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CONVERGENCE OF A NUMERICAL SCHEME FOR A NONLINEAR OBLIQUE
DERIVATIVE BOUNDARY VALUE PROBLEM

Florian Mehats
1

Abstract. We present here a discretization of a nonlinear oblique derivative boundary value problem
for the heat equation in dimension two. This finite difference scheme takes advantages of the structure
of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables.
This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide
some numerical simulations of this problem and a numerical study of the stability of the scheme, which
appears to be in good agreement with the theory.
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Introduction: the continuous problem

This paper deals with the discretization and the numerical simulation of a nonlinear oblique boundary
condition coupled with the heat equation. Let Ω be a two-dimensional domain of boundary Γ. If we denote
respectively by τ and ν the local tangential and inner normal vectors on γ, this boundary condition writes

∂νU = KU∂τU, (1)

where K is a given positive constant.
This problem arises in the modelling of the plasma opening switch [8] and has been studied mathematically

in [9], in the case Ω = {(z, x) ∈ R
2 : x > 0} and Γ = {(z, x) ∈ R

2 : x = 0}. The physical problem modelled
by this system is the diffusion of a magnetic field inside a plasma in contact with perfect conductors. In this
context a fast propagation of the magnetic field can be observed near the contact surface. In [9] a qualitative
description of this fast propagation has been achieved and in [1] an analogy with the porous medium equation
has been proved. The motivation of the numerical work presented here was to complete these studies by a
quantitative description of the fast propagation.

More precisely, let Ω be the rectangle

Ω = {0 < z < L, 0 < x < l}·

Keywords and phrases. Oblique derivative boundary problem, finite difference scheme, heat equation, Burgers equation.
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The four parts of its boundary Γ are labelled as follows:

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

Γ1 = {0 ≤ z ≤ L, x = 0}, Γ2 = {z = 0, 0 ≤ x ≤ l},
Γ3 = {0 ≤ z ≤ L, x = l}, Γ4 = {z = L, 0 ≤ x ≤ l} ·

l

x

Γ4

L z

Γ2

Γ3

Γ1

Ω

0

Figure 1. Calculation domain.

Consider the following scalar problem on Ω:

∂tU − ∆U = 0 (Ω) (2)
∂xU = KU∂zU (Γ1) (3)
U = 1 (Γ2) (4)
∂xU = 0 (Γ3) (5)
U = 0 (Γ4) (6)
U(0, z, x) = U0(z, x) (Ω) (7)

The non homogeneous Dirichlet boundary condition (4) represents a source of magnetic field on Γ2; there is
no source of magnetic field on Γ4 (this is modelled by an homogeneous Dirichlet condition) and the Neumann
condition on Γ3 is an open boundary condition.

This paper is organized as follows. In Section 2, we propose a discretization of the Cauchy problem (2)–(7)
by a finite difference scheme, remarking that the nonlinear condition (3) writes as a Burgers equation in the
variables x and z. Our numerical scheme is a coupling between a standard five points scheme for the heat
equation and the Godunov method for this conservation law.

This choice enables to show that the scheme preserves the discrete maximum principle and is stable in H1,
under some constraints on the gridsteps and on the initial data. These estimates are obtained in Section 3.
Hence we deduce the convergence of the scheme and obtain a weak solution for the continuous problem (2)–(7),
in Section 4. This existence result is completed by a proof of uniqueness.

Finally, in Section 5, we give some numerical results, which highlight the fast propagation of the field at the
boundary. In this section, we also give a numerical study of the stability of the scheme, which is in agreement
with the constraints on the gridsteps found in Section 2.

Let us now make precise the functional framework of this work. We obtain the existence and uniqueness of
weak solutions in L2((0, T ),H1(Ω)) ∩ L∞((0, T ) × Ω). The study of a better regularity goes beyond the scope
of this paper. The case when Ω is the half-plane was extensively studied in [9]: in this case the solution is C∞.
Moreover, if the domain Ω is bounded and regular then the results of [2,10] apply and indicate that the solution
is regular.
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The most natural weak formulation of (2)–(7) is

d
dt

∫
Ω

U ϕ+
∫

Ω

∇U.∇ϕ+
K

2

∫
Γ1

∂z(U2)ϕ = 0, (8)

where ϕ is in the space V = {ϕ ∈ H1(Ω) such that v vanishes on Γ2 and Γ4} and the boundary integral can be
understood in the duality sense ∫

Γ1

∂z(U2)ϕ =
〈
∂z

(
U2

)
, ϕ
〉
H−1/2(Γ1),H1/2(Γ1)

(recall that the direction z is parallel to Γ1). It is convenient to transform this nonlinear boundary term into a
volume integral, as it is suggested in [7] for linear oblique derivative boundary value problems. Since boundary
conditions are not symmetric on Γ1 and Γ3, we introduce the following auxiliary function:

θ(x) = 1 − x

l
·

Hence the boundary term can be written – at least for regular functions –

K

∫
Γ1

U∂zU ϕ = K

∫
Ω

U (∂xU ∂zϕ− ∂zU ∂xϕ) θ +
K

l

∫
Ω

U ∂zU ϕ.

It gives a second weak formulation for (2)–(7):

d
dt

∫
Ω

U ϕ+
∫

Ω

∇U.∇ϕ+K

∫
Ω

U (∂xU ∂zϕ− ∂zU ∂xϕ) θ +
K

l

∫
Ω

U ∂zU ϕ = 0. (9)

The advantage of this formulation is that it contains no boundary integral so it is easier to deal with.

1. The finite difference scheme

1.1. Notations

Let us introduce a regular grid on the domain [0, T ]× Ω, of time step ∆t and space steps ∆z and ∆x:

∆t =
T

Nt
, ∆z =

L

Nz
, ∆x =

l

Nx
·

For n ∈ N we set tn = n∆t. The domain Ω is subdivided by the grid formed by the (Nz + 1) × (Nx + 1)
gridpoints, which are labelled by Xi,j , for 0 ≤ i ≤ Nz and 0 ≤ j ≤ Nx, and have the coordinates

(Xi,j) = (i∆z, j∆x) . (10)

The unknowns of the discrete problem are the values Un
i,j , for 0 ≤ i ≤ Nz, 0 ≤ j ≤ Nx, n ≥ 0. They approximate

the gridfunction U(Xi,j , t
n), where U is the solution of the continuous problem (2)–(7).

