
Mathematical Modelling and Numerical Analysis ESAIM: M2AN

Modélisation Mathématique et Analyse Numérique M2AN, Vol. 36, No 5, 2002, pp. 863–882

DOI: 10.1051/m2an:2002033

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING
IN SPMD PROGRAMMING

Pascal Havé1

Abstract. During the development of a parallel solver for Maxwell equations by integral formulations
and Fast Multipole Method (FMM), we needed to optimize a critical part including a lot of commu-
nications and computations. Generally, many parallel programs need to communicate, but choosing
explicitly the way and the instant may decrease the efficiency of the overall program. So, the over-
lapping of computations and communications may be a way to reduce this drawback. We will see a
implementation of this techniques using dynamic and adaptive overlapping based on the EasyMSG
high level C++ library over MPI, a case of SPMD programming.

Mathematics Subject Classification. 31B10, 65R20, 65Y05, 68M10, 90B20.

Received: February 21, 2002. Revised: May 6, 2002.

1. Introduction

We study here an implementation with overlapping in a Parallel Fast Multipole Algorithm applied to Maxwell
equations [6] solved by integral formulations [2]. This implementation contents a critical part: the transfers.

This article will present adaptive overlapping techniques used for our problem after a brief overview of the
mathematical background which leads us to consider these techniques as a true alternative to the classical
implementations. These techniques are wrapped into a library EasyMSG, which provides a abstraction of lower
communication layer like MPI [10]. The performance given by a such implementation are really significant as
we will see in Section 5.

1.1. Mathematical background

Let us consider the Maxwell’s equation in the frequency domain for an electromagnetic monochromatic wave
of frequency ω:

Keywords and phrases. SPMD parallel processing, message passing environment, communications optimization, C++, Maxwell
equations, fast multipole method.

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France.
e-mail: have@ann.jussieu.fr

c© EDP Sciences, SMAI 2002

864 P. HAVÉ




rotE − ıωµ0H = 0, in Ωe

rotH + ıωε0E = 0, in Ωe

E ∧ n|Γ = −Einc ∧ n, on Γ
lim|r|→+∞ |r||√ε0E −√

µ0H ∧ r| = 0

where
• E and H are the electric and magnetic vector fields;
• Ωe is the complement of an open set of boundary Γ assumed perfectly conductive;
• ε0 and µ0 are the dielectric parameters of the medium assumed constant;
• n is the normal to the surface Γ;
• ı is the first square root of −1 in C.

By a representation theorem [3], we can find the solution to these equations by solving the Electric Field
Integral Equation which leads to solve Ma = b by a Galerkin method, based on the Rao-Wilson-Glisson {Ji}
basis functions [4].

Mi,j =
∫

Γ×Γ

G(x − y)
(
Ji(x) · Jj(y) − 1

κ2
divΓJi(x)divΓJj(y)

)
dΓ(x)dΓ(y)

bi =
ı

ωµ0

∫
Γ

Ji(x) · Einc
t (x)dΓ(x)

where G is the Green kernel defined by

G(r) =
eıκ|r|

4π|r| , with κ = ω
√

ε0µ0

and Ji is defined on edge i at the intersection of two triangles T + and T−; S+ and S− are the vertices opposite
to the edge i in T + and T−; |T | is the area of a triangle T :

Ji(x) =




+
1

2|T +| (x − S+) if x ∈ T +

− 1
2|T−| (x − S−) if x ∈ T−.

These matrices are complex dense matrices and the resolution of the system can be done using an iterative
method (eg GMRES, QMR . . .). The main part of the computation is matrix-vector products with the matrix
given by G.

1.2. The FMM algorithm

The standard FMM is based on the formula

eıκ|P+M|

|P + M | = ıκ lim
l→+∞

∫
S2

eıκ〈s,M〉Tl,P (s)ds, for P , M vectors of R
3

where Tl,P is the transfer function defined for any point s ∈ S2, the unit sphere, by

TL,P (s) =
L∑

m=0

(2m + 1)ım

4π
h(1)

m (κ|P |)Pm(cos(s, P))

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING 865

Figure 1. The oct-tree decomposition.

with L a truncation parameter, the spherical Hankel function h
(1)
m , Pm Legendre polynomials, and 〈·, ·〉 the

usual scalar product.
Let us consider two well separated spheres S1 and S2 (of respective centers C1, C2 and radius R1, R2). For

any points x1 inside S1 and x2 inside S2. Let us define r0 = C2 − C1 and r = x1 − C1 − C2 − x2, by writing
x1 − x2 = r0 + r, we obtain

eıκ|x1−x2|

|x1 − x2| ∼ ıκ lim
l→+∞

∫
S2

eıκ〈s,x1−C1〉Tl,P (s)e−ıκ〈s,x2−C2〉ds. (1)

Let N be the number of edges on the surface of the perfectly conductive object. The mid edges are the
quadrature points. These points are gathered into clusters. Each cluster Pr is bounded by a sphere Sr of
center Cr and radius Rr = maxxi∈Pr |xi − Cr|. We define the well separated clusters by the negation of
“Pr close to Ps ⇔ |Cr − Cs| ≤ α(Rr + Rs)” with α > 1.

