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Abstract. In the present work the symmetrized sequential-parallel decomposition method of the third
degree precision for the solution of Cauchy abstract problem with an operator under a split form, is
presented. The third degree precision is reached by introducing a complex coefficient with the positive
real part. For the considered schema the explicit a priori estimation is obtained.
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1. Introduction

The study of the approximated schemas of a solution of evolution problems leads to the conclusion that
to each approximated schema there corresponds a definite operator (solving operator of a discrete problem),
which approximates a solving operator (semigroup) of a source continuous problem. The opposite is also true:
constructing approximation of a continuous semigroup, we build an approximated schema of a solution of an
evolution problem.

For example, if we apply Rotte’s method for a solution of an evolution problem, a solving operator of
the obtained difference problem will be a discrete semigroup and we come to a problem of approximating a
continuous semigroup with the help of discrete semigroups (in this case see Kato [14], Chap. IX).

In case of applying a decomposition method, the solving operator of the applicable decomposed problem
generates the Trotter formula [23], or the Chernoff formula [1,2], or a formula, which is a combination of these
formulas. Therefore, the error estimation of a decomposition method is equivalent to a problem of approximating
of a continuous semigroup using Trotter type formulas. Papers [12,18] (see also [19], Chap. II) are dedicated to
the error estimations of Trotter type formulas.

The schema of decomposition, associated with the Trotter formula, allows us to split Cauchy problem for an
evolution equation with an operator A = A1 + A2 + ... + Am to m problems correspondingly with operators
A1, A2, ..., Am, which are solved sequentially on each time interval with the length t/n.

The decomposition schema, associated with the Chernoff formula, is known as a method of fractional steps
(see Ianenko [11]).
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As it is known, the decomposition method is sufficiently general for obtaining economical schemas for the
solution of the multidimensional problems of mathematical physics. They can be divided into two groups: the
schemas of sequential account (Ianenko [11], Samarskii [20], Marchuk [17], Samarskii and Vabishchevich [21],
Fryazinov [5], Diakonov [4], Temam [22], Gordeziani [7]) and the schemas of parallel account (Gordeziani and
Samarskii [10], Gordeziani and Meladze [8, 9], Kuzyk and Makarov [16]). In [19] (see Chap. II) the explicit
estimations for decomposition schemas of the parallel account are obtained, which were considered in [9]. At
present, there are many works dedicated to the decomposition method (see [17, 21]).

In the above-stated works the schemas considered are of the first or second degree precision. As far as we
know, high degree precision decomposition formulas in case of two addends for the first time were obtained
in [3].

In the present work, a symmetrized sequential-parallel decomposition method of the third degree precision
for the solution of the Cauchy abstract problem with operator A = A1 + A2 + ... + Am, is presented. For the
considered schema the explicit a priori estimation is obtained. Under explicit estimations we understand such
a priori estimations for an error of solution, where the constants of a right member do not depend on a solution
of an initial continuous problem, i.e. are absolute.

2. Setting of the problem

Let us consider the Cauchy abstract problem in the Banach space X :

du(t)
dt

+ Au(t) = 0, t > 0, u(0) = ϕ. (1)

Here A is a closed linear operator with the domain D(A), which is everywhere dense in X , ϕ is a given element
from D (A).

Suppose that (−A) operator generates a strongly continuous semigroup {exp(−tA)}t≥0, then the solution of
the problem (1) is given by the following formula (see [13, 15]):

u(t) = U(t, A)ϕ, ϕ ∈ D (A) , (2)

where U(t, A) ≡ exp(−tA) is a strongly continuous semigroup.
Let A = A1 + A2 + ... + Am, where Aj (j = 1, 2, ..., m) are compactly defined, closed linear operators in X .
Let us introduce a difference net domain:

ωτ = {tk = kτ, k = 1, 2, ..., τ > 0}·

Along with the problem (1) we consider two sequences of the following problems on each interval [tk−1, tk]:

dv1
k(t)
dt

+ αA1v
1
k(t) = 0,

dw1
k(t)
dt

+ αAmw1
k(t) = 0,

v1
k(tk−1) = uk−1(tk−1), w1

k(tk−1) = uk−1(tk−1),

dv2
k(t)
dt

+ αA2v
2
k(t) = 0,

dw2
k(t)
dt

+ αAm−1w
2
k(t) = 0,

v2
k(tk−1) = v1

k(tk), w2
k(tk−1) = w1

k(tk),

. . . . . . . . . . .
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dvm−1
k (t)
dt

