(

wxxx − wxtt −
(

vx +
1
2

w2
x

)
wx

)
(L, t)

(
Lwx − 5

8
w

)
(L, t)

∣∣∣∣ = | − wt(L, t)|
∣∣∣∣
(

Lwx − 5
8

w

)
(L, t)

∣∣∣∣
≤ 1

η
|wt(L, t)|2 + ηc

∫ L

0

w2
xx dx, (4.17)

for all η > 0 where c is a positive constant. Moreover,

∣∣∣∣38 wxx(L, t)wx(L, t)
∣∣∣∣ = 3

8
| − wxt(L, t)| |wx(L, t)| ≤ c

η
|wxt(L, t)|2 + cη

∫ L

0

w2
xx dx (4.18)

for all η > 0. Finally, we have:

εαvt(L, t)
[
Lvx(L, t) − 1

4
v(L, t)

]
≤ εαL|vt(L, t)vx(L, t)| + εα

4
|vt(L, t)v(L, t)|

≤ εαc

[
2
η

v2
t (L, t) + ηv2

x(L, t) + η

∫ L

0

v2
x dx

]
(4.19)

for some positive constant c.
To bound the term v2

x(L, t) we proceed as follows:

|vx(L, t)w2
x(L, t)| ≤ 1

2
v2

x(L, t) +
1
2

w4
x(L, t);

consequently

(
vx(L, t) +

1
2

w2
x(L, t)

)2

≥ 1
2

v2
x(L, t) − 1

4
w4

x(L, t).
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This inequality, combined with the boundary conditions at x = L in (4.1), gives us that

v2
x(L, t) ≤ 2

(
vx(L, t) +

1
2

w2
x(L, t)

)2

+
1
4

w4
x(L, t)

≤ 2ε2α v2
t (L, t) + cEε(0))

∫ L

0

w2
xx dx

≤ 2εα v2
t (L, t) + cEε(0)

∫ L

0

w2
xx dx (4.20)

because 0 < ε < 1 and α > 0. Now, to bound the term
∫ L

0
v2

x dx in (4.19) we can proceed as before, to obtain

∫ L

0

v2
x dx ≤ 2

∫ L

0

[(
vx +

1
2

w2
x

)2

+
1
4

w4
x

]
dx

≤ 2
∫ L

0

(
vx +

1
2

w2
x

)2

dx + c

(∫ L

0

w2
xx dx

)2

≤ 2
∫ L

0

(
vx +

1
2

w2
x

)2

dx + cEε(0)
∫ L

0

w2
xx dx (4.21)

where c is a positive constant. Returning to (4.19), from (4.20) and (4.21) it follows that

εα vt(L, t)
[
Lvx(L, t) − 1

4
v(L, t)

]
≤ 2cεα

[(
1
η

+ ηεα

)
v2

t (L, t) + η

∫ L

0

(
vx +

1
2

w2
x

)2

dx + ηEε(0)
∫ L

0

w2
xx dx

]
.

(4.22)

Thus, returning to (4.16) and combining all the estimates above (4.17–4.22) we have

dFε(t)
dt

≤ −3ε

4

∫ L

0

v2
t dx − 9

8

∫ L

0

w2
t dx − 1

8

∫ L

0

w2
xt dx

−
[
7
8
− ηc(1 + εαEε(0))

] ∫ L

0

w2
xx dx

−
[
1
4
− εαcη

] ∫ L

0

(
vx +

1
2

w2
x

)2

dx +
[
L

2
+

1
η

]
w2

t (L, t)

+
[
L +

c

η

]
w2

xt(L, t) +
[
1
η

+ ηεα

]
cεα v2

t (L, t). (4.23)

We may now estimate the time-derivative of Gε,δ defined in (4.5). First we recall that

dEε

dt
(t) = −εα v2

t (L, t) − w2
xt(L, t) − w2

t (L, t).
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Then, using (4.23) we obtain

dGε,δ(t)
dt

≤ −3εδ

4

∫ L

0

v2
t dx − 9δ

8

∫ L

0

w2
t dx − δ

8

∫ L

0

w2
xt dx

− δ

[
7
8
− ηc(1 + εαEε(0))

] ∫ L

0

w2
xx dx

− δ

[
1
4
− εαcη

] ∫ L

0

(
vx +

1
2

w2
x

)2

dx −
[
1 − δc

(
L

2
+

1
η

)]
w2

t (L, t)