In order to treat the Neumann and oblique type boundary conditions, we introduce some fictitious points
outside the domain Ω (the white squares in Fig. 2). These are the points

(Xi,−1)0<i<Nz , (Xi,Nx+1)0<i<Nz
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Figure 2. The grid.

whose coordinates are also given by (10). The parameter of discretization is denoted by h = (∆z,∆x,∆t) and
we introduce the following subset of N

2:

Ωh = {(i, j) : 0 ≤ i ≤ Nz, 0 ≤ j ≤ Nx},

Γh = Γ1h ∪ Γ2h ∪ Γ3h ∪ Γ4h, with



Γ1h = {0 ≤ i ≤ Nz, j = 0},
Γ2h = {i = 0, 0 ≤ j ≤ Nx},
Γ3h = {0 ≤ i ≤ Nz, j = Nx},
Γ4h = {i = Nz, 0 ≤ j ≤ Nx},

Γ∗
h = Γ∗

1h ∪ Γ∗
3h, with

{
Γ∗

1h = {1 ≤ i ≤ Nz − 1, j = −1},
Γ∗

3h = {1 ≤ i ≤ Nz − 1, j = Nx + 1}·

We have clearly 
(i, j) ∈ Ωh ⇐⇒ Xi,j ∈ Ω,

(i, j) ∈ Γαh ⇐⇒ Xi,j ∈ Γα for α = 1, 2, 3 or 4,

(i, j) ∈ Γ∗
h =⇒ Xi,j ∈ R

2 \ Ω.

Finally, if (n, i, j) ∈ N
3, k ∈ Z and Un

i,j is a gridfunction, we denote the discrete derivatives by

Dk,0 U
n
i,j =

Un
i+k, j − Un

i,j

k∆z
, D0,k U

n
i,j =

Un
i, j+k − Un

i,j

k∆x
, D(k) Un

i,j =
Un+k

i,j − Un
i,j

k∆t
·
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1.2. Discretization of the continuous problem

Throughout this paper we shall assume that the initial data belongs to L2(Ω) and verifies

0 ≤ U0 ≤ 1 almost everywhere in Ω. (11)

Let U0
h be a sequence of continuous functions which also verify (11) and tend to U0 in L2(Ω) as h → 0. For

(i, j) ∈ Ωh we set U0
i,j = U0

h(Xi,j).
We now describe our finite difference scheme for (2)–(7). Assume that Un

i,j is given for a fixed n ≥ 0 and for
all (i, j) ∈ Ωh.
(a) We first treat the boundary conditions (3) and (5), setting Un

i,j on the fictitious gridpoints Γ∗
h. Consider the

nonlinear condition (3). This equation can be seen as a Burgers equation where −x plays the role of the time.
Between the points of Γ1h and Γ∗

1h, we will thus apply a scheme adapted to this conservation law, following the
Godunov method (see for instance [3, 5]): we set

Un
i,−1 = Un

i,0 −
K

2
∆x
∆z

[(
Un

i,0

)2 − (
Un

i−1,0

)2]
, for 1 ≤ i ≤ Nz − 1. (12)

The Neumann condition (5) can be discretized simply by

Un
i, Nx+1 = Un

i, Nx
, for 1 ≤ i ≤ Nz − 1,

(b) Next we can define the discrete solution Un+1
i,j for (i, j) ∈ Ωh. The Dirichlet conditions (4) and (6) fix its

values on Γ2h and Γ4h:

Un+1
0, j = 1, for 0 ≤ j ≤ Nx; Un+1

Nz, j = 0, for 0 ≤ j ≤ Nx.

Finally we discretize the heat equation by the five points explicit scheme. For (i, j) ∈ Ωh \ Γ2h \ Γ4h, we set

Un+1
i,j − Un

i,j

∆t
=
Un

i,j+1 + Un
i,j−1 − 2Un

i,j

(∆x)2
+
Un

i+1,j + Un
i−1,j − 2Un

i,j

(∆z)2
· (13)

Using the discrete derivative operators Dk,0 and D0,k introduced in the previous section, this finite difference
scheme can be rewritten in a more compact way:

(a) for (i, j) ∈ Γ1h and 1 ≤ i ≤ Nz − 1, D0,−1 U
n
i,j =

K

2
D−1,0

[
(Un

i,j)
2
]
,

for (i, j) ∈ Γ3h and 1 ≤ i ≤ Nz − 1, D0,+1 U
n
i,j = 0,

(b) for (i, j) ∈ Γ2h, Un+1
i,j = 1,

for (i, j) ∈ Γ4h, Un+1
i,j = 0,

for (i, j) ∈ Ωh \ Γ2h \ Γ4h, Un+1
i,j = Un

i,j + ∆t
[
D0,−1D0,+1U

n
i,j +D−1,0D+1,0U

n
i,j

]
.

(14)

(15)

(16)

(17)

(18)

The standard results [3, 5] on these schemes enable to deduce the following lemma, stated here without proof.

Lemma 1.1. The scheme (14)–(18) is an approximation of problem (2)–(7) which is consistent and accurate
of order 1.
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2. Stability of the scheme

In this section, we shall obtain some estimates which will be sufficient to prove the convergence of the scheme.

2.1. The discrete maximum principle

The first estimates are obtained thanks to the maximum principle:

Lemma 2.1. If the initial data verifies (11) and if the time and space steps verify(
1 +

1
2

max
(

0, K
∆x
∆z

− 1
))

∆t
∆x2

+
∆t
∆z2

≤ 1
2
, (19)

then for all (n, i, j) ∈ N × Ωh we have

0 ≤ Un
i,j ≤ 1. (20)

Proof. If the Un
i,j are bounded by 1, the CFL condition for the Burgers equation (3) writes

K
∆x
∆z

≤ 1. (CFL)

In a first step, we assume that (CFL) is verified. Then (19) becomes

∆t
∆x2

+
∆t
∆z2

≤ 1
2

(21)

and the proof of the lemma is immediate, since each step of the scheme preserves the discrete maximum principle.
One can for instance refer to [3] for the Godunov scheme and to [4] for the 5-points finite difference scheme for
the Laplacian. Remark indeed that (21) is the classical L∞-stability condition for this scheme.

