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Abstract. We propose and analyze a domain decomposition method on non-matching grids for partial
differential equations with non-negative characteristic form. No weak or strong continuity of the finite
element functions, their normal derivatives, or linear combinations of the two is imposed across the
boundaries of the subdomains. Instead, we employ suitable bilinear forms defined on the common
interfaces, typical of discontinuous Galerkin approximations. We prove an error bound which is optimal
with respect to the mesh–size and suboptimal with respect to the polynomial degree. Our analysis is
valid for arbitrary shape–regular meshes and arbitrary partitions into subdomains. Our method can
be applied to advective, diffusive, and mixed–type equations, as well, and is well-suited for problems
coupling hyperbolic and elliptic equations. We present some two-dimensional numerical results that
support our analysis for the case of linear finite elements.
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1. Introduction

We consider the partial differential equation

Lu := −∇ · (A ∇u) + b · ∇u + cu = f, in Ω, (1)

where Ω ⊂ R
n, n = 2, 3, is a bounded, connected, Lipschitz polygon or polyhedron, with outward unit normal n.

Here, A is a symmetric, positive–semidefinite matrix in Ω, b a given velocity field, c a non-negative reaction
coefficient that may arise from a finite difference discretization of a time derivative, and f is a source term. In
the next section, we make further hypotheses on L and we introduce appropriate boundary conditions.

The aim of this paper is to construct and analyze an hp-finite element method for problem (1) on non-
matching grids. We propose an approach which is typical of discontinuous Galerkin (DG) methods, where
finite element spaces consisting of discontinuous functions are considered. In particular, in a DG approach no
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continuity is imposed across the interelement boundaries and consistency is achieved by introducing suitable
interface terms. The meshes need not be conforming, even if they cannot be completely arbitrary. A large
variety of DG methods have been proposed and studied in the last thirty years. We refer to [15], and to [6, 16]
and to the references therein.

Even though our method is also valid for the pure diffusive case, our focus is on transport and transport–
dominated equations, and on problems where equations of different type are coupled.

Here, we mainly use the ideas of four previous works.
In [6,25], a domain decomposition (DD) method for non-matching grids is developed for the Poisson equation

using interface terms borrowed from a DG method. The main idea of this work is that DG methods can provide
powerful approximations on non-matching grids, without the need to impose any kind of continuity across the
subdomain boundaries. To our knowledge, these are the first works where these ideas are employed in a DD
framework for non-matching grids. Our method uses the same idea as in [6,25], but we are interested in the more
general problem (1). For this reason, we also consider the work in [16], where a DG hp-finite element method
is proposed and studied for problem (1). Much of our analysis is similar to that in [16], but our focus is on DD
on non-matching grids: given a general partition of Ω into subdomains, we consider local conforming, shape–
regular meshes on them; such triangulations are completely independent from one another and, consequently,
some of the interface contributions introduced in [16] need to be suitably modified in order to treat arbitrarily
small intersections between element boundaries.

In this paper, we consider local conforming finite element spaces for problem (1). We have chosen the
Streamline Diffusion (SD) studied in [17], which is a generalization of the original SD method in [20]. However,
any other approximation method for problem (1) can be employed as an approximation of the local problems.
In particular, we could use the same DG method as in [16] for some of the local problems.

We remark that even though we use a similar idea as in [6, 25], our method is different from theirs, when
applied to a symmetric elliptic problem. In this case, we use a different interface contribution and do not obtain
a symmetric bilinear form.

Our DD method presents the following characteristics:

1. it is valid for two- and three-dimensional problems;
2. it is valid for arbitrary partitions into non-overlapping subdomains (geometrically conforming and non-

conforming, with arbitrarily small subdomains);
3. the local meshes are only required to be shape–regular and different polynomial spaces can be employed

on the subdomains;
4. the error bound that we prove is h-optimal and p-suboptimal by half a power of p;
5. our method is valid for transport, diffusive, and mixed–type equations, and no a priori knowledge of the

character of the equation solved is necessary;
6. it is also suitable for heterogeneous DD problems, where equations of different kinds are coupled (hyperbolic

and elliptic, for instance), and does not require any a priori knowledge of the character of the local
problems.

We remark that some of these characteristics are inherited from the original methods in [16, 17].
In the last ten years, many domain decomposition methods have been proposed for the approximation of

second-order elliptic problems on non-matching grids. Among them, the mortar method has become more and
more popular: see, e.g., [7, 8, 10, 11, 22, 27], for positive–definite scalar problems, and the references in [9], for
a large number of other applications. As is standard practice, by a mortar method, we mean an approxima-
tion scheme where the jumps of a trace of the solution across the subdomain boundaries are required to be
perpendicular to a suitable FE space (mortar space) defined on the interface, also including methods that are
somewhat different from the original one in [11]. In particular, a considerable amount of work has been done
for mixed approximations of positive–definite problems (see [3, 28]). We also mention some other methods of
non-mortar type for symmetric positive–definite problems: see, e.g., [13,14], and, as already mentioned, [6,25].

We believe that the case of approximations on non-matching grids of first-order transport equations is con-
siderably simpler. Indeed, a close look at the original DG method for hyperbolic problems [21] and at some
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following generalizations [12] reveals that if the mesh is not conforming and the intersections between element
boundaries are arbitrarily small the stability and error estimates remain valid. A simple DG approach based
on classical upwinding appears to be the right choice for approximating the transport part of the equation on
non-matching grids. This is the main idea underlying the method that we present here in the pure transport
case.

The case of transport–dominated transport–diffusion problems or of equations coupling pure transport and
diffusive regimes appears to be much harder and less well understood for approximations on non-matching grids.
In [1], a DG approach for the transport part of the equation and a standard mortar approach for the diffusive
part are combined. However, a mortar condition across the interfaces seems incompatible with the case of a
vanishing or an almost vanishing viscosity. A proposed remedy for the diffusive part is to match two suitable
families of fluxes (i.e., linear combinations of a function and its normal derivative) across the interfaces. This
choice allows to treat the interfaces in a more symmetric way, preventing the non-physical situation where the
value of the solution on the outflow boundary of a subdomain is determined by that on adjacent subdomains.
In addition, a natural iteration by subdomain procedure can be devised for the solution of the resulting linear
system, where local problems with Robin boundary conditions are solved. This approach has been explored in [4]
and later in [2]. In [4], a finite element approximation is studied for a mixed formulation of problem of (1); such
a method is not applicable to our problem since it requires that the convective term in (1) be small compared
to the diffusive and reaction terms. In [2], a low-order finite volume approximation is considered for (1) where
this restriction is removed, but the flux conditions imposed at the interfaces do not seem to be adequate for
the pure transport case (A = 0), where simple upwinding is enough. In addition, there are some restrictions on
the local meshes for the case of non-conforming partitions into subdomains. We finally mention [26, 29], where
flux–matching conditions are considered for a class of non-linear degenerate parabolic problems arising in flows
in porous media.