+ αAm−1v
m−1
k (t) = 0,

dwm−1
k (t)
dt

+ αA2w
m−1
k (t) = 0,

vm−1
k (tk−1) = vm−2

k (tk), wm−1
k (tk−1) = wm−2

k (tk),

dvm
k (t)
dt

+ Amvm
k (t) = 0,

dwm
k (t)
dt

+ A1w
m
k (t) = 0, (3)

vm
k (tk−1) = vm−1

k (tk), wm
k (tk−1) = wm−1

k (tk),

dvm+1
k (t)
dt

+ αAm−1v
m−1
k (t) = 0,

dwm+1
k (t)
dt

+ αA2w
m+1
k (t) = 0,

vm+1
k (tk−1) = vm

k (tk), wm+1
k (tk−1) = wm

k (tk),

. . . . . . . . . . . . .

dv2m−2
k (t)

dt
+ αA2v

2m−2
k (t) = 0,

dw2m−2
k (t)
dt

+ αAm−1w
2m−2
k (t) = 0,

v2m−2
k (tk−1) = v2m−3

k (tk), w2m−2
k (tk−1) = w2m−3

k (tk),

dv2m−1
k (t)

dt
+ αA1v

2m−1
k (t) = 0,

dw2m−1
k (t)
dt

+ αAmw2m−1
k (t) = 0,

v2m−1
k (tk−1) = v2m−2

k (tk), w2m−1
k (tk−1) = w2m−2

k (tk).

Here α is a numerical complex parameter with Re (α) > 0, u0(0) = ϕ. Suppose that (−Aj), (−αAj) and
(−αAj) (j = 1, 2, ..., m) operators generate strongly continuous semigroups.

On each [tk−1, tk] (k = 1, 2, ...) interval uk(t) are defined as follows:

uk(t) =
1
2
[
v2m−1

k (t) + w2m−1
k (t)

]
. (4)

We consider the function uk(t) as an approximate solution of the problem (1) on the interval [tk−1, tk].
The above-stated schema in case of m = 2 addends is considered in [6].
We will need natural degrees of the operator A = A1 + A2 + ... + Am (As, s = 2, 3, 4) . In case of two

addends (m = 2) they are defined as follows:

A2 =
(
A2

1 + A2
2

)
+ (A1A2 + A2A1) ,

A3 =
(
A3

1 + A3
2

)
+
(
A2

1A2 + ... + A2
2A1

)
+ (A1A2A1 + A2A1A2) ,

A4 =
(
A4

1 + A4
2

)
+
(
A3

1A2 + ... + A3
2A1

)
+
(
A2

1A2A1 + ... + A2
2A1A2

)
+ (A1A2A1A2 + A2A1A2A1) .

Analogously are defined As (s = 2, 3, 4) when m > 2.



696 Z. GEGECHKORI ET AL.

Obviously, the domain D (As) of the operator As is the intersection of the domains of its addends.
Let us introduce the following definitions:

‖ϕ‖A = ‖A1ϕ‖ + ... + ‖Amϕ‖ , ϕ ∈ D (A) ,

‖ϕ‖A2 =
m∑

i,j=1

‖AiAjϕ‖ , ϕ ∈ D
(
A2
)
,

where ‖·‖ is a norm in X, similarly are defined ‖ϕ‖As (s = 3, 4) .

Theorem. Let the following conditions be satisfied:
(a) α = 1

2 ± i 1
2
√

3

(
i =

√−1
)
;

(b) (−γAj), γ = 1, α, α (j = 1, 2, ..., m) and (−A) operators generate strongly continuous semigroups, for
which the following estimations hold correspondingly:

‖U(t, γAj)‖ ≤ eωt,

‖U(t, A)‖ ≤ Meωt, M, ω = const > 0;

(c) U (s, A)ϕ ∈ D
(
A4
)

for every fixed s ≥ 0.
Then the following estimation holds:

‖uk(tk) − u(tk)‖ ≤ ceω0tk tkτ3 sup
s∈[0,tk]

‖U (s, A)ϕ‖A4 ,

where c, ω0 are positive constants.