Therefore we only treat the case where (CFL) is not verified. In this case the boundary condition on Γ1h is
L∞-unstable. Nevertheless this lemma says that the scheme will be stabilized thanks to the equation inside the
domain, under condition (19) which is stronger than (21). We denote

λ = K
∆x
∆z

, µx =
∆t
∆x2

, µz =
∆t
∆z2

·

With these notations, we have λ > 1 and (19) reads

(1 + λ)µx + 2µz ≤ 1. (22)

Consider a solution which verifies (20) at step n. Since (19) implies (21), we already have 0 ≤ Un+1
i,j ≤ 1 for

(i, j) ∈ Ωh \Γ1h. It remains to show this formula for (i, j) on the part of the boundary Γ1h. Equation (12) reads

Un
i,−1 = Un

i,0 −
λ

2
(
Un

i,0 − Un
i−1,0

) (
Un

i,0 + Un
i−1,0

)
, for 0 < i < Nz.

Then we plug it into (13). For 0 < i < Nz we obtain

Un+1
i,0 =

(
1 − 2µz − µx − λ

Un
i,0 + Un

i−1,0

2
µx

)
Un

i,0 +
(
µz + λ

Un
i,0 + Un

i−1,0

2
µx

)
Un

i−1,0 + µz U
n
i+1,0 + µx U

n
i,1 .

(23)
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To conclude, it suffices to check that the second-hand side is a convex combination of Un
i,0, U

n
i−1,0, U

n
i+1,0 and

Un
i,1. By (20) we have

1 − 2µz − (1 + λ)µx ≤ 1 − 2µz − µx − λ
Un

i,0 + Un
i−1,0

2
µx and 0 ≤ µz + λ

Un
i,0 + Un

i−1,0

2
µx.

Thus, under Condition (22), the four coefficients in the right-hand side of (23) are nonnegative. One can
conclude the proof since their sum is equal to 1. �
Lemma 2.2. Assume that the initial data verifies (11) and that (19) is fulfilled. If moreover there exists a real
number A ≥ 0 independent of the grid such that

∀(i, j) ∈ Ω \ Γ2h, D−1,0 U
0
i,j ≤ A, (24)

then we have

∀(n, i, j) ∈ N × (Ω \ Γ2h), D−1,0 U
n
i,j ≤ A. (25)

One can remark that this condition (25) is formally analogous to the standard condition for entropic shocks of
the Burgers equation. This inequality will be used twice in this paper: for the energy estimate (34) and for the
proof of uniqueness in Theorem 3.3.

Proof. Let

Wn
i,j = D−1,0U

n
i,j =

Un
i,j − Un

i−1,j

∆z
,

for (i, j) ∈ Ωh \ Γ2h and for (i, j) ∈ Γ∗
1h ∪ Γ∗

3h such that i ≥ 2. Assumption (24) implies Wn
i,j ≤ A.

It is straightforward to check that the Wn
i,j verify the following scheme (with the same notations λ, µz and

µx as in the proof of Lem. 2.1):

(a) for 2 ≤ i ≤ Nz − 1, Wn
i, Nx+1 = Wn

i, Nx

Wn
i, −1 = Wn

i,0 −
λ

2
[
(Un

i,0 + Un
i−1,0)W

n
i,0 − (Un

i−1,0 + Un
i−2,0)W

n
i−1,0

]
,

(b) for 0 ≤ j ≤ Nx, Wn+1
1, j =

Un+1
1, j − 1

∆z
, Wn+1

Nz, j = −
Un+1

Nz−1, j

∆z
,

for 2 ≤ i ≤ Nz − 1, 0 ≤ j ≤ Nx,

Wn+1
i,j = (1 − 2µz − 2µx)Wn

i,j + µz(Wn
i−1,j +Wn

i+1,j) + µx(Wn
i,j−1 +Wn

i,j+1).

For 0 ≤ j ≤ Nx (20) directly gives

Wn+1
1, j ≤ 0 and Wn+1

Nz, j ≤ 0.

Next for 2 ≤ i ≤ Nz − 1 and 1 ≤ j ≤ Nx, the five-points Laplacian and the discrete Neumann condition on Γ3h

imply Wn+1
i,j ≤ A. Therefore, as in the proof of Lemma 2.1, the main difficulty consists in proving this inequality

for (Wn+1
i,0 )i≥2, i.e. on the boundary Γ1h. This element is defined by

Wn+1
i,0 = (1 − 2µz − 2µx)Wn

i,0 + µzW
n
i−1,0 + µz W

n
i+1,0 + µx W

n
i,1 + µx W

n
i,−1. (26)
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Recall that by assumption we have

Wn
i,0 ≤ A, Wn

i−1,0 ≤ A, Wn
i+1,0 ≤ A, Wn

i,1 ≤ A. (27)

Besides for 2 ≤ i ≤ Nz − 1 the discrete boundary condition on Γ∗
1,h gives

Wn
i,−1 = (1 − λ1)Wn

i,0 + λ2W
n
i−1,0, (28)

with

λ1 =
λ

2
(Un

i,0 + Un
i−1,0) and λ2 =

λ

2
(Un

i−1,0 + Un
i−2,0).

From (20) and (19) we get

0 ≤ λ1 ≤ 1 0 ≤ λ2 ≤ λ, 2µz + (1 + λ1)µx ≤ 1, 2µz + (1 + λ2)µx ≤ 1. (29)

Plugging (28) into (26) gives

Wn+1
i,0 = (1 − 2µz − (1 + λ1)µx)Wn

i,0 + (µz + λ2 µx)Wn
i−1,0 + µz W

n
i+1,0 + µxW

n
i,1 . (30)

In order to show that Wn+1
i,0 ≤ A, different cases have to be distinguished:

• If Wn
i−1,0 ≥ 0 and Wn

i,0 ≥ 0. Since Wn
i,0, W

n
i−1,0, W

n
i+1,0 and Wn

i,1 are bounded by A (by (27)) and their
coefficients in (30) are nonnegative (by (29)), we get

Wn+1
i,0 ≤ (1 + (λ2 − λ1)µx))A = (1 − λ

2
∆z (Wn

i,0 +Wn
i−1,0)µx)A ≤ A,

where we used Wn
i−1,0 +Wn

i,0 ≥ 0.