−
[
1 − δ

(
L +

c

η

)]
w2

xt(L, t) −
[
εα − εαδc

(
1
η

+ ηεα

)]
v2

t (L, t) (4.24)

for some positive constant c. Now, we choose η of the order of

η =
λ

1 + εαE(0)
(4.25)

with λ > 0 (small enough but independent of ε and Eε(0)) so that (4.24) reads as follows:

dGε,δ(t)
dt

≤ −3εδ

4

∫ L

0

v2
t dx +

9δ

8

∫ L

0

w2
t dx − δ

8

∫ L

0

w2
xt dx − δ

2

∫ L

0

w2
xx dx

− δ

2

∫ L

0

(
vx +

1
2

w2
x

)2

dx −
[
1 − δc

(
L

2
+

1
η

)]
w2

t (L, t)

−
[
1 − δ

(
L +

c

η

)]
w2

xt(L, t) −
[
εα − εαδc

(
1
η

+ ηεα

)]
v2

t (L, t). (4.26)

We also choose δ > 0 such that

1 − δc

(
L

2
+

(1 + εαEε(0))
λ

)
≥ 0, 1 − δ

[
L +

c(1 + εαEε(0))
λ

]
≥ 0,

and εα − εαδc

(
1 + εαEε(0)

λ
+

εαλ

1 + εαEε(0)

)
≥ 0. (4.27)

If these conditions hold, in view of (4.26), we deduce that

dGε,δ

dt
(t) ≤ − δ

4
Eε(t). (4.28)

Observe that (4.27) holds if

δ ≤ c

1 + εαEε(0)
(4.29)

with c > 0 independent of 0 < ε < 1 and the solution. Moreover, proceeding as in (3.37) we have

|Fε(t)| ≤ c
[
Eε(t) + εEε(t)2

] ≤ c[1 + εEε(0)]Eε(t)

where c is independent of 0 < ε < 1. Consequently,

|Gε,δ(t) − Eε(t)| = δ|Fε(t)| ≤ cδ[1 + εEε(0)]Eε(t),
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and, for c sufficiently small,

|Gε,δ(t) − Eε(t)| ≤ 1
2

Eε(t). (4.30)

Thus, taking (4.28) and (4.30) into account we obtain

Eε(t) ≤ c̃Eε(0)e−
µ

1+εαEε(0) t

and µ and c̃ are positive constants independent of 0 < ε < 1 and the solution.

5. Plate models: internal damping

Similar problems arise for vibrating plates in two space dimensions. In this section, we consider the full
dynamic von Kármán system for a 2−D plate with internal damping. Let Ω be a bounded domain of R

2 with
smooth boundary. Let us consider the deflections of a 2 − D plate occupying the domain Ω. We denote by
U = (u, v) the in-plane displacement of the plate where both u and v depend on the space variables (x, y) ∈ Ω
and time t > 0. We represent by w = w(x, y, t) the vertical displacement of the plate. The full von Kármán
dynamical model for large deflections of the plate, with internal damping and perturbed by a parameter ε > 0,
reads as follows (see [8] and the references therein):

εUtt = Div (Cε[e(U) + f(∇w)]) − εαUt in Ω × (0,∞), (5.1)

wtt + ∆2w − ∆wtt = div(Cε[e(U) + f(∇w)]∇w) − wt + ∆wt in Ω × (0,∞). (5.2)

In (5.1), Cε denotes the fourth order tensor defined by

Cε[e] =
E

d(1 − µ2)
[µ(Tr e)I + ε(1 − µ)e] (5.3)

for any e in S, the space of 2 × 2 symmetric matrices, where I is the identity matrix and (Tr e) denotes the
trace of e. Moreover, d > 0 is the density of the plate, E > 0 denotes the Young modulus and 0 < µ < 1 the
Poisson’s ratio. In (5.1), Div denotes the vector valued divergence of a matrix and div stands for the scalar
divergence of a vector field.

On the other hand, e[U ] = 1
2 (∇U + (∇U)T ) and the nonlinearity f : R

2 → S in (5.1, 5.2) is defined as
f(ξ) = 1

2 ξ ⊗ ξ for all ξ ∈ R
2. We complement system (5.1, 5.2) with Dirichlet boundary conditions

U = 0, w =
∂w

∂η
= 0 on ∂Ω × (0,∞) (5.4)

and initial conditons


U(x, y, 0) = (u(x, y, 0), v(x, y, 0)) = (u0(x, y), v0(x, y)) in Ω,

Ut(x, y, 0) = (ut(x, y, 0), vt(x, y, 0)) = (u1(x, y), v1(x, y)) in Ω,

w(x, y, 0) = w0(x, y), wt(x, y, 0) = w1(x, y) in Ω.

