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SEMI–SMOOTH NEWTON METHODS FOR VARIATIONAL INEQUALITIES
OF THE FIRST KIND
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Abstract. Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinite
dimensions. It is shown that they are equivalent to certain active set strategies. Global and local
super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of
discretized problems a penalty version is used as the basis for a continuation procedure to speed up
convergence. The choice of the penalty parameter can be made on the basis of an L∞ estimate for the
penalized solutions. Unilateral as well as bilateral problems are considered.

Mathematics Subject Classification. 49J40, 65K10.

Received: April 15, 2002. Revised: July 30, 2002.

1. Introduction

This paper is devoted to the convergence analysis of iterative algorithms for solving variational inequalities
of the form 

min
1
2
a(y, y) − (f, y)

y ∈ H1
0 (Ω)

y ≤ ψ a.e. in Ω,

(1.1)

where a(·, ·) is a coercive bilinear form on H1
0 (Ω) × H1

0 (Ω), and (·, ·) denotes the inner product in L2(Ω).
The precise assumptions on the quantities appearing in (1.1) are given in Section 2. While iterative methods
for solving finite dimensional discretization of (1.1) are extensively studied see e.g. [4, 8, 9] and the references
therein, little attention has been paid to the infinite–dimensional counter–parts. Our contribution will focus on
the convergence of the infinite dimensional algorithms. More precisely we shall analyze primal–dual active set
algorithms or – as we shall argue – equivalently semi–smooth Newton algorithms. To briefly describe this class
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of algorithms let y∗ denote the solution to (1.1) and let λ∗ be the associated Lagrange multiplier. As we shall
recall in Section 2, the optimality system associated to (1.1) can be expressed as{

a(y∗, v) + (λ∗, v) = (f, v), for all v ∈ H1
0 (Ω),

λ∗ = max(0, λ∗ + c(y∗ − ψ)),
(1.2)

for each c > 0, where max denotes the pointwise a.e. maximum operation. The second order augmented
Lagrangian method in [1, 10] employs the primal–dual active set strategy based on the second equality in (1.2)
and is given as the following iterative method: given a current pair (yk, λk) of primal and dual variables, predict
the active set Ak+1 as

Ak+1 = {x : λk(x) + c(yk(x) − ψ(x)) > 0} · (1.3)

We arrive at the following formal algorithm:

Algorithm.
(i) Choose c > 0, (yo, λ0), set k = 0.
(ii) Determine Ak+1 according to (1.2).
(iii) Solve for yk+1 = argmin{ 1

2a(y, y) − (f, y) : y = ψ on Ak+1}.
(iv) Let λk+1 be the Lagrange multiplier associated to the constraint in (iii) with λk+1 = 0 on Ω \ Ak+1.
(v) Set k = k + 1 and goto (ii).

Let us observe that the optimality system for the variational problem in (iii) is given by{
a(yk+1, v) + 〈λk+1, v〉H−1,H1

0
= (f, v) for all v ∈ H1

0 (Ω),

yk+1 = ψ on Ak+1, λk+1 = 0 on Ik+1 = Ω \ Ak+1.
(1.4)

In particular, the Lagrange multiplier associated to the constraint y = ψ on Ak+1, is in general only a distribution
in H−1(Ω). This results from the fact that ∂yk+1

∂n is not continuous across the boundaries between active and
inactive sets. Rather λk+1 contains jumps of magnitude ∂yk+1

∂n+
J

− ∂yk+1

∂n−
J

, where n±
J stands for the normal directions

to either side of the boundary between active and inactive set. These jumps are not present in the solution of the
limit–problem (1.1), since under mild assumptions [12, 13] we have y∗ ∈ H2(Ω) and λ∗ ∈ L2(Ω). The fact that
the Lagrange multipliers λk+1 of the auxiliary problems in (iii) of the algorithm are not contained in the pivot
space L2(Ω) between H1

0 (Ω) and H−1(Ω) presents a serious difficulty, both from the point of view of numerical
implementation and convergence analysis. In order to remedy this difficulty we consider a one-parameter family
of regularized problems based on smoothing of the complementarity condition by

λ = α max(0, λ+ c(y − ψ)), 0 < α < 1

which replaces the second equation in (1.2). The motivation for this regularization is that it is a relaxation
of the second equation in (1.2). We analyze (i) the convergence of the active set strategy to the regularized
problem, (ii) the monotone convergence property and L∞ rate of convergence of solutions to the regularized
problem to the original variational inequality and then (iii) develop and test a continuation method for the
second order augmented Lagrangian method based on (i) and (ii).

The outline of the paper is as follows. In Section 2 we first introduce an equivalent but much more convenient
form of the regularized problems and subsequently an iteration method based on the primal–dual active set
strategy. We show that the method based on the active set strategy is equivalent to a semi-smooth Newton
method [7]. Global as well as local super–linear convergence of the iteration method for the regularized problems
is proven. The equivalence to the semi-smooth Newton is used to prove local super–linear convergence. Section 3
is devoted to the asymptotic analysis with respect to the regularization parameter. Monotone convergence
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properties of the solutions of the regularized problems towards the solution of the original problem are proven
and an L∞-error estimate for this convergence is obtained. It is important to note that the L∞-error estimate
can be used as a guideline for the choice of the penalty in terms of the mesh-size. In Section 5 we present our
numerical examples to demonstrate the structural results obtained in this paper. Moreover we demonstrate
that the algorithm allows to determine the boundary of the active set within grid–size accuracy. We also show
that regularization can be used to overcome an essential drawback of active set strategies applied to (1.1), i.e.,
when the bilinear form a is discretized by finite differences (the five point stencil in dimension two) then changes
from one iteration to the next occur along layers between active and inactive sets which have only the width
of one mesh-size. For fine mesh-sizes this results in large iteration numbers. This difficulty can be overcome
by multigrid methods, for example. Here we show that regularization techniques provide an alternative to deal
with this shortcoming of active set strategies for (1.1). A regularized version of the above algorithm converges
within a very few iteration due to its capability to change large sets of active indices to inactive ones and vice
versa. We shall demonstrate that this property can advantageously be used in a continuation procedure with
respect to the regularization parameter. The focus of our numerical test is not to compete with the most efficient
implementations for this frequently tested class of obstacle problems, but rather to validate the structural results
of the paper and to show the potential of a systematic use of regularization.