We believe that the method that we propose presents some considerable advantages compared to the above-
mentioned works.

The rest of the paper is organized as follows. In the next section, we introduce some hypotheses on the
coefficients of the continuous problem (1) and some appropriate boundary conditions, and, in Section 3, we
describe our hp-finite element approximation. Stability and error estimates are proved in 4 and 5, respectively,
under some restrictions on the diffusive matrix A. The case of a general matrix A is treated in Section 6.
Finally, we present some numerical results for the case of linear finite elements in Section 7.

2. Continuous problem

We make the following hypotheses on the operator L in (1):

A = {Aij} ∈ L∞(Ω)n×n, (2)

b ∈ W 1,∞(Ω)n, (3)

c ∈ L∞(Ω). (4)

We also assume

Aij = Aji; ytAy ≥ 0, y ∈ R
n, a.e. in Ω, (5)

γ := c − 1
2
∇ · b ≥ γ0 > 0, a.e. in Ω. (6)
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We next introduce some boundary conditions and, following [16], we first partition the boundary ∂Ω as

∂Ω0 := {x ∈ ∂Ω| ntAn > 0},

∂−Ω := {x ∈ ∂Ω \ ∂Ω0| b · n < 0},

∂+Ω := {x ∈ ∂Ω \ ∂Ω0| b · n ≥ 0},

and, further, ∂Ω0 as

∂Ω0 = ∂ΩD ∪ ∂ΩN .

We suppose that

b · n ≥ 0, on ∂ΩN . (7)

We then impose Dirichlet boundary conditions on ∂ΩD and on the inflow boundary ∂−Ω, Neumann conditions
on ∂ΩN , and no conditions on the outflow boundary ∂+Ω:

u = gD, on ∂ΩD ∪ ∂−Ω,

ntA∇u = gN , on ∂ΩN .
(8)

We note that additional hypotheses are needed on A in order to define our boundary conditions. Since A needs
to be defined on the boundary, as in [16], we assume that A is piecewise continuous on Ω.

We refer to [17], for a discussion of the well-posedness of problem (1) with the boundary conditions (8).
For any D ⊂ Ω, we define the bilinear form associated to the operator L:

aD(u, v) :=
∫
D

(A∇u · ∇v + b · ∇u v + c uv) dx, u, v ∈ H1(Ω). (9)

In the following, we only consider the case of Neumann and homogeneous Dirichlet conditions in full detail.
The generalization of our method and its analysis to more general conditions is straightforward. We initially
assume that the matrix A is constant on each element of our triangulations (see the following two sections),
and next discuss the modifications of our algorithms required for the case of a general A. We remark that in
our numerical tests such modifications do not appear to be necessary.

3. Approximations on non-matching grids

We now introduce a non-conforming approximation of problem (1) with the boundary conditions (8). We
first consider a non-overlapping partition of the domain Ω

FH =

{
Ωi | 1 ≤ i ≤ N,

N⋃
i=1

Ωi = Ω

}
,

such that each Ωi is an open, connected, Lipschitz polygon or polyhedron. We denote the outward normal of Ωi

by ni. The elements of FH are also called substructures. We stress the fact that we do not make any additional
hypothesis on the partition FH .

We define the edges (or faces, if n = 3) of the partition as the intersections Eij , such that

Eij := ∂Ωi ∩ ∂Ωj , i �= j, mn−1(Eij) > 0,
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where mn−1(Eij) denotes the (n−1)-dimensional measure of Eij and Eij its closure. Let EH be the set of edges
of FH , and let the interface Γ be the union of the edges of FH , or, equivalently the parts of the subdomain
boundaries that do not belong to ∂Ω:

Γ :=
N⋃

i=1

∂Ωi \ ∂Ω.

For every subdomain Ωi, let Ii be the set consisting of i and the indices j, such that Eij is an edge of Ωi:

Ii := {i} ∪ {j | Eij ⊂ ∂Ωi, Eij ∈ EH}·

We next consider a triangulation Ti of each substructure Ωi, consisting of triangles or tetrahedra. Let ht be the
diameter of the element t ∈ Ti and hi be the maximum of the diameters of the elements of Ti. We assume that
each Ti is shape–regular (see [23], Chap. 3). The triangulations considered do not need to match across the
boundaries of the substructures and do not need to be quasi-uniform. Triangulations made of quadrilaterals or
parallelepipeds are also possible.

For each Ωi, we then fix a polynomial degree pi ≥ 1 and introduce the local conforming space

Vi :=
{
u ∈ C0(Ωi)| u|t ∈ Ppi(t), t ∈ Ti; u = 0 on ∂−Ω ∪ ∂ΩD

}
, (10)

where Ppi(t) is the space of polynomials of maximum degree pi on t.
We make no continuity assumption for our global space:

V :=
{

u ∈ L2(Ω)| u|Ωi
∈ Vi, 1 ≤ 1 ≤ N ; u = 0 on ∂−Ω ∪ ∂ΩD

}
·

Given a function u ∈ V , we define the restriction

ui := u|Ωi
∈ Vi.

We first need to introduce some notations for an element t and a substructure Ωi:

b̄t := sup
x∈t

|b(x)|, b̄i := sup
x∈Ωi

|b(x)|,

c̄t := ‖c‖t;∞, c̄i := ‖c‖Ωi;∞,

γ̄t := ‖γ‖t;∞, γ̄i := ‖γ‖Ωi;∞,

where γ is defined in (6). In addition, we set

āt := ‖Λ‖t;∞, āi := ‖Λ‖Ωi;∞,

where Λ(x) is the largest eigenvalue of the matrix A(x) at the point x, and, finally,

pt := pi, if t ⊂ Ωi.