We want to analyse the solution {U = Uε, w = wε} of (5.1–5.5) as ε → 0 and t → +∞.
In (5.4) ∂/∂η denotes the normal derivative, η being the unit outward normal to Ω.
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The total energy associated with the above system is given by

Eε(t) =
1
2

∫
Ω

{
ε(uε

t )
2 + ε(vε

t )
2 + (wε

t )
2 + |∇wε

t |2 + |∆wε|2}dA

+
1
2
(Cε(e[Uε] + f(∇wε)), e[Uε] + f(∇wε)), (5.6)

where Uε = (uε, vε). The last term on the right hand side of (5.6) has to be interpreted as the inner product
in (L2(Ω))4. Direct calculations using the definitions given above show that

e[Uε] + f(∇wε) =
[
bε
ij

]
,

where

bε
11 = uε

x +
1
2
|wε

x|2 ; bε
22 = vε

y +
1
2
|wε

y|2 ; bε
12 = bε

21 =
1
2

(uε
y + vε

x + wε
xwε

y)

and

Cε

([
bij

])
= γ

{
µ

[
bε
11 + bε

22 0
0 bε

11 + bε
22

]
+ ε(1 − µ)

[
bε
11 bε

12

bε
21 bε

22

]}
·

Consequently

(
Cε

([
bε
ij

])
,
[
bε
ij

])
(L2(Ω))4

= γµ

∥∥∥∥uε
x + vε

y +
1
2
|∇wε|2

∥∥∥∥
2

L2(Ω)

+ εγ(1 − µ)
[
||bε

11||2L2(Ω) + ||bε
22||2L2(Ω) +

1
2
||vε

x + uε
y + wε

xwε
y||2L2(Ω)

]
> 0 (5.7)

since γ > 0 and 0 < µ < 1, which shows that Cε is positive definite.
We deduce from the above discussion that, when we are dealing with smooth solutions, the total energy Eε(t)

given by (5.6) is positive definite and decreasing according to the law

dEε

dt
(t) = −εα||Uε

t ||2(L2(Ω))2 − ||wε
t ||2L2(Ω) − ||∇wε

t ||2L2(Ω). (5.8)

Consequently

Eε(t) ≤ Eε(0), a.e. t ≥ 0.

The so-called damped Berger–Timoshenko’s model is much simpler (see [1] and [4]). It consists on a single
scalar equation for the vertical displacement w. Namely

wtt + ∆2w − ∆wtt − c

(∫
Ω

|∇w|2 dA

)
∆w − wt + ∆wt = 0 (5.9)

where c is a positive constant.
The corresponding boundary and initial conditions are now

w =
∂w

∂η
= 0 on ∂Ω × (0,∞) (5.10)
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and

w(x, y, 0) = w0(x, y), wt(x, y, 0) = w1(x, y) in Ω. (5.11)

The energy associated to (5.9–5.11) is given by

E(t) =
1
2

∫
Ω

(
w2

t + |∇wt|2 + |∆w|2)dA +
c

4

(∫
Ω

|∇w|2 dA

)2

and the energy dissipation law is then

dE

dt
(t) = −

∫
Ω

w2
t dA −

∫
Ω

|∇wt|2 dA.

Existence and uniqueness of solutions for (5.9–5.11) is by now well known and can be obtained by classical
methods. It turns out that for any (w0, w1) belonging to H2

0 (Ω)×H1
0 (Ω) system (5.9–5.11) has a unique global

solution w in the class C([0,∞); H2
0 (Ω))∩C1([0,∞); H1

0 (Ω)). Existence of finite energy solutions of the full von
Kármán system (5.1–5.5) is also well known. In [10] (see also [20]) it was proved that for the conservative case,
finite energy solutions are unique. In the context our damped system given (U0, U1) ∈ (H1

0 (Ω))2× (L2(Ω))2 and
(w0, w1) ∈ H2

0 (Ω) × H1
0 (Ω) system (5.1, 5.2, 5.4, 5.5) admits a unique finite energy solution in the class

{
Uε ∈ L∞(0,∞; (H2

0 (Ω))2) ∩ W 1,∞(0,∞; (L2(Ω))2).

wε ∈ L∞(0,∞; H2
0 (Ω)) ∩ W 1,∞(0,∞; H1

0 (Ω)).
(5.12)

The same proof of uniqueness applies in the present case. Solutions of both the full von Kármán system and
Berger–Timoshenko’s equation being unique there is no ambiguity in analyzing the proximity of solutions of
both models as ε → 0. In the engineering literature, there is a formal procedure named Berger’s approximation
where such proximity is claimed (see, for instance [13], Sect. 7, 6.1). The mathematical justification of this
limit in the conservative case was proved in [18]. The same argument allows to pass to the limit in the present
dissipative case.