Our theoretical results provide a framework for an efficient second order iterative process for solving a
regularized form of (1.2). It should also be noted that solving the regularized problem is equivalent to solving
a single step of the first order augmented Lagrangian method, e.g., see [11] and thus semi-smooth Newton
methods should also improve the original implementation of the first order augmented Lagrangian method
reported in [11]. This can be the focus of future investigations.

Beyond the motivation of overcoming the difficulty due to lack of regularity of the Lagrange multiplier
our interest in analyzing primal–dual active set strategies for (1.1) also stems from our desire to investigate
these algorithms separately for classes of problems which differ with respect to the regularity properties of the
Lagrange multipliers. The abstract results are contained in [10]. In [3] we considered optimal control problems
with control constraints. In this case the Lagrange multipliers of the original problem as well as those arising in
the auxiliary problems of the primal–dual active set algorithm are in L2(Ω) or L2(∂Ω), depending on whether
distributed or boundary control problems are considered. For such problems large sets of active and inactive
indices are moved from one iteration to the next. In [7] we established the strong relationship of these methods
with superlinearly convergent semi–smooth Newton methods. For variational inequalities of the form (1.1) the
Lagrange multipliers of the limit problem are L2 but those of the auxiliary problems are not. Finally, for state
constrained optimal control problems as well as for control of variational inequalities the Lagrange multipliers
of the limit–problems themselves are not L2 smooth but are in general only measures. Numerical results for
these classes of problems are contained in [2, 11]. Convergence results for the latter are only available in the
case of discretized state constrained optimal control problems.

We briefly summarize those facts on semi–smooth Newton methods which are relevant for our analysis in
Section 2. Let X and Z be Banach spaces and let F : D ⊂ X → Z be a nonlinear mapping with open domain D.

Definition 1.1. The mapping F : D ⊂ X → Z is called generalized–differentiable on the open subset U ⊂ D
if there exists a family of generalized derivatives G : U → L(X,Z) such that

lim
h→0

1
‖h‖ ‖F (x+ h) − F (x) −G(x+ h)h‖ = 0, (A)

for every x ∈ U .

We shall refer to mappings F which allow a generalized derivative on U in the sense of Definition 1.1 as
Newton–differentiable.

Theorem 1.1. Suppose that x∗ ∈ D is a solution to F (x) = 0 and that F is Newton–differentiable in an
open neighborhood U containing x∗ and that {‖G(x)−1‖ : x ∈ U} is bounded. Then the Newton–iteration
xk+1 = xk −G(xk)−1F (xk) converges superlinearly to x∗ provided that ‖x0 − x∗‖ is sufficiently small.
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Let us consider Newton–differentiability of the max–operator. For this purpose X denotes a function space
of real–valued functions on Ω ⊂ Rn and max(0, y) is the pointwise max–operation. For δ ∈ R we introduce
candidates for the generalized derivative of the form

Gm,δ(y)(x) =


1 if y(x) > 0
0 if y(x) < 0
δ if y(x) = 0,

where y ∈ X .

Proposition 1.1. The mapping max(0, ·) : Lq(Ω) → Lp(Ω) with 1 ≤ p < q < ∞ is Newton differentiable on
Lq(Ω) and Gm,δ is a generalized derivative.

For the proofs of Theorem 1.1 and Proposition 1.1 we refer to [7]. Related results can be found in [14]. The
following chain rule will be utilized in Section 2. We utilize a third Banach space Y .

Proposition 1.2. Let F2 : Y → X be an affine mapping with F2 y = By+ b, B ∈ L(Y,X), b ∈ X, and assume
that F1 : D ⊂ X → Z is Newton–differentiable on the open subset U ⊂ D with generalized derivative G. If
F−1

2 (U) is nonempty then F = F1 ◦F2 is Newton–differentiable on F−1
2 (U) with generalized derivative given by

G(By + b)B ∈ L(Y, Z), for y ∈ F−1
2 (U).

Proof. By assumption F−1
2 (U) is nonempty and due to continuity of F2 the set F−1

2 (U) is open. Note that
G(By + b)B ∈ L(Y, Z) for each y ∈ F−1

2 (U) since G(x) ∈ L(X,Z) for each x ∈ U . For y ∈ F−1
2 (U) we find

lim
h→0
h∈Y

1
‖h‖ ‖(F1 ◦ F2)(y + h) − (F1 ◦ F2)(y) −G(F2(y + h))Bh‖ =

lim
h→0
h∈Y

1
‖Bh‖ ‖F1(By + b +Bh) − F1(By + b) −G(By + b+Bh)Bh‖ ‖Bh‖

‖h‖ = 0,

and hence the claim follows.

2. Global and local convergence of the iterative method

for the regularized problems

We consider 
min

1
2
a(y, y) − (f, y)

y ∈ H1
0 (Ω)

y ≤ ψ a.e. in Ω,

(2.1)

where a (·, ·) is a bilinear form on H1
0 (Ω) ×H1

0 (Ω) satisfying

a(v, v) ≥ ν|v|2H1
0
, a(w, z) ≤ µ|w|H1 |z|H1 , (2.2)

for some ν > 0 and µ > 0 independently of v ∈ H1
0 (Ω) and w, z ∈ H1(Ω). Further it is assumed that f ∈ L2(Ω),

ψ ∈ H1(Ω) with ψ|∂Ω ≥ 0. Throughout Ω is a bounded domain in Rn with Lipschitzian boundary ∂Ω. Since
ψ ∈ H1(Ω) the trace ψ|∂Ω is well-defined. The assumption ψ|∂Ω ≥ 0 implies that the set of admissible functions
y for (2.1) is nonempty. We shall also require that a satisfies the weak maximum principle, i.e. for all v ∈ H1

0 (Ω)

a(v, v+) ≤ 0 implies v+ = 0, (2.3)
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where v+ = max(0, v). We set K = {v ∈ H1
0 (Ω): v ≥ 0 a.e.}. It will further be convenient to introduce the

representation operator

A : H1
0 (Ω) → H−1(Ω)

associated to a(·, ·). Utilizing (2.2) it is well-known [12] that (2.1) admits a unique solution y∗ ∈ H1
0 (Ω) and an

associated Lagrange multiplier λ∗ ∈ H−1(Ω). Under well-known additional regularity assumptions which we
recall in Remark 2.3 below λ∗ ∈ L2(Ω) and the following optimality system characterizes y∗:{

a(y∗, v) + (λ∗, v) = (f, v), for all v ∈ H1
0 (Ω)