• If Wn
i−1,0 ≤ 0 and Wn

i,0 ≥ 0. From (28) and (29) we deduce

Wn
i,−1 ≤ (1 − λ1)Wn

i,0 ≤Wn
i,0 ≤ A.

Then (26) and (27) give directly the result.

• If Wn
i,0 ≤ 0. By (29) the coefficient of Wn

i,0 in (30) is nonnegative. Thus, thanks to (29),

Wn+1
i,0 ≤ (µz + λ2 µx)Wn

i−1,0 + µz W
n
i+1,0 + µx W

n
i,1

≤ (2µz + (1 + λ2)µx)A ≤ A.

2.2. H1 estimate

Before proving the energy estimate with the assumptions of Lemma 2.2, we state – without proof – two
formulae of discrete integration by parts.
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Lemma 2.3. Let (αi,j) and (βi,j) be two families respectively indexed on Ωh ∪ Γ∗
h and on Ωh. Then we have

∑
Ωh\Γ2h

(D−1,0 αi,j) βi,j = −
∑

Ωh\Γ4h

αi,j (D1,0 βi,j) −
1

∆z

∑
Γ2h

αi,j βi,j +
1

∆z

∑
Γ4h

αi,j βi,j , (31)

∑
Ωh\Γ2h\Γ4h

(D0,−1 αi,j) βi,j = −
∑

Ωh\Γ2h\Γ3h\Γ4h

αi,j (D0,1 βi,j) −
1

∆x

Nz−1∑
i=1

αi,−1 βi,0 +
1

∆x

Nz−1∑
i=1

αi,Nx βi,Nx .

(32)

In the introduction of this paper, we defined V as the set of the functions of H1(Ω) which vanish on Γ2 and Γ4.
The semi-norm | · |H1 is a norm of this space and will be denoted by ‖ · ‖V . We also denote its dual space by
V ∗. Let us now introduce the discrete analogous of classical functional spaces. Define firstly the linear space
Vh of dimension Nz × (Nx + 1):

Vh =
{
(vi,j)(i,j)∈Ωh

such that vi,j = 0 for (i, j) ∈ Γ2h ∪ Γ4h

}
·

Two norms are defined on this space, corresponding respectively to the L2(Ω) and V norms.

∥∥αn
i,j

∥∥
L2

h

=

(
∆z∆x

∑
Ωh

(
αn

i,j

)2)1/2

,

∥∥αn
i,j

∥∥
Vh

=

∆z∆x
∑

Ωh\Γ3h

(
D0,1 α

n
i,j

)2 + ∆z∆x
∑

Ωh\Γ4h

(
D1,0 α

n
i,j

)21/2

.

We denote by ‖ · ‖V ∗
h

the dual norm of ‖ · ‖Vh
with respect to the scalar product

(αi,j , βi,j)h = ∆z∆x
∑
Ωh

αi,j βi,j .

Consider a sequence of elements of Vh, denoted by αn
i,j . One finally defines the analogous of the L∞ ((

0, tN
)
,L2(Ω)

)
,

L2
((

0, tN
)
, V

)
and L2

((
0, tN

)
, V ∗) norms:

∥∥αn
i,j

∥∥
L∞

h ((0,N),L2
h) = max

0≤n≤N

(∥∥αn
i,j

∥∥
L2

h

)
,

∥∥αn
i,j

∥∥
L2

h((0,N),Vh)
=

(
∆t

N∑
n=0

∥∥αn
i,j

∥∥2

Vh

)1/2

,

∥∥αn
i,j

∥∥
L2

h((0,N),V ∗
h ) =

(
∆t

N∑
n=0

∥∥αn
i,j

∥∥2

V ∗
h

)1/2

.

In the sequel of this paper, we denote by C a constant independent of h = (∆t, ∆z, ∆x).

Proposition 2.4. With the assumptions of Lemma 2.2, if

∆t
∆x2

<
1
4
,

∆t
∆z2

<
1
4
, (33)
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then for all N we have the following estimates:∥∥Un
i,j

∥∥
L∞

h ((0,N),L2
h) +

∥∥Un
i,j

∥∥
L2

h((0,N),Vh)
≤ C, (34)∥∥∥D(1)Un

i,j

∥∥∥
L2

h((0,N),V ∗
h )

≤ C. (35)

Proof. Let us start by proving (34). Setting

un
i,j = Un

i,j − ψi,j , with ψi,j = 1 − i

Nz
,

we remark that it is equivalent to prove the estimate (34) for the un
i,j instead of the Un

i,j . We have un
i,j ∈ Vh and

(a) for (i, j) ∈ Γ1h and 0 < i < Nz, D0,−1 u
n
i,j =

K

2
D−1,0

[
(Un

i,j)
2
]
,

for (i, j) ∈ Γ3h and 0 < i < Nz, D0,1 u
n
i,j = 0,

(b) for (i, j) ∈ Γ2h ∪ Γ4h, un+1
i,j = 0,

for (i, j) ∈ Ωh \ Γ2h \ Γ4h, un+1
i,j = un

i,j + ∆t
[
D0,−1D0,+1 u

n
i,j +D−1,0D+1,0 u

n
i,j

]
.

(36)

(37)

(38)

(39)

Take the square of (39) and sum it for (i, j) ∈ Ωh \ Γ2h \ Γ4h:∑
Ωh\Γ2h\Γ4h

(
un+1

i,j

)2
=

∑
Ωh\Γ2h\Γ4h

(
un

i,j

)2 + 2∆t I1 + 2∆t I2 + ∆t2 R, (40)

where

I1 =
∑

Ωh\Γ2h\Γ4h

[
D0,−1D0,1 u

n
i,j

]
un

i,j, I2 =
∑

Ωh\Γ2h\Γ4h

[
D−1,0D1,0 u

n
i,j

]
un

i,j

and

R =
∑

Ωh\Γ2h\Γ4h

(
D0,−1D0,1 u

n
i,j +D−1,0D1,0 u

n
i,j

)2
.