For Berger–Timoshenko and von Kármán’s models considered here, the energy decays exponentially as t →
+∞. Our goal here is to show that, actually, the decay rate is uniform (as ε → 0), provided 0 < α ≤ 1 and
locally uniform for bounded data when α = 0. Note however that when α = 0, once again, the limit is of
different nature.

5.1. Uniform stabillization as ε → 0

The following result holds

Theorem 5.1. Let {U, w} be the global solution of (5.1–5.5) as in (5.12). Assume that 0 ≤ α ≤ 1. Then, there
exist positive constans c > 0, µ > 0, such that

Eε(t) ≤ cEε(0)e−
µ

1+εαEε(0) t, a.e. t > 0 (5.13)

for all 0 < ε < 1.

We will prove (5.13) for strong solutions since, by density, and the lower semicontinuity of the energy functional,
the result then holds for all weak solutions.
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Proof. We will prove the result in three steps:

Step 1. Let us consider the functional

Fε(t) = ε

∫
Ω

Uε · Uε
t dA +

1
2

∫
Ω

[wεwε
t + ∇wε · ∇wε

t ]dA.

Using the equations (5.1, 5.2) and taking into account that we are dealing with regular solutions we obtain that

dFε

dt
(t) = ε

∫
Ω

|Uε
t |2 dA + ε

∫
Ω

Uε · Uε
tt dA +

1
2

∫
Ω

[(wε
t )

2 + |∇wε
t |2]dA

+
1
2

∫
Ω

[wεwε
tt + ∇wε · ∇wε

tt]dA

= ε

∫
Ω

|Uε
t |2 dA +

∫
Ω

Uε · [Div(Cε[e(Uε) + f(∇wε)])]dA

− εα

∫
Ω

Uε · Uε
t dA +

1
2

∫
Ω

[(wε
t )

2 + |∇wε
t |2]dA

+
1
2

∫
Ω

wε[−∆2wε + div(Cε(e(Uε) + f(∇wε))∇wε) − wε
t + ∆wε

t ]dA. (5.14)

Integration by parts and using the explicit expression of Cε[e(Uε) + f(∇wε)] implies that

∫
Ω

Uε · Div[Cε(e(Uε) + f(∇wε))]dA +
1
2

∫
Ω

wε div((Cε(e(Uε) + f(∇wε))∇wε)dA =

− (Cε(e(Uε) + f(∇wε)), e(Uε) + f(∇wε))(L2(Ω))4 . (5.15)

Observe that the right hand side of (5.15) was explcitly calculated in (5.7). In order to get an estimate for the
right hand side of (5.14) we use bounds for

∫
Ω

wεwε
t dA,

∫
Ω

wε∆wε
t dA and

∫
Ω

Uε · Uε
t dA as follows: For any

η > 0 we have that ∣∣∣∣
∫

Ω

wεwε
t dA

∣∣∣∣ ≤ c

∫
Ω

[
η|∆wε|2 dA +

1
η

(wε
t )

2

]
dA (5.16)∣∣∣∣

∫
Ω

wε∆wε
t dA

∣∣∣∣ ≤ c

∫
Ω

[
η|∆wε|2 +

1
η
|∇wε

t |2
]
dA (5.17)

and

εα

∣∣∣∣
∫

Ω

Uε · Uε
t dA

∣∣∣∣ ≤ εα

2η

∫
Ω

[
(uε

t )
2 + (vε

t )2
]
dA +

εαη

2

∫
Ω

[
(uε)2 + (vε)2

]
dA (5.18)

for some positive constant c. Next, we use Korn’s inequality (see [6]) to obtain∫
Ω

[(uε)2 + (vε)2] dA ≤ c1

∫
Ω

[(
uε

x

)2 +
(
vε

y

)2 +
(
vε

x + uε
y

)2]dA

≤ c2

{||bε
11||2L2(Ω) + ||bε

22||2L2(Ω) + ||bε
12||2L2(Ω) +

∫
Ω

|∇wε|2 dA
}

≤ c2

{||bε
11||2L2(Ω) + ||bε

22||2L2(Ω) + ||bε
12||2L2(Ω) + Eε(0)

∫
Ω

|∆wε|2 dA
}

(5.19)

for some positive constant c2 .
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Combining (5.15–5.19) with (5.14) we obtain the estimate

dFε

dt
≤
(

1 +
εα−1

2η

)
ε

∫
Ω

[(
uε

t

)2 +
(
vε

t

)2]dA

+
(

1
2

+
c

η

)∫
Ω

[(
wε

t

)2 + |∇wε
t |2
]
dA

− 1
2
(
1 − cη

[
4 + εα Eε(0)