(λ∗, y∗ − ψ) = 0, y∗ ≤ ψ, (λ∗, v) ≥ 0 for all v ∈ K.
(2.4)

By inspection (2.4) can equivalently be expressed as{
a(y∗, v) + (λ∗, v) = (f, v) for all v ∈ H1

0 (Ω)

λ∗ = max(0, λ∗ + c(y∗ − ψ)),
(2.5)

for arbitrary c > 0. (More precisely, (2.4) implies (2.5) for every c, and (2.5) for some c > 0 implies (2.4)). Next
we turn to the regularization of the max–function in (2.5). We have motivated the necessity for regularization
for the primal–dual active set method by the abstract algorithm in Section 1. Concerning the semi–smooth
Newton approach we have from Proposition 1.1 that the max operation is Newton differentiable from Lp(Ω)
to L2(Ω) if p > 2. If we were to consider both y and λ as independent variables in a semi–smooth Newton
approach to (2.5), then we can expect to obtain the necessary smoothing for the y component due to the first
equation in (2.5) but we lack the smoothing property with respect to λ.

In our first attempt to regularize the max–function in (2.5) we are tempted to use the well–known smoothing

maxσ (x) =



0 for x < −σ
2

1
2σ

(
x+

σ

2

)2

for −σ
2
≤ x ≤ σ

2

x for x >
σ

2
,

with σ > 0, see e.g. [1]. After a short computation we obtain an explicit expression for λ = λσ(z) satisfying
λ = maxσ(0, λ+ c z) as

λσ(z)



= 0 for λ+ c z < −σ
2

=
σ

2
− c z −√−2cσz for −σ

2
≤ λ+ c z ≤ σ

2

∈
[σ
2
,∞
)

for λ+ c z >
σ

2
·

Thus we obtain an equation Ay + λσ(y − ψ) = f for y ∈ H1
0 (Ω), where λσ is a multi–valued function defined

above. This smoothing has some nice properties but it is much less convenient than penalty–type smoothing
that we turn to next.

As stated in introduction we shall use

λ = α max(0, λ+ c(y∗ − ψ)), 0 < α < 1 (2.6)
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to regularize the second equation in (2.5). This is equivalent to

λ = max
(
0, λ̄+ γ(y − ψ)

)
, γ ∈ (0,∞), (2.7)

where λ̄ ∈ L2(Ω), if we set λ̄ = 0 and γ = cα/(1−α). Note that γ → ∞+ as α→ 1−. This type of regularization
will allow us to prove global monotone convergence of the primal–dual active set method. The introduction of λ̄
in (2.7), which does not appear in the original regularization, was motivated by augmented Lagrangians, [10,11].
We shall see in Section 3 that depending on its choice the feasibility of the approximations can be controlled.
Note that if λ̄ = 0 on {x : y(x) ≥ ψ(x)}, then (2.7) can be regarded as a penalty–type formulation of the
complementarity condition

y − ψ ≤ 0, λ ≥ 0, (y − ψ, λ) = 0,

as γ → ∞. In the remainder of this section γ > 0 is a fixed constant and we consider an active set strategy or
alternatively a semi–smooth Newton method to solve{

a(y, v) + (λ, v) = (f, v) for all v ∈ H1
0 (Ω)

λ = max
(
0, λ̄+ γ(y − ψ)

)
.

(2.8)

Monotone operator theory provides the existence of a unique solution (yγ , λγ) ∈ H1
0 (Ω)×L2(Ω). An independent

existence proof will follow from the results of this section.
We turn to the description of the algorithm.

Primal–dual active set (PDAS) algorithm

(i) Choose y0 , set k = 0.
(ii) Set Ak+1 = {x : (λ̄ + γ(yk − ψ))(x) > 0}, Ik+1 = Ω \ Ak+1.
(iii) Solve for yk+1 ∈ H1

0 (Ω):

a(y, v) + (λ̄+ γ(y − ψ), χAk+1v) = (f, v) for all v ∈ H1
0 (Ω). (2.9)

(iv) Set

λk+1 =

{
0 on Ik+1

λ̄+ γ(yk+1 − ψ) on Ak+1.

(v) Stop or k = k + 1, goto (ii).

Remark 2.1. Here we establish the relationship between the above algorithm and a semi–smooth Newton
method applied to (2.8). Recall the definition A : H1

0 (Ω) → H−1(Ω) and introduce the nonlinear mapping
F : H1

0 (Ω) × L2(Ω) → H−1(Ω) × L2(Ω), by

F (y, λ) =

(
Ay + λ− f

λ− max(0, λ̄+ γ(y − ψ))

)
.

A generalized derivative G of F in the sense of Definition 1.1 and Proposition 1.1 with δ = 0 is given by

G(yk, λk)h =

(
Ah1 + h2

h2 − γχAk+1h1

)
.
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where h = (h1, h2) ∈ H1
0 (Ω) × L2(Ω).

The resulting semi–smooth Newton–update is thus given by
Aδy + δλ = −Ayk − λk + f

δλ = −λk on Ik+1,

δλ− γδy = −λk + λ̄+ γ(yk − ψ) on Ak+1

(2.10)

where δy = yk+1 − yk and δλ = λk+1 − λk, and coincides with step (iii)–(iv) of the primal–dual active set
algorithm.

Remark 2.2. The semi–smooth Newton can be applied to (2.6) without reformulation as (2.7). Based on (2.6)
it coincides with the one we specified above, with λ̄ = 0, except for the initialization phase, where now y0
and λ0 must be prescribed. In case of (2.6) the active set in step (ii) of the algorithm would be set Ãk+1 =
{x : (λk + γ(yk − ψ))(x) > 0} and the update on the basis of (2.6) for λk+1 coincides with the one of step (iv)
in the algorithm. Note that sgn (λk + γ(yk − ψ))(x) = sgn (yk − ψ)(x) for all x ∈ Ω, and k ≥ 1, and hence
Ãk+1 = Ak+1 for all k ≥ 2. A similar remark applies in case λ̄ �= 0.

Properties of the semi–smooth Newton algorithm or equivalently the PDAS are analyzed next.