Remark that the Dirichlet conditions (38) on Γ2h and Γ4h imply∑
Γ2h∪Γ4h

(
un+1

i,j

)2
=

∑
Γ2h∪Γ4h

(
un

i,j

)2 = 0,

thus we have ∑
Ωh

(
un+1

i,j

)2
=
∑
Ωh

(
un

i,j

)2 + 2∆t I1 + 2∆t I2 + ∆t2 R. (41)

Lemma 2.3 enables to calculate I1 and I2 thanks to discrete integrations by parts, using the discrete boundary
conditions (36)–(38):

I1 = −
∑

Ωh\Γ3h

(
D0,1 u

n
i,j

)2 − K

2∆x

∑
Γ1h

[
D−1,0

((
Un

i,j

)2)]
un

i,j and I2 = −
∑

Ωh\Γ4h

(
D1,0U

n
i,j

)2
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(in this formulae, all the terms make sense if we set for instance U−1,0 = 1 and U−1,Nz = 0). Denote

µ = 4 max
(

∆t
∆x2

,
∆t
∆z2

)
·

Thanks to (33) we have µ < 1. Besides R can be estimated as follows, using (36)–(38):

R =
∑

Ωh\Γ2h\Γ4h

(
1

∆x
D0,1 u

n
i,j −

1
∆x

D0,1 u
n
i,j−1 +

1
∆z

D1,0 u
n
i,j −

1
∆z

D1,0 u
n
i−1,j

)2

≤ 8
∆x2

∑
Ωh\Γ3h

(
D0,1 u

n
i,j

)2 +
8

∆z2

∑
Ωh\Γ4h

(
D1,0 u

n
i,j

)2 +
4

∆x2

Nz−1∑
i=1

(
D0,−1 u

n
i,0

)2
≤ 2µ

∆t∆x∆z

∥∥un
i,j

∥∥2

Vh
+

K2

∆x2

∑
Γ1h

[
D−1,0

((
Un

i,j

)2)]2
.

Therefore (41) becomes

∥∥un+1
i,j

∥∥2

L2
h

−
∥∥un

i,j

∥∥2

L2
h

+ 2(1 − µ)∆t
∥∥un

i,j

∥∥2

Vh
≤ −K∆t∆z

∑
Γ1h

[
D−1,0

((
Un

i,j

)2)]
un

i,j

+
K2∆t2∆z

∆x

∑
Γ1h

[
D−1,0

((
Un

i,j

)2)]2
.

It remains to estimate the two terms in the right-hand side of this inequality. These crucial estimates can be
obtained thanks to (20) and (25). Recall that we have:

0 ≤ Un
i,j ≤ 1, −1 ≤ un

i,j ≤ 1, D1,0 U
n
i,j ≤ A.

Let us start with the first term. If for 0 ≤ i ≤ Nz we set Φi =
(
Un

i−1,0 + Un
i,0

)
un

i,0, then we have 0 ≤ 2−Φi ≤ 4
and

−K∆t∆z
∑
Γ1h

[
D−1,0

((
Un

i,j

)2)]
un

i,j = −K∆t∆z
∑
Γ1h

[
D−1,0

(
Un

i,j

)]
Φi

= K∆t∆z
∑
Γ1h

[
D−1,0

(
Un

i,j

)]
(2 − Φi) − 2K∆t∆z

∑
Γ1h

[
D−1,0

(
Un

i,j

)]
≤ 4AK∆t∆z Nz + 2K∆t∆z

(Un
0,0 − Un

Nz,0)
∆z

≤ C∆t.

The other boundary term can be treated similarly, setting

Φ̃i =
(
Un

i,j + Un
i−1,j

) [(
(Un

i,j

)2 − (
Un

i−1,j

)2]
.
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Indeed we have 0 ≤ Φ̃i + 2 ≤ 4 and this term writes

K2∆t2∆z
∆x

∑
Γ1h

[
D−1,0

((
Un

i,j

)2)]2 =
K2∆t2

∆x

∑
Γ1h

[
D−1,0

(
Un

i,j

)]
Φ̃i

=
K2∆t2

∆x

∑
Γ1h

[
D−1,0

(
Un

i,j

)] (
Φ̃i + 2

)
− 2

K2∆t2

∆x

∑
Γ1h

[
D−1,0

(
Un

i,j

)]
≤ C

∆t2

∆x∆z
≤ Cµ∆t.

Finally we get

∥∥un+1
i,j

∥∥2

L2
h

−
∥∥un

i,j

∥∥2

L2
h

+ 2(1 − µ)∆t
∥∥un

i,j

∥∥2

Vh
≤ C∆t,

which yields (34), after a sum on n = 0 . . .Nt − 1.
To complete the proof of the theorem, it remains to show (35). The proof of this estimate is based on

a discrete variational formulation analogous to (9). Let (ϕi,j) ∈ Vh. We multiply (18) by ϕi,j and sum on
Ωh \Γ2h \Γ4h. After some discrete integration by parts it gives a first variational formulation (remark that ϕi,j

vanishes on Γ2h ∪ Γ4h):

∑
Ωh

(
D(1)Un

i,j

)
ϕi,j = −

∑
Ωh\Γ3h

(
D0,1 U

n
i,j

)
(D0,1 ϕi,j) −

∑
Ωh\Γ4h

(
D1,0U

n
i,j

)
(D1,0 ϕi,j) −

K

2
T , (42)

where T is the following discrete integral on Γ1h:

T = − 1
∆x

∑
Γ1h

[
D−1,0

((
Un

i,0

)2)]
ϕi,0.