Our non-conforming approximation in V is given in terms of the local stabilized bilinear forms for the Streamline–
Diffusion approximation of L and three additional bilinear forms that act on the traces of functions in V on the
interface Γ. The first is related to the principal part of the operator L, the second is borrowed from classical
upwind schemes, and the third penalizes the jumps of the traces of a function across Γ. We stress the fact that
we do not impose the (strong or weak) continuity of a function, its normal derivative, or a linear combination of
the two, across the boundaries of the substructures, as is usually done in some of the mortar methods or some
other approximations on non-matching grids (see Sect. 1).
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We now introduce some local bilinear forms. It is well known that for second order advection–dominated
problems the original bilinear form a(·, ·) has to be modified in order to remove spurious oscillations of the
Galerkin approximation on standard continuous polynomial spaces, if the mesh does not resolve boundary or
internal layers. A large number of strategies have been proposed in the past twenty years and many of them
consist of adding mesh dependent terms to the FE approximation; see, e.g., [19, 23] and the references therein.
Here, we consider the SD, or Streamline Upwind/Petrov–Galerkin, method developed in [17], but note that
other methods can also be employed. We introduce the modified local bilinear forms

ah
i (u, v) := aΩi(u, v) +

∑
t⊂Ωi

δ(t)
∫
t

L̂u (b · ∇v) dx, u, v ∈ Vi, i = 1, . . . , N, (11)

where L̂ := L and, for each element t, δ(t) is a positive number.
We also need to introduce stabilized local right-hand sides. For a substructure Ωi, we define

lhi (v) :=
∫
Ωi

fv dx +
∑
t⊂Ωi

δ(t)
∫
t

f (b · ∇v) dx. (12)

In the following, we also use the same notation δ(x), for the corresponding function, defined a.e. on Ω, that is
equal to δ(t) if x ∈ t.

We next introduce three bilinear forms defined on Γ. The first is denoted by sa(·, ·) and is related to the
principal part of the operator L. We first extend the normal unit vector n to the interface Γ. Given an arbitrary
but fixed ordering of the subdomains in FH , for Eij ∈ EH , we set

n(x)|Eij
:=
{

ni(x), if i > j,
nj(x), if i < j.

We also define the jump [v] of v on the interface Γ. For Eij ∈ EH , we set

[v]|Eij
:=
{

vi − vj , if i > j,
vj − vi, if i < j,

where vi and vj are the values of v on ∂Ωi and ∂Ωj , respectively. We note that our definitions of normal and
jumps depend on the particular ordering of FH chosen.

We are now ready to define the bilinear form sa(·, ·):
For u, v ∈ V , we set

sa(u, v) :=
∑

E∈EH

∫
E

([u]〈A∇v · n〉 − 〈A∇u · n〉[v]) ds, (13)

where

〈A∇v · n〉|Eij
:=

1
2

(Ai∇vi · n + Aj∇vj · n) , Eij ∈ EH ,

with Ai and Aj the restrictions of A to Ωi and Ωj , respectively. We note that the definition of sa(·, ·) is
independent of the ordering of FH .

In order to define our second bilinear form sb(·, ·) on Γ, we need to introduce some additional partitions of
the subdomain boundaries. For a substructure Ωi, we define the two sets

∂−Ωi := {x ∈ ∂Ωi| b(x) · ni(x) < 0} ,

∂+Ωi := {x ∈ ∂Ωi| b(x) · ni(x) ≥ 0} ·
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We note that these two sets do not form a partition of ∂Ωi \ ∂Ω in general, since the normal ni is only defined
almost everywhere, and, possibly, a set of zero (n− 1)-dimensional measure is excluded. In addition, for almost
every x ∈ ∂−Ωi ∩ Γ, there exists an index j, such that x ∈ ∂+Ωj ; we set

u−i(x) := uj(x).

We define the oriented jump on ∂−Ωi ∩ Γ as

�u := ui − u−i.

We note that �u and [u] have the same absolute value, but may have opposite sign.
For u, v ∈ V , we set

sb(u, v) :=
N∑

i=1

∫
∂−Ωi∩Γ

|b · ni| �u vi ds. (14)

Our third bilinear form sr(·, ·) penalizes the jumps of the traces of a function across Γ. It is defined as

sr(u, v) :=
∑

E∈EH

∫
E

σ [u] [v] ds =
∫
Γ

σ [u] [v] ds. (15)

The choice of σ is crucial. Here, we can generalize the definitions for the methods in [16] and [6]. The function
σ is a piecewise constant function on each edge Eij ∈ EH . Given a segment e ⊂ Eij , such that

ē = ∂t ∩ ∂t′, t ∈ Ti, t′ ∈ Tj , mn−1(e) > 0,

we set

σ|e :=
1
2

σ0

(
ātpt

ht
+

āt′pt′

ht′

)
, (16)

with σ0 an arbitrary positive constant, which, for the purpose of the analysis, we assume to be one. Our
definition generalizes that in [16] to the case where the intersection e has arbitrarily small length; with our
definition, σ remains bounded. It also generalizes that in [6] to the case where two adjacent subdomains have
very different meshes. We finally note that, as for the DG method in [16], the bilinear form sr(·, ·) is identically
zero in the pure hyperbolic case.

We are now ready to define our bilinear form and right-hand side on V . We set

ah(u, v) :=
N∑

i=1

ah
i (u, v) + sa(u, v) + sb(u, v) + sr(u, v), u, v ∈ V,

lh(v) :=
N∑

i=1

lhi (v) +
∫

∂ΩN

gNv ds, v ∈ V. (17)

Our discrete problem becomes: Find u ∈ V , such that

ah(u, v) = lh(v), v ∈ V. (18)
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Remark 3.1. We note that the bilinear form ah(·, ·) consists of two main contributions: one consisting of
local terms coming from the FE approximation of the operator L on the subdomains, and one consisting of
terms on the interface Γ which ensure the consistency of this non-conforming approximation. For the first
contribution and for the modified right-hand side, we have employed the SD method, but any other method for
the approximation of L could be chosen on some or all subdomains. In particular, if the DG method in [16] is
employed on each subdomain, we obtain the same DG method on the whole Ω. This latter case can also be
obtained in the limit case where every subdomain consists of exactly one element. We also note that, in the
hyperbolic case, only the upwind bilinear form sb(·, ·) is non-vanishing on Γ.

Remark 3.2. We have chosen to impose Dirichlet conditions strongly; see the definition of the local spaces Vi.
We can also impose them weakly, as is done for the SD method in [17] and the DG method in [16]. The results
in the following sections remain valid in this case as well.

4. A stability result

In this section, we prove a stability estimate for our approximate problem. We first recall an inverse inequality
(see [24], Sect. 4.6.1 for a proof).

Lemma 4.1. Let the matrix A be constant on each element. Then, the following inverse estimate holds, for
every u ∈ V ,

‖∇ · (A∇u)‖2
0;t ≤ Cinv

p4
t

h2
t

‖A∇u‖2
0;t, t ∈ Ti, i = 1, . . . , N, (19)

where Cinv only depends on the shape–regularity constants of the triangulations {Ti}.

We define the following norm in V :

|||u|||2 :=
1
2

N∑
i=1

αi +
1
2

N∑
i=1

βi + ρ, (20)

where

αi :=
∫
Ωi

(
A∇u · ∇u + γu2

)
dx +

∑
t⊂Ωi

δ(t)
∫
t

(b · ∇u)2 dx, i = 1, . . . , N,

βi :=
∫

∂−Ωi∩Γ

|b · ni| �u2 ds, i = 1, . . . , N,

ρ :=
∫

∂ΩN∪∂+Ω

|b · n|u2 ds +
∫
Γ

σ [u]2 ds. (21)

We have the stability estimate.

