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THE TREATMENT OF “PINCHING LOCKING” IN 3D-SHELL ELEMENTS
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Abstract. We consider a family of shell finite elements with quadratic displacements across the
thickness. These elements are very attractive, but compared to standard general shell elements they
face another source of numerical locking in addition to shear and membrane locking. This additional
locking phenomenon – that we call “pinching locking” – is the subject of this paper and we analyse
a numerical strategy designed to overcome this difficulty. Using a model problem in which only this
specific source of locking is present, we are able to obtain error estimates independent of the thickness
parameter, which shows that pinching locking is effectively treated. This is also confirmed by some
numerical experiments of which we give an account.
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Introduction

As defined and discussed in [10] (see also [6]), “3D-shell” elements are finite elements – for shell structures –
which belong to the category of general shell elements (see [1,8]) and are based on a complete quadratic expansion
of the displacements across the thickness (as opposed to, e.g., the Reissner–Mindlin kinematical assumption
which corresponds to an incomplete linear expansion). These shell elements feature three major advantages
compared to standard general shell elements:

1. The complete quadratic expansion allows the use of nodes on the outer (i.e. upper and lower) surfaces of
the shell, with degrees of freedom that correspond to displacements only (rotational degrees of freedom are
not required). Hence these elements have the same external characteristics (geometry, shape functions)
as 3D isoparametric elements. This – in particular – makes the coupling with other elements (fluids,
solids, ...) sharing the same outer surfaces straightforward, see [10].

2. These shell elements can be used with a 3D variational formulation without modifying the constitutive
equation, namely without resorting to a plane stress assumption which is rather cumbersome to handle
when considering large strains and stresses.

3. We can expect that structures that undergo large strains are much better accounted for with this approach,
since the quadratic kinematical assumption allows for complex transverse strains.

One of the main challenges in the design of shell finite elements is their ability to resist numerical locking
phenomena, see in particular [1,7,9]. This is – to a large extent – still an open problem since we do not know of
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any shell finite element procedure that would have been proven to give uniform error estimates (with respect to
the thickness parameter) for the main two categories of asymptotic behaviour encountered, namely the bending-
dominated and membrane-dominated behaviours [7, 9]. Nevertheless, the same treatments already applied on
standard general shell elements (in particular those substantiated by thorough numerical assessments, see [2])
can be applied on 3D-shell elements also. In addition to membrane and shear locking encountered with classical
elements, however, it can be shown that 3D-shell elements face another source of locking, that we call “pinching
locking” in this paper. Although many shell finite element procedures using kinematical assumptions of higher
order (in the transverse direction) than the Reissner–Mindlin assumptions have already been proposed and
discussed, see e.g. [4, 12, 14], a mathematical analysis of the pinching locking phenomenon leading to efficient
mathematically-substantiated treatments is missing, and this is the objective of the present paper.

In order to explain the concept of pinching locking, we consider the quadratic kinematical assumption written
in the form

�U(ξ1, ξ2, ξ3) = �u(ξ1, ξ2) + ξ3�θ(ξ1, ξ2) + (ξ3)2�τ (ξ1, ξ2), (ξ1, ξ2) ∈ ω, ξ3 ∈
[
− t

2
,
t

2

]
, (1)

where (ξ1, ξ2) denote the curvilinear coordinates (lying in ω, a domain of R
2) that parametrize the midsurface

of the shell while ξ3 corresponds to the transverse direction and t denotes the thickness (assumed to be constant
in this paper). With this notation, the transverse linearized strain e33 reads

e33 = θ3 + 2ξ3τ3, (2)

where the index “3” denotes the transverse component, namely, defining �a3 as the unit normal vector to the
midsurface,

θ3 = �θ · �a3, τ3 = �τ · �a3. (3)

We call θ3, the first term in the expansion of e33, the “pinching strain”. Then, when the geometry and the
loading are such that pure bending is not inhibited (see e.g. [7, 9]), it can be shown that the pinching strains
“tend to vanish” when the thickness parameter tends to zero, just as the membrane and shear strains (the
first terms in the expansions of the twice-tangential and tangential-transverse strains, respectively) also tend to
vanish [10]. Namely, there exists a well-defined limit solution and this solution satisfies the constraint

�θ · �a3 (= θ3) = 0. (4)

Clearly, this induces an additional source of locking since the corresponding constraint enforced on a finite
element solution is that

�θh · �a3 = 0 (5)

over ω, denoting by �θh the first term in the expansion of the discrete solution. Indeed, as �θh is typically a
piecewise polynomial while �a3 is an arbitrary function, this constraint is frequently fulfilled for �θh = �0 only,
which means that locking occurs. This is what we call “pinching locking”. This phenomenon is also called
“curvature thickness locking” in [3], because it does not arise when �a3 is constant (zero curvature). It should
not be confused with the phenomenon sometimes referred to as “Poisson thickness locking” which is – in fact –
not a numerical locking phenomenon [3].