We shall now transform (42) into a “volumic” formulation, i.e. without any sum on boundaries. Let

θi,j = θ (Xi,j) = 1 − j

Nx
·

We have θi,j = 1 on Γ1h and θi,j = 0 on Γ3h. Hence, applying some discrete integrations by parts, we compute

T = − 1
∆x

∑
Γ1h

[
D−1,0

((
Un

i,0

)2)]
ϕi,0 θi,0

=
∑

Ωh\Γ3h

[
D−1,0

((
Un

i,j

)2)] [D0,1 (ϕi,j θi,j)] +
∑

Ωh\Γ1h

[
D0,−1D−1,0

((
Un

i,j

)2)]
ϕi,j θi,j

=
∑

Ωh\Γ3h

[
D−1,0

((
Un

i,j

)2)] [D0,1 (ϕi,j θi,j)] −
∑

Ωh\Γ1h\Γ4h

[
D0,−1

((
Un

i,j

)2)] [D1,0 (ϕi,j θi,j)] .
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This enables to write the discrete variational formulation of problem (2)–(7):∑
Ωh

(
D(1)Un

i,j

)
ϕi,j = −

∑
Ωh\Γ3h

(
D0,1 U

n
i,j

)
(D0,1 ϕi,j) −

∑
Ωh\Γ4h

(
D1,0 U

n
i,j

)
(D1,0 ϕi,j)

+
K

2

∑
Ωh\Γ3h

[
D−1,0

((
Un

i,j

)2)] [D0,1 (ϕi,j θi,j)]

− K

2

∑
Ωh\Γ1h\Γ4h

[
D0,−1

((
Un

i,j

)2)] [D1,0 (ϕi,j θi,j)] . (43)

Remark now that we have

D−1,0

((
Un

i,j

)2) =
(
Un

i,j + Un
i−1,j

)
D−1,0 U

n
i,j , D0,−1

((
Un

i,j

)2) =
(
Un

i,j + Un
i,j−1

)
D0,−1 U

n
i,j .

Hence from (20) we deduce ∥∥∥(Un
i,j

)2∥∥∥
Vh

≤ 2
∥∥Un

i,j

∥∥
Vh
.

Besides we have also

‖ϕi,j θi,j‖Vh
≤ C ‖ϕi,j‖Vh

.

Therefore the Cauchy-Schwarz inequality applied to the right-hand side of (43) gives

∆z∆x

∣∣∣∣∣∑
Ωh

(
D(1)Un

i,j

)
ϕi,j

∣∣∣∣∣ ≤ C
∥∥Un

i,j

∥∥
Vh

‖ϕi,j‖Vh
,

which implies ∥∥∥D(1)Un
i,j

∥∥∥
V ∗

h

≤ C
∥∥Un

i,j

∥∥
Vh
.

The proof is complete thanks to (34).

We now reorganize the different terms of the discrete variational formulation in order to compute all the
two-dimensional sums on the set Ω̃h = Ωh \ Γ3h \ Γ4h, which contains exactly Nz × Nx points. The following
weak formulation will be used for the convergence proof:∑

Ω̃h

(
D(1)Un

i,j

)
ϕi,j = −

∑
Ω̃h

(
D0,1U

n
i,j

)
(D0,1 ϕi,j) −

∑
Ω̃h

(
D1,0 U

n
i,j

)
(D1,0 ϕi,j)

+
K

2

∑
Ω̃h

[
D1,0

((
Un

i,j

)2)] [D0,1 (ϕi+1,j θi+1,j)]

− K

2

∑
Ω̃h

[
D0,1

((
Un

i,j

)2)]
[D1,0 (ϕi,j+1 θi,j+1)]

+ Rn + Sn, (44)
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where the two terms of the remainder are

Rn = −
∑
Γ3h

(
D(1)Un

i,j

)
ϕi,j , Sn = −

∑
Γ3h, i<Nz

(
D1,0 U

n
i,j

)
(D1,0 ϕi,j) .

3. Convergence to the unique weak solution

The aim of this part is to let h tend to 0 in (44) and to show that the limit problem is (9). The method is
standard and consists in reinterpreting the sums in (44) as integral of interpolating functions.

3.1. Interpolation Operators

Let us first introduce some one-dimensional interpolation operators. Consider a sequence ui defined for
i = 0 . . .Nz and the gridpoints zi = i∆z. We define the piecewise constant interpolation operator P

0
z along the

direction z by {
∀i < Nz, ∀z ∈ [zi, zi+1[,

(
P

0
z ui

)
(z) = ui(

P
0
z ui

)
(L) = uNz

and the piecewise C1 interpolation operator P
1
z by

∀i < Nz, ∀z ∈ [zi, zi+1],
(
P

1
z ui

)
(z) = ui

(
zi+1 − z

∆z

)
+ ui+1

(
z − zi

∆z

)
·

We similarly define P
0
x, P

1
x, P

0
t and P

1
t .

The domain Ω being a rectangle, we may construct several three-dimensional (one in time and two in space)
interpolation operators as tensor products of these one-dimensional operators. Let Un

i,j be defined for n ≥ 0
and (i, j) ∈ Ωh. We define a piecewise constant interpolation of this sequence on [0, T ]× Ω by

P
0Un

i,j = (P0
t ⊗ P

0
z ⊗ P

0
x)Un

i,j

and a piecewise C1 function by

P
1Un

i,j = (P1
t ⊗ P

1
z ⊗ P

1
x)Un

i,j .

We also define a third interpolation operator – discontinuous in time but continuous in space – by

P
0,1Un

i,j = (P0
t ⊗ P

1
z ⊗ P

1
x)Un

i,j .

The following technical lemma, given without proof, states the properties of these operators that we shall use
to pass to the limit as h→ 0:

Lemma 3.1. (a) Let ui,j and vi,j be two sequences defined for (i, j) ∈ Ωh. Then we have

∆z∆x
∑
Ω̃h

ui,j vi,j =
∫

Ω

(
P

0 ui,j

) (
P

0 vi,j

)
, (45)

(b) The operators P
1, P

0 and P
0,1 are bounded from L2

h((0, N),L2
h) to L2((0, tN ),L2(Ω)),

from L∞
h ((0, N),L2

h) to L∞((0, tN ),L2(Ω))

and from L2
h((0, N), V ∗

h ) to L2((0, tN ), V ∗).
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(c) The operator P
1 is bounded from L2

h((0, N), Vh) to L2((0, tN ), V ).