We can rewrite the matrix M as the sum of far interactions and close interactions matrices

M far
ij = Mij if xi and xj are not close (i.e far), else 0

M close
ij = Mij if xi and xj are close else 0.

The FMM method is an efficient way to compress the M far matrix with the formula (1). To make the product
u = Mv, we compute u = ufar +uclose with uclose = M closev and ufar = M farv; M close is computed exactly. The
FMM compression of M far is a way to compute a fast product (O(N log N)) but with an approximation and
without storing all its coefficients.

The algorithm is based on a hierarchical subdivision of the space giving a hierarchical computational method
of transfers (for reducing the size of the close interactions matrix). An efficiently way to store the points of the
surface of the object, with a hierarchical subdivision, is the oct-tree (Fig. 1).

The oct-tree is a unique cell at the level 0 and 8l cells at level l obtained by splitting each cell of level l − 1
into 8 cells. Each cell c at a level l > 0 has one father cell C at the level l − 1. We define the cells close to c
at level l as neighboring cells at the same level. The far cells from c are the cells which are not close to c but
with a father close to the father of c: C.

Let us consider an oct-tree with 3 levels, named L0, L1, L2. We explain the method for 3 clusters Pr0 , Pr1

and Pr2 respectively at the levels L0, L1, L2, such that Pr2 ⊂ Pr1 ⊂ Pr0 .
The first step is to compute the radiation functions for every cluster Pt at each level.

Ft(s) =
∑

xj∈Pt

vjeıκ〈s,Ct−xj〉.

866 P. HAVÉ

Γ

Pr0 cluster

far clusters (to transfer) close clusters (don’t transfer)

close clusters (don’t transfer)

Figure 2. Transfers at level L0.

Far clusters: to transfer

Far clusters: to transfer

Close clusters: don’t transfer

Close clusters: don’t transfer

Cluster Pr1

Figure 3. Transfers at level L1.

Then, from the lowest level L0, we compute the transfers (Fig. 2)

Gr0(s) =
∑

Pt0 far from Pr0
Pr0 and Pt0 at the same level

Ft0(s)Tl,Cr0−Ct0
(s).

Then, at the level L1 many transfers are already completed, and we need to perform much less transfers (Fig. 3)

Gr1(s) =
∑

Pt1 far from Pr1
Pr0 and Pt0 are close

Ft1(s)Tl,Cr1−Ct1
(s)

where for any Pt1 at the level L1, Pt0 denotes its father : the only cluster at the level L0 with Pt1 ⊂ Pt0 .
We do so up to the higher level, in our example L2 (Fig. 4)

Gr2(s) =
∑

Pt2 far from Pr2
Pr1 and Pt1 are close

Ft2(s)Tl,Cr2−Ct2
(s).

Then, the last step is to propagate the information from the root (level L0) to the leaves (level L2).

G̃r1(s) = Gr1(s) + eıκ〈s,Cr1−Cr0〉Gr0(s)

G̃r2(s) = Gr2(s) + eıκ〈s,Cr2−Cr1〉G̃r1(s).

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING 867

Cluster Pr2

Figure 4. Transfers at level L2.

Figure 5. An extract of a solution of Maxwell equations on a perfectly conductive airplane Γ
and the partitioning into 8 processes.

Finally, we obtain ufar = Mfarv, for any xi ∈ Pr2 , with the formula (see Fig. 5)

ufar
i =

∫
S2

eıκ〈s,xi−Cr2〉G̃r2(s)ds.

1.3. Problem statement

A critical part of this algorithm is the “transfers” or computations involving data of “far” cells.
The computational domain is mapped on an oct-tree (Fig. 1), where the data of each cell are used by exactly

one process.
A transfer is a computation between two values located on two far cells (see Sect. 1.2 for more explanation).

Figure 6 shows the far cells of a reference cell c.
However, these transfers (computations) may use cells (data) located on different processes. If the cells are

located on the same process we have local transfers, else we have non-local transfers between different processes
with migrations by communications.

This step of the Fast Multipole Algorithm may be summarized as matrix-vector products yl = M l xl, where
we have mapped the cells of level l on a vector xl. Each line of the matrix M l represents transfers to do:

• M l
i,j
= 0 if the cell mapped on xl

i is far from xl
j , and by symmetry M l

j,i
= 0;
• M l

i,j = 0 otherwise.

Moreover, each value xl
j of the vector xl is also a small vector, so each scalar operation must be replaced with a

vectorial operation. For clarity, we simplify the computation of the transfer by choosing M l
j,i = M l

i,j = 1 or 0.

