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Abstract. This work is concerned with the flow of a viscous plastic fluid. We choose a model of
Bingham type taking into account inhomogeneous yield limit of the fluid, which is well-adapted in the
description of landslides. After setting the general threedimensional problem, the blocking property
is introduced. We then focus on necessary and sufficient conditions such that blocking of the fluid
occurs. The anti-plane flow in twodimensional and onedimensional cases is considered. A variational
formulation in terms of stresses is deduced. More fine properties dealing with local stagnant regions
as well as local regions where the fluid behaves like a rigid body are obtained in dimension one.
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1. Introduction

Due the importance of evaluation of landslide risk, great efforts have been devoted to analyzing, modeling,
and predicting such phenomena in the last decades. A stability analysis, which treats the geologic material as a
rigid viscoplastic body, may provide information on the safety factor of stable mass of soil. One of the simplest
and convenient viscoplastic constitutive relation is the one modeling a Bingham fluid [1], exhibiting viscosity
and yield stress.

Although the Bingham model deals with fluids, it was also seen as a solid, called the “Bingham solid”
(see for instance [20]) and investigated to describe the deformation and displacement of many solid bodies.
Therefore this model was often used in metal-forming processes; it was first introduced for wire drawing in [3]
and intensively used thereafter [4,13]. More recently, the inhomogeneous (or density-dependent) Bingham fluid
was considered in landslides modeling [2, 5, 6]. In this work, the inhomogeneous yield limit is a key point in
describing a natural slope. Indeed, due to their own weight, the geomaterials are compacted (i.e., their density
increase with depth), so that the mechanical properties also vary with depth. Therefore the choice of a Bingham
model in which the yield limit g and the viscosity coefficient η vary with density is motivated.
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A particularity of the Bingham model lies in the presence of rigid zones located in the interior of the flow
of the Bingham solid/fluid. As the yield limit g increases, these rigid zones become larger and may completely
block the flow. This property is called the blocking property. When considering oil transport in pipelines, in
the process of oil drilling or in the case of metal forming, the blocking of the solid/fluid is a catastrophic event
to be avoided. In a completely opposite context, when modeling landslides, the solid is blocked in its natural
configuration and the beginning of a flow can be seen as a disaster.

This paper deals with some boundary-value problems describing the flow of an inhomogeneous Bingham fluid
through a bounded domain in R

3. We focus on the blocking phenomenon, the description of the rigid zones and
also the stagnant regions (i.e., the zones near the boundary of the domain where the fluid does not move). More
precisely, we study the link between the yield limit distribution and the external forces distribution (or the mass
density distribution) for which the flow of the Bingham fluid is blocked or exhibits rigid zones. In opposition
to the previous works dealing only with homogeneous Bingham fluids [8, 9, 11, 12, 16–18], we are interested in a
fluid whose yield limit is inhomogeneous.

An outline of the paper is as follows. The equations modeling the flow of a Bingham fluid are introduced in
Section 2 and the corresponding variational formulation is recalled. Section 3 is concerned with the blocking
property in the threedimensional context. There we give a necessary and sufficient condition which characterizes
the blocking property in the inhomogeneous case. The stationary anti-plane problem (twodimensional) is
considered in Section 4. We obtain a variational formulation in terms of stresses which is useful in the description
of the rigid zones.

The onedimensional problem describing the flow between two infinite planes is studied in Section 5. Several
necessary and sufficient conditions for blocking and also local conditions of blocking (stagnant zones) and rigid
body behavior are obtained in this case. Finally, we examine in Section 6 a simple onedimensional problem
(flow between an infinite plane and a rigid roof) in which the exact solution can be determined analytically.

2. Statement of the 3D-problem

We consider here the evolution equations in the time interval (0, T ), T > 0 describing the flow of an inhomo-
geneous Bingham fluid in a domain D ⊂ R

3 with a smooth boundary ∂D. The notation u stands for the velocity
field, σ denotes the Cauchy stress tensor field, p = − trace(σ)/3 represents the pressure and σ′ = σ + pI is the
deviatoric part of the stress tensor. The momentum balance law in the Eulerian coordinates reads

ρ
(∂u

∂t
+ (u · ∇)u

)
− divσ′ + ∇p = ρf in D × (0, T ), (1)

where ρ = ρ(t, x) ≥ ρ > 0 is the mass density distribution and f denotes the body forces. Since we deal with
an incompressible fluid, we get

div u = 0 in D × (0, T ). (2)

The conservation of mass becomes

∂ρ

∂t
+ u · ∇ρ = 0 in D × (0, T ). (3)

We notice from the above equation that, excepting some special cases (see Sects. 4–6), the flow of an incom-
pressible fluid with inhomogeneous mass density is not stationary.