3. Auxiliary lemma

Let us prove the auxiliary lemma on which the proof of the theorem is based.

Lemma (see [6]). If the conditions (a) and (b) of the Theorem are satisfied and m = 2, then

1
2

[U(τ, αA1)U(τ, A2)U(τ, αA1) + U(τ, αA2)U(τ, A1)U(τ, αA2)] = I − τA +
1
2
τ2A2 − 1

6
τ3A3 + R

(2)
4 (τ) , (5)

where the following estimation holds for R
(2)
4 (τ):

∥∥∥R(2)
4 (τ) ϕ

∥∥∥ ≤ ceω0ττ4 ‖ϕ‖A4 , ϕ ∈ D
(
A4
)
. (6)

Here c, ω0 are positive constants.

Proof. According to the formula (see Kato [14], p. 603):

A

t∫
r

U (s, A) ds = U (r, A) − U (t, A) , 0 ≤ r ≤ t,
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we can get the following expansion:

U(t, A) =
k−1∑
i=0

(−1)i t
i

i!
Ai + Rk(t, A), (7)

where

Rk(t, A) = (−A)k

t∫
0

s1∫
0

...

sk−1∫
0

U(s, A)dsdsk−1...ds1. (8)

Let us consider the operator in the left side of equality (5). Let us decompose both its items from right to left
according to the formula (7), so that each residual member is of the fourth degree. Then, using elementary
algebraic transformations, we will get the right side of equality (5), where for the residual member R

(2)
4 (τ) the

following presentation is true:

R
(2)
4 (τ) =

1
2

[R1,2 (τ) + R2,1 (τ)] ,

where

Ri,j (τ) = R4(τ, αAi) − τR3(τ, αAi)Aj +
1
2
τ2R2(τ, αAi)A2

j −
1
6
τ3R1(τ, αAi)A3

j

+ U(τ, αAi)R4(τ, Aj) − ατR3(τ, αAi)Ai + ατ2R2(τ, αAi)AjAi − 1
2
ατ3R1(τ, αAi)A2

jAi

− ατU(τ, αAi)R3(τ, Aj)Ai +
1
2
α2τ2R2(τ, αAi)A2

i −
1
2
α2τ3R1(τ, αAi)AjA

2
i

+
1
2
α2τ2U(τ, αAi)R2(τ, Aj)A2

i −
1
6
α3τ3R1(t, αAi)A3

i −
1
6
α3τ3U(τ, αAi)R1(τ, Aj)A3

i

+ U(τ, αAi)U(τ, Aj)R4(τ, αAi), i, j = 1, 2.

Hence, according to the formula (8) and condition (b) of the Theorem we obtain the estimation (6). �

4. Proof of the theorem

Let us get back to the proof of the Theorem.
It is obvious, that according to the formula (2) for the system (3) we have:

vj
k (tk) = U (τ, αAj) vj−1

k (tk) , j = 1, 2, ..., m− 1,

vm
k (tk) = U (τ, Am) vm−1

k (tk) ,

vm+j
k (tk) = U (τ, αAm−j) vm+j−1

k (tk) , j = 1, 2, ..., m− 1,

where k = 1, 2, ...,

v0
k (tk) = uk−1 (tk−1) , u0 (0) = ϕ.

Hence we have:

v2m−1
k (tk) = V1 (τ) uk−1 (tk−1) ,
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where

V1(τ) = U (τ, αA1) ...U (τ, αAm−1)U (τ, Am)U (τ, αAm−1) ...U (τ, αA1) .

Analogously we obtain that:

w2m−1
k (tk) = V2 (τ) uk−1 (tk−1) ,

where

V2(τ) = U (τ, αAm) ...U (τ, αA2)U (τ, A1)U (τ, αA2) ...U (τ, αAm) .

So according to the formula (4) we obtain:

uk (tk) = V (τ) uk−1 (tk−1) = V k (τ) ϕ, (9)

where

V (τ) =
1
2

(V1 (τ) + V2 (τ)) .