868 P. HAVÉ

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
������

���
���
���

���
���
���
���
���
���
���

���
���
���

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
�������
����
����

����
����
�������

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�������
�������
�������
�����������������

�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

Non-empty cells at the level l (l=3)

Cell C at the level l − 1
c: a target cell

Cells close to c

cells far from c

Γ

Figure 6. A computation world mapped on a quad-tree for the solution of a 2D integral
equation on Γ. Far cells of c are shown with diagonal stripes. Only the gray cells are active for
the computation.

The matrices are very sparse and we can see that this part of the Fast Multipole Algorithm leads to an
important exchange of data (non-local transfers) but we can overlap the communications with many local-
transfers. For increasing the overlapping, we will overlap all the matrix-product M l xl together.

Every parallel program needs to compute and communicate. In a MIMD1 approach, we can decompose the
program into many parts where each process can compute or communicate when it wants. Moreover, when
reaching the low level programming (OS, Hardware), the decomposition and overlapping appear clearly and may
be optimized by a better knowledge of the behavior of communications (hardware interruptions, . . .). However,
for increasing the portability with a higher level of abstraction, we need to understand how the communication
works regardless of the low level architecture, even more so in SPMD2 context.

In SPMD, a parallel program is written as a sequential program running on N processes. Using a message
passing library (like MPI-1) in a SPMD context implies choosing when sending and receiving messages along
the sequential codes.

Algorithm 1.1. (Fig. 7) A ‘bad’ algorithm
while Communications needed do

Start communications (non blocking sending)
Do n computations (if possible)
Finish communications (waiting and receiving)

end while
Do remaining computations

Algorithm 1.1 uses a predefined parameter n and the communications are uniformly distributed between
computations. If n = 0 the algorithm does all the communications before the compitations; if n = ∞, the
algorithm does all computations between sending and receiving the data. This simple algorithm allows to
embed the data transfers between computations.

The main drawback is the “waiting” for the communications, so each communication time may be variable.
As is well known [8, 9], a better choice is to use asynchronous communications: we can send or receive a

message by testing if there is such an incoming or outgoing message, else we do a few computations.
A problem may occur when there are many processes: we need to define a schedule of the incoming and

outgoing communications. Furthermore, each communication implies a incompressible time for negotiation; we
call it latency time. Then, we must try to aggregate communications for reducing several latency times to only

1MIMD stands for “Multiple Instructions, Multiple Data”.
2SPMD stands for “Single Program, Multiple Data”.

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING 869

Time

Computations Communications

Figure 7. Static synchronous communications/computations mixing.

Time

Computations CommunicationsSend a message Try to receive

Figure 8. Static asynchronous communications/computations mixing.

one. Aggregating communications needs to know when to send the buffer and how to receive aggregated data.
Here comes the EasyMSG library.

Many other libraries exist for distributed scientific computing, with many different objectives as providing
efficient objects for scientific computing over MPI (POOMA [5], PetsC [1]) or with more distributed objects
(C++// [7], ProActive [11]). Our first approach was to simplify the usage of the message passing library by
providing tools for an efficient overlapping of communications and computations without a special care for
complex structures and their potential dead-locks.

EasyMSG provides a few orthogonal features implemented over a Message Passing Library as communication
layer (currently MPI):

• synchronous or asynchronous communications;
• unbuffered or buffered communications:

a buffered communication is sent only when a buffer (the size is fixed by the user) is full (or when another
datum cannot be added);

• block communications:
may be used for sending vectors of data (need a buffer with enough space);

• special communication tagging:
for sending a tag datum with data; used for identify received data;

• several algorithms for multiple receivers or senders:
as several buffers to a target process or from a process ;

• Wrappers for the identification of the type to transfer are also implemented. However, a limitation is to
send only serialized data, i.e. vectors of data. An implementation of the serialization of any object may
be done inside EasyMSG, if we can determinate the overall size of such an object.

Remark 1. An important characteristic of such communications is the unpredictable order of communication
reception. If one sends two data A, B, we cannot know how they will arrive: A then B, or B then A! This is a
very good reason for using tagged data.

870 P. HAVÉ

2. Operations decomposition

Even using asynchronous communications may be not enough for optimizing a program. Optimizing the
overlapping of communications and computations may be necessary.

We call local computations, computations without any communication. Furthermore, we define communica-
tion tasks for each target process. Our goal is to know what kind of communication and computation we will
do for each target at any time. Such decomposition of the work allows to use the following algorithm:

Algorithm 2.1. (Fig. 8) A simple way to overlap communications and computations
Let InBuffer, OutBuffers be collections of buffers for receiving and sending
while Something to do do

if there is a ready datum in InBuffer then
Treat the incoming message

else
for all cpui do

if OutBuffers[i] is not full then
Prepare and push a datum into OutBuffers[i]

end if
end for

else
Do some local computations

end if
end while

Remark 2. Each test on OutBuffers and InBuffer is a test which uses specific algorithms, like a rotating buffer
(uses a circular multiple buffer), or a multiple buffer (uses free buffers even if the sending order is different).