Proposition 2.1. If Ak+1 = Ak for k ≥ 1, then (yk, λk) is the solution to (2.9).

Proof. Since for given Ak+1 the solution to (2.9) is unique it follows from Ak = Ak+1 that yk = yk+1 and
consequently λk+1 = λk.

Proposition 2.2. The sequence {yk}∞k=1 is monotonically decreasing, i.e. yk+1 ≤ yk, a.e. on Ω for all k ≥ 1.

Proof. Let δy = yk+1 − yk for k ≥ 1 and observe that

a(δy, δy+) + (λk+1 − λk, δy
+) = 0. (2.11)

We have

λk+1(x) − λk(x)



= 0 for x ∈ Ik+1 ∩ Ik,
= γ(yk+1(x) − yk(x)) for x ∈ Ak+1 ∩Ak,

= −λ̄− γ(yk − ψ)(x) ≥ 0 for x ∈ Ik+1 ∩ Ak,

> γ(yk+1 − yk)(x) for x ∈ Ak+1 ∩ Ik.

It follows that (λk+1 − λk, δy
+) ≥ 0 and by (2.11)

a(δy, δy+) ≤ 0.

Consequently δy+ = 0 by (2.3) and yk+1 ≤ yk follows. �

Proposition 2.3. For every k ≥ 1 we have Ik ⊂ Ik+1.

Proof. If not, then there exists a set S ⊂ Ω of positive measure and x ∈ Ik ∩ Ak+1 for every x ∈ S. It follows
that

(
λ̄+ (yk−1 − ψ)

)
(x) ≤ 0 and by Proposition 2.2

(
λ̄+ (yk − ψ)

)
(x) ≤ 0. On the other hand x ∈ Ak+1,

and hence
(
λ̄+ (yk − ψ)(x)

)
> 0. This gives the desired contradiction. �

Proposition 2.4. For every k ≥ 1 we have yγ ≤ yk.
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Proof. We consider the sign of λk − λγ . Let Aγ =
{
x :
(
λ̄+ γ(yγ − ψ)

)
(x) > 0

}
, and Iγ = Ω \ Aγ . For

x ∈ Iγ ∩ Ik we have (λk − λγ)(x) = 0, and for x ∈ Aγ ∩ Ak we find (λk − λγ)(x) = γ(yk − yγ)(x). If
x ∈ Iγ ∩Ak then (λk − λγ)(x) =

(
λ̄+ γ(yk − ψ)

)
(x) ≤ γ(yk − yγ). Finally, if x ∈ Aγ ∩ Ik then (λk − λγ)(x) =

− (λ̄+ γ(yγ − ψ)
)
(x) ≤ 0. We find

a(yγ − yk, (yγ − yk)+) = −(λγ − λk, (yγ − yk)+) ≤ 0.

By (2.2) it follows that (yγ − yk)+ = 0 and hence yγ ≤ yk. �
Proposition 2.5. For every k ≥ 1 we have 0 ≤ λk+1 ≤ λk.

Proof. The claim follows from Propositions 2.2 and 2.3. �
Note that Propositions 2.2–2.5 hold for k ≥ 1 and are in general not valid for the initialization step with

k = 0.

Theorem 2.1. For every γ > 0 we have limk→∞(yk, λk) = (yγ , λγ) in H1
0 (Ω) × L2(Ω).

Proof. The sequences {yk}∞k=1 and {λk}∞k=1 are decreasing pointwise almost everywhere and are uniformly
bounded by L2(Ω) functions. By (2.2) and (2.9) moreover, {yk}∞k=1 is bounded in H1

0 (Ω). Hence there exist
ŷ ∈ H1

0 (Ω) and λ̂ ∈ L2(Ω) such that a subsequence of yk converges weakly in H1
0 (Ω) to ŷ, and limk→∞ yk = ŷ

a.e. and limk→∞ λk = λ̂ a.e.. Since Ik ⊂ Ik+1 and λk = 0 on Ik it follows that λ̂ = 0 on I =
⋃∞
k=1 Ik and

λ̂ = λ̄ + γ(ŷ − ψ) on A =
⋂∞
k=1 Ak. Moreover, if x ∈ I then (λ̄ + (ŷ − ψ))(x) ≤ 0, and for x ∈ A we have

(λ̄ + γ(yk − ψ))(x) > 0 for all k and hence (λ̄ + (ŷ − ψ))(x) ≥ 0. Consequently λ̂ = max(0, λ̄+ γ(ŷ − ψ)). By
Lebesgue’s bounded convergence theorem limk→∞ λk = λ̂ in L2(Ω). Taking the limit in

a(yk, v) + (λk, v) = (f, v),

we arrive at

a(ȳ, v) + (λ̂, v) = (f, v) for all v ∈ H1
0 (Ω)

λ̂ = max(0, λ̄+ γ(ŷ − ψ)).

Since the solution to this system is unique we have
(
ŷ, λ̂
)

= (yγ , λγ). Finally, setting v = yk in (2.6) and

using (2.2) we find |yk|H1
0
→ |yγ |H1

0
. Together with weak convergence of yk to yγ in H1

0 this implies limk→∞ yk =
yγ in H1

0 (Ω). �
Remark 2.3. Under additional regularity assumptions the above result can be strengthened. We shall repeat-
edly refer to these assumptions which we now summarize. The bilinear form has the form

a(v, w) =
∫

Ω

[aij∂xiv∂xjw + dw]dx,

for v, w ∈ H1(Ω), where we use the summation convention, the leading differential operator is uniformly elliptic
and aij ∈ C1(Ω̄), d ∈ L∞(Ω), d ≥ 0. Moreover ψ ∈ H2(Ω), ∂Ω is C1,1 or Ω is a polyhedron.

Under these requirements the representation operator A is a homeomorphism from H2(Ω)∩H1
0 (Ω) to L2(Ω).