(d) Let un
i,j be bounded in L2

h

(
(0, N),L2

h

)
. Then we have

∥∥P
1 un

i,j − P
0 un

i,j

∥∥
L2((0,tN ),L2(Ω))

= O(h). (46)

(e) Let un
i,j be bounded in L2

h ((0, N), V ∗
h ). Then we have

∥∥P
1 un

i,j − P
0,1 un

i,j

∥∥
L2((0,tN ),V ∗(Ω))

+
∥∥P

1 un
i,j − P

0 un
i,j

∥∥
L2((0,tN ),V ∗(Ω))

= O(h). (47)

(f) Let un
i,j be bounded in L2

h ((0, N), Vh). Then we have

∥∥∂z

(
P

1 un
i,j

)
− P

0
(
D1,0u

n
i,j

)∥∥
L2((0,tN ),L2(Ω))

+
∥∥∂x

(
P

1 un
i,j

)
− P

0
(
D0,1u

n
i,j

)∥∥
L2((0,tN ),L2(Ω))

= O(h). (48)

3.2. The convergence result

The following theorem is the main result of this paper. It states the convergence of our finite difference
scheme and provides a constructive existence proof for problem (2)–(7). It will be completed by a uniqueness
result in next section (Th. 3.3).

Theorem 3.2. Let U0 be an initial data in L2(Ω) satisfying 0 ≤ U0 ≤ 1. Assume that there exists a real
number A ≥ 0 such that

∂zU
0 ≤ A a.e. on Ω (49)

and consider the sequence Un
i,j constructed by the scheme (14)–(18). If the gridsteps satisfy (19) and (33) then

for all T > 0 the sequence
(
P

1Un
i,j

)
converges as h→ 0 to a weak solution U of (2)–(7). This convergence holds

in the L2((0, T ),L2(Ω)) norm and almost everywhere on (0, T )× Ω. Moreover this solution verifies

U ∈ L2
(
(0, T ),H1(Ω)

)
∩ C0

(
[0, T ],L2(Ω)

)
, (50)

0 ≤ U ≤ 1 and ∂zU ≤ A a.e. on (0, T ) × Ω. (51)

Proof. Let Uh = P
1Un

i,j . Remark that ∂tUh = P
0,1

(
D(1)Un

i,j

)
. Hence by Proposition 2.4 and Lemma 45 we

have {
Uh is bounded in L2((0, T ), V ) ∩ L∞((0, T ),L2(Ω)),

∂tUh is bounded in L2((0, T ), V ∗).

This enables us to apply a standard compactness result [6]. After extraction of a subsequence we have
Uh → U in L2((0, T ),L2(Ω)) strong,

Uh ⇀ U in L2((0, T ),H1(Ω)) weak and in L∞((0, T ),L2(Ω)) weak *,

∂tUh ⇀ ∂tU in L2((0, T ), V ∗) weak.
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Thanks to Lemma 3.1 we deduce:
P

0Un
i,j → U in L2((0, T ),L2(Ω)) strong,

P
0
(
D(1)Un

i,j

)
⇀ ∂tU in L2((0, T ), V ∗) weak,

P
0
(
D0,1U

n
i,j

)
⇀ ∂xU and P

0
(
D1,0U

n
i,j

)
⇀ ∂zU in L2((0, T ),L2(Ω)) weak.

(52)

Let us now rewrite (44) by transforming the discrete sums on Ω̃h into integrals thanks to Lemma 3.1 (a). Let
ϕ ∈ C∞(Ω) which vanishes on Γ2 ∪ Γ4. The sequence ϕi,j = ϕ(Xi,j) is in Vh and we have∫

Ω

(
P

0
(
D(1)Un

i,j

)) (
P

0 ϕi,j

)
= −

∫
Ω

(
P

0
(
D0,1 U

n
i,j

)) (
P

0 (D0,1 ϕi,j)
)
−
∫

Ω

(
P

0
(
D1,0 U

n
i,j

)) (
P

0 (D1,0 ϕi,j)
)

+
K

2

∫
Ω

(
P

0
(
Un

i,j + Un
i+1,j

)) (
P

0
(
D1,0U

n
i,j

)) (
P

0 (D0,1 (ϕi+1,j θi+1,j))
)

− K

2

∫
Ω

(
P

0
(
Un

i,j + Un
i,j+1

)) (
P

0
(
D0,1U

n
i,j

)) (
P

0 (D1,0 (ϕi,j+1 θi,j+1))
)

+ R̃n + S̃n, (53)

with

R̃n = −∆z∆x
∑
Γ3h

(
D(1)Un

i,j

)
ϕi,j , S̃n = −∆z∆x

Nz−1∑
i=0

(
D1,0U

n
i,Nx

)
(D1,0 ϕi,Nx) .

By (52) and some standard results of approximation (the functions ϕ and θ are smooth) we can pass to the
limit in the integrals of (53). Note that the strong convergence in L2 is required to treat the two nonlinear
terms. It remains to show that the remainders R̃n and S̃n converge to 0.

Consider first R̃n which can be interpolated in time by P
0
t . Let ζ(t) ∈ C∞

c (]0, T [). We have

∫ T

0

(
P

0
t R̃n

)
(t) ζ(t)dt = −∆z∆x

N−1∑
n=0

[∑
Γ3h

(
Un+1

i,j − Un
i,j

∆t
ϕi,j

)∫ tn+1

tn

ζ(t)dt

]

= ∆x
N−1∑
n=0

[
∆z

∑
Γ3h

(
Un

i,j ϕi,j

) ∫ tn

tn−1

ζ(t+ ∆t) − ζ(t)
∆t

dt

]
.