Then, the important aspect for a good efficiency is the definition of “do some local computations”. Its
granularity must be small enough for avoiding to spend lot of time (and not be ready to treat communications)
and not too small to avoid useless tests (and to stress the network).

An optimal solution is obtained if we can do all communications and computations with a minimal time
where the parameter is the number of computations by loop, called aggregation parameter.

3. C++ implementation of EasyMSG

This library must be designed for heavy usage, with many calls to basis functions such as arrival test functions
and many more. Another requirement is to allow simple interface for implementing new algorithms or container
types. A way provided by the C++ language is inheritance and polymorphism via virtual functions. However,
this way may be very inefficient, if we abuse of virtual functions. Virtual functions allow to access to functions
of sub-classes from top level classes. Calling a virtual function from an abstract object (object with virtual
function referring to sub-classes functions) needs to scan virtual function tables for defining where the corpus
of the real function (in a sub-class). This is the cost of virtual functions. But, if we use them just for defining
interfaces, this drawback disappears. We associate virtual functions to a well-defined interface and templates
for a generic fast static access (defined at compile time).

Remark 3. Another way for associating a well-defined interface and genericity is to use static polymorphism.

The design of this library is organized around:
• Locks: objects designed for managing (single or multiple) communications: to know when they are done,

available or buzzy;
• Containers: there are two kinds of Containers: for receiving (based on InBufferModel) and sending

(based on OutBufferModel); they represent fixed buffers for storing linear data to transmit by applying
(un-)serialization;

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING 871

• Communication algorithms: to provide a common support for the Containers for managing when the
data are received/sent; we can use multiple targets, multiple buffers, FIFO scheduling, . . .

• External Parameters: for the previous classes in order to provide the end user with a way to commu-
nicate with the communication level functions. In the MPI case, they allow to change/read MPI specific
tags, targets, status.

Its main advantage is to allow to write easily efficient high-level parallel concurrent programs without any
deadlocks.

The current implementation uses MPI as communication layer, but any other message passing library may
be used by adapting the containers to the new library. The algorithms may be kept without any changes.

We will show three interfaces of common objects: the fundamental InBufferModel, a top level
MPI InBlockComplexTagBuffer, and an MultiSender algorithm.

3.1. InBufferModel

The InBufferModel class is the top level class of abstraction of buffers for incoming messages. Any higher
Container receiving data must inherit from it.

1 template<typename ObjT, typename InOutT, typename StorT>
2 class InBufferModel {

The specific types are propagated by some typedef’s

3 public:
4 typedef ObjT ObjectType;
5 typedef InOutT InOutType;
6 typedef StorT StorableType;
7 protected:
8 typedef InBufferModel<ObjectType,InOutType,StorableType> Model;
9 public:

Constructors and destructors

10 InBufferModel();
11 InBufferModel(const unsigned _bufferSize);
12 virtual ~InBufferModel();

The main function: extracting a value of the buffer

13 virtual InOutType pop() = 0;

Functions about managing the buffer size and its capacity

14 virtual void resize(const unsigned _bufferSize);
15 virtual bool empty() const;
16 virtual unsigned sizeLeft(void) const;
17 virtual unsigned sizeOf(const InOutType &value) const = 0;

Functions about managing a new value (if it can)

18 virtual bool canDoIt() const;
19 virtual bool mustReset() const;
20 virtual void reset();

Functions about starting/stopping communications

21 template<typename Lock> void start(Lock &lock) = 0;
22 template<typename Lock> void stop(Lock &lock) = 0;
23 };

872 P. HAVÉ

3.2. MPI InBlockComplexTagBuffer

The MPI InBlockComplexTagBuffer object allows to receive variable-length vector of data with an additional
value: a tag. This tag must be of any fixed-length type. Moreover, this buffer carries an additional information
for un-serializing the vector: the size.

In order to avoid large copied data as return values of the pop function, we use a couple of pointers to define
the vector of data: one on the first element, another on the end of the vector i.e. equal to the first one plus the
number of values. However, we want a single argument for the pop function, so the tag is also carried with the
couple of pointers into a triple<const T*,const T*,Tag>.

24 template<typename T,typename Tag,typename Parameter>
25 class MPI_InBlockComplexTagBuffer
26 : public InBufferModel<T,triple<const T*,const T*,Tag>,unsigned char> {
27 protected:

An external Parameter for driving low level communication function

28 Parameter *parameter;
29 public:

A constructor referring to the top level class

30 MPI_InBlockComplexTagBuffer(Parameter & _parameter,const unsigned _bufferSize)
31 : Model(_bufferSize), parameter(& _parameter) { resize(bufferSize); }

This main function manages the un-serialization.
For performance reason, we avoid to use an additional buffer for un-serializing. However, we assume a non-
growing size during the unpacking by MPI (with MPI Unpack) (else we need an additional buffer and many
copies).