The solution to (2.1) satisfies (y∗, λ∗) ∈ (H2(Ω)∩H1
0 (Ω))×L2(Ω), see e.g. [11–13], or as corollary to the results

of Section 3. Moreover limk→∞ yk = yγ in H1
0 (Ω) ∩H2(Ω) in the statement of Theorem 2.1. �

Theorem 2.1 guarantees global convergence of the semi–smooth Newton method, i.e. the algorithm converges
from any initial condition. Next we establish that once the iterates are sufficiently close to the solution, then
the convergence is superlinear.
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For this purpose we introduce the mapping F : L2(Ω) → L2(Ω) by

F (λ) = λ− max
(
0, λ̄+ γ

(
A−1(f − λ) − ψ

))
. (2.12)

Note that F (λ) = 0 is equivalent to system (2.8). We consider the following reduced algorithm in the variable λ.
It arises from applying the quasi–Newton method to F (λ) = 0. It turns out that the reduced algorithm is
equivalent to the primal-dual active set algorithm.

Reduced algorithm

(i) Choose y0 ∈ H1
0 (Ω), set λ0 = f −Ay0 and k = 0.

(ii) Set Ak+1 =
{
x :
[
λ̄+ γA−1(f − λk) − γ ψ

]
(x) > 0

}
, Ik+1 = Ω \ Ak+1.

(iii) Set δλ = λk on Ik+1, and solve for δλ ∈ L2(Ω)(
δλ+ γA−1(δλ)

)
(x) =

[−λk + λ̄− γ ψ + γA−1(f − λk)
]
(x), x ∈ Ak+1.

(iv) Set λk+1 = λk + δλ and goto (ii).
In fact (iii)–(iv) of the reduced algorithm is equivalent to(

λk+1 − λ̄+ γ ψ
)
(x) = γ

(
A−1(f − λk+1)

)
(x) for x ∈ Ak+1, λk+1 = 0 in Ik+1

and thus it is equivalent to (iii)–(iv) of the primal–dual active set algorithm with yk+1 = A−1(f − λk+1). Since
the initializations for both algorithms are the same the two algorithms give identical iterates. Note that while
λ0 may only be in H−1(Ω), the iterates satisfy λk ∈ L2(Ω) for k ≥ 1.

Theorem 2.2. If λ0 ∈ L2(Ω) and |λ0 − λγ |L2(Ω) is sufficiently small then (yk, λk) → (yγ , λγ) superlinearly in
H1

0 (Ω) × L2(Ω).

Proof. First we show superlinear convergence of λk to λγ by applying Theorem 1.1 to F defined in (2.12). Let
q = 1

2 − 1
n , if n ≥ 3 and q ∈ (2,∞) if n = 2. Then H1(Ω) is continuously injected into Lq(Ω), and q > 2 for

each n. From Propositions 1.1 and 1.2 it follows that F is Newton–differentiable on L2(Ω). For this purpose
we set B = γA−1 and b = λ̄+ γ

(
A−1f − ψ

)
in Proposition 1.2. To apply Theorem 1.1 it remains to verify that

the generalized derivatives G(λ) ∈ L(L2(Ω)) of F have uniformly bounded inverses. We define

A =
{
x :
[
λ̄+ γ

(
A−1(f − λ) − ψ

)]
(x) > 0

}
, I = Ω \ A.

Further let EA : L2(A) → L2(Ω) and EI : L2(I) → L2(Ω) denote the extension – by – zero operators from A
and I to Ω, respectively. Their adjoints E∗

A : L2(Ω) → L2(A) and E∗
I : L2(Ω) → L2(I) are restriction operators.

The mapping (E∗
A, E

∗
I) : L2(Ω) → L2(A)×L2(I) determines an isometric isomorphism and every λ ∈ L2(Ω) can

uniquely be expressed as (E∗
Aλ,E

∗
Iλ). A generalized derivative of F in the sense of Definition 1.1 is obtained

by setting δ = 0 in the definition Gm,δ for generalized derivatives of the max–operation. We obtain

G(λ) = I + γχAA−1.

This operator can equivalently be expressed as

G(λ) =
(
IA 0
0 II

)
+ γ

(
E∗

AA
−1EA E∗

AA
−1EI

0 0

)
,

where IA and II denote the identity operators on L2(A) and L2(I). Let (gA, gI) ∈ L2(A)×L2(I) be arbitrary
and consider the equation

G(λ)((δλ)A, (δλ)I) = (gA, gI). (2.13)
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Then necessarily (δλ)I = gI and (2.13) is equivalent to

(δλ)A + γE∗
AA

−1EA(δλ)A = gA − γE∗
AA

−1EIgI . (2.14)

The Lax–Milgram theorem and positivity of A−1 imply the existence of a unique solution (δλ)A to (2.14) and
consequently (2.13) has a unique solution for every (gA, gI) and every λ. Moreover these solutions are uniformly
bounded w.r.t. λ ∈ L2. This follows from (δλ)I = gI and

|δλA|L2(A) ≤ |gA|L2(Ω) + γ‖A−1‖L(L2(Ω)) |gI |L2(I).

This proves superlinear convergence λk → λγ in L2(Ω). Superlinear convergence of yk to yγ in H1
0 (Ω) follows

from Ayk + λk = f and the fact that A : H1
0 (Ω) → H−1(Ω) is a homeomorphism. �

If the problem data are sufficiently regular as specified in Remark 2.3 such that A : H1
0 (Ω)∩H2(Ω) → L2(Ω)

is a homeomorphism, then yk → yγ in H2(Ω) under the assumptions of Theorem 2.2.

3. Convergence of regularized problems

First we establish a general convergence result with respect to the penalty parameter γ. For related results
we refer to [6], for example.

Theorem 3.1. The solutions (yγ , λγ) to the regularized problem (2.8) converge to (y∗, λ∗) in the sense that
yγ → y∗ strongly in H1

0 (Ω) and λγ ⇀ λ∗ weakly in H−1(Ω) as γ → ∞.

Proof. From (2.4) and (2.8) we have for every γ > 0

a(yγ , yγ − y∗) + (λγ , yγ − y∗) = (f, yγ − y∗)

where λγ = max
(
0, λ̄+ γ(yγ − ψ)

)
. Since λγ ≥ 0 and ψ − y∗ ≥ 0 we have

(λγ , yγ − y∗) =
(
λγ ,

λ̄

γ
+ yγ − ψ + ψ − y∗ − λ̄

γ

)
≥ 1
γ

(
λγ , λ̄+ γ(yγ − ψ)

)− 1
γ

(
λγ , λ̄

)
,

and hence

(λγ , yγ − y∗) ≥ 1
γ
|λγ |2L2 − 1

γ
(λγ , λ̄). (3.1)

Using this inequality and the equation derived from (2.4) and (2.8) we have

a(yγ , yγ) +
1
γ
|λγ |2L2 ≤ a(yγ , y∗) + (f, yγ − y∗) +

1
γ

(
λ̄, λγ

)
.