Theorem 4.1. Let (6) and (7) hold, and let δ satisfy

0 ≤ δ(t) ≤ 1
2

min
{

h2
t

Cinv p4
t āt

,
γ0

c̄2
t

}
, t ∈ Ti, i = 1, . . . , N, (22)

with Cinv the constant defined in Lemma 4.1. If the hypotheses of Lemma 4.1 are satisfied then,

ah(u, u) ≥ |||u|||2, u ∈ V.
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Proof. We consider (17) with v = u and estimate each term. We have

sr(u, u) = ρ,
sa(u, u) = 0.

(23)

For i = 1, . . . , N , we consider the local contributions

ah
i (u, u) =

∫
Ωi

(
A∇u · ∇u + c u2

)
dx +

∫
Ωi

(b · ∇u)u dx +
∑
t∈Ti

δ(t)
∫
t

L̂u (b · ∇u) dx

=
∫
Ωi

(
A∇u · ∇u + γ u2

)
dx +

∑
t∈Ti

δ(t)
∫
t

Lu (b · ∇u) dx +
1
2

∫
∂Ωi

b · ni u2
i ds. (24)

We consider the second term on the right-hand side of (24). Using the definition of L and the arithmetic-
geometric mean inequality, we can write, for every element t ∈ Ti,

δ(t)
∫
t

Lu (b · ∇u) dx = δ(t) ‖b · ∇u‖2
0;t + δ(t)

∫
t

(cu (b · ∇u) −∇ · (A∇u) (b · ∇u)) dx

≥ δ(t) ‖b · ∇u‖2
0;t −

1
2
δ(t)


∫

t

(
2c2 u2 +

1
2
(b · ∇u)2 + 2|∇ · (A∇u)|2 +

1
2
(b · ∇u)2

)
dx




≥ 1
2
δ(t) ‖b · ∇u‖2

0;t − δ(t)


∫

t

c2 u2 dx +
Cinv p4

t

h2
t

∫
t

|A∇u|2 dx


 ,

where, for the last inequality, we have employed Lemma 4.1. Using (22) and summing over the elements in Ti,
we obtain

∫
Ωi

(
A∇u · ∇u + γ u2

)
dx +

∑
t∈Ti

δ(t)
∫
t

L̂u (b · ∇u) dx ≥

1
2

∫
Ωi

(
A∇u · ∇u + γ u2

)
dx +

1
2

∑
t∈Ti

δ(t) ‖b · ∇u‖2
0;t. (25)

Using (24) and (25), and summing over the substructures, we find

N∑
i=1

ah
i (u, u) ≥ 1

2

N∑
i=1

αi +
N∑

i=1

1
2

∫
∂Ωi

b · ni u2
i ds. (26)

There remains to bound sb(u, u) and the second term on the right-hand side of (26). We have

sb(u, u) +
N∑

i=1

1
2

∫
∂Ωi

b · ni u2
i ds =

N∑
i=1


 ∫

∂−Ωi∩Γ

|b · ni| �uui ds +
1
2

∫
∂Ωi

b · ni u2
i ds


 . (27)



100 A. TOSELLI

We can write the right-hand side of (27) in the following way:

N∑
i=1


 1

2

∫
∂−Ωi∩Γ

b · ni

(
u2

i − 2u2
i + 2uiu−i

)
ds +

1
2

∫
∂+Ωi

b · ni u2
i ds +

1
2

∫
∂−Ωi\Γ

b · ni u2
i ds


 =

N∑
i=1


1

2

∫
∂−Ωi∩Γ

b · ni

(
−u2

i + 2uiu−i − u2
−i

)
ds +

1
2

∫
∂Ωi\Γ

b · ni u2
i ds




=
1
2

∫
∂+Ω∪∂ΩN

|b · n|u2 ds +
N∑

i=1

1
2

∫
∂−Ωi∩Γ

|b · ni|�u2 ds, (28)

where we have used the fact that the outflow boundary ∂+Ωi can be written as the union of some of the inflow
parts of the adjacent substructures and u vanishes on ∂−Ω ∪ ∂ΩD. The proof is completed by combining (23),
(25), (27) and (28).

We have the following corollary.

Corollary 4.1. Problem (18) is well-posed.

5. A PRIORI error estimates

The purpose of this section is to derive an a priori bound for the approximation error. Throughout, we
define u and uDG as the solutions of problem (1) and (18), respectively.

We first need some preliminary definitions and lemmas. The following approximation property can be found
in [5, 24].

Lemma 5.1. Let u ∈ Hki(Ωi), ki ≥ 0, i = 1, . . . , N . Then, there exists Πiu = Πhi;piu ∈ Vi and C, only
depending on the shape–regularity constants of the triangulations {Ti}, s, and the {ki}, such that, if t ∈ Ti,

‖u − Πiu‖s;t ≤ C
hmi−s

t

pki−s
t

‖u‖ki;t
, 0 ≤ s ≤ mi, (29)

where mi := min{pi + 1, ki}.

It is possible to define a global operator Πu on V by

Πu|Ωi
:= Πiu, i = 1, . . . , N.

We decompose the error into two components:

u − uDG = η + ξ,

where

η := u − Πu,

ξ := Πu − uDG.

We next need a trace estimate. It can be easily proved using that for an element of unit diameter and a scaling
argument.
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Lemma 5.2. Let t ∈ Ti, for a fixed index i = 1, . . . , N , and u ∈ H1(t). Then

‖u‖2
0;∂t ≤ C

(
‖u‖0;t‖∇u‖0;t + h−1

t ‖u‖2
0;t

)
,

where C only depends on the aspect ratio of t.

The following inverse estimate can be found in [24] (Sect. 4.6.1).

Lemma 5.3. Let t ∈ Ti, for an index i = 1, . . . , N , and u ∈ V . Then

‖u‖2
0;∂t ≤ C

p2
t

ht
‖u‖2

0;t,

where C only depends on the aspect ratio of t.

We proceed by first finding a bound for ξ.