32 InOutType pop() {
33 assert(canDoIt());
34 unsigned data_count;
35 MPICHECK(MPI_Unpack(toPointer(buffer.begin()),buffer.size(),&position,
36 &data_count,1,MPI_UNSIGNED,MPI_COMM_WORLD));
37 Tag tag;
38 MPICHECK(MPI_Unpack(toPointer(buffer.begin()),buffer.size(),&position,&tag,1,
39 MPI_Object<Tag>::Type_Id,MPI_COMM_WORLD));
40 ObjectType *ptr = reinterpret_cast<ObjectType *>(toPointer(buffer.begin()));
41 MPICHECK(MPI_Unpack(toPointer(buffer.begin()),buffer.size(),&position,ptr,
42 data_count,MPI_Object<ObjectType>::Type_Id,MPI_COMM_WORLD));
43 return InOutType(ptr,ptr+data_count,tag);
44 }

The sizeOf function computes the size of a vector of data including tag and size description.

45 unsigned sizeOf(const InOutType &value) const;

The communication functions start/ stop mix the two control parts Parameter, Lock for communicating.
This allows the end user to drive the communication functions (here via MPI) and the algorithm to know the
state of the communication.

46 template<typename Lock> void start(Lock &lock);
47 template<typename Lock> void stop(Lock &lock);
48 };

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING 873

3.3. MultiSender

The MultiSender algorithm provides multiple buffers of the same type for sending data. The scheduling is
“as soon as possible” for each buffer. The order may be not preserved but we have a larger capacity without
waiting to fill every buffer before sending.

49 template <typename Container,typename MultiLock>
50 class MultiSender {
51 protected:
52 Container *currentBuffer;

Internal function for cleaning the current (pointed by currentBuffer) buffer referring to reset function of the
specific container

53 void reset();

A constructor including generic parameters for building vectors of Containers (buffers) and Locks (multiLocks)
54 public:
55 template<typename Parameter1, typename Parameter2>
56 MultiSender(const unsigned _bufferSize,Parameter1 ¶m1, Parameter2 ¶m2);

Accumulate a new value: if the current buffer is full, search another ready buffer, else wait.
This function may be written as two separated non-blocking parts for improving the performance: test for testing
before and fpush for sending without any test. Moreover an again function can try to start the buffer with a “full
enough?” a priori test; this is optional for outgoing communications but essential for incoming communications:
starting a reception before needing it.

57 void push(const typename Container::InOutType &value) {
58 if (!test(value)) {
59 flush();
60 wait();
61 }
62 assert(currentBuffer->canDoIt(value));
63 currentBuffer->push(value);
64 }

Functions for waiting/testing data of the current buffer.
The management of communications over a buffer is delegated to its lock.

65 void wait();
66 bool test(const typename Container::InOutType &value) {
67 if (!currentBuffer)
68 if ((currentId = multiLocks.test_any()) != -1) {
69 currentBuffer = &buffers[currentId];
70 reset();
71 } else return false;
72 return currentBuffer->canDoIt(value);
73 }

Send now the current (not empty) buffer, and invalidate it
74 void flush() {
75 if (!currentBuffer || currentBuffer->empty()) return;
76 currentBuffer->start(multiLocks[currentId]);
77 currentBuffer = NULL;
78 }

Stop all buffers by waiting the end of the communications.
(An additional abort function exists for killing communications before exiting)

874 P. HAVÉ

79 void end() {
80 flush();
81 multiLocks.wait_all();
82 }
83 };

3.4. An example

This example shows how we use our library for writing overlapping programs. The goal is simply to exchange
data (send/receive) between ncpus processes and to do local computations. This is the transfer step; which has
been simplified (no explicit computation are given).

The performance of this code will be described in last part of this article.
Current EasyMSG I/O Type with a tag typed uaddr_t (universal address of a cluster)

84 typedef triple<const BaseType *,const BaseType *,uaddr_t> InOutBufferType;

The Receiver parameters (start the receiving communication soon as possible)
85 MPI_Parameters pop_params;
86 pop_params.setTarget(MPI_ANY_SOURCE);
87 pop_params.setTag(TRANSFER_TAG);
88

89 MultiReceiver<
90 MPI_InBlockComplexTagBuffer<BaseType,uaddr_t,MPI_Parameters>,
91 MPI_MultiLocks<MPI_Parameters> > popper(TRANSFER_BUFFER_NUMBER,
92 TRANSFER_BUFFER_SIZE,
93 pop_params,pop_params);
94 popper.start();

We use an array of senders (one for each target).
We want to send arrays of BaseType with a tag(uaddr_t).