Note that for ∆t small enough, the discrete integration by parts in time produces no boundary term since ζ
vanishes on [0,∆t] and on [T − ∆t, T ]. Hence from 0 ≤ Un

i,j ≤ 1 we deduce∣∣∣∣∣
∫ T

0

(
P

0
t R̃n

)
ζ

∣∣∣∣∣ ≤ ∆xT ‖ϕ‖L∞‖ζ′‖L∞ ≤ C∆x,

thus R̃n converges to 0 in D′(0, tN). The second term, S̃n, converges to 0 uniformly with respect to n. Indeed,
an integration by parts gives

S̃n = ∆z∆x
Nz−1∑
i=1

Un
i,Nx

(D−1,0D1,0 ϕi,Nx) + ∆xD1,0 ϕ0,Nx

≤ ∆x (‖∂zzϕ‖L∞ + ‖∂zϕ‖L∞) .
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Finally letting h→ 0 in (53) gives

d
dt

∫
Ω

U ϕ = −
∫

Ω

∇U.∇ϕ+K

∫
Ω

U(∂zU) ∂x(ϕθ) −K

∫
Ω

U(∂xU) (∂zϕ)θ (54)

in the D′(0, tN ) sense. By remarking that ∂xθx = −1/l, we conclude that U verifies (9). The continuity of U
with respect to time in (50) is deduced from an Aubin-Lions theorem and the estimates (51) can be obtained
easily by passing to the limit in (20) and (25). Actually, we have not proved yet that all the sequence converges,
but only a subsequence of Uh. This result will be deduced from the uniqueness result of Theorem 3.3. �

3.3. Uniqueness of the variational solution

Theorem 3.3. There exists a unique weak solution of (2)–(7)

U ∈ L2((0, T ),H1(Ω)) ∩ L∞((0, T ) × Ω)

in the class of the solutions that verify

(∂zU)+ ∈ L∞((0, T ) × Ω). (55)

Proof. A weak solution of (2)–(7) verifies (8) for every function ϕ ∈ H1(Ω):∫
Ω

∂tU ϕ+
∫

Ω

∇U.∇ϕ+
K

2
〈
∂z

(
U2

)
, ϕ

〉
H1/2(Γ1),H1/2(Γ1)

= 0,

where ∂tU ∈ L2((0, T ), V ∗) and ∂z

(
U2

)
∈ L2

(
(0, T ),H−1/2(Γ1)

)
.

Let U1 and U2 be two weak solution of this problem which verify (55). We set w = U1 −U2. The idea of the
proof is to take as a test-function a regularization of sign(w). We define the piecewise C1 function:

Sδ(w) =


−w − δ

2
for w ≤ −δ

w2

2δ
for − δ ≤ w ≤ δ

w − δ

2
for w ≥ δ

then we take ϕ = S′
δ(w) and remark that this function belongs to L2((0, T ), V ). After some calculations we get∫

Ω

Sδ(w) +
∫ t=T

t=0

∫
Ω

S′′
δ (w) |∇w|2 = −K

2

∫ t=T

t=0

B(t)dt, (56)

with

B = 〈∂z(U1 + U2) , wR′
δ(w) −Rδ(w)〉H−1/2,H1/2 .

The condition (55) will enable us to estimate B. We remark that

∀v ∈ R, 0 ≤ vR′
δ(v) −Rδ(v) ≤

δ

2
,

thus we have, almost everywhere on (0, T ),

B ≤
∫

Γ1

(
‖(∂zU1)+‖L∞ + ‖(∂zU2)+‖L∞

) δ
2
≤ C δ.



1128 F. MEHATS

0

2
0

1

0

1

Uh(tN , z, x)

z

x

Figure 3. Initial data.

Therefore, the function S′′
δ being nonnegative, (56) gives

∫
Ω Sδ(w) ≤ C δ. To conclude we let δ → 0 in this

inequality thanks to the Lebesgue dominated convergence theorem (we have 0 ≤ Sδ(w) ≤ |w| a.e. in Ω). �

4. Numerical results

4.1. Fast propagation at the boundary

The main effect that we wanted to observe was the fast diffusion of the quantity U (the magnetic field in
the application modelled here) near the boundary. In order to show this phenomenon, we provide here several
numerical results obtained for different values of the parameter K.

The functions represented below are the following ones:

– Figure 3: the initial data U0(z, x).
– Figure 4: the solution U(tN , z, x) computed for K = 0 at tN = 200∆t. This is the solution of the

one-dimensional heat equation (the function is invariant along the direction x) which can be used as the
benchmark to be compared with the solutions for K > 0.

– Figure 5: the solution U(tN , z, x) computed for K = 3 at tN = 200∆t.
– Figure 6: the solution U(tN , z, x) computed for K = 10 at tN = 200∆t.



A NUMERICAL SCHEME FOR A NONLINEAR OBLIQUE DERIVATIVE BOUNDARY VALUE PROBLEM 1129

0

2
0

1

0

1

Uh(tN , z, x)

z

x

Figure 4. Numerical solution for K = 0.

The common parameters of these computations are

L l Nz Nx ∆t N

2 1 50 25 2 × 10−5 200

We recall the L∞ stability criterium (19) and we set

ν =
(

2 + max
(

0, K
∆x
∆z

− 1
))

∆t
∆x2

+ 2
∆t
∆z2

·

The stability condition is fulfilled in the three cases K = 0, 3 and 10, since we have

K 0 3 10
ν 0.05 0.08 0.16

From these numerical results, one can make the following two observations:
- When K > 0 a propagation from the left to the right can be observed near the boundary x = 0: this is the

fast propagation of the field.
- The larger is K, the faster is this diffusion near the boundary.
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Figure 5. Numerical solution for K = 3.

4.2. Numerical stability

In this section we show – numerically – that the theoretical L∞ stability condition (33) is optimal. The
gridsteps ∆z and ∆x and an initial data are fixed here. The parameters which vary are K and ∆t. Let

stab(K) =
1(

2 + max
(
0, K ∆x

∆z − 1
))

1
∆x2 + 2

∆z2

·

The theoretical L∞ stability condition (19) writes

∆t ≤ stab(K).

The following figure represents the stability diagram, where we plotted the theoretical stability condition
stab(K). We applied a grid on the domain in (K,∆t) and used our numerical scheme for the points of this grid.
In Figure 7, a cross represents a pair (K,∆t) which lead to a numerical instability. For the sake of clarity of
the figure, we did not represent the pairs that lead to a stable calculation.

Numerically, one can distinguish a stable domain and an unstable domain, separated by a curve. This curve
– the bottom line of the unstable domain represented in Figure 7 – is the numerical stability condition. We
refined the mesh in K and ∆t near this curve. As a conclusion, one can note a very good agreement between
the theoretical stability condition and the numerical results.
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Figure 6. Numerical solution for K = 10.
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Figure 7. Stability of the scheme.
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