]) ∫
Ω

|∆wε|2 dA

−
(

γ(1 − µ) − εα−1ηc

2

)
ε
[||bε

11||2L2 + ||bε
22||2L2 + ||bε

12||2L2

]

− γµ

∫
Ω

(
uε

x + vε
y +

1
2
|∇w|2

)2

dA. (5.20)

Step 2. Now, we set

Gε,δ(t) = Eε(t) + δ Fε(t)

where δ > 0, Eε(t) is as in (5.6) and Fε(t) as above. Using (5.8) and (5.20) we deduce that

dGε,δ(t)
dt

≤ −
[
εα−1 − δ − δεα−1

2η

]
ε

∫
Ω

[(
uε

t

)2 +
(
vε

t

)2]dA

− δ

2
[
1 − cη(4 + εα Eε(0))

] ∫
Ω

|∆wε|2 dA

−
[
1 − δ

(
1
2

+
c

η

)]∫
Ω

[
(wε

t )
2 + |∇wε

t |2
]
dA

− δγµ

∫
Ω

(
uε

x + vε
y +

1
2
|∇wε|2

)2

dA

− δε

[
γ(1 − µ) − εα−1

2
ηc

]{
||bε

11||2L2 + ||bε
22||2L2 + ||bε

12||2L2

}
· (5.21)

Now we choose η of the order

η =
λ

1 + εα Eε(0)

with λ > 0 sufficiently small but independent of ε and Eε(0). From (5.21) then follows

dGε,δ

dt
(t) ≤ −

[
εα−1 − δ − δ

2λ
εα−1(1 + εα Eε(0))

] ∫
Ω

[(
uε

t

)2 +
(
vε

t

)2]dA

− δ

4

∫
Ω

|∆wε|2 dA −
[
1 − δ

(
1
2

+
c

λ
(1 + εα Eε(0))

)]∫
Ω

[(
wε

t

)2 + |∇wε
t |2
]
dA

− δ

2
(
Cε(e(Uε) + f(∇wε)), e(Uε) + f(∇wε)

)
[L2(Ω)]4

. (5.22)



684 G.P. MENZALA ET AL.

We now impose the following restrictions on δ:

δ

(
1
2

+
c

λ
(1 + εα Eε(0))

)
< 1 (5.23)

εα−1 − δ − δ

2λ
εα−1(1 + εα Eε(0)) ≥ 1

2
· (5.24)

If these conditions hold, in view of (5.22), we deduce that

dGε,δ(t)
dt

≤ −min{1, δ}Eε(t). (5.25)

Conditions (5.23) and (5.24) hold if we take δ > 0 such that

δ ≤ c min
{
(1 + εα Eε(0))−1, εα−1

}
with c > 0 small enough but independent of 0 < ε < 1 and Eε(0).

Step 3. To conclude the proof we need to compare Eε and Gε,δ.

Using (5.16, 5.17) and (5.19) we deduce that

|Fε(t)| ≤ ε

2

∫
Ω

[(uε
t )

2 + (vε
t )

2]dA +
ε

2

∫
Ω

[(uε)2 + (vε)2]dA + c

∫
Ω

[|∇wε
t |2 + |∆wε|2]dA

≤ C[Eε(t) + εEε(0)Eε(t)] = C[1 + εEε(0)]Eε(t) (5.26)

with c > 0 independent of ε (0 < ε < 1) and the solution. Consequently,

|Gε,δ(t) − Eε(t)| = δ|Fε(t)| ≤ cδ(1 + εEε(0))Eε(t). (5.27)

Choosing δ > 0 as above and c > 0 smaller (if needed) we can guarantee that

|Gε,δ(t) − Eε(t)| ≤ 1
2

Eε(t). (5.28)

Thus, in view of (5.25), it follows that

dGε,δ

dt
(t) ≤ −1

2
min(1, δ)Gε,δ(t). (5.29)

As a consequence of (5.28) and (5.29) we deduce the existence of positive constants c̃ > 0 and µ̃ > 0 such that

Eε(t) ≤ c̃Eε(0)e−
µ̃

1+εαE(0) t, a.e. t > 0

for every weak solution of (5.1, 5.2, 5.4, 5.5) and every 0 < ε < 1.