Remark. The operator V k (τ) is a solving operator of the above considered decomposed problem. It is obvious
that according to the condition of the Theorem (U(t, γAi) ≤ eωt)

∥∥V k (τ)
∥∥ ≤ eω1tk , (10)

where ω1 = (2m − 1)ω. From here it follows the stability of the above-stated decomposition schema on each
finite time interval.

Let us suppose that W (τ) is a combination (sum, product) of semigroups, generated by operators (−γAi)
(i = 1, 2, ..., m). Let us decompose all semigroups including in the operator W (τ) according to the formula (7),
multiply these decompositions, group together the similar members and define the coefficients of the mem-
bers (−τAi) ,

(
τ2AiAj

)
and

(
τ3AiAjAk

)
(i, j, k = 1, 2, ..., m) to be correspondingly [W (τ)]i , [W (τ)]i,j and

[W (τ)]i,j,k in the obtained decomposition.

If we decompose all semigroups in the V (τ) from right to left according to the formula (7) so that each
residual member is of the fourth degree, we get the following formula:

V (τ) = I − τ

m∑
i=1

[V (τ)]i Ai + τ2
m∑

i,j=1

[V (τ)]i,j AiAj − τ3
m∑

i,j,k=1

[V (τ)]i,j,k AiAjAk + R
(m)
4 (τ) . (11)

Similarly to R
(2)
4 , according to the first inequality of the condition (b) of the theorem the following estimation

is true for R
(m)
4 (τ) (m > 2):

∥∥∥R(m)
4 (τ) ϕ

∥∥∥ ≤ ceω2ττ4 ‖ϕ‖A4 , ϕ ∈ D
(
A4
)
, (12)

where c, ω2 are positive constants.
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It is obvious that:

[V (τ)]i =
1
2

([V1(τ)]i + [V2(τ)]i) , i = 1, 2, ..., m,

[V (τ)]i,j =
1
2

(
[V1(τ)]i,j + [V2(τ)]i,j

)
, i, j = 1, 2, ..., m,

[V (τ)]i,j,k =
1
2

(
[V1(τ)]i,j,k + [V2(τ)]i,j,k

)
, i, j, k = 1, 2, ..., m.

Let us compute coefficients [V1(τ)]i. Obviously, we get the corresponding members of these coefficients from
decomposition of only those multipliers (semigroups) of the operator V1 (τ) which are generated by opera-
tors (−γAi). From decomposition of other semigroups only first addends (identical operators) will be used. So
we have:

[V1(τ)]i = [U (τ, Ai)]i = 1.

Analogously

[V2(τ)]i = [U (τ, Ai)]i = 1.

So we have

[V (τ)]i = 1, i = 1, 2, ..., m.

Let us compute coefficients [V1(τ)]i,j . Obviously, we get the corresponding members of these coefficients from
decomposition of only those multipliers (semigroups) of the operator V1 (τ) which are generated by opera-
tors (−γAi) and (−γAj). From decomposition of other semigroups only first addends (identical operators) will
be used. So we have:

[V1(τ)]i,j = [U (τ, αAi1) U (τ, Ai2 )U (τ, αAi1)]i,j .

Analogously

[V2(τ)]i,j = [U (τ, αAi2) U (τ, Ai1 )U (τ, αAi2)]i,j ,

where (i1, i2) is a pair of i and j indices, arranged in an increasing order. According to the lemma we have:

1
2

(
[U (τ, αAi1 )U (τ, Ai2)U (τ, αAi1 )]i,j + [U (τ, αAi2)U (τ, Ai1) U (τ, αAi2)]i,j

)
=

1
2
·

So we have

[V (τ)]i,j =
1
2
, i, j = 1, 2, ..., m.