If we denote by D(u) = (∇u+∇T u)/2 the rate deformation tensor, the constitutive equation of the Bingham
fluid can be written as follows:

σ′ = 2ηD(u) + g
D(u)
|D(u)| if |D(u)| �= 0, (4)

|σ′| ≤ g if |D(u)| = 0, (5)
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where η ≥ η0 > 0 is the viscosity distribution and g ≥ 0 is a nonnegative continuous function which stands for
the yield limit distribution in D. The type of behavior described by equations (4–5) can be observed in the case
of some oils or sediments used in the process of oil drilling. The Bingham model, also denominated “Bingham
solid” (see for instance [20]) was considered in order to describe the deformation of many solid bodies. In
metal-forming processes, it was introduced for wire drawing in [3] and intensively studied in [4, 13]. Recently,
the inhomogeneous (or density-dependent) Bingham fluid was chosen in landslides modeling [2, 5, 6].

When considering a density-dependent model, the viscosity coefficient η and the yield limit g depend on the
density ρ through two constitutive functions, i.e.,

η = η(ρ(t, x)), g = g(ρ(t, x)). (6)

In order to complete equations (1–6) with some boundary conditions we assume that ∂D is divided into two
disjoint parts so that ∂D = ∂0D ∪ ∂1D and

u = 0 on ∂0D × (0, T ), σn = 0 on ∂1D × (0, T ), (7)

where n stands for the outward unit normal on ∂D. Finally the initial conditions are given by

u|t=0 = u0, ρ|t=0 = ρ0. (8)

Setting

V =
{
v ∈ H1(D)3, div v = 0 in D, v = 0 on ∂0D

}
,

we give the variational formulation of (1), (2), (4), (5) and (7) for the velocity field (see [8])




∀t ∈ (0, T ), u(t, ·) ∈ V ,

∀v ∈ V ,

∫
D

ρ

(
∂u

∂t
+ (u · ∇)u

)
· (v − u)

+
∫
D

2ηD(u) : (D(v) − D(u))

+
∫
D

g|D(v)| −
∫
D

g|D(u)| ≥
∫
D

ρf · (v − u).

(9)

Finally the problem of the flow of a inhomogeneous Bingham fluid becomes:

Find the velocity field u and the mass density field ρ such that conditions (3), (6), (8) and (9) hold.

As far as we know there does not exist any uniqueness result for this problem. For the Navier-Stokes model
(i.e., when g = 0) existence results can be found in [7, 15, 19].

3. The blocking property for the 3-D problem

When considering a viscoplastic model of Bingham type, one can observe rigid zones (i.e., zones where
D(u) = 0) in the interior of the flow of the solid/fluid. When g increases, the rigid zones are growing and if
g becomes sufficiently large, the fluid stops flowing (see [10]). Commonly called the blocking property, such a
behavior can lead to unfortunate consequences in oil transport in pipelines, in the process of oil drilling or in
the case of metal forming. On the contrary, in landslides modeling, it is precisely the blocking phenomenon
which ensures stability of the slope.
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We suppose in what follows that the volume forces are independent of time, i.e. f = f (x). We say that the
Bingham fluid is blocked if u ≡ 0 satisfies equations and conditions (3), (6), (8), (9). One can easily check that
the fluid is blocked if and only if the density has no time evolution (i.e., ρ(t, x) = ρ0(x)) and fulfills:∫

D
g(ρ0(x))|D(v(x))| dx ≥

∫
D

ρ0(x)f (x) · v(x) dx, ∀v ∈ V .

Hence the study of the blocking property consists in finding the link between ρ0 and f such that the above
inequality holds. Since in landslides modeling the yield limit g = g(ρ) depends also on some other parameters
(as water concentration), another formulation of the blocking property is more adequate. Indeed if we define

b(x) = ρ0(x)f (x), g(x) = g(ρ0(x)),

then the blocking of the Bingham fluid can be characterized by:∫
D

g(x)|D(v(x))| dx ≥
∫
D

b(x) · v(x) dx, ∀v ∈ V . (10)

Now the main problem consists in finding properties on b and g such that inequality (10) holds.
We suppose in what follows that

b ∈ L∞(D)3, and
∫
D

b · r = 0, ∀r ∈ R ∩ V , (11)

where R = kerD = {r : D → R
3 ; r(x) = m + n ∧ x} is the set of rigid motions. The first condition in (11) is a

natural assumption for the body forces. The second one, which is implied by (10), is always satisfied if ∂0D �= ∅.
These two conditions ensure the existence of a blocking state for large enough yield limit. More precisely we
have:

Proposition 3.1. If (11) holds then

g∗hom := sup
v∈V\R

∫
D

b · v∫
D
|D(v)|

< +∞

and if g(x) ≥ g∗hom, a.e. x ∈ D then the blocking occurs, i.e. (10) holds.