It thus follows from (2.2) that

ν |yγ |2H1
0

+
1
γ
|λγ |2L2

is uniformly bounded with respect to γ ≥ 1 and hence by (2.8) the family {λγ}γ≥1 is bounded in H−1(Ω).

Consequently there exist
(
ŷ, λ̂
)
∈ H1

0 (Ω) ×H−1(Ω) and a sequence {(yγn , λγn} with lim γn = ∞ such that

w − lim(yγn , λγn) =
(
ŷ, λ̂
)

in H1
0 (Ω) ×H−1(Ω).
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Henceforth we drop the subscript n with γn. Note that

1
γ
|λγ |2L2 = γ

∣∣∣∣max
(

0,
λ̄

γ
+ yγ − ψ

)∣∣∣∣2
L2

.

Since H1
0 (Ω) is embedded compactly into L2(Ω), we can assume without loss of the generality that yγ converges

to ŷ a.e. in Ω. From the above equality and Fatou’s lemma we conclude that |(ŷ − ψ)+| = 0 and therefore
ŷ ≤ ψ. From (2.4) and (2.8) we also have

a(yγ − y∗, yγ − y∗) + 〈λγ − λ∗, yγ − y∗〉H−1,H1
0

= 0,

and by (3.1)

(λγ , yγ − y∗) ≥ − 1
4γ

|λ̄|2L2 .

Hence

0 ≤ lim
γ→∞ ν |yγ − y∗|2H1

0
≤ lim
γ→∞〈λ∗, yγ − y∗〉H−1,H1

o
= 〈λ∗, ŷ − ψ〉H−1,H1

0
≤ 0,

where we used the complementarity condition 〈λ∗, y∗−ψ〉H−1,H1
0

= 0 and ŷ ≤ ψ. It follows that limγ→∞ yγ = y∗

in H1
0 (Ω) and hence ŷ = y∗. Taking the limit in

a(yγ , v) + (λγ , v) = (f, v) for all v ∈ H1
0 ,

we find

a(y∗, v) +
〈
λ̂, v
〉
H−1,H1

0

= (f, v) for all v ∈ H1
0 .

This equation is also satisfied with λ̂ replaced by λ∗ and consequently λ∗ = λ̂. Since (y∗, λ∗) is the unique
solution to (2.5) the whole family {(yγ , λγ)} converges in the sense given in the statement of the theorem. �

In the next two sections we establish monotonicity for the family {yγ}γ>0 and the rate of convergence to y∗

in L∞(Ω) for two specific selections of λ̄. We believe that such results are new and they play an important role
in developing a fast algorithm in Section 5.

3.1. Infeasible case

Here we choose λ̄ = 0. For γ > 0 we set

Aγ = {x ∈ Ω: (yγ − ψ)(x) > 0} and Iγ = Ω \ Aγ .

Proposition 3.1. If 0 < α < β then

y∗ ≤ yβ ≤ yα, a.e. in Ω.

Proof. By (2.8) we have

λα − λβ = max(0, α(yα − ψ)) − max(0, β(yβ − ψ)).
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It follows that

(λα − λβ)(x) = 0 for x ∈ Iα ∩ Iβ
(λα − λβ)(x) ≤ β(yα − yβ)(x) for x ∈ Aα ∩ Aβ .

(3.2)

For x ∈ Iβ ∩Aα we find (λα−λβ)(x) = α(yα−ψ)(x) ≤ β(yα−ψ)(x)− β(yβ −ψ)(x) = β(yα− yβ)(x), and thus

(λα − λβ)(x) ≤ β(yα − yβ)(x) for x ∈ Iβ ∩ Aα. (3.3)

Moreover

(λα − λβ)(x) ≤ 0 for x ∈ Aβ ∩ Iα. (3.4)

For (3.2)–(3.4) and (2.8) we find

a(yβ − yα, (yβ − yα)+) = (λα − λβ , (yβ − yα)+) ≤ 0

and hence yβ ≤ yα. The verification that y∗ ≤ yα is quite similar. �

Proposition 3.2. For 0 < α < β we have

I∗ ⊃ Iβ ⊃ Iα.

Proof. If x ∈ Aβ ∩ Iα then (yα − ψ)(x) ≤ 0 and (yβ − ψ)(x) > 0. Hence yα(x) < yβ(x) which contradicts
Proposition 3.1 and therefore Iβ ⊃ Iα. �

Our next objective is to prove convergence of yγ to y∗ in L∞(Ω) with rate γ−1, provided certain regularity
conditions are satisfied. We require a technical lemma which we describe first. For this purpose let ω denote a
subdomain of Ω with Lipschitzian boundary ∂ω. The restriction of a to H1(ω)×H1(ω) will be denoted by the
same symbol.

Lemma 3.1. Assume that g ∈ L∞(ω) and that a(1, v) ≥ 0, for all v ∈ H1(ω) with v ≥ 0. For c > 0, c ∈ R, let
yc ∈ H1

0 (ω) denote the solution to

a(y, v) + c(y, v)L2(ω) = (g, v)L2(ω) for all v ∈ H1
0 (ω). (3.5)

Then yc ∈ L∞(ω) and |yc|L∞(ω) ≤ 1
c |g|L∞(ω).

Proof. For the sake of completeness we include the proof which can be obtained with known techniques. Let
ḡ = max(0, sup{g(x) : x ∈ ω}).

For all v ∈ H1
0 (ω) we have

a

(
yc − 1

c
ḡ, v

)
+ (ḡ − g, v)L2(ω) = (ḡ − cyc, v)L2(ω) − a

( ḡ
c
, v
)
. (3.6)

Set v =
(
yc − 1

c ḡ
)+ and observe that v ∈ H1

0 (ω) since ḡ ≥ 0. Since a(1, v) ≥ 0 for all v ∈ H1(ω) and v ≥ 0, it
follows from (3.6) that

a

(
yc − 1

c
ḡ,

(
yc − 1

c
ḡ

)+
)

≤ 0
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and consequently y(x) ≤ 1
c |g|L∞(ω) for a.e. x ∈ ω. Analogously it can be verified that − 1

c |g|L∞(ω) ≤ y(x) for
a.e. x ∈ ω. �

Let us introduce the active and inactive sets associated to the solution y∗ of (1.1):

A∗ = {x ∈ Ω: y∗(x) = ψ(x)}, I∗ = {x ∈ Ω: y∗(x) < ψ(x)},
with boundaries ∂A∗ and ∂I∗ respectively.