Lemma 5.4. Let η = u − Πu and ξ = Πu − uDG. Then there exists a constant C, that only depends on the
aspect ratios of the elements of {Ti}, such that

|||ξ|||2 ≤ C

∫
Γ

σ [η]2 ds + C

∫
∂+Ω∪∂ΩN

|b · n| η2 ds

+ C
N∑

i=1


∫

Ωi

(A∇η · ∇η + (d + δ−1) η2) dx +
∫

∂+Ωi∩Γ

|b · ni| η2
i ds

+
∑
t∈Ti
b̄t �=0

∫
t

δ(t) (L̂η)2 dx +
∑
t∈Ti

∂t∩Γ�=∅

∫
∂t∩Γ

(
āt ht

pt
|∇ηi|2 +

āt p2
t

ht
[η]2
)

ds


 , (30)

where

d :=
(c −∇ · b)2

γ
· (31)

Proof. Using Theorem 4.1 and the fact that both u and uDG satisfy equation (18), we can write

|||ξ|||2 ≤ ah(ξ, ξ) = ah(−η + u − uDG, ξ) = −ah(η, ξ). (32)

It is then enough to find a bound for the right-hand side of (32):

ah(η, ξ) =
N∑

i=1

ah
i (η, ξ) + sa(η, ξ) + sb(η, ξ) + sr(η, ξ). (33)

We begin with the first term. For every substructure Ωi, we integrate by parts and obtain

∫
Ωi

(A∇η · ∇ξ + b · ∇η ξ + c η ξ) dx +
∑
t⊂Ωi

δ(t)
∫
t

L̂η (b · ∇ξ) dx =

∫
Ωi

(A∇η · ∇ξ − b · ∇ξ η + (c −∇ · b) η ξ) dx +
∑
t⊂Ωi

δ(t)
∫
t

L̂η (b · ∇ξ) dx +
∫

∂Ωi

b · ni ηi ξi ds. (34)
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We can easily bound the contributions from the first four terms on the right-hand side of (34), using the Schwarz
inequality:


 N∑

i=1

∫
Ωi

A∇η · ∇ξ dx




2

≤ |||ξ|||2
N∑

i=1

∫
Ωi

A∇η · ∇η dx,


 N∑

i=1

∫
Ωi

b · ∇ξ η dx




2

≤ |||ξ|||2
N∑

i=1

∑
t∈Ti
b̄t �=0

δ(t)−1

∫
t

η2 dx,


 N∑

i=1

∫
Ωi

(c −∇ · b) ξ η dx




2

≤ |||ξ|||2
N∑

i=1

∫
Ωi

d η2 dx,


 N∑

i=1

∑
t∈Ti

δ(t)
∫
t

L̂η (b · ∇ξ) dx




2

≤ |||ξ|||2
N∑

i=1

∑
t⊂Ωi
b̄t �=0

δ(t)
∫
t

(
L̂η
)2

dx. (35)

We next bound the last term on the right-hand side of (34) and sb(η, ξ) in (33). We have

sb(η, ξ) +
N∑

i=1

∫
∂Ωi

b · ni ηi ξi ds =
N∑

i=1


 −

∫
∂−Ωi∩Γ

b · ni �η ξi ds +
∫

∂Ωi

b · ni ηi ξi ds




=
N∑

i=1


 ∫

∂−Ωi∩Γ

b · ni (−ηi ξi + η−i ξi + ηi ξi) ds

+
∫

∂+Ωi

b · ni ηi ξi ds +
∫

∂−Ωi\Γ

b · ni ηi ξi ds




=
N∑

i=1


 ∫

∂−Ωi∩Γ

b · ni (η−i ξi − η−i ξ−i) ds +
∫

∂Ωi\Γ

b · ni ηi ξi ds




=
N∑

i=1

∫
∂−Ωi∩Γ

b · ni �ξ η−i ds +
∫

∂+Ω∪∂ΩN

b · n η ξ ds, (36)

where we have used the fact that the outflow boundary ∂+Ωi can be written as the union of some of the inflow
parts of the adjacent substructures and η and ξ vanish on ∂−Ω ∪ ∂ΩD. The two terms on the right-hand side
of (36) can easily be bounded using the Schwarz inequality, and we obtain


sb(η, ξ) +

N∑
i=1

∫
∂Ωi

b · ni ηi ξi ds




2

≤ |||ξ|||2


 N∑

i=1

∫
∂+Ωi∩Γ

|b · ni| η2
i ds +

∫
∂+Ω∪∂ΩN

|b · n| η2 ds


 . (37)
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We now consider the third term in (33). We first note that

|sa(η, ξ)| ≤
N∑

i=1

∑
t∈Ti

∂t∩Γ�=∅

∫
∂t∩Γ

(|[ξ]| |A∇ηi · n| + |A∇ξi · n| |[η]|) ds. (38)

After applying Schwarz inequality, we obtain

sa(η, ξ)2 ≤


 N∑

i=1

∑
t∈Ti

∂t∩Γ�=∅

∫
∂t∩Γ

σ [ξ]2 ds




 N∑

i=1

∑
t∈Ti

∂t∩Γ�=∅

∫
∂t∩Γ

ā2
t

σ
|∇ηi|2 ds




+


 N∑

i=1

∑
t∈Ti

∂t∩Γ�=∅

∫
∂t∩Γ

āt

εt
[η]2 ds




 N∑

i=1

∑
t∈Ti

∂t∩Γ�=∅

∫
∂t∩Γ

εt (A∇ξi) · ∇ξi ds


 , (39)

where the {εt} are arbitrary positive numbers. We consider the last term on the right-hand side of (39). By
applying Lemma 5.3, we find

εt

∫
∂t∩Γ

(A∇ξi) · ∇ξi ds ≤ C εt
p2

t

ht

∫
t

(A∇ξi) · ∇ξi dx. (40)

Choosing then εt = ht/p2
t in (39) and using the definition of σ, we deduce

sa(η, ξ)2 ≤ C |||ξ|||2


 N∑

i=1

∑
t∈Ti

∂t∩Γ�=∅

∫
∂t∩Γ

(
āt ht

pt
|∇ηi|2 +

āt p2
t

ht
[η]2
)

ds


 . (41)

We finally consider the forth term in (33). We have

sr(η, ξ)2 ≤ |||ξ|||2
∫

Γ

σ [η]2 ds. (42)

The lemma is then proven by combining (32), (33), (34), (35), (37), (41) and (42).

Before proving our error bound we need to introduce an additional notation:
If t ∈ Ti, we define

{
āp2

h

}
t

:=




max
{

āt′p
2
t′

ht′

}
, if mn−1(∂t ∩ Γ) > 0,

ātp
2
t

ht
, otherwise,

where the maximum is taken over t′ = t and all the elements t′ such that

mn−1(∂t ∩ ∂t′ ∩ Γ) > 0.

We are now ready to prove our error bound.
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Theorem 5.1. Let u and uDG be the solutions of problem (1) and (8), and (18), respectively. If the hypotheses
of Theorem 4.1 hold, then there exists C, that only depends on the shape–regularity constants of the {Ti}, such
that, if u ∈ Hki(Ωi), i = 1, . . . , N , then

|||u − uDG|||2 ≤ C

N∑
i=1

∑
t∈Ti

{
āp2

h

}
t

h2mi−1
t

p2ki−1
i

‖u‖2
ki;t + C

N∑
i=1

(
Bi

h2mi−1
i

p2ki−1
i

+ Ci
h2mi

i

p2ki

i

)
‖u‖2

ki;Ωi
, (43)

where mi := min{pi + 1, ki}, and, for i = 1, . . . , N ,

Bi := b̄i

(
1 + ‖δ‖∞;Ωi b̄i

pi

hi

)
,

Ci := ‖γ + d + δ−1‖∞;Ωi .