6. Further comments and open problems

The methods developed in this paper allow us to address other situations. In this section we briefly discuss
some of them. We analyse first the case where α = 0 for beams with internal and boundary damping, and for
plates with internal damping. We finally mention some open problems on the subject.
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6.1. Asymptotic limit as ε → 0 when α = 0: Internal damping

For any ε > 0 we consider




εvtt =
[
vx +

1
2

w2
x

]
x

− vt ,

wtt + wxxxx − wxxtt =
[(

vx +
1
2

w2
x

)
wx

]
x

− wt + wxxt

(6.1)

in 0 < x < L, t > 0 with boundary and initial conditions




v(0, t) = v(L, t) = 0,

w(0, t) = w(L, t) = wxx(0, t) = wxx(L, t) = 0, t > 0

v(x, 0) = v0(x), vt(x, 0) = v1(x), 0 < x < L

w(x, 0) = w0(x), wt(x, 0) = w1(x).

(6.2)

This corresponds to system (3.1) with α = 0.
The energy Eε(t) is given by

Eε(t) =
1
2

∫ L

0

{
εv2

t + w2
t + w2

xt + w2
xx +

(
vx +

1
2

w2
x

)2}
dx

and satisfies the law

dEε(t)
dt

= −
∫ L

0

(v2
t + w2

t + w2
xt)dx ≤ 0. (6.3)

Let H be as in (3.2). We analyse the asymptotic limit of this system as ε tends to zero.
Due to (6.3), we know that the following sequences (in ε) remain bounded in L∞(0, +∞; L2(0, L)):

{√
ε vε

t

}
,

{
vε

x +
1
2

(wε
x)2
}

,
{
wε

t

}
,
{
wε

xt

}
,
{
wε

xx

} ·
We proceed as in Section 3.1: We extract subsequences as in (3.6–3.8). We denote by z (resp. w) the weak
limit of vε (resp. wε).

We use Aubin-Lions’ compactness criteria (see [21]) to deduce that

wε → w strongly in L∞(0, T ; H2−δ (0, L)) (6.4)

as ε → 0, for any δ > 0 and T < +∞. Thus, we obtain that

wε
x

(
vε

x +
1
2

(wε
x)2
)

⇀ wx η weakly in L2((0, L) × (0, T ))

as ε → 0, where η is the weak limit in L2((0, L) × (0, T )) of vε
x + 1

2 (wε
x)2.

We have

η = vx +
1
2

(wx)2. (6.5)
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We also have

ε vε
tt ⇀ 0 weakly in H−1(0, T ; L2(0, L)) (6.6)

as ε → 0.
Thus, from the first equation in (6.1, 6.5) and (6.6) it follows that

zt =
[
zx +

1
2

w2
x

]
x

.

Thus, the limit

(z, w) ∈ L∞(0,∞; H1
0 (0, L)) × [L∞(0,∞; H2 ∩ H1

0 (0, L)) ∩ W 1,∞(0,∞; L2(0, L))
]

is a weak solution of 


zt =
[
zx +

1
2

w2
x

]
x

wtt + wxxxx − wxxtt =
[(

zx +
1
2

w2
x

)
wx

]
x

− wt + wxxt

(6.4)

in 0 < x < L, t > 0 with boundary and initial conditions


z(0, t) = z(L, t) = 0

w(0, t) = w(L, t) = wxx(0, t) = wxx(L, t) = 0

z(x, 0) = v0(x), 0 < x < L

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < L.

(6.5)

Note that, in the limit process, we keep the initial data v0 for z but not for its velocity zt.
System (6.4, 6.5) is the coupling between a parabolic equation and a fourth order hyperbolic equation. In

this sense it is similar to a system of thermoelasticity.
The total energy associated with problem (6.4, 6.5) is given by

E(t) =
1
2

∫ L

0

{
w2

t + w2
xt + w2

xx +
(

zx +
1
2

w2
x

)2}
dx

and satisfies

dE(t)
dt

= −
∫ L

0

{z2
t + w2

t + w2
xt}dx.

Problem (6.4, 6.5) is well-posed in the space

Y =
[
H2 ∩ H1

0 (0, L)
]× H1

0 (0, L) × H1
0 (0, L)

whenever the initial data (w0, w1, v0) ∈ Y .
According to Theorem 3.1 and passing to the limit as ε → 0, the following exponential decay rate is obtained

for the solutions of (6.4, 6.5):

E(t) ≤ c E(0)e−
µ

1+E(0) t

for all t > 0 where c and µ are positive constants.
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6.2. Asymptotic limit as ε → 0 when α = 0: Boundary damping

Let us now consider problem (4.1) with α = 0.
Following the discussion in Section 4.2, to pass to the limit as ε tends to zero, we have to identify the weak

limit of the nonlinear term
{
wε

x

(
vε

x + 1
2 (wε

x)2
)}

. We know that

wε
x

(
vε

x +
1
2

(wε
x)2
)