In this paper we analyse a technique designed to circumvent pinching locking. The basic idea to that purpose
consists in using, in the discrete variational formulation, the interpolation of the pinching strain – with the
interpolation operator corresponding to the finite element shape functions – instead of the pinching strain
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directly computed from the displacements. Hence, instead of (5) we impose the relaxed constraint

I
(
�θh · �a3

)
= 0, (6)

where I denotes the interpolation operator, which means that we typically impose (5) at the nodes only. This
natural idea has already been proposed by several authors, see [3] and references therein, and we emphasize
that the originality of our approach lies in the mathematical analysis performed.

The outline of the paper is as follows. In Section 1 we define the model problem that we consider throughout
the paper, namely, a problem in which pinching locking occurs without any other specific numerical difficulty
(such as membrane and shear locking in actual shell models). In Section 2 we introduce the modified discrete
problem based on the above interpolation strategy, and we obtain uniform a priori estimates for this prob-
lem. Then, in Section 3 we present some numerical results and these results confirm the previous theoretical
discussion. Finally, we give some concluding remarks in Section 4.

1. The model problem

In order to analyse and overcome the pinching locking phenomenon, we introduce a model problem which fea-
tures the same specific source of locking as 3D-shell models without the additional difficulties and technicalities
present in shell formulations.

(P): Find �θ ε ∈ H1
0 (ω)3 such that

a
(
�θ ε, �η

)
+

1
ε2

∫
ω

(
�θ ε · �a3

)
(�η · �a3) dξ1 dξ2 = f(�η ), ∀�η ∈ H1

0 (ω)3, (7)

where

a
(
�θ, �η

)
=
∫
ω

(
∂�θ

∂ξ1
· ∂�η
∂ξ1

+
∂�θ

∂ξ2
· ∂�η
∂ξ2

)
dξ1 dξ2, (8)

f(�η ) =
∫
ω

�f · �η dξ1 dξ2, �f ∈ L2(ω)3. (9)

Here, ε – which plays the role of the thickness in shell theories – is a parameter meant to tend to zero, and
we assume that �a3 is a smooth field of unit-length vectors defined over ω̄. Of course, the bilinear form in the
left-hand side of (7) is continuous and H1

0 -coercive and f is a L2-continuous linear form. Problem (P) is then
well-posed because we satisfy the assumptions of the Lax–Milgram lemma. Note that this is a penalty problem,
since as ε→ 0 we tend to impose on the solution of the limit problem that the pinching strain vanish.

By introducing the auxiliary unknown

p ε =
1
ε2
�θ ε · �a3, (10)

problem (P) can be written as the equivalent mixed formulation

(P ε): Find �θ ε ∈ H1
0 (ω)3 and p ε ∈ L2(ω) such that


a
(
�θ ε, �η

)
+ b(�η , p ε) = f(�η ) ∀�η ∈ H1

0 (ω)3,

b
(
�θ ε, q

)
− ε2〈p ε, q〉L2 = 0 ∀q ∈ L2(ω),
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with

b(�η , q) =
∫
ω

q (�η · �a3) dξ1dξ2 = 〈q , �η · �a3〉H−1×H1
0
. (11)

The solution depends on the small parameter ε and the tentative limit problem, as ε→ 0, reads

(P0): Find �θ ∈ H1
0 (ω)3 and p ∈ H−1(ω) such that


a
(
�θ, �η

)
+ b(�η , p) = f(�η ) ∀�η ∈ H1

0 (ω)3,

b
(
�θ, q
)

= 0 ∀q ∈ H−1(ω).

Observing that (P ε) is a regularized form of the saddle-point problem (P0), the well-posedness of these problems
crucially relies on two (classical) conditions, namely, the coercivity of the bilinear form a(·, ·) and the inf-sup
condition for the bilinear form b (see in particular [5]). The coercivity of a holds over the whole space H1

0 (ω)3,
hence we only need to check the inf-sup condition for the bilinear form b.

In the sequel, we use the symbol C to denote a generic positive constant – independent of ε and of the mesh
parameter h – that may take different values at successive occurrences (including possibly in a single equation).
Likewise γ will denote a generic strictly positive constant (also independent of ε).