95 std::vector<MPI_Parameters> pushers_params(ncpus);
96 typedef MPI_OutBlockComplexTagBuffer<BaseType,uaddr_t,
97 MPI_Parameters> SenderContainer;
98 SenderArray<
99 SimpleSender<

100 SenderContainer,
101 MPI_SimpleLock<MPI_Parameters> > > pushers(ncpus,TRANSFER_BUFFER_SIZE,
102 pushers_params);
103 for(int cpu=0;cpu < ncpus; ++cpu) {
104 pushers_params[cpu].setTarget(cpu);
105 pushers_params[cpu].setTag(TRANSFER_TAG);
106 }

We assume the knowledge the number of expected requests (expectedRequests), the list of communications
to send (transferGroups), and a list of local computations (localProgresser).

107 unsigned expectedRequests = totalTransferRequests.sum();
108 for(int cpu=0;cpu<ncpus;++cpu) transferGroups[cpu].again();
109 TransferIterator localProgresser;
110

111 while(something_to_do(expectedRequests,transferGroups)) {

Treat the incoming message from pop_params.getSource(). We have to call the again function in order
to inform popper that we have successfully treated the incoming request and it can release now the buffer area
allocated for this datum.

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING 875

112 if (popper.test()) {
113 do {
114 InOutBufferType val = popper.pop();
115 /* Treat the incoming request */
116 popper.again();
117 } while(popper.test());
118 }

Send tagged vector v tagged by tag (its address) to the other processes while it can. We use a combination
of test and fpush (faster than push after test), which avoid deadlock.

119 for(int cpu=0;cpu<ncpus;++cpu)
120 while(!transferGroups[cpu].empty()) {
121 InOutBufferType val(v.begin(),v.end(),tag);
122 if (pushers[cpu].test(val))
123 pushers[cpu].fpush(val);
124 }

Do a few local computations according localProgresser, where /* how many? */ is a iteration limiter

125 while(/* how many? */ && !localProgresser.end())
126 /* Do one local computation */
127 }

Do remaining local computations

128 while(!localProgresser.end())
129 /* Do one local computation */

Wait for the end of the previously sent communications

130 popper.abort();
131 pushers.end();

4. Adaptive dynamic overlapping

4.1. Context definition

Usually, the network traffic is non-linear, even unpredictable during high traffic load. However, many scientific
programs do repetitive tasks such as in an iterative solver, and by iterating we accumulate informations about
the context of execution for improving the average timing. We will illustrate a way to manage the network
traffic in order to increase the overall speed of parts mixing communications and computations used into our
parallel solver of Maxwell equations by Fast Multipole Method 3.4.

Applying generic Algorithm 2.1 needs to define “do some local computations”. The main goal of our approach
is to reduce the global execution time.

Complex communications (with many sources, targets, buffers) may be expensive to test for nothing, when
no communication is ready. That is why increasing the local computations for each loop may reduce the overall
execution time. However, if local computations are too long (or the granularity of local computations is too
coarse), incoming/outgoing communications may wait to be treated, then the execution time may decrease.

Furthermore, the architecture and the load of the computers and the network may be variable between
different machines and between different times. Then, defining this aggregation statically will never be optimal
for every computer.

Our first step is to optimize the global time of a part of code by computing a more optimal aggregation
parameter p.

876 P. HAVÉ

s0s1 s2 s3 s4 s5s6s7 s8

E
xe

cu
ti

on
ti

m
e

p

explorative vector
si: step of the algorithm

Figure 9. Explorative exponential search scheme on an ideal smooth function.

4.2. Explorative exponential search

The optimization may be done, by minimizing the “execution time” as a nearly convex function with a
dichotomic method with a single starting point p = 0 (no aggregation). Usually, the dichotomy with a single
left (resp. right) starting point, find a right (resp. left) bound by an exponential search. Then, a standard
dichotomy can start with two starting points.

However, the ‘execution time’ is not really a well-defined function: evaluated at several times with a same
aggregation parameter p does not give a stable value, especially if the evaluations are not consecutive. This
‘function’ is linked to the global state of the computer load (CPUs, network, . . .).

Thus, we need a very stable and responsive algorithm, if the ‘optimum’ changes during the optimization (the
environment may change during execution).

Our main difference with a standard dichotomy is our explorative exponential search is not based on placing
one new better point between two other points, but placing one better point from the knowledge of one point
and one vector of exploration: the length of this vector is increased when the next try is better ; the direction of
the vector is changed and the length is reduced when the next try is worse (Fig. 9).

Remark 4. A better point means a point that produces a more “near to optimum” point than previous points,
all previous points for the dichotomic scheme, the previous one for our explorative scheme.

4.3. Optimizing in a real world

The previous explorative exponential search algorithm is used at each execution of Algorithm 2.1 for adapting
the aggregation parameter p.

Some remarks for algorithmic improvements.
• The execution time is a very fuzzy function: even several consecutive measures with a same parameter

p may give different results. We use a mean of n evaluations as reference values, i.e. we change the
aggregation parameter p every n executions (currently, n is 3 or 4).