Let us compute coefficients [V1(τ)]i,j,k. Obviously, we get the corresponding members of these coefficients
from decomposition of only those multipliers (semigroups) of the operator V1 (τ), which are generated by
operators (−γAi) , (−γAj) and (−γAk). From decomposition of other semigroups only first addends (identical
operators) will be used. So we have:

[V1(τ)]i,j,k = [U (τ, αAi1 )U (τ, αAi2) U (τ, Ai3 )U (τ, αAi2)U (τ, αAi1 )]i,j,k .
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Analogously

[V2(τ)]i,j,k = [U (τ, αAi3 )U (τ, αAi2) U (τ, Ai1 )U (τ, αAi2)U (τ, αAi3 )]i,j,k ,

where (i1, i2, i3) is a triple of i, j and k indices, arranged in an increasing order.
Firstly let us consider the case when i = j = k,we have:

[V1(τ)]i,j,k = [U (τ, Ai)]i,i,i =
1
6

and

[V2(τ)]i,j,k = [U (τ, Ai)]i,i,i =
1
6
·

Now let us consider the case when only two of i, j, k indices are different. In this case we have:

[V1(τ)]i,j,k = [U (τ, αAi1)U (τ, Ai2)U (τ, αAi1 )]i,j,k

and

[V2(τ)]i,j,k = [U (τ, αAi2) U (τ, Ai1 )U (τ, αAi2)]i,j,k .

where (i1, i2) is pair of different indices of i, j and k triple, arranged in an increasing order. According to the
lemma we have:

[V (τ)]i,j,k =
1
6
·

Now let us consider the case when i, j, k indices are different. We have six variants. Let us consider each one
separately:

Case 1. If i < j < k, then

[V1(τ)]i,j,k = [U (τ, αAi)U (τ, αAj)U (τ, Ak)U (τ, αAj)U (τ, αAi)]i,j,k

= [U (τ, αAi)]i [U (τ, αAj)]j [U (τ, Ak)]k = α2

and

[V2(τ)]i,j,k = [U (τ, αAk)U (τ, αAj)U (τ, Ai)U (τ, αAj)U (τ, αAk)]i,j,k

= [U (τ, Ai)]i [U (τ, αAj)]j [U (τ, αAk)]k = α2.

So we have

[V (τ)]i,j,k =
1
2
(
α2 + α2

)
=

1
6
·

Case 2. If i < k < j, then

[V1(τ)]i,j,k = [U (τ, αAi)U (τ, αAk) U (τ, Aj)U (τ, αAk)U (τ, αAi)]i,j,k

= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα
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and

[V2(τ)]i,j,k = [U (τ, αAj)U (τ, αAk) U (τ, Ai)U (τ, αAk)U (τ, αAj)]i,j,k = 0.

So we have

[V (τ)]i,j,k =
1
2
αα =

1
6
·

Case 3. If j < i < k, then

[V1(τ)]i,j,k = [U (τ, αAj)U (τ, αAi)U (τ, Ak) U (τ, αAi)U (τ, αAj)]i,j,k = 0

and

[V2(τ)]i,j,k = [U (τ, αAk)U (τ, αAi) U (τ, Aj)U (τ, αAi)U (τ, αAk)]i,j,k

= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα.

So we have

[V (τ)]i,j,k =
1
2
αα =

1
6
·

Case 4. If j < k < i, then

[V1(τ)]i,j,k = [U (τ, αAj) U (τ, αAk)U (τ, Ai)U (τ, αAk)U (τ, αAj)]i,j,k = 0

and

[V2(τ)]i,j,k = [U (τ, αAi)U (τ, αAk) U (τ, Aj)U (τ, αAk)U (τ, αAi)]i,j,k

= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα.

So we have

[V (τ)]i,j,k =
1
2
αα =

1
6
·

Case 5. If k < i < j, then

[V1(τ)]i,j,k = [U (τ, αAk)U (τ, αAi) U (τ, Aj)U (τ, αAi)U (τ, αAk)]i,j,k

= [U (τ, αAi)]i [U (τ, Aj)]j [U (τ, αAk)]k = αα

and

[V2(τ)]i,j,k = [U (τ, αAj)U (τ, αAi)U (τ, Ak)U (τ, αAi)U (τ, αAj)]i,j,k = 0.