Proposition 1.1. There exists a strictly positive constant δ, such that

sup
�η ∈H1

0 (ω)3

b(�η , q)
‖ �η ‖1

≥ δ‖ q ‖−1, ∀q ∈ H−1(ω). (12)

Proof. Take an arbitrary q ∈ H−1(ω). By the Riesz representation theorem, there exists a unique φ ∈ H1
0 (ω)

such that ∫
ω

∇φ · ∇ψ dξ1dξ2 = 〈q, ψ〉H−1×H1
0
, ∀ψ ∈ H1

0 (ω) (13)

and

|φ |1 = ‖ q ‖−1. (14)

Hence, by using (13) and considering the particular field �η = φ�a3 ∈ H1
0 (ω)3 we have

sup
�η∈H1

0 (ω)3

〈 q , �η · �a3 〉H−1×H1
0

‖ �η ‖1
= sup

�η ∈H1
0 (ω)3

∫
ω
∇φ · ∇( �η · �a3 ) dξ1dξ2

‖ �η ‖1

≥
∫
ω∇φ · ∇(φ�a3 · �a3 ) dξ1dξ2

‖φ�a3 ‖1
=

∫
ω(∇φ )2 dξ1dξ2

‖φ�a3 ‖1
· (15)

Then, since

‖φ�a3 ‖1 ≤ γ‖φ ‖1 ≤ γ|φ |1, (16)
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from (14), (15) and (16) we infer

sup
�η ∈H1

0 (ω)3

〈 q , �η · �a3 〉H−1×H1
0

‖ �η ‖1
≥ γ|φ |1 = γ‖ q ‖−1, (17)

and (12) follows. �
As a consequence, problems (P ε) and (P0) are well-posed and (P0) is the limit problem for (P ε) as stated

in the following proposition, see [5] (Rem. 1.13, Prop. 4.2).

Proposition 1.2. Problem (P ε) has a unique solution
(
�θ ε, p ε

)
∈ H1

0 (ω)3 × L2(ω) and this solution satisfies

∥∥∥ �θ ε ∥∥∥
1
+ ‖ p ε ‖−1 + ε‖ p ε ‖0 ≤ C‖ f ‖0. (18)

In addition, Problem (P0) also has a unique solution
(
�θ, p
)

that is the limit of
(
�θ ε, p ε

)
, namely,

∥∥∥ �θ ε − �θ
∥∥∥

1
+ ‖ p ε − p ‖−1

ε→0−→ 0. (19)

Remark 1.3. We observe that – as is the case in, e.g., plate and shell formulations [5,9] – we “lose control” on
the L2-norm of the “Lagrange multiplier” (namely, p ε here) in the estimate (18). This is – of course – because
the inf-sup condition only holds in H−1, which is also why the limit problem is posed in this space.

Remark 1.4. We note that the above asymptotic behaviour “degenerates” when the “loading” considered does
not activate the fields that satisfy the constraint (4), namely when ∀�η ∈ H1

0 (ω)3

�η · �a3 = 0 =⇒ f(�η) = 0. (20)

This may occur e.g. when �f is everywhere directed along �a3. In such a case we indeed have the zero solution
for the limit problem (P0), which may indicate that the asymptotic assumptions – in particular the scaling of
the right-hand side in (P) – is not appropriate. However this specific situation would not occur as such in a
shell problem for which �θ is coupled to the other displacement unknowns through the energy. Hence we need
not be concerned by this particular case (for which all the results given are also valid) in the sequel.

2. The discrete problem

2.1. Variational formulation

We consider the following displacement-based discrete formulation for (P)

(Ph): Find �θ εh ∈ Vh such that

a
(
�θ εh , �η

)
+

1
ε2

∫
ω

I
(
�θ εh · �a3

)
I(�η · �a3) dξ1 dξ2 = f(�η ), ∀�η ∈ Vh. (21)

We consider

Vh = { �η ∈ C0(ω)3 such that �η |T ∈ Pk(T )3, ∀T ∈ Th, �η = �0 on ∂ω}, (22)

where Th represents a triangulation given over the domain ω, Pk(T ) the (finite-dimensional) space consisting
of the restrictions of polynomials of degree k to the finite element T ∈ Th, and h denotes the maximum of all
element diameters. We also recall that I denotes the interpolation operator associated with Vh.
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By introducing

p εh =
1
ε2

I
(
�θ εh · �a3

)
, (23)

problem (Ph) can be written as the equivalent mixed approximation procedure

(Pεh): Find �θ εh ∈ Vh and p εh ∈ Qh such that

a
(
�θ εh , �η

)
+ bh( �η , p εh ) = f(�η ) ∀�η ∈ Vh,

bh

(
�θ εh , q

)
− ε2〈 p εh , q 〉L2 = 0 ∀q ∈ Qh,

where Qh ⊂ L2(ω) is the finite element space defined by

Qh = { q ∈ C0(ω) such that q |T ∈ Pk(T ), ∀T ∈ Th, q = 0 on ∂ω}, (24)

and bh denotes the modified bilinear form

bh(�η , q) =
∫
ω

q I(�η · �a3) dξ1dξ2 = 〈 q , I(�η · �a3) 〉H−1×H1
0
. (25)

Since Vh = (Qh)3 we will use the same notation for the operators associated to both spaces Vh and Qh, without
any risk of confusion.