Proof. The space LD(D) = {v ∈ L1(D)3; D(v) ∈ L1(D)3×3} is a closed subspace of the space BD(D) introduced
in [21, 24] and includes (strictly) the space W 1,1(D)3 (see [23]). We define l ∈ V ′ by:

l(v) =
∫
D

b(x) · v(x) dx, ∀v ∈ V ,

and let W be the subspace of LD(D):

W =
{
v ∈ LD(D); div v = 0 in D, v = 0 on ∂0D

}·
Since b ∈ L∞(D)3 we deduce that l ∈ W ′, hence there exists C1 > 0 such that |l(v)| ≤ C1||v||LD(D) for all
v ∈ LD(D). On the other hand, from the Korn inequality in LD(D) (see [23]), we deduce that there exists
C2 > 0 such that, for all v ∈ W there exists rv ∈ R ∩W which satisfies ‖v − rv‖LD(D) ≤ C2

∫
D |D(v)|. Using
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the last two inequalities we get |l(v)| = |l(v − rv)| ≤ C1C2

∫
D |D(v)| for all v ∈ V , thus g∗hom ≤ C1C2. If

g(x) ≥ g∗hom a.e. x ∈ D then∫
D

g|D(v)| ≥ g∗hom

∫
D
|D(v)| ≥

∫
D

b · v, ∀v ∈ V \ R

and (10) holds, taking (11) into account. �
In the homogeneous case, it is easy to check that the condition g ≥ g∗hom is a complete characterization of

the blocking property. In the inhomogeneous case it is only a rough sufficient condition. Indeed the following
statement gives a more accurate condition for (10).

We define

H = {τ ∈ L2(D)3×3; τij = τji, trace(τ ) = 0 in D}

which stands for the deviatoric subspace of L2(D)3×3
S , and we consider

Ab =
{
τ ∈ H ; ∃p ∈ L2(D), div τ −∇p = −b in D, (τ − pI)n = 0 on ∂1D

}
,

where (τ − pI)n = 0 lies in H−1/2(∂D)3. Using the characterization of the gradient of a distribution (see for
instance [22], p. 14) we obtain another characterization of the set Ab:

Ab =
{

τ ∈ H ;
∫
D

τ : D(v) =
∫
D

b · v, ∀v ∈ V
}
·

Theorem 3.1. The Bingham fluid is blocked, i.e., (10) holds, if and only if there exists a function σ ∈ Ab such
that g(x) ≥ |σ(x)|, a.e. x ∈ D.

Proof. Let σ ∈ Ab such that g(x) ≥ |σ(x)|, a.e. x ∈ D. Then for all v ∈ V we have∫
D

b · v =
∫
D

σ : D(v) ≤
∫
D
|σ| |D(v)| ≤

∫
D

g|D(v)|

and (10) follows.
Suppose now that (10) holds and we consider J : H → R given by

J (τ ) =
1
2

∫
D

[|τ | − g]2+,

where [ ]+ denotes the positive part. From standard arguments of convex analysis we deduce that there exists
(at least) a σ ∈ Ab solution of the minimization problem J (σ) ≤ J (τ ) for all τ ∈ Ab. Indeed J is a convex
continuous functional and from [|τ | − g]2+ ≥ |τ |2 − 2g|τ | we get that J is coercive on H. Euler’s equation for
J reads ∫

D

[|σ| − g]+
|σ| σ : τ = 0, ∀ τ ∈ A0,

where A0 is Ab for b = 0, the tangent space to Ab. (Here [|σ| − g]+σ/|σ| stands for 0 if σ = 0.)