Proof. Using the triangle inequality, we have

|||u − uDG||| ≤ |||η||| + |||ξ|||.

We employ Lemma 5.4 for the term in ξ, and then group and estimate the various contributions coming from
the right-hand side of (30) and |||η|||. Using Lemma 5.1, we easily obtain, for i = 1, . . . , N ,

∫
Ωi

(
(A∇η) · ∇η +

(
γ + d + δ−1

)
η2
)

dx ≤ C
∑
t∈Ti

(
āt h2mi−2

t

p2ki−2
i

‖u‖2
ki;t

)
+ C

∥∥γ + d + δ−1
∥∥
∞;Ωi

h2mi

i

p2ki

i

‖u‖2
ki;Ωi

.

(44)

We next consider the term

∑
t∈Ti
b̄t �=0

δ(t)
∫
t

(
L̂η
)2

dx ≤ 3
∑
t∈Ti
b̄t �=0

δ(t)
∫
t

(
(∇ · (A∇η))2 + (b · ∇η)2 + c η2

)
dx

≤ C
∑
t∈Ti
b̄t �=0

δ(t)
((

Cinv
p4

t

h2
t

)
ā2

t

h2mi−2
t

p2ki−2
t

+ b̄2
t

h2mi−2
t

p2ki−2
t

+ c̄2
t

h2mi
t

p2ki
t

)
‖u‖2

ki;t, (45)

where we have used Lemmas 4.1 and 5.1. We then consider the boundary term

N∑
i=1

∫
∂−Ωi∩Γ

|b · ni| �η2 ds ≤ 2
N∑

i=1

∫
∂−Ωi∩Γ

|b · ni|
(
η2

i + η2
−i

)
ds

= 2
N∑

i=1

∑
t∈Ti

∂t∩Γ�=∅

∫
∂t∩Γ

|b · ni| η2
i ds, (46)

where we have used the property that the field b is continuous across the boundaries of the substructures; see
condition (4). We then bound each local contribution using the trace estimates in Lemma 5.2 and Lemma 5.1.
We obtain, for t ∈ Ti,∫

∂t∩Γ

|b · ni| η2
i ds ≤ C b̄t

(
‖η‖0;t‖∇η‖0;t + h−1

t ‖η‖2
0;t

)
≤ C b̄t

h2mi−1
t

p2ki−1
t

‖u‖2
ki;t,
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and, from (46),

N∑
i=1

∫
∂−Ωi∩Γ

|b · ni| �η2 ds ≤ C

N∑
i=1

b̄i
h2mi−1

i

p2ki−1
i

‖u‖2
ki;Ωi

. (47)

We note that the terms

∫
∂ΩN∪∂+Ω

|b · n|u2 ds, and
N∑

i=1

∫
∂+Ωi∩Γ

|b · ni| η2
i ds,

can be bounded in a similar way.
Using Lemma 5.2 and Lemma 5.1, we also find

N∑
i=1

∑
t∈Ti

∂t∩Γ�=∅

∫
∂t∩Γ

(
āt ht

pt
|∇ηi|2 +

āt p2
t

ht
[η]2
)

ds ≤ C

N∑
i=1

∑
t∈Ti

∂t∩Γ�=∅

(
āt

h2mi−2
t

p2ki−2
i

+
{

āp2

h

}
t

h2mi−1
t

p2ki−1
i

)
‖u‖2

ki;t, (48)

and, using the same argument,

∫
Γ

σ[η]2 ds ≤ C
N∑

i=1

∑
t∈Ti

∂t∩Γ�=∅

{ āp

h

}
t

h2mi−1
t

p2ki−1
i

‖u‖2
ki;t. (49)

The final estimate is proven by combining (44), (45), (47), (48) and (49).

In the particular case where the local meshes are quasi-uniform, we obtain the simpler bound

|||u − uDG|||2 ≤ C

N∑
i=1

({
āp2

h

}
i

h2mi−1
i

p2ki−1
i

+ Bi
h2mi−1

i

p2ki−1
i

+ Ci
h2mi

i

p2ki

i

)
‖u‖2

ki;Ωi
, (50)

where, for i = 1, . . . , N ,

{
āp2

h

}
i

:= max
j∈Ii

{
ājp

2
j

hj

}
·

Finally, if (
āt′p

2
t′
)
/ht′

(ātp2
t ) /ht

< ζ,

for every couple of elements (t, t′) such that

mn−1(∂t ∩ ∂t′ ∩ Γ) > 0,

we can write

|||u − uDG|||2 ≤ C
N∑

i=1

(
āi

h2mi−2
i

p2ki−3
i

+ Bi
h2mi−1

i

p2ki−1
i

+ Ci
h2mi

i

p2ki

i

)
‖u‖2

ki;Ωi
, (51)

with a constant C that depends on ζ.
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6. The case of a general diffusion matrix A

In this section, we briefly discuss the modifications of our method for the case of a matrix A that is not
constant on each element. The first modification has already been proposed in [17], and is necessary since
Lemma 4.1 does not hold for a general A:
On an element t ⊂ Ti, the operator L̂ employed in the stabilized bilinear form (11) and right-hand side (12) is
now defined as

L̂u := −∇ · (Pt(A ∇u)) + b · ∇u + cu,

where Pt : L2(t)n −→ Ppi(t)n is the L2-orthogonal projection onto Ppi(t)n (see [17], Sect. 3).
We then need to modify the bilinear form sa(·, ·). Indeed, inequality (40), derived from Lemma 5.3, is not

valid in general. We define this bilinear form in terms of local contributions and change the definition of the
bracket operator 〈·〉:

sa(u, v) :=
1
2

∑
Eij∈EH

∑
t∈Ti

t′∈Tj

∫
∂t∩∂t′

([u]〈A∇v · n〉 − 〈A∇u · n〉[v]) ds,

where

〈A∇v · n〉|∂t∩∂t′
:=

1
2

(Pt (Ai∇vi) · n + Pt′ (Aj∇vj) · n) .

It is easy to prove that, with these modifications, a similar error bound as that proven in the previous section
still holds; see, in particular, the proof of [17] (Th. 9).

As already mentioned, these modifications do not appear to be necessary in the numerical tests considered
in the next section. In addition, a modification of the bilinear form sa(·, ·) does not appear to be needed either
for the original DG method (see [16], Ex. 2).