By using the modified bilinear form bh we relax the constraint that we tend to impose as ε→ 0 in the form

I
(
�θh · �a3

)
= 0. (26)

We claim that this relaxed constraint is the discrete analogue of (4), hence we expect this modified formulation
to be free of locking, which we proceed to demonstrate.

Recalling that a is coercive over the whole space H1
0 (ω)3, the well-posedness of (P εh) crucially relies on a

discrete inf-sup condition [5]. We first establish this inf-sup condition before using it to obtain the stability in
a stability-consistency argument. We henceforth assume that the family of triangulations Th is quasi-uniform,
i.e. ∃ ν > 0 such that

νh ≤ hT , ∀T ∈ Th. (27)

Proposition 2.1. There exists a strictly positive constant δ, such that

sup
�η ∈Vh

bh(�η , q)
‖ �η ‖1

≥ δ‖ q ‖−1, ∀q ∈ Qh. (28)

Proof. We take an arbitrary q ∈ Qh and we define φh ∈ Qh as the solution of the finite element problem∫
ω

q ψ dξ1dξ2 =
∫
ω

∇φh · ∇ψ dξ1dξ2, ∀ψ ∈ Qh. (29)

Note that Qh ⊂ H1
0 (ω)3, hence this is a well-posed problem and we have

|φh |1 ≤ C‖ q ‖−1. (30)
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Then,

sup
�η∈Vh

∫
ω q I(�η · �a3) dξ1dξ2

‖ �η ‖1
= sup

�η∈Vh

∫
ω∇φh · ∇ I(�η · �a3) dξ1dξ2

‖ �η ‖1

≥
∫
ω∇φh · ∇ I (I(φh�a3) · �a3) dξ1dξ2

‖ I(φh�a3) ‖1
=

∫
ω∇φh · ∇φh dξ1dξ2

‖ I(φh�a3) ‖1
· (31)

The key point in the above inequality is that the particular vector �η = I(φh�a3) belongs to Vh. We also used
the relation

I ( I(φh�a3 ) · �a3) = I(φh) = φh. (32)

We also have, by a standard scaling argument,

‖ I(φh�a3) ‖1 ≤ γ‖φh ‖1. (33)

Hence, from (31) and (33) we obtain that

sup
�η ∈Vh

∫
ω q I(�η · �a3) dξ1dξ2

‖ �η ‖1
≥ γ

∫
ω∇φh · ∇φh dξ1dξ2

‖φh ‖1
≥ γ‖φh ‖1. (34)

We still need to prove that

‖ q ‖−1 ≤ γ‖φh ‖1. (35)

Defining Πh as the L2-projection onto the subspace Qh, we have

‖ q ‖−1 = sup
ψ∈H1

0

∫
ω q ψ dξ1dξ2

‖ψ ‖1
= sup

ψ∈H1
0

∫
ω qΠhψ dξ1dξ2

‖ψ ‖1
(36)

= sup
ψ∈H1

0

∫
ω
∇φh∇(Πhψ) dξ1dξ2

‖ψ ‖1
≤ |φh |1 sup

ψ∈H1
0

|Πhψ |1
‖ψ ‖1

, (37)

where we used ∫
ω

q ψ dξ1dξ2 =
∫
ω

qΠhψ dξ1dξ2, ∀ψ ∈ H1
0 (ω). (38)

Under the quasi-uniformity assumption (27) the following estimate holds for any ψ ∈ H1
0 (ω)

‖Πhψ − ψ ‖1 ≤ C‖ψ ‖1. (39)

Indeed, denoting by Λ the Clément interpolation operator, we have

‖Πhψ − ψ ‖1 ≤ ‖Πhψ − Λψ ‖1 + ‖Λψ − ψ ‖1

≤ C
(
h−1‖Πhψ − Λψ ‖0 + ‖ψ ‖1

)
≤ C

[
h−1( ‖Πhψ − ψ ‖0 + ‖ψ − Λψ ‖0 ) + ‖ψ ‖1

]
≤ C

[
h−1 × h‖ψ ‖1 + ‖ψ ‖1

]
≤ C ‖ψ ‖1, (40)
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where we used an inverse inequality – under the assumption that the mesh is quasi-uniform – and the following
classical estimates, see e.g. [13]

‖Πhψ − ψ ‖0 ≤ Ch‖ψ ‖1, (41)

‖Λψ − ψ ‖0 ≤ Ch‖ψ ‖1. (42)

Then, from (39) we have

sup
ψ∈H1

0

|Πhψ |1
‖ψ ‖1

≤ C, (43)

hence from (37),

‖ q ‖−1 ≤ C|φh |1, (44)

and the conclusion follows. �

2.2. A priori estimates

We introduce the mixed bilinear forms associated to problems (Pε) and (Pεh), namely, respectively,