Since the orthogonal subspace of A0 in H is D(V) we deduce that there exists w ∈ V such that
[|σ| − g]+

|σ| σ =

D(w). We put v = w in (10). Then we get∫
D

g|D(w)| ≥
∫
D

b · w =
∫
D

σ : D(w) =
∫
D

[|σ| − g]+
|σ| |σ|2.
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Bearing in mind that |D(w)| = [|σ| − g]+ we obtain
∫
D[|σ| − g]+(g − |σ|) ≥ 0 which implies that |σ(x)| ≤ g(x)

a.e. x ∈ D. �

4. The stationary anti-plane flow

We consider in this section the particular case of the stationary anti-plane flow. Therefore, D = Ω×R where
Ω is a bounded domain in R

2. The boundary of Ω, denoted by Γ, is divided into two parts Γ = Γ0 ∪ Γ1, such
that ∂0D = Γ0 × R, ∂1D = Γ1 × R. We are looking for a flow in the Ox3 direction, i.e. u = (0, 0, u), which
does not depend on x3 and t so that ρ = ρ(x1, x2) and u = u(x1, x2). Note that under these assumptions the
equations (2–3) are satisfied, hence the density ρ represents now a parameter of the inhomogeneous problem
and we cannot talk about a density dependent model anymore. Indeed the density is implied only in the spatial
distribution of inhomogeneous parameters g, η and the body forces f are defined as follows

η(x1, x2) = η(ρ(x1, x2)), g(x1, x2) = g(ρ(x1, x2)), f(x1, x2) = ρ(x1, x2)f3(x1, x2),

where f3 denotes the component of the forces in the Ox3 direction. We suppose in the following that

f, g, η ∈ L∞(Ω), g ≥ 0, η(x) ≥ η0 > 0, a.e. x ∈ Ω.

If we define
V = {v ∈ H1(Ω); v = 0 on Γ0}

then the variational formulation (9) for the anti-plane flow becomes

u ∈ V, ∀v ∈ V,

∫
Ω

η(x)∇u(x) · ∇(v(x) − u(x)) dx

+
∫

Ω

g(x)|∇v(x)| dx −
∫

Ω

g(x)|∇u(x)| dx ≥
∫

Ω

f(x)(v(x) − u(x)) dx. (12)

The above problem is a standard variational inequality. If meas(Γ0) > 0 then it has a unique solution u. If
Γ0 = ∅ and

∫
Ω f(x) dx = 0 then a solution exists and it is unique up to an additive constant. In the following

we will always assume that one of these cases holds.
In order to give the variational formulation in terms of stresses for (12) we define H = (L2(Ω))2 and

Af = {τ ∈ H ; div τ = −f in Ω, τ · n = 0 on Γ1}, (13)

where τ · n is considered in H− 1
2 (Γ). Let J : H → R be the following functional

J(τ ) =
∫

Ω

1
2η(x)

[|τ (x)| − g(x)]2+ dx. (14)

Proposition 4.1. There exists at least a σ ∈ Af minimizing J on Af , i.e. J(σ) ≤ J(τ ), for all τ ∈ Af , which
is characterized by

σ ∈ Af and
∫

Ω

[|σ(x)| − g(x)]+
η(x)|σ(x)| σ(x) · τ (x) dx = 0, ∀ τ ∈ A0 (15)

where A0 is Af with f = 0.

Proof. From [|τ |− g]2+ ≥ |τ |2−2g|τ | we deduce that J is coercive on H and since J is a convex and continuous
functional we get the existence of σ. The variational equation (15) is Euler’s equation associated with the
minimization problem. �
The following theorem gives the connection between (12) and (15).
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Theorem 4.1. Let u be the solution of (12) and let σ be a solution of (15). Then we have

∇u(x) =
[|σ(x)| − g(x)]+

η(x)|σ(x)| σ(x), a.e. x ∈ Ω. (16)

Proof. Let σ be a solution of (15). This implies that σ̄ = 1
η [1 − g

|σ| ]+ σ belongs to the orthogonal subspace of
A0 in H . So there exists w ∈ V such that ∇w = σ̄. We now prove that for all r ∈ R

2 and a.e. x ∈ Ω we have

σ(x) · (r − σ̄(x)) ≤ η(x)σ̄(x) · (r − σ̄(x)) + g(x)|r| − g(x)|σ̄(x)|. (17)

Indeed if |σ(x)| > g(x) then σ(x) =
(
η(x) + g(x)

|σ̄(x)|
)

σ̄(x) and (17) follows. If |σ(x)| ≤ g(x) then σ̄(x) = 0
which implies (17).

Since σ ∈ Af we have ∫
Ω

f(x)(v(x) − w(x)) dx =
∫

Ω

σ(x) · (∇v(x) −∇w(x)) dx.