7. Numerical results

In this section, we present some numerical results for the case of piecewise linear FE spaces (p = 1) in two
dimensions, and leave the case of higher-order elements and three dimensional problems for a future work. We are
primarily interested in estimating the convergence rates for different types of problems, the performance of our
algorithm for different kinds of partitions into subdomains, and its robustness with respect to the penalization
parameter σ0 (see (16)). We will consider the error in the ||| · |||- and L2-norm. For second order problems, we
employ the modified energy norm norm

‖u‖DG := |||u|||, with σ = 0,

which is independent of the penalization parameter σ.
For the stabilization function δ(t), we have followed [18]. For every element t, let the local Peclet number be

Pet :=
ht b̄t

2āt
, for āt > 0,

and

δ(t) :=




τ ht

2 b̄t
, if āt = 0 or Pet ≥ 1,

τ h2
t

4 āt
, if Pet < 1.
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Figure 1. A conforming partition, with m = 4, and a discretization with n1 = 4 and n2 = 3.

This definition can be generalized to the case p > 1; see, e.g., [17]. In our experiments, we have considered the
value τ = 0.7.

7.1. Problems and partitions

We consider problem (1) and Ω = (0, 1)2. We test two types of partitions:
Partition I: It is geometrically conforming and consists of m × m square substructures of equal size, with

m > 1. For a fixed m, we consider a checkerboard distribution for the local triangulations, consisting of
two kinds of uniform triangular meshes. Let n1 and n2 be the corresponding numbers of steps and h1 and
h2 their mesh–sizes. Figure 1 shows an example of this checkerboard–type discretization for m = 4.

Partition II: It is geometrically non-conforming and consists of m×m equal square blocks. A block is made
of five non-conforming subdomains and is shown in Figure 2, left, together with a possible triangulation.
The four rectangular substructures in a block have the same mesh consisting of 2×n1×n2 triangles. The
triangulation of the inner square consists of 2 × n3 × n3 elements. Figure 2, right, shows a partition for
the case m = 2 (four blocks and twenty subdomains). The number of subdomains is thus five times the
number of blocks.

7.2. Hyperbolic problem with analytic solution

We consider problem (1), with

A = 0, c = 1 + 8xy2,

b =
(
2 − (2y − 1)2, 3 − 2x

)
,

(52)

the exact solution

u(x, y) = 1 + sin
(
πxy2

)
,

and the source term f chosen consistently (see [16], Sect. 6.1).
Figure 3 shows the DG- and the L2-norms of the error, versus the mesh–size h, for two geometrically

conforming partitions (four and sixteen subdomains), on the left, and for two non-conforming ones (five and
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Figure 2. Left: a block consisting of five subdomains, employed for building a non-conforming
partition (n1 = 9, n2 = 5, n3 = 7). Right: a non-conforming partition consisting of four blocks
(n1 = 9, n2 = 5, n3 = 7).
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Square (0,1)2: checkerboard distribution for initial meshes: 2x2, 3x3
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Figure 3. Hyperbolic problem: error in the DG- and L2-norm versus the mesh–size. Con-
forming partitions with m = 2 and m = 4, and initial meshes with n1 = 2 and n2 = 3 (left),
and non-conforming partitions with m = 1 and m = 2, and initial meshes with n1 = 4, n2 = 2,
and n3 = 3 (right).

twenty subdomains), on the right. Table 1 shows the slope calculated by least–square linear fitting of the curves
in Figure 3. Our results suggest that the error |||u − uDG||| converges to zero at the optimal rate O(h3/2) as h
tends to zero, in agreement with Theorem 5.1. In addition, our method also exhibits an optimal convergence
rate O(h2) for ||u − uDG||0 for linear finite elements, as is the case of the original DG method in [16]. We note
that the error appears to be independent of the partition into subdomains considered, and, in particular, that
no deterioration of the solution is observed for geometrically non-conforming partitions.
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Table 1. Hyperbolic problem: calculated slope by least–square linear fitting of the plots in Figure 3.

DG-norm L2-norm

Part. I (2 × 2) 1.57 2.08
Part. I (4 × 4) 1.59 2.04

Part. II (1 × 1) 1.56 2.04
Part. II (2 × 2) 1.58 2.04

Table 2. Hyperbolic problem with x0 = π/6: calculated slope by least–square linear fitting
of the convergence plots in Figure 4.

DG-norm L2-norm

Part. I (2 × 2) 1.13 1.36
Part. I (4 × 4) 1.13 1.46

Part. II (1 × 1) 1.20 1.22
Part. II (2 × 2) 1.16 1.04

7.3. Hyperbolic problem with non-smooth solution

We now consider the same hyperbolic problem as before, given by the coefficients (52), but with the exact
solution given by

u(x, y) =




cos
(π

2
(2y − 1)

)
, x ≤ x0,

cos
(π

2
(2y − 1)

)
+ (2(x − x0))

α
, x > x0,

with x0 ∈ (0, 1) (see [16], Sect. 6.1). It can be shown that u belongs to Hα+1/2(Ω), for α > 0, but does not
belong to Hα+1/2+ε(Ω), for any ε > 0 (see [16]). We choose α = 1.

Our first set of results are for x0 = π/6 ∼ 0.523 and the same partitions as in the previous example. We
note that the line x = x0 cuts through the elements and the solution only belongs to H3/2(Ωi), for each
subdomain Ωi. Figure 4 shows the DG- and the L2-norms of the error versus the mesh–size h, and Table 2
the corresponding slopes calculated by least–square linear fitting. Our results are consistent with the predicted
asymptotic behavior for the error |||u− uDG||| O(h) as h tends to zero and are in agreement with Theorem 5.1.
Concerning the error ||u − uDG||0, the curves in Figure 4 exhibit a more oscillating behavior and do not allow
us to deduce an optimal rate of convergence O(h3/2). However, also in this case, the error |||u− uDG||| appears
to be independent of the particular partition into subdomains considered.

Our second set of examples are for x0 = 1/2. We consider Partition I with m = 2, 4 (four and sixteen
subdomains), and Partition II with m = 2 (twenty subdomains). In this case, the line x = x0 does not cut
through the subdomains and u is analytic on each subdomain. Figure 5 shows the DG- and the L2-norms of the
error, versus the mesh–size h and Table 3 the slope calculated by least–square linear fitting of the corresponding
curves. Here, the optimal rate of convergence O(h3/2) for |||u − uDG||| and O(h2) for ||u − uDG||0 is found, in
agreement with Theorem 5.1. Also in this case, the errors appear to be independent of the particular partition
considered.
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Figure 4. Hyperbolic problem with x0 = π/6: error in the DG- and L2-norm versus the
mesh–size. Conforming partitions with m = 2 and m = 4, and initial meshes with n1 = 2 and
n2 = 3 (left), and non-conforming partitions with m = 1 and m = 2, and initial meshes with
n1 = 4, n2 = 2, and n3 = 3 (right).
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Figure 5. Hyperbolic problem with x0 = 1/2: error in the DG- and L2-norm versus the
mesh–size. Conforming partitions with m = 2 and m = 4, and initial meshes with n1 = 2 and
n2 = 3 (left), and non-conforming partition with m = 2, and initial mesh with n1 = 4, n2 = 2,
and n3 = 3 (right).