• Our search domain for p is bounded on the left by 0.
The first explorative vector is always rightwards.
If the algorithm tries to go beyond 0, we slow down the search by decreasing the length of the explorative
vector so that p > 0.

• We interpret non integer value of p as an aggregation parameter mean.
∀p ∈ R+, we aggregate pi =
p · i − pi−1� local computations at loop index i ≥ 1
(p0 = 0,
·� represents the integer part operator).

• If the length of the explorative vector is very low, the algorithm becomes less responsive to a significant
modification of the global state. Moreover, the execution time is not well-defined and widely varying

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING 877

between several evaluations, so two too close parameters may be not significant: we bound the minimal
length of the explorative vector.

5. Computational results

We will study the efficiency of our optimization for adaptive overlapping on three problems of different sizes,
all arising from the multipole method.

• Small: N = 75, 000 degrees of freedom, 4MB of data to send divided into 700 vectors for each process;
• Medium: N = 300, 000 degrees of freedom, 14MB of data to send divided into 1300 vectors for each

process;
• Large: N = 600, 000 degrees of freedom, 31MB of data to send divided into 2000 vectors for each process.

For each case the global number of transfers to compute is O(N). We will use 8 CPUs Intel PIII/1266MHz-1GB
for each computation and a switched Ethernet 100Mb network.

5.1. Without our adaptive overlapping

Our first tests are without our adaptive overlapping but a simple static overlapping (1 local computation for
each “do some local computations”.
The following graphs (Figs. 10–12) show the execution times of a part of code by the 8 processors during 140
iterations for the three problem sizes: Small, Medium, Large.

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 10. Small.

 5.1

 5.2

 5.3

 5.4

 5.5

 5.6

 5.7

 5.8

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 11. Medium.

 16.5

 17

 17.5

 18

 18.5

 19

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 12. Large.
Execution timings without adaptive overlapping.

These measures are our reference execution times.

878 P. HAVÉ

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 13. Small.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 14. Medium.

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 15. Large.
Execution timings with adaptive overlapping.

5.2. With our adaptive overlapping

We will study the same problems with our algorithm by optimizing the aggregation parameter p using our
explorative exponential algorithm (Sect. 4.2). This method leads to a uniform decomposition of the local
computations as fixed-size packets of local computations during the communication step. When there is no
more communication, the main loop stops and does the remaining local computations.

We show the execution times and the “convergence” of the aggregation parameters for each problem.
According to these graphs, we can see independent timings and convergences for each process, even if our

homogeneous architecture provides very close values. The algorithm starts with the worst value (when p = 0)
and try to reduce the average timing; at the second iteration p = 1 and we obtain the same execution timing
as the references cases (see Sect. 5.1). This parameter p grows exponentially up to obtain a execution timing
worst than the previous result.

We obtain a more “optimal” timing (about 18% faster) after about 20 evaluations (i.e. 5 updates of p), and
the convergence of p is near to be stabilized after 15 updates (i.e. 60 evaluations) (Figs. 13–18).

The number of updates before giving a good result, even with a nearly chaotic function, is really the main
goal for our algorithm without falling in a local optimum; many other classical algorithms, using very smooth
functions, are really inefficient here.

5.3. With a more responsive adaptive overlapping

The previous case uses a constant aggregation parameter for the aggregation of local computations in the
main loop, and updates it between each full execution. However, the network traffic is not homogeneous
during one whole execution: at the beginning, many processes start their communications and there are many
communications to treat. Nevertheless, our previous implementation was designed for treating as a priority

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING 879

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 16. Small.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 17. Medium.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 18. Large.
Aggregation parameter p convergence (p is updated after an average of 4 evaluations).

the communications, so performing as a special case the inhomogeneous communications may not improve the
global execution time in the same context.

However, our previous test was done in an ideal network without any other traffic. In many cases, a shared
cluster may produce a very inhomogeneous traffic without any foreseeable behavior. That is why we will compare
our previous algorithm with another one with a better responsiveness to the unstable environments.

This new test uses the same algorithm for optimizing the execution time but the aggregation parameter is
replaced by a variable aggregation based on an increasing evolution when there is no communication (according
to the last communication tests), and a fast decreasing evolution when there are communications: we will call
it fast adaptive algorithm.

In fact, we use the following heuristic: if the previous test says “there are some incoming/outgoing data”, the
associated buffers were full, so there may remain some incoming/outgoing data for the same buffers, then we
want to test them as early as possible and do less local computations; else we can do more local computations
because if the last test fails and this may be a indicator of a lower network activity.

The following graphs (Figs. 19 and 20) show the same computations with a stressed network (an additional
program providing an irregular high traffic on the cluster network)

Even if the mean of timings is better for our fast adaptive algorithm, these results are not so significant. In
fact, the previous algorithm was already written for aggregating communications (a loop try to fill/flush the
current buffer). But, if we remove this optimization (Figs. 21 and 22), we can see the effect of the last algorithm
against a manual optimization by the programmer.