Theorem 3.2. Let the regularity requirements of Remark 2.3 be satisfied and assume that f ∈ L∞(Ω) and
Aψ ∈ L∞(Ω). If, moreover, the boundary ∂A∗ of the active set is C1,1 manifold in Rn−1 and for every γ > 0
the boundary ∂Aγ of Aγ is Lipschitzian manifold in Rn−1 , then

|yγ − y∗|L∞(Ω) ≤ 1
γ
|f −Aψ|L∞(Ω).

Proof. The regularity assumption imply that y∗ ∈ W 2,p(Ω) and yγ ∈ W 2,p(Ω) with p > n. Recall that
W 2,p(Ω) ⊂ C(Ω̄) if p > n. From Proposition 3.2 it follows that A∗ ⊂ Aγ for every γ > 0. From the definition
of Aγ we have {

Ayγ + γ(yγ − ψ) = f in Aγ

yγ − ψ = 0 on ∂Aγ .

Consequently {
A(yγ − ψ) + γ(yγ − ψ) = f −Aψ in Aγ

yγ − ψ = 0 on ∂Aγ .

From Lemma 3.1 with ω = Aγ and g = f we find

|yγ − ψ|L∞(Aγ) ≤ 1
γ
|f −Aψ|L∞(Ω)

and in particular

|yγ − ψ|L∞(A∗) ≤ 1
γ
|f −Aψ|L∞(Ω). (3.7)

Note further that on I∗ we have {
A(yγ − y∗) = λ∗ − λγ ≤ 0 in I∗

yγ − y∗ = yγ − ψ ≥ 0 on ∂I∗.
(3.8)

From the maximum principle applied to (3.8), and (3.7) it follows that

|yγ − y∗|L∞(I∗) ≤ |yγ − ψ|L∞(∂I∗) ≤ 1
γ
|f −Aψ|L∞(Ω), (3.9)

see e.g. [13] (p. 191). Combining (3.7) and (3.9) gives the desired conclusion. �
To justify the terminology to refer to λ̄ = 0 as the infeasible case note that if yγ < ψ for some γ > 0 then

Iγ = Ω, λγ = 0 and (yγ , λγ) satisfy the optimality system (2.4). Consequently (y∗, λ∗) = (yγ , λγ) and y∗ is also
a solution of the unconstrained problem. Thus unless y∗ is also a solution to the unconstrained problem, yγ ≤ ψ
for some finite γ is impossible. In the following section it will be shown that proper choice of λ̄ guarantees
feasibility of the solutions yγ to (2.8).
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3.2. Feasible case

Here we choose λ̄ ∈ L2(Ω) such that{
λ̄ ≥ 0 and λ̄− (f −Aψ) ≥ 0, a.e. in Ω

〈λ̄− (f −Aψ), v〉H−1 ,H1
0
≥ 0 for all v ∈ K.

(3.10)

Note that if ψ ∈ H2(Ω) then for the choice λ̄ = max(0, f −Aψ) (3.10) is satisfied.

Proposition 3.3. If (3.10) holds and 0 < α < β then

yα ≤ yβ ≤ ψ a.e. in Ω.

In particular yα is feasible for every α > 0.

Proof. From (2.8) we have by (3.10)

a(yα − ψ, (yα − ψ)+) = (f − λα, (yα − ψ)+) − a(ψ, (yα − ψ)+)

= 〈f −Aψ − max(0, λ̄+ α(yα − ψ)), (yα − ψ)+〉

= 〈f −Aψ − λ̄, (yα − ψ)+〉 − α(yα − ψ, (yα − ψ)+)

≤ −α| (yα − ψ)+|2 ≤ 0

and hence by (2.3)

yα ≤ ψ.

It follows that yα is feasible for every α > 0.
Next let 0 < α < β. By (2.8)

a(yα − yβ, (yα − yβ)+) = (λβ − λα, (yα − yβ)+). (3.11)

We introduce the set

S = {x : yα(x) − yβ(x) > 0}

and decompose this set as S = S1 ∩ S2 ∪ S3, where

S1 =
{
x ∈ S :

(
λ̄+ β(yβ − ψ)

)
(x) ≤ 0

}
S2 =

{
x ∈ S :

(
λ̄+ β(yβ − ψ)

)
(x) > 0,

(
λ̄+ α(yα − ψ)

)
(x) ≤ 0

}
S3 =

{
x ∈ S :

(
λ̄+ β(yβ − ψ)

)
(x) > 0,

(
λ̄+ α(yα − ψ)

)
(x) > 0

} ·
To estimate the right hand side of (3.11) recall that

λβ − λα = max
(
0, λ̄+ β(yβ − ψ)

)− max
(
0, λ̄+ α(yα − ψ)

)
.
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We find

(λβ − λα, (yα − yβ)+) = (λβ − λα, yα − yβ)L2(S1) + (λβ − λα, yα − yβ)L2(S2) + (λβ − λα, yα − yβ)L2(S3)

≤ (β(yβ − ψ) − α(yα − ψ), (yα − yβ)L2(S2) + (β(yβ − yα), yα − yβ)L2(S3)

+(β(yα − ψ) − α(yα − ψ), yα − yβ)L2(S3).

Utilizing the fact that yα ≤ ψ and yβ ≤ ψ we find

(λβ − λα, (yα − yβ)+) ≤ β(yβ − yα, yα − yβ)L2(S2) + (β − α)(yα − ψ, yα − yβ)L2(S3) ≤ 0.

Inserting this estimate into (3.11) and using the weak maximum principle implies that yα ≤ yβ . �
Corollary 3.1. If (3.10) holds and 0 < α < β then

0 ≤ λα ≤ λβ ≤ max
(
0, λ̄
)

and Iα ⊃ Iβ.
Proof. From the representation λγ = max

(
0, λ̄+ γ(yγ − ψ)

)
and the fact that γ → γ(yγ − ψ)(x) is increasing

with respect to γ for a.e. x ∈ Ω, it follows that λγ is increasing and Iγ is decreasing with respect to γ. The
estimate λγ ≤ max

(
0, λ̄
)

is a consequence of the feasibility of yγ for every γ. �
As in the infeasible case we can consider the question of rate of convergence with respect to γ if additional

regularity requirements are satisfied.