So we have

[V (τ)]i,j,k =
1
2
αα =

1
6
·
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Case 6. If k < j < i, then

[V1(τ)]i,j,k = [U (τ, αAk)U (τ, αAj)U (τ, Ai)U (τ, αAj)U (τ, αAk)]i,j,k

= [U (τ, Ai)]i [U (τ, αAj)]j [U (τ, αAk)]k = α2

and

[V2(τ)]i,j,k = [U (τ, αAi)U (τ, αAj)U (τ, Ak)U (τ, αAj)U (τ, αAi)]i,j,k

= [U (τ, αAi)]i [U (τ, αAj)]j [U (τ, Ak)]k = α2.

So we have

[V (τ)]i,j,k =
1
2
(
α2 + α2

)
=

1
6
·

Finally, for any triple (i, j, k) we have:

[V (τ)]i,j,k =
1
6
·

Inserting in (11) the obtained coefficients, we will get:

V (τ) = I − τ

m∑
i=1

Ai +
1
2
τ2

m∑
i,j=1

AiAj − 1
6
τ3

m∑
i,j,k=1

AiAjAk + R
(m)
4 (τ)

= I − τ
m∑

i=1

Ai +
1
2
τ2

(
m∑

i=1

Ai

)2

− 1
6
τ3

(
m∑

i=1

Ai

)3

+ R
(m)
4 (τ)

= I − τA +
1
2
τ2A2 − 1

6
τ3A3 + R

(m)
4 (τ) . (13)

According to the formula (7) we have:

U (τ, A) = I − τA +
1
2
τ2A2 − 1

6
τ3A3 + R4 (τ, A) . (14)

According to the second inequality of the condition (b) of the theorem the following estimation is true for
R4 (τ, A):

‖R4 (τ, A)ϕ‖ ≤ ceωτ τ4
∥∥A4ϕ

∥∥ ≤ ceωττ4 ‖ϕ‖A4 . (15)

According to the formulas (13) and (14) we have:

U (τ, A) − V (τ) = R4 (τ, A) − R
(m)
4 (τ) .

Hence using inequalities (12) and (15) we can get the following estimation:

‖[U (τ, A) − V (τ)] ϕ‖ ≤ ceω2τ τ4 ‖ϕ‖A4 . (16)
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According to the formulas (2) and (9) we have:

u(tk) − uk(tk) =
[
U(tk, A) − V k (τ)

]
ϕ =

[
Uk (τ, A) − V k (τ)

]
ϕ

=
k∑

i=1

V k−i (τ) [U (τ, A) − V (τ)] U ((i − 1) τ, A)ϕ.

Hence according to the inequalities (10) and (16) we can obtain the following estimation:

‖u(tk) − uk(tk)‖ ≤
k∑

i=1

‖V (τ)‖k−i ‖[U (τ, A) − V (τ)] U ((i − 1) τ, A)ϕ‖

≤
k∑

i=1

eω1(k−i)τceω2τ τ4 ‖U ((i − 1) τ, A)ϕ‖A4

≤ ceω0tkτ4
k∑

i=1

‖U ((i − 1) τ, A) ϕ‖A4

≤ ceω0tktkτ3 sup
s∈[o,tk]

‖U (s, A)ϕ‖A4 . �

5. Conclusion

In the case when operators A1, A2, ..., Am are matrices, it is obvious that conditions of the theorem are
automatically satisfied. Also conditions of the theorem are satisfied, if A1, A2, ..., Am and A are self-adjoint,
positive definite operators. The requirement αA operator

(
α = 1/

√
3
(
cos 300 + i sin 300

))
must generate a

strongly continuous semigroup puts the condition for the spectrum of A. Namely, the spectrum of A must be
placed within sector with the angle less than 120 degrees, because in case of turning of spectrum by ±30 degrees
(this is caused by multiplying of A on α parameter) the spectrum area will stay in the positive (right) half-plane.

Third degree precision is reached by introducing a complex parameter. Because of this, each equation of
the given decomposed system is changed by a pair of real equations, unlike lower degree precision schemas. To
solve the specific problem, (for example) the matrix factorization may be used, where the coefficients are the
matrices of the second order, unlike lower degree precision schemas, where the common factorization may be
used.

It must be noted that the sum of the absolute values of coefficients of the addends of transition operator V (τ)
equals to one, unlike the high degree precision decomposition schemas considered in [3]. Hence, the considered
schema is stable for any bounded operators A1, A2, ..., Am.
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