7.4. Poisson problem

We consider problem (1) with

A =
(

1 + sin(πx) 0
0 3 − x

)
,

b = 0, c = 1 + 8xy2,
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Table 3. Hyperbolic problem with x0 = 1/2: calculated slope by least–square linear fitting of
the convergence plots in Figure 5.

DG-norm L2-norm

Part. I (2 × 2) 1.57 2.06
Part. I (4 × 4) 1.59 2.04

Part. II (2 × 2) 1.58 1.96
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Figure 6. Elliptic problem: error in the DG- and L2-norm versus the mesh–size. Conforming
partitions with m = 2 (left) and m = 4 (right), and initial meshes with n1 = 2 and n2 = 3, for
σ0 = 1 and σ0 = 0.

the exact solution

u(x, y) = 1 + sin(πxy2),

and the source term f chosen consistently. We consider both cases with penalization (σ0 = σ1 = 1) and and
without (σ0 = σ2 = 0); see (16).

Figure 6 shows the DG- and the L2-norms of the error versus the mesh–size h, for two geometrically con-
forming partitions (four subdomains, on the left, sixteen, on the right). Figure 7 shows the convergence curves
for two non-conforming partitions (five subdomains, on the left, twenty, on the right). In Table 4, we report
the slope calculated by least–square linear fitting of the curves in Figures 6 and 7. Also in the elliptic case,
our results suggest that the error ||u − uDG||DG converges to zero at an optimal rate O(h) as h tends to zero,
in agreement with Theorem 5.1. Our results are also consistent with an optimal convergence rate O(h2) for
||u − uDG||0 for linear finite elements. These remarks are valid both for σ0 = 0 and σ0 = 1.

We also note that no appreciable degradation in the error ||u − uDG||DG is observed if no penalization term
is employed (σ0 = 0). A slight degradation is observed in ||u − uDG||0. Our method appears to be robust with
respect to the choice of the penalization parameter σ0, at least for the test cases considered here.
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Figure 7. Elliptic problem: error in the DG- and L2-norm versus the mesh–size. Non-
conforming partitions with m = 1 (left) and m = 2 (right), and initial meshes with n1 = 4,
n2 = 3, n3 = 3, for σ0 = 1 and σ0 = 0.

Table 4. Elliptic problem: calculated slope by least–square linear fitting of the convergence
plots in Figures 6 and 7.

DG-norm (σ1) L2-norm (σ1) DG-norm (σ2) L2-norm (σ2)

Part. I (2 × 2) 1.01 1.74 1.09 1.70
Part. I (4 × 4) 0.93 1.78 0.99 1.73

Part. II (1 × 1) 1.02 1.85 1.08 1.89
Part. II (2 × 2) 0.92 1.87 0.95 1.83

7.5. Coupled hyperbolic and singularly–perturbed elliptic problems

We now consider a more complicated problem. We choose

A =



(

ε 0
0 ε

)
, r ≤ 1/4,

0, otherwise,

where r2 = (x − 1/2)2 + (y − 1/2)2 and ε ≥ 0, b = (2y2 − 4x + 1, 1 + y), c = f = 0. The streamlines of b enter
the domain from the three sides x = 0, x = 1, and y = 0, and, along these lines, we prescribe the solution

u(x, y) =




0, x = 0, 1/2 < y ≤ 1,
1, x = 0, 0 ≤ y ≤ 1/2,
1, 0 ≤ x ≤ 3/4, y = 0,
0, 3/4 < x ≤ 1, y = 0,

sin2(πy), x = 1, 0 ≤ y ≤ 1.

We have chosen σ0 = 1.
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Figure 8. Coupled hyperbolic–elliptic problem with ε = 0.1: conforming partition (m = 5, 25
subdomains) with n1 = 16, n2 = 24, 2 × 10, 240 elements (left) and non-conforming partition
(m = 2, 20 subdomains) with n1 = 40, n2 = 24, n3 = 16, 2 × 16, 384 elements (right).
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Figure 9. Coupled hyperbolic–elliptic problem with ε = 0.01: conforming partition (m = 5,
25 subdomains) with n1 = 16, n2 = 24, 2×10, 240 elements (left) and non-conforming partition
(m = 2, 20 subdomains) with n1 = 40, n2 = 24, n3 = 16, 2 × 16, 384 elements (right).

This test problem is the same as that considered in [17] (Sect. 5.2). We note that, for ε > 0, the problem
is elliptic in the circular region r < 1/4 and hyperbolic in the remaining of Ω. We consider a geometrically
conforming partition (I), consisting of 5 × 5 subdomains and meshes given by n1 = 16, n2 = 24 (2 × 10, 240
elements) and a non-conforming one, consisting of 2× 2 blocks (20 subdomains) with meshes given by n1 = 40,
n2 = 24, n3 = 16 (2 × 16, 384 elements).

In Figures 8, 9, and 10, we show the contour plots of the solution u for ε = 0.1, ε = 0.01, ε = 0, respectively,
for the two partitions. As pointed out in [17], for ε = 0.1 and ε = 0.01, the boundary data is advected into the
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Figure 10. Hyperbolic problem (ε = 0): conforming partition (m = 5, 25 subdomains) with
n1 = 16, n2 = 24, 2 × 10, 240 elements (left) and non-conforming partition (m = 2, 20 subdo-
mains) with n1 = 40, n2 = 24, n3 = 16, 2 × 16, 384 elements (right).

hyperbolic region, then diffused in the elliptic region, and finally advected to the outflow boundary. We note
that there are two discontinuity lines, due to the discontinuous boundary datum. For ε = 0.01, the diffusive
effect is almost negligible. Our solutions appear to be in good agreement with those in [17], obtained with the
SD method on a conforming triangulation, both for geometrically conforming and non-conforming partitions.
In particular, we note that, for ε = 0.1 and ε = 0.01, the subdomain boundaries separate both hyperbolic and
singularly–perturbed elliptic regions and that the contour lines are continuous across the subdomains.
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discretization of the Maxwell equations. M2AS (submitted).
[10] F. Ben Belgacem, The mortar element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197.
[11] C. Bernardi, Y. Maday and A.T. Patera, A new non conforming approach to domain decomposition: The mortar element
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