⇀ ηwx weakly in L2((0, L) × (0, T ))

as ε → 0 and

η = vx +
1
2

w2
x

where wε → w strongly in L∞(0, T ; H2−δ(0, L)) and vε ⇀ v weakly in L2(0, T ; H1(0, L)) as ε → 0.
Let a(x) = x

L , 0 ≤ x ≤ L. Multiply the first equation in (4.1) by a(x) and integrate in space to obtain,
after integration by parts and using the boundary conditions,

ε
d2

dt2

∫ L

0

vεa(x)dx =
∫ L

0

(
vε

x +
1
2

(wε
x)2
)

x

a(x)dx

= −vε
t (L, t) − 1

L

∫ L

0

(vε
x +

1
2

(wε
x)2)dx

= −vε
t (L, t) − 1

L
vε(L, t) − 1

2L

∫ L

0

(wε
x)2 dx. (6.6)

Due to the energy dissipation (see Th. 4.2) we know that {vε
t (L, t)} is bounded in L2(0, +∞). Therefore we

can extract a subsequence of vε(L, t) which converges weakly in H1
loc(0,∞) to some function ξ = ξ(t) as ε → 0.

Then ξ satisfies the ODE

ξt +
1
L

[
ξ +

1
2L

∫ L

0

w2
x dx

]
= 0

and

Lη(t) = ξ(t) +
1
2

∫ L

0

w2
x dx.

The left hand side of (6.6) tends to zero weakly in H−1(0, T ; L2(0, L)) as ε → 0.
Moreover, since {vε(L, t)} is bounded in H1(0, T ), it follows that vε(L, t) → ξ(t) in C([0, T ]) for any finite

T > 0. Consequently ξ(0) = v0(L). Thus, the limit system in case α = 0 is this case




ξ′ +
1
L

[
ξ +

1
2

∫ L

0

w2
x dx

]
= 0, t > 0

wtt + wxxxx − wxxtt − 1
L

[
ξ(t) +

1
2

∫ L

0

w2
x dx

]
wxx = 0 in (0, L) × (0, +∞)

(6.7)
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with boundary conditions


w(0, t) = wx(0, t) = 0

wxx(L, t) = −wxt(L, t)[
wxxx − wxtt − 1

L

(
ξ(t) +

1
2

∫ L

0

w2
x dx

)
wx

]
(L, t) = wt(L, t)

(6.8)

and initial conditions

ξ(0) = v0(L), w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < L.

The energy of the limit system is given by

E(t) =
1
2

∫ L

0

(w2
t + w2

xt + w2
xx)dx +

1
2L

[
ξ2 +

1
2

∫ L

0

w2
xdx

]2

(6.9)

which is the natural limit of the energies of the ε-system.
A direct calculation shows that

dE(t)
dt

= −w2
t (L, t) − w2

xt(L, t) − |ξ′|2.

Passing to the limit as ε tends to zero on the uniform exponential decay estimates obtained in Section 4 for
α = 0 we deduce that the energy E of the limit system satisfies

E(t) ≤ c E(0)e−
µ

1+E(0) t

for all t > 0 where c and µ are positive constants independent of the solution.

6.3. Dirichlet boundary condition on v and boundary damping: An open problem

Let us consider again the 1− D beam model with different dissipative boundary conditions. More precisely,
let us consider the system



εvtt =
[
vx +

1
2

w2
x

]
x

, 0 < x < L, t > 0

wtt + wxxxx − wxxtt =
[(

vx +
1
2

w2
x

)
wx

]
x

, 0 < x < L, t > 0

v(0, t) = v(L, t) = 0

w(0, t) = wx(L, t) = 0, t > 0

wxx(L, t) = −wxt(L, t)[
wxxx − wxtt −

(
vx +

1
2

w2
x

)
wx

]
(L, t) = wt(L, t)

v(x, 0) = v0(x), vt(x, 0) = v1(x)

0 < x < L.

w(x, 0) = w0(x), wt(x, 0) = w1(x)

(6.10)



STABILIZATION OF BEAMS AND PLATES 689

Let us consider the total energy Eε(t) as in (3.4). We can verify that

dEε(t)
dt

= −w2
t (L, t) − w2

xt(L, t) (6.11)

for all t ≥ 0, therefore Eε(t) is decreasing and (6.11) provides uniform (as ε → 0) bounds on the solutions
{v = vε, w = wε} which allow as to pass to the limit as ε → 0.