M
(
�θ, p; �η , q

)
= a

(
�θ, �η

)
+ b

(
�θ, q
)

+ b(�η , p) − ε2〈p, q〉L2 , ∀
(
�θ, p
)
, (�η , q) ∈ H1

0 (ω)3 × L2(ω), (45)

Mh

(
�θ, p; �η , q

)
= a

(
�θ, �η

)
+ bh

(
�θ, q
)

+ bh(�η , p) − ε2〈p, q〉L2 , ∀
(
�θ, p
)
, (�η , q) ∈ Vh ×Qh. (46)

Then, (Pε) is equivalent to finding
(
�θ ε, p ε

)
∈ H1

0 (ω)3 × L2(ω) such that

M
(
�θ ε, p ε; �η , q

)
= f(�η ), ∀(�η , q) ∈ H1

0 (ω)3 × L2(ω), (47)

and (Pεh) is equivalent to finding
(
�θεh, p

ε
h

)
∈ Vh ×Qh such that

Mh

(
�θ εh , p

ε
h ; �η , q

)
= f(�η ), ∀(�η , q) ∈ Vh ×Qh. (48)

Defining the norm

‖ �η , q ‖ε =
(
‖ �η ‖2

1 + ‖ q ‖2
−1 + ε2‖ q ‖2

0

) 1
2 , (49)

we now establish the stability of Mh for this norm.

Lemma 2.2. The bilinear form Mh defined above is stable with respect to the norm ‖·, ·‖ε, i.e.

∀(�η , q) ∈ Vh ×Qh, ∃ (�η#, q#) ∈ Vh ×Qh such that

‖ �η#, q# ‖ε ≤ C‖ �η , q ‖ε, (50)

Mh(�η , q; �η#, q#) ≥ γ‖ �η , q ‖2
ε. (51)

Proof. (i) Stability in ‖ �η ‖1 and ε‖ q ‖0.
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Taking (�η1, q1) = (�η ,−q) we have

‖ �η1, q1 ‖ε = ‖ �η , q ‖ε (52)

and

Mh(�η , q ; �η1, q1) = a(�η ; �η ) + ε2‖ q ‖2
0. (53)

Hence the coercivity of a(·, ·) implies

Mh(�η , q ; �η1, q1) ≥ γ
(
‖ �η ‖2

1 + ε2‖ q ‖2
0

)
. (54)

(ii) Stability in ‖ q ‖−1 and conclusion.

The bilinear form bh satisfies the inf-sup condition (28). Hence, we can find �η2 in Vh such that

‖ �η2‖1 = ‖ q ‖−1, bh(�η2, q) ≥
δ

2
‖ q ‖2

−1. (55)

We now take q2 = 0 and we obtain

‖ �η2, q2 ‖ε = ‖ �η2 ‖1 = ‖ q ‖−1 ≤ ‖ �η , q ‖ε (56)

and

Mh(�η , q; �η2, q2) = a(�η , �η2) + bh(�η2, q)

≥ −C‖ �η ‖1‖ �η2‖1 +
δ

2
‖ q ‖2

−1

=
δ

2
‖ q ‖2

−1 − C‖ �η ‖1‖ q ‖−1

≥ γ‖ q ‖2
−1 − C‖ �η ‖2

1, (57)

using the Cauchy-Schwarz inequality. Finally, a well-chosen linear combination of (�η1, q1) and (�η2, q2) provides
the desired test function (�η#, q#). �

We proceed to obtain a “best approximation” estimate, the proof of which is based on a classical stability-
consistency argument provided here for completeness.

Proposition 2.3. Problem (Pεh) has a unique solution
(
�θ εh , p

ε
h

)
and this solution satisfies

∥∥∥ �θ ε − �θ εh

∥∥∥
1
+ ‖ p ε − p εh ‖−1 + ε‖ p ε − p εh ‖0 ≤ C inf

(�τ,r)∈Vh×Qh

( ∥∥∥ �θ ε − �τ
∥∥∥

1
+ ‖ p ε − r ‖−1 + ε‖ p ε − r ‖0

+ sup
�η ∈Vh

|(b − bh)(�η , r)|
‖ �η ‖1

+ sup
q∈Qh

|(b− bh)(�τ , q )|
‖ q ‖−1

)
· (58)
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Proof. Let (�τ , r) be an arbitrary element of Vh × Qh. By Lemma 2.2 we can find
(
�θ#, p#

)
in Vh × Qh such

that

Mh

(
�θ εh − �τ, p εh − r; �θ#, p#

)
≥ γ

∥∥∥ �θ εh − �τ , p εh − r
∥∥∥2

ε
, (59)