If we put r = ∇v(x) in (17) and then integrate over Ω we deduce that w is a solution of (12). Since the solution
of (12) is unique we obtain u = w,∇u = σ̄, and (16) follows. �

The above theorem gives the opportunity to describe the rigid zones Ωr and the shearing zones Ωs defined by

Ωr = {x ∈ Ω; |∇u(x)| = 0}, Ωs = {x ∈ Ω; |∇u(x)| > 0}·

Indeed, from (16) we have the following result.

Corollary 4.1. The solution σ of (15) is unique in Ωs, i.e., if σ1, σ2 are two solutions of (15) then σ1(x) =
σ2(x) a.e. x ∈ Ωs. For any σ solution of (15) we have

Ωr = {x ∈ Ω; |σ(x)| ≤ g(x)}, Ωs = {x ∈ Ω; |σ(x)| > g(x)} · (18)

Proof. If x ∈ Ωs then |∇u(x)| > 0 and from (16) we have

σ(x) =
(

η(x) +
g(x)

|∇u(x)|
)
∇u(x).

The uniqueness follows. �
The previous description of the rigid zones can be used to study the blocking property, i.e., when the whole

Ω is a rigid zone (Ω = Ωr). In this case u ≡ 0 is the solution of (12) characterized by the following problem:
Find the link between f and g such that∫

Ω

g(x)|∇v(x)| dx ≥
∫

Ω

f(x)v(x) dx, ∀v ∈ V. (19)

As in the threedimensional case, the blocking always occurs for large enough yield distribution. Indeed, there
exists an homogeneous yield limit g∗hom > 0 given by

g∗hom = sup
v∈V, v �=const

∫
Ω

f(x)v(x) dx∫
Ω

|∇v(x)| dx
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such that if g(x) ≥ g∗hom, a.e. x ∈ Ω then the blocking occurs, i.e. (19) holds. Moreover we have the the
following complete characterization of the blocking property.

Proposition 4.2. The Bingham fluid is blocked if and only if there exists σ ∈ Af such that |σ(x)| ≤ g(x) a.e.
x ∈ Ω.

Proof. If |σ(x)| ≤ g(x) a.e. x ∈ Ω then J(σ) = 0 ≤ J(τ ), for all τ ∈ Af and from (16) we deduce ∇u ≡ 0. �

5. Flow between two infinite planes

We shall consider here the anti-plane flow in one dimension, i.e. D = Ω × R
2, with Ω = (0, �) ⊂ R. The

choice of ∂0D = Γ0 × R
2 with Γ0 = {0, �} corresponds to the flow between two infinite planes x = 0 and x = �.

In this case V = H1
0 (Ω). Let u be the solution of (12), satisfying:

u ∈ V, ∀v ∈ V,

∫
Ω

η(x) u′(x) (v′(x) − u′(x)) dx

+
∫

Ω

g(x)(|v′(x)| − |u′(x)|) dx ≥
∫

Ω

f(x)(v(x) − u(x)) dx. (20)

We denote by F the antiderivative of f such that

F (x) :=
∫ x

0

f(s) ds.

Note that in the case of the flow between two infinite planes, Af becomes an affine set of dimension one. Indeed
from (13) we have

Af = −F + R = {−F − C; C ∈ R},

and the functional J defined in (14) can be reduced to the one-variable functional j : R → R given by

j(C) =
∫ �

0

1
2η(x)

[|F (x) + C| − g(x)]2+ dx.

In the general twodimensional case the minimizer of J is not unique. But here, if blocking does not occur, then
the uniqueness of the minimizer of j can be proved. More precisely we have:

Theorem 5.1. Either the flow is blocked, i.e. u ≡ 0 in Ω, or the minimizer C0 of j over R, is unique. In the
latter case, C0 is the solution of the scalar equation

∫
Ω

[|F (x) + C0| − g(x)
]
+

η(x)
sign(F (x) + C0) dx = 0, (21)

and u is given by

u(x) = −
∫ x

0

[|F (s) + C0| − g(s)
]
+

η(s)
sign(F (s) + C0) ds. (22)

Proof. We suppose that there exist two minimizers C1 �= C2 of j over R. We have j′(C1) = j′(C2) = 0.
This implies that (j′(C1) − j′(C2))(C1 − C2) = 0. Define h on R × Ω by h(t, x) = t − g(x) if t > g(x),
h(t, x) = 0 if |t| ≤ g(x) and h(t, x) = t + g(x) if t < −g(x). Then j′(C) =