Again the main difficulty is to identify the limit of the term: η = ρ + 1
2 w2

x . If we proceed as in the previous
sections, we deduce that ηx = 0 therefore η = η(t). Integration in space implies that

Lη(t) =
∫ L

0

ρ dx +
1
2

∫ L

0

w2
x dx =

1
2

∫ L

0

w2
x dx

since

∫ L

0

ρ dx = lim
ε→0

∫ L

0

vε
x dx = vε(L, t) − vε(0, t) = 0.

Thus, the (weak) limit system as ε → 0 of problem (6.10) (in w) is as follows




wtt + wxxxx − wxxtt − 1
2L

(∫ L

0

w2
x dx

)
wxx = 0

w(0, t) = wx(0, t) = 0

wxx(L, t) = −wxt(L, t)[
wxxx − wxtt − 1

2

(∫ L

0

w2
x dx

)
wx

]
(L, t) = wt(L, t)

w(x, 0) = w0(x), wt(x, 0) = w1(x)

(6.12)

for 0 < x < L and t > 0.
It is known (see [14]) that, for ε > 0 fixed, the total energy of the solution w = w(x, t) of model (6.12)

decays exponentially as t → +∞ on bounded sets of initial data. But the analysis of the asymptotic behavior
of the full system (6.10) and searching for uniform decay rates as ε → 0 presents new difficulties. In view of
the structure of system (6.10) and in order to obtain an estimate similar to (4.24) would be natural to use the
multiplier xux −βu where β is a suitable positive constant. However, when we do this some extra terms appear
with respect to previous calculations. Therefore, the uniform (with respect to ε) exponential decay of solutions
of system (6.10) is an open problem.

6.4. Asymptotic limit as ε → 0: Plate model with internal damping

Let us consider the plate model we studied in Section 5 in case α = 0. We can prove that the solution
{Uε, wε} of problem (5.1, 5.2, 5.4, 5.5) in case α = 0 converges (weakly) to the solution {U, w} of the following
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system




Ut = Div(C0[e(U) + f(∇w)]) in Ω × (0, +∞)

wtt + ∆2w − ∆wtt = div
(

C0[e(U) + f(∇w)]∇w

)
− wt + ∆wt in Ω × (0, +∞)

U · η = 0, w =
∂w

∂η
= 0 on ∂Ω × (0, +∞)

U(x, y, 0) = (u(x, y, 0), v(x, y, 0)) = (u0(x, y), v0(x, , y)) in Ω

w(x, y, 0) = w0(x, y), wt(x, y, 0) = w1(x, y) in Ω

where C0(A) = γµ Tr(A)I for any 2 × 2 symmetric matrix A (see (5.3) with ε = 0). We could also rewrite
C0(e(U) + f(∇w)) explicitly:

C0(e(U) + f(∇w)) = γµ



ux + vy +

1
2
|∇w|2 0

0 ux + vy +
1
2
|∇w|2


 .

The total energy associated to the above system is given by

Eε(t) =
1
2

∫
Ω

{
w2

t + |∇wt|2 + |∆w|2}dA +
γµ

2

∫
Ω

(
ux + vy +

1
2
|∇w|2

)2

dA

and satisfies

dEε(t)
dt

= −
∫

Ω

{|Ut|2 + w2
t + |∇wt|2

}
dA ≤ 0.

Note that the energy E does not provide a complete estimate for ∇U . Indeed, we simply get control on divU .
It is precisely for that reason that the boundary condition one gets on U is U · η = 0. Moreover, the natural
space for U is then

V = {U ∈ [L2(Ω)]2 : divU ∈ L2(Ω), U · η = 0 on ∂Ω} ·

If we take initial data (w0, w1) ∈
[
H2(Ω)∩H1

0 (Ω)
]×H1

0 (Ω) and U(x, y, 0) = (u0, v0) ∈ V then the above system
is globally well-posed in the space

Y =
[
H2(Ω) ∩ H1

0 (Ω)
]× H1

0 (Ω) × V.

According to Theorem 5.1, the following decay rate is obtained for weak solutions

E(t) ≤ c E(0)e−
µ̃

1+E(0) t, a.e. t > 0

where c and µ̃ are positive constants.

6.5. Plate models with boundary damping

The problems considered in this paper may also be addressed for full von Kármán systems with various
boundary conditions including feedback terms which are useful for stabilization purposes (see [16] and the
references therein). In particular, it would be natural to analyse the convergence of the solution of this system
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to a Berger–Timoshenko’s system with boundary damping as the parameter ε tends to zero. The question of
the uniform decay would also be worth considering. This is an open problem.
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