Remark 5. The new algorithm converges faster to the solution, because it is more adaptive to the environment
(the aggregation parameter grows when there are few communications) and its evolution parameter of the

880 P. HAVÉ

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 19. Original p aggregation.

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 20. New Adaptive aggregation.
Execution timings with manual communication aggregation.

adaptive communication aggregation is smaller, so it needs fewer steps of exponential search for finding good
candidates.

The last results show a real better efficiency (about 10%) for the fast adaptive algorithm: it tries itself to
aggregate the communications or increases the local communications according to the network traffic. However,
these results are less efficient than a manually optimized version because the manual tuning was done in order
to avoid local computations between consecutive communication tests, which is our final goal: the algorithm
understands how reducing the execution timings.

5.4. Low speed CPU environment

Finally, we will test the adaptability on a different CPU environment. Here, we use the same network but
with 8 PIII-800MHz processors.

As planned, the algorithm converges towards another parameters without any help (Figs. 23 and 24). This
is the first motivation for using these algorithms: the tuning is automatically done.

6. Conclusion

This adaptive overlapping method with our EasyMSG communication library over MPI provides an improved
efficiency even for codes already optimized by statically defined overlapping. Our tests show a performance up

EASYMSG: TOOLS AND TECHNIQUES FOR AN ADAPTIVE OVERLAPPING 881

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 21. Original p aggregation.

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 22. New Adaptive aggregation.
Execution timings without manual communication aggregation.

to 20% better into a massively communicant program as the transfer step of the Fast Multipole Algorithm
applied to High Frequency Maxwell Equations. Moreover, we have seen another type of optimization with the
fast adaptive algorithm, where the inner loop is also optimized on the fly according to the network traffic. This
last algorithm may be more efficient than the first algorithm when the programmer did not aggregate explicitly
the communications as long as there are, even with more unstable computing environment: the algorithm tries
to aggregate dynamically communications (i.e. with less local computations between communications).

However, these algorithms use a too competitive optimization method between processes (each process tries
to optimize according its own criterions), where a more cooperative method (using global criterions) may be
more efficient (for the global execution timing, not the convergence rate).

There are many other small parameters to tune for improving the results (as the buffer size), but they are
very difficult to optimize with few evaluations (about 20) and measuring the environment is also a part of the
solution (measuring the bandwidth may provide a optimal buffer size for a given transfer time).

Furthermore, the convergence to an other “optimal” parameter may be improved when the environment
changes during the computations. Our current implementation needs many steps to adapt again the new
optimal parameter by increasing the explorative vector, even with a low bound on this parameter.

Future improvements trend towards optimizing communicant codes with few efforts.

882 P. HAVÉ

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 0 20 40 60 80 100 120 140

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 23. Execution timing.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

CPU 0
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
CPU 6
CPU 7

Figure 24. Aggregation parameter.

References

[1] S. Balay, W. Gropp, L. McInnes and B. Smith, Petsc 2.0 users manual. Technical report, Argonne National Laboratory (1996).
[2] P. Havé, A parallel implementation of the Fast Multipole Method for Maxwell equations. Number Eccomas2001-7. Laboratoire

d’Analyse Numérique de l’Université Pierre et Marie Curie, John Wiley & Sons (2001).
[3] J.C. Nédélec, Cours de DEA de l’École Polytechnique et de l’Université Paris 6 (1999).
[4] S.M. Rao, D.R. Wilton and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas

and Propagations 30 (1982) 409–418.
[5] J.V.W. Reynders, The POOMA FrameWork—a templated class library for parallel scientific computing, in Proceedings of the

Eighth SIAM Conference on Parallel Processing for Scientific Computing (Minneapolis, MN, 1997), Philadelphia, PA (1997)
SIAM, p. 6.

[6] V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86 (1990) 414–439.
[7] Y. Roudier, D. Caromel and F. Belloncle, The C++// System, in Parallel Programming Using C++, G. Wilson and P. Lu

Eds., MIT Press (1996) 257–296.
[8] D. Sagnol, F. Baude, D. Caromel and N. Furmento, Overlapping communication with computation in distributed object

systems. Lecture Notes Comput. Sci. 1593, Springer, Amsterdam (1999) 744–753.
[9] D.C. Schmidt and T. Suda, Measuring the performance of parallel message-based process architectures. INFOCOM 2 (1995)

624–633.
[10] A. Skjellum, W. Gropp and E. Lusk, Using MPI: portable parallel programming with the message passing interface. ISBN

0-262-57104-8. MIT Press (1994).
[11] J. Vayssiere, D. Caromel and W. Klauser, Towards seamless computing and metacomputing in Java, in Concurrency Practice

and Experience, G.C. Fox Ed., Wiley & Sons, Ltd (1998) 1043–1061.