∫
Ω h(F (x) + C, x) dx and we have
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∫
Ω
(h(F (x) + C1, x) − h(F (x) + C2, x))(C1 − C2) dx = 0. Since t → h(t, x) is nondecreasing for all x ∈ Ω we

have h(F (x)+C1, x) = h(F (x)+C2, x) in Ω. Bearing in mind that t → h(t, x) is increasing on R \ [−g(x), g(x)]
we deduce that |F (x) + Ci| ≤ g(x) for all x ∈ Ω, i = 1, 2. We can use now Proposition 4.2 to deduce that
the Bingham fluid is blocked, a contradiction. The expression of u follows from (16), keeping in mind that
σ = −F − C0. �

Since the minimizer C0 cannot be obtained directly from the equation (21), we complete here the picture of
the solution u with some qualitative results. Of particular interest in applications are the rigid zones and the
blocking zones, that is, intervals where u′ ≡ 0 and where u ≡ 0 respectively.

The following theorem characterizes the intervals of monotony for the solution u. It makes use of a preliminary
lemma.

Lemma 5.1. Let I = [a, b] ⊂ Ω; The following statements are equivalent:

max
x∈I

[−g(x) − F (x)] ≤ min
x∈I

[g(x) − F (x)] , (23)

∀(x, y) ∈ I × I, g(x) + g(y) ≥ |F (y) − F (x)| , (24)

∃C > 0, ∀x ∈ I, |C + F (x)| ≤ g(x). (25)

Theorem 5.2. Let I ⊂ Ω satisfying (23). Then u is monotone in I.

Remark 1. The solution u is monotone in any interval I such that∫
I

|f | ≤ 2 min
I

g. (26)

For instance, it is sufficient to have for the length of I:

|I| ≤ 2
minΩ g

maxΩ |f | · (27)

Indeed if (26) is satisfied, then (24) obviously holds in I.

Proof of Lemma 5.1. We will prove that (25) ⇒ (23) ⇒ (24) ⇒ (25).
Proof of (25) ⇒ (23). We have from (25) (F (x) + C)2 ≤ g(x)2 for all x ∈ I, hence (C + F (x) − g(x))(C +

F (x) + g(x)) ≤ 0. That implies −g(x) − F (x) ≤ C ≤ g(x) − F (x). Since this must be true for all x ∈ I, and C
is a constant, we deduce (23).

Proof of (23) ⇒ (24). From (23), we have, for any (x, y) ∈ I2, −g(x)−F (x) ≤ g(y)−F (y), or equivalently
g(x) + g(y) ≥ F (y) − F (x). Exchanging x and y, we have also g(x) + g(y) ≥ F (x) − F (y), hence (24).

Proof of (24) ⇒ (25). Since g + F is a continuous function on I, it attains a global minimum at some
x0 ∈ I, which gives g(x) + F (x) ≥ g(x0) + F (x0) for all x ∈ I. On the other hand, we have from (24)
g(x0)+g(x) ≥ F (x)−F (x0). Defining C := −g(x0)−F (x0), this yields g(x) ≥ −F (x)−C and g(x) ≥ F (x)+C.
This proves (25). �
Proof of Theorem 5.2. Assume that there exist α < β in I such that u(α) = u(β). We define J := [α, β]. For
any w ∈ L2(J) satisfying

∫
J

w = 0, define W (t) := 0 for t < α, and W (t) =
∫ t

α
w otherwise. Then W ∈ H1

0 (J),
v := u + W ∈ H1

0 (Ω), so from (20) we get

∀w ∈ L2(J),
∫

J

w = 0,

∫
J

ηu′w +
∫

J

g(|u′ + w| − |u′|) ≥ −
∫

J

Fw. (28)
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Since
∫

J
u′ = u(β) − u(α) = 0, we can apply this inequality to w = u′ and to w = −u′:∫

J

η(u′)2 +
∫

J

g |u′| ≥ −
∫

J

Fu′

−
∫

J

η(u′)2 −
∫

J

g |u′| ≥
∫

J

Fu′.

This yields ∫
J

η(u′)2 +
∫

J

g |u′| = −
∫

J

Fu′.

From the Lemma 5.1, we know that (23) implies (25), that is, there exists C ∈ R such that −F −C ≤ g. Hence
using again

∫
J u′ = 0: ∫

J

η(u′)2 +
∫

J

g |u′| = −
∫

J

Fu′ =
∫

J

(−C − F )u′ ≤
∫

J

g |u′| .

We conclude that
∫

J η(u′)2 = 0, that is u′ ≡ 0 almost everywhere in J = [α, β]. Since this holds for any α, β
such that u(α) = u(β), u is monotone in I. �

Now we give some necessary conditions for the existence of the rigid zones.