∥∥∥ �θ#, p#
∥∥∥
ε
≤ C

∥∥∥ �θ εh − �τ, p εh − r
∥∥∥
ε
. (60)

Furthermore,

Mh

(
�θ εh − �τ, p εh − r; �θ#, p#

)
= Mh

(
�θ εh , p

ε
h ; �θ#, p#

)
−Mh

(
�τ , r; �θ#, p#

)
= M

(
�θ ε, p ε; �θ#, p#

)
−Mh

(
�τ , r; �θ#, p#

)
= M

(
�θ ε − �τ , p ε − r; �θ#, p#

)
+ (M −Mh)

(
�τ , r; �θ#, p#

)
. (61)

By using the continuity of M with (59) and (60) we obtain

γ
∥∥∥ �θ εh − �τ, p εh − r

∥∥∥2

ε
≤
∣∣∣(M −Mh)

(
�τ , r; �θ#, p#

)∣∣∣+ C
∥∥∥ �θ εh − �τ , p εh − r

∥∥∥
ε

∥∥∥ �θ ε − �τ , p ε − r
∥∥∥
ε
. (62)

Then,

γ
∥∥∥ �θ εh − �τ , p εh − r

∥∥∥
ε
≤

∣∣∣(M −Mh)
(
�τ , r; �θ#, p#

)∣∣∣∥∥∥ �θ εh − �τ , p εh − r
∥∥∥
ε

+ C
∥∥∥ �θ ε − �τ, p ε − r

∥∥∥
ε
. (63)

From the definitions of M and Mh we have that

(M −Mh)
(
�τ , r; �θ#, p#

)
= (b− bh)

(
�θ#, r

)
+ (b − bh)

(
�τ, p#

)
. (64)

Therefore the inequality (63) becomes

γ
∥∥∥ �θ εh − �τ , p εh − r

∥∥∥
ε
≤ C

∥∥∥ �θ ε − �τ , p ε − r
∥∥∥
ε
+

∣∣∣(b− bh)
(
�θ#, r

)∣∣∣∥∥∥ �θ εh − �τ , p εh − r
∥∥∥
ε

+

∣∣(b− bh)
(
�τ , p#

)∣∣∥∥∥ �θ εh − �τ , p εh − r
∥∥∥
ε

· (65)

Combining (60) and (65) we get

∥∥∥ �θ εh − �τ , p εh − r
∥∥∥
ε
≤ C


∥∥∥ �θ ε − �τ , p ε − r

∥∥∥
ε
+

∣∣∣(b− bh)
(
�θ#, r

)∣∣∣∥∥∥ �θ#, p#
∥∥∥
ε

+

∣∣(b− bh)
(
�τ , p#

)∣∣∥∥∥ �θ#, p#
∥∥∥
ε




≤ C

(∥∥∥ �θ ε − �τ , p ε − r
∥∥∥
ε
+ sup
�η ∈Vh

|(b− bh)(�η , r)|
‖ �η ‖1

+ sup
q ∈Qh

|(b − bh)(�τ , q )|
‖ q ‖−1

)
· (66)

Then, by using a triangular inequality, we infer

∥∥∥ �θ εh − �θ ε, p εh − p ε
∥∥∥
ε
≤ C

(∥∥∥ �θ ε − �τ , p ε − r
∥∥∥
ε
+ sup
�η ∈Vh

|(b− bh)(�η , r)|
‖ �η ‖1

+ sup
q ∈Qh

|(b − bh)(�τ , q )|
‖ q ‖−1

)
, (67)

and since this holds for any (�τ , r) ∈ Vh ×Qh the conclusion directly follows. �
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2.3. Consistency and final estimates

Note that the first three terms in the right-hand side of (58) represent the interpolation errors, whereas the
last two terms are the consistency errors. Our goal in this section is to determine the orders of convergence for
the consistency terms, in order to know whether the numerical procedure is optimal.

We will use the following estimates, already proved in [8].

Lemma 2.4. For any �η‖ ∈ C0(ω)3 tangent to the midsurface at all points (i.e. �η‖ · �a3 = 0),

‖ I(�η ‖) · �a3 ‖1 ≤ C h ‖ I(�η ‖) ‖1, (68)

‖ I(�η ‖) · �a3 ‖0 ≤ C h2 ‖ I(�η ‖) ‖1. (69)

Note that this result also holds for �η ‖ tangent to the midsurface only at nodes.
We also need the following lemma.

Lemma 2.5. For any q ∈ Qh,

‖ I(q �a3) · �a3 − q ‖0 ≤ C h2 ‖ q ‖1. (70)

Proof. Let q be an arbitrary element of Qh. Introducing the notation

δ(q) = I(q �a3) · �a3 − q, (71)

we start by bounding | δ(q) |. In every element T of the mesh we denote by λi the Lagrange shape function
associated to the node (i) and by q(i) the value of q at this node. We have

| δ(q) | =

∣∣∣∣∣
∑
i∈T

λi q
(i) �a3 ·

(
�a

(i)
3 − �a3

) ∣∣∣∣∣
≤ C

(
sup
i∈T

‖λi ‖L∞ sup
i∈T

∣∣∣q(i)∣∣∣ sup
i∈T

∥∥∥�a3 ·
(
�a

(i)
3 − �a3

)∥∥∥
L∞

)

≤ C
(
1 × h2

T

)
sup
i∈T

∣∣∣q(i)∣∣∣ ≤ C h2
T sup

T
| q |, (72)

where hT denotes the diameter of the element T , using the fact that

�a3 ·
(
�a

(i)
3 − �a3

)
= O

(
h2
T

)
,

since �a3 is a smooth field of unit-length vectors. Using standard scaling arguments (see e.g. [11]) we have

sup
T

| q | = ‖ q ‖L∞(T ) ≤ C(meas (T ))−1/2( ‖ q ‖0,T + hT | q |1,T )

≤ Ch−1
T ‖ q ‖1,T . (73)

Hence,

| δ(q) | ≤ C hT ‖ q ‖1,T , (74)
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so that

‖ δ(q) ‖2
0 ≤

∑
T∈Th

‖ δ(q) ‖2
0,T =

∑
T∈Th

∫
T

| δ(q) |2 dξ1dξ2

≤ C
∑
T∈Th

h2
T × meas (T ) × ‖ q ‖2

1,T

≤ C

(
sup
T∈Th

h4
T

) ∑
T∈Th

‖ q ‖2
1,T ≤ C h4 ‖ q ‖2

1, (75)

and (70) follows. �

In order to assess the impact of consistency errors, we assume for the solution the regularity required for
optimal interpolation estimates, namely, �θ ε ∈ Hk+1(ω)3 and p ε ∈ Hk(ω), with k as used in the definitions (22)
and (24). The interpolation errors are then given by

inf
�τ∈Vh

∥∥∥ �θ ε − �τ
∥∥∥

1
≤
∥∥∥ �θ ε − I(�θ ε)

∥∥∥
1
≤ C hk

∥∥∥ �θ ε ∥∥∥
k+1

, (76)

inf
r∈Qh

‖ p ε − r ‖0 ≤ ‖ p ε − Πh(p ε) ‖0 ≤ C hk+1‖ p ε ‖k+1, (77)

recalling that Πh denotes the L2 projection operator onto Qh.

Theorem 2.6. We have

∥∥∥ �θ ε − �θ εh

∥∥∥
1

+ ‖ p ε − p εh ‖−1 + ε‖ p ε − p εh ‖0 ≤ C

[
hk
(∥∥∥ �θ ε ∥∥∥

k+1
+ ‖ p ε ‖k

)
+ h2‖ p ε ‖0

]
. (78)

Proof. We take in (58) �τ = I
(
�θ ε
)

and r = Πh(p ε). Then

sup
q∈Qh

∣∣∣ (b− bh)
(
I
(
�θ ε
)
, q
) ∣∣∣

‖ q ‖−1
= sup

q∈Qh

∣∣∣∣
∫
ω

q
[
I
(
I
(
�θ ε
)
· �a3

)
− I

(
�θ ε
)
· �a3

]
dξ1dξ2

∣∣∣∣
‖ q ‖−1

≤ sup
q∈Qh

∥∥∥ I (�θ ε · �a3

)
− I

(
�θ ε
)
· �a3

∥∥∥
1
‖ q ‖−1

‖ q ‖−1

=
∥∥∥ I (�θ ε · �a3

)
− I

(
�θ ε
)
· �a3

∥∥∥
1

≤
∥∥∥ I (�θ ε · �a3

)
− �θ ε · �a3

∥∥∥
1

+
∥∥∥ �θ ε · �a3 − I

(
�θ ε
)
· �a3

∥∥∥
1

≤ C
(∥∥∥ I (�θ ε · �a3

)
− �θ ε · �a3

∥∥∥
1
+
∥∥∥ �θ ε − I

(
�θ ε
)∥∥∥

1

)
≤ C hk

∥∥∥ �θ ε ∥∥∥
k+1

. (79)
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We also have

sup
�η∈Vh

| (b− bh)(�η,Πh(p ε)) |
‖ �η ‖1

= sup
�η∈Vh

∣∣∣∣
∫
ω

[
I(�η · �a3) − �η · �a3

]
Πh(p ε) dξ1dξ2

∣∣∣∣
| �η ‖1

≤ C‖Πh(p ε) ‖0 sup
�η∈Vh

‖ I(�η · �a3) − �η · �a3 ‖0

‖ �η ‖1

≤ C‖ p ε ‖0 sup
�η∈Vh

‖ I(�η · �a3) − �η · �a3 ‖0

‖ �η ‖1
· (80)