Proposition 5.1. Let I ⊂ Ω be a rigid zone (u′ ≡ 0 in I). Then any of (23-25) hold.

Proof. Since u′ ≡ 0 in I, we deduce from (20) that for any v ∈ H1
0 (I), one has

∫
I g |v′| ≥ ∫

I fv = − ∫
I Fv′.

Considering the same property for −v, and defining w = v′, we deduce that

∀w ∈ L2(I),
∫

I

w = 0,

∫
I

g |w| ≥
∣∣∣∣
∫

I

Fw

∣∣∣∣ .

Let ϕ1 be a continuous function on R with compact support in (−1, 1). We define ϕn(t) := nϕ1(nt) so that
(ϕn) converges to the Dirac mass at 0 as n → ∞. Let x, y be given in the interior of I, and wn(t) :=
ϕn(t − x) − ϕn(t − y). For n large enough, we have

∫
I wn = 0, so

∫
I g |wn| ≥

∣∣∫
I Fwn

∣∣. In the limit, this yields
g(x)+ g(y) ≥ |F (x) − F (y)|. We deduce (24) for interior points of I, and then for any (x, y) ∈ I2 by continuity.

�
The following corollary gives sufficient conditions for the existence of the rigid zones and the blocking property.

Property 5.1. Assume that I = [a, b] ⊂ Ω satisfies any of (23–25). Then
1. If u(a) = u(b), then u ≡ u(a) in I (that is, I is a rigid zone).
2. If there exists σ ∈ {−1, +1} such that the following three conditions hold:

(a) F (b) − F (a) = σ(g(a) + g(b)),
(b) either a = 0 or F + σg is increasing in a left-neighborhood of a,
(c) either b = � or F − σg is increasing in a right-neighborhood of b,
then I = [a, b] is a maximal rigid zone (no interval strictly containing I is a rigid zone).

3. If I = Ω then the fluid is blocked (u ≡ 0).

Proof. From the Theorem 5.2 we know that u is monotone in I; if u(a) = u(b) we deduce that u is constant
in I.

If
∫ b

a
f = ±(g(a) + g(b)) we have equality in (23). For instance, if

∫ b

a
f = g(a) + g(b), we obtain:

max
I

(−g − F ) ≥ −g(a) − F (a) = g(b) − F (b) ≥ min
I

(g − F ).
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If a > 0, the additional assumption on a implies that for any α in a left-neighborhood of a, we have
max[α,a] (−g − F ) > −g(a) − F (a). This implies that the interval [α, b] does not satisfy (23) and therefore
is not a rigid zone from Proposition 5.1. A similar argument near b gives the maximality of I. �

The monotonicity property proved in Theorem 5.2 implies that u does not attain a strict extremum in Ω.
The following property gives a more precise estimate:

Property 5.2. Assume that g > 0 in Ω. Then all local extremums of u in Ω are intervals [α, β] of rigid zones
such that:

β − α ≥ 2
min[α,β] g

max[α,β] |f | ≥ 2
minΩ g

maxΩ |f | · (29)

In particular, the solution u does not have any local strict extremum in Ω.

Proof. Assume that the interval I = [α, β] ⊂ Ω (with β ≥ α) is a local maximizer of u. That is, there exists
ω ⊂ Ω, an open neighborhood of [α, β] such that x ∈ ω \ I implies u(x) < m := u(y), ∀y ∈ I. For ε > 0 small
enough, u−1([m − ε, m]) ∩ ω = [αε, βε] =: Iε, and limε→0 αε = α, limε→0 βε = β.

Since u(αε) = u(βε) but u is not constant in Iε, we deduce from Proposition 5.1 that (23) is not satisfied in
Iε, that is, there exists xε, yε ∈ Iε such that

−g(xε) − F (xε) > g(yε) − F (yε). (30)

On the other hand, u′ ≡ 0 in I, hence from Proposition 5.1, xε /∈ I or yε /∈ I. We assume for instance that
xε /∈ I.

Hence limε→0 xε = α, and extracting subsequences, we may assume yε → γ ∈ I. Should they have the same
limit (γ = α), (30) would give −g(α) ≥ g(α), in contradiction to the assumption g > 0. Hence α < β and
γ ∈ ]α, β]; we get from (30) in the limit

g(α) + g(γ) ≤
∣∣∣∣
∫ γ

α

f(t) dt

∣∣∣∣ ≤ (γ − α)max
[α,γ]

|f | ≤ (β − α)max
[α,β]

|f |

and (29) follows. �

In the physical model the sign of f is constant. We consider now the case f ≥ 0; similar properties hold for
f ≤ 0 (changing u with −u).