Considering an arbitrary �η in Vh, inside any element T ∈ Th we have

I(�η · �a3) =
∑
i∈T

λi �η
(i) · �a (i)

3 . (81)

At every node (i), �η (i) can be decomposed as the sum of a vector �η (i)
|| tangent to the midsurface

(
�η

(i)
|| · �a (i)

3 = 0
)

and of a vector normal to the midsurface, namely,

�η (i) = �η
(i)
‖ + η

(i)
3 �a

(i)
3 . (82)

Then,

I(�η · �a3) =
∑
i∈T

λi η
(i)
3 �a

(i)
3 · �a (i)

3 =
∑
i∈T

λi η
(i)
3 = η3, (83)

where η3 is the polynomial of degree k which takes the value η (i)
3 at each node (i). Introducing also �η ‖ the

polynomial which takes at each node (i) the value �η (i)
‖ , we have

�η = �η ‖ + I(η3�a3), (84)

hence

I(�η · �a3) − �η · �a3 = η3 − I(η3�a3) · �a3 − �η ‖ · �a3. (85)

Using Lemmas 2.4 and 2.5, we obtain

‖ I(�η · �a3) − �η · �a3 ‖0 ≤ ‖ η3 − I(η3�a3) · �a3 ‖0 + ‖ I(�η ‖) · �a3 ‖0

≤ C (h2 ‖ η3 ‖1 + h2 ‖ I(�η ‖) ‖1 )

≤ C h2 ‖ �η ‖1, (86)

noting that

‖ I(�η ‖) ‖1 ≤ C‖ �η ‖1, (87)
‖ I(�η · �a3) ‖1 ≤ C‖ �η ‖1. (88)

Therefore, from (80) it follows that

sup
�ηh∈Vh

| (b − bh)(�ηh,Πh(p ε)) |
‖ �ηh ‖1

≤ C h2 ‖ p ε ‖0. (89)
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Gathering (58, 76, 77, 79) and (89) we obtain the desired estimate, taking into account that

‖ p ε − Πh(p ε) ‖−1 ≤ ‖ p ε − Πh(p ε) ‖0 ≤ hk‖ p ε ‖k. (90)

�
Remark 2.7. Due to the consistency errors, the proposed numerical procedure is sub-optimal if the finite
element method uses polynomials of degree k > 2.

Remark 2.8. The uniform convergence obtained in Theorem 2.6 (recalling that the constant C is independent
of ε and h) shows that the numerical procedure proposed in this chapter is locking-free.

3. Numerical experiments

We implemented the above numerical strategy and obtained the corresponding numerical solutions in the
case of a one-dimensional problem, namely, considering geometric and mechanical data for which the solution
of problem (P) is invariant by translation in one direction. More specifically, we considered the one-dimensional
domain corresponding to ξ1 ∈ [0, π/2] with the “normal vector” given by

�a3 =

(
cos ξ1

sin ξ1

)
, (91)

and the loading chosen so that the exact solution is, for any value of ε,

�θ ε =

(
− sin 4ξ1 sin ξ1

sin 4ξ1 cos ξ1

)
. (92)

Note that this choice satisfies

�θ ε · �a3 = 0 (93)

exactly, which ensures that the corresponding loading does not depend on ε.
Figure 1 shows the numerical results obtained for a direct P1 discretization of this 1D problem, for varying

values of t (we henceforth do not distinguish between t and ε). In this figure, N denotes the number of elements
along the total length. We observe a deterioration of the convergence behaviour when t decreases, compared
to the curve obtained for t = 0.1. This deterioration is still limited for t = 0.01, but dramatically worsens for
smaller values. This behaviour is characteristic of locking.

In contrast with this behaviour, Figure 2 displays the numerical results obtained when applying the above-
described treatment of pinching strain interpolation, and we can see that the four convergence curves are
practically superimposed. This clearly confirms that locking is not present.

4. Conclusions

We presented a numerical procedure designed to circumvent the pinching locking for 3D-shell finite elements.
Namely, we use the interpolated value of the pinching strains (with the same interpolation as for displacements)
in the variational formulation, instead of the value directly computed from the displacements. The analysis
of this modified finite element formulation as a mixed formulation allowed us to obtain an error estimate
independent of the “thickness” parameter, hence locking is effectively remedied.

Acknowledgements. The authors wish to thank Professor K.J. Bathe (Massachusetts Institute of Technology) for his most
valuable comments on this work.
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Figure 1. Convergence with direct discretization.
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Figure 2. Convergence with pinching strain interpolation.
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