Theorem 5.3. Assume that the fluid is not blocked (u �≡ 0) and that f ≥ 0 in Ω. Then there exists x0 ∈ Ω
such that u is nondecreasing in [0, x0] and nonincreasing in [x0, �].

Additionally if g is homogeneous (g(x) = ghom = const.) then there exists a unique rigid (non blocking) zone
for u in the interior of Ω.

Proof. Let C0 be the constant number given in Theorem 5.1. Since f ≥ 0, F̂ (x) := F (x)+C0 is nondecreasing.
Hence there exists x0 ∈ [0, �] such that F̂ (x) ≤ 0 in [0, x0[ and F̂ (x) ≥ 0 in ]x0, �]. From (21),

∫ �

0

[
|F̂ (x)| − g(x)

]
+

sign(F̂ (x))
dx

η(x)
= 0 (31)

so either the integrand is zero in Ω (and then u ≡ 0 contrary to the assumptions of the Theorem) or the
integrand shows positive and negative values. In the latter case, F̂ also shows positive and negative values, and
x0 is an interior point of Ω.
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Figure 1. The geometry of a landslide on a natural slope.

Using (22) we get

−u′(x)η(x) =
[
|F̂ (x)| − g(x)

]
+

sign(F̂ (x)).

Therefore u is nondecreasing in [0, x0] and nonincreasing in [x0, �].
If we assume that g is constant, then the rigid zones are given by Ωr = {x ∈ Ω ; |F̂ (x)| ≤ ghom}, which is

an interval [ar, br] since F̂ is nondecreasing. If ar = 0 then the integrand in (31) is everywhere nonnegative, a
contradiction. Hence ar > 0 and similarly br < �. This concludes the proof of the Theorem. �

6. Flow between an infinite plane and a rigid roof

We suppose that Γ0 = {0} and Γ1 = {�}, i.e. V = {v ∈ H1(Ω); v(0) = 0}. Such a boundary condition
corresponds to the flow on the plane x = 0 with a rigid roof at x = �.

Remark 2. The problem described here occurs in modeling the landslides on a natural slope (see [5]). If we
consider the geometry plotted in Figure 1 and if we denote by γ the vertical gravitational acceleration then the
body forces are given by f(x) = γρ(x) sin θ, where θ is the angle of the slope.

If we consider (13) in our case we come to the conclusion that the set Af is reduced to a single function σ
and |σ| defines the inhomogeneous critical yield limit g∗, that is

σ(x) =
∫ �

x

f(s) ds, Af = {σ}, g∗(x) =

∣∣∣∣∣
∫ �

x

f(s) ds

∣∣∣∣∣ .
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Figure 2. The spatial distribution of the critical yield limit g∗(x) compared with the yield limit g(x).

We point out that in this particular case the inhomogeneous critical yield limit g∗ characterizes the rigid and
the shearing zones. Indeed, from Corollary 4.1 we have

Ωr = {x ∈ Ω; g(x) ≥ g∗(x)}, Ωs = {x ∈ Ω; g(x) < g∗(x)} · (32)

From (16) we get the analytical expression of the solution

u(x) =
∫ x

0

1
η(s)

[
g∗(s) − g(s)

]
+
signσ(s) ds.

In order to illustrate the previous simple result we consider, as in [5], the case of a natural slope involving a
linear variation with depth of the density

ρ(x) = ρ0 − ρ0 − ρ�

�
x (33)

where ρ0 is the density at the bottom and 0 < ρ� < ρ0 is the density at the top. In this case the critical yield
stress is

g∗(x) = γ sin θ (� − x)
[
ρ0 − ρ0 − ρ�

2�
(� + x)

]
. (34)
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We remark that the variation with depth of this critical yield stress is quadratic. If the yield stress g has a
non-linear variation with depth of the type:

g(x) = (g0 − g�)
(
1 − x

�

)m

+ g�

with m > 1, where g0 is the yield limit on the bottom and g� < g0 the yield limit on the top (see [5]). In this
case the rigid and shearing zones can be easily deduced (see Fig. 2) from (32). The intersection between the
graphs of g and g∗ represents the separation boundary between of the rigid and shearing zones. Note that the
rigid zone on the bottom x = 0 is a blocking (or non-flow zone).
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