Remark 3.1. From Theorem 3.1, Corollary 3.1 and Lebesgue’s monotone convergence theorem it follow that
λγ → λ∗ strongly in L2(Ω).

Theorem 3.3. Assume that f ∈ L∞(Ω), Aψ ∈ L∞(Ω), λ̄ ∈ L∞(Ω) and that the assumptions of Remark 2.3
hold. If in addition Aγ is a domain with a C1,1 boundary, then

|yγ − y∗|L∞(Ω) ≤ 1
γ
|λ̄|L∞(Ω).

Proof. By the assumptions of the theorem y∗ and yγ ∈ W 2,p(Ω), p > n. On Aγ we have λ̄+ γ(yγ −ψ) ≥ 0 and
yγ ≤ ψ, and hence

|yγ − ψ|L∞(Aγ) ≤ 1
γ
|λ̄|L∞(Ω).

Since Aγ ⊂ A∗ by Corollary 3.1 this implies that

|yγ − y∗|L∞(Aγ) ≤ 1
γ
|λ̄|L∞(Ω).

Moreover we have {
A(y∗ − yγ) = λγ − λ∗ ≤ 0 in Iγ
y∗ − yγ ≤ 0 on ∂Iγ .

From the maximum principle and the regularity assumption on ∂Iγ it follows that

|y∗ − yγ |L∞(Iγ) ≤
1
γ
|λ̄|L∞(Ω). �
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4. Bilateral constraints

The treatment of bilateral constraints gives rise to some additional difficulties. Here we consider
min

1
2
a(y, y) − (f, y)

over y ∈ H1
0 (Ω)

ϕ ≤ y ≤ ψ in Ω.

(4.1)

Throughout this section we assume that

a(ϕ, ψ) = (∇ϕ,∇ψ) for all ϕ, ψ ∈ H1
0 (Ω),

that ϕ and ψ are in H1(Ω), that ∂Ω is C1,1 and

ϕ ≤ 0 ≤ ψ on ∂Ω, max(0,∆ψ + f) ∈ L2(Ω),

min(0,∆ϕ+ f) ∈ L2(Ω),
(4.2)

S1 := {x ∈ Ω: ∆ψ + f > 0} ∩ S2 := {x ∈ Ω: ∆ϕ+ f < 0} = ∅, (4.3)

and that there exists c0 > 0 such that

−∆(ψ − ϕ) + c0(ψ − ϕ) ≥ 0 a.e. in Ω. (4.4)

Under these assumptions it was shown in [10] that there exists a solution y∗ ∈ H1
0 (Ω) ∩ H2(Ω) to (4.1) with

associated Lagrange multiplier λ∗ ∈ L2(Ω). This was verified by passing to the limit γ → ∞ in

−∆yγ + λγ = f, λγ =


λ̄+ γ (yγ − ψ) if λ̄+ γ (yγ − ψ) > 0,
λ̄+ γ (yγ − ϕ) if λ̄+ γ (yγ − ϕ) < 0,
0 otherwise,

(4.5)

where

λ̄ =


∆ψ + f on S1

∆ϕ+ f on S2

0 otherwise.
(4.6)

The weak limit of (yγ , λγ) in H2(Ω) × L2(Ω) satisfies

−∆y∗ + λ∗ = f, λ∗ =


λ∗ + c (y∗ − ψ) if λ∗ + c (y∗ − ψ) > 0,
λ∗ + c (y∗ − ϕ) if λ∗ + c (y∗ − ϕ) < 0,
0 otherwise,

for every c > 0. The latter equation can be equivalently expressed as{ −∆y∗ + λ∗ = f,

λ∗ = max(0, λ∗ + c(y∗ − ψ)) + min(0, λ∗ + c(y∗ − ϕ)),
(4.7)

for every arbitrary fixed c > 0.
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Primal–dual active set algorithm

(i) Choose y0, set k = 0.
(ii) Set

Aψ
k+1 =

{
x :
(
λ̄+ γ(yk − ψ)

)
(x) > 0

}
,

Aϕ
k+1 =

{
x :
(
λ̄+ γ(yk − ϕ)

)
(x) < 0

}
Ik+1 = Ω \

(
Aψ
k+1 ∪Aϕ

k+1

)
.

(iii) Solve for yk+1 ∈ H1
0 (Ω).

a(y, v) +
((
λ̄+ (y − ψ)

)
χAψk+1

, v
)

+
((
λ̄+ (y − ϕ)

)
χAϕk+1

, v
)

= (f, v), (4.8)

for all v ∈ H1
0 (Ω). Set

λk+1 =


0 on Ik+1

λ̄+ γ(yk+1 − ψ) on Aψ
k+1

λ̄+ γ(yk+1 − ϕ) on Aϕ
k+1.

(iv) Stop, or k = k + 1 and goto (ii).

For the following local convergence result the choice of λ̄ as in (4.6) is not essential.

Proposition 4.1. If |λ0−λγ |L2(Ω) is sufficiently small then (yk, λk) → (yγ , λγ) superlinearly in H1
0 (Ω)×L2(Ω).

Proof. The proof is quite similar to that of Theorem 2.2 and we therefore only give a brief outline. Again the
algorithm is expressed in the variable λ only. The resulting iteration map F : L2(Ω) → L2(Ω) is given by

F (λ) = λ− max
(
0, λ̄+ γ

(
A−1(f − λ) − ψ

))− min
(
0, λ̄+ γ

(
A−1(f − λ) − ϕ

))
,

and (4.7) is equivalent to F (λ) = 0. Steps (ii) and (iii) of the reduced algorithm are replaced by:
(ii’) Set

Aψ
k+1 =

{
x :
(
λ̄+ γA−1(f − λk) − γ ψ

)
(x) > 0

}
,

Aϕ
k+1 =

{
x :
(
λ̄+ γA−1(f − λk) − γ ϕ

)
(x) < 0

}
,

Ik+1 = Ω \
(
Aψ
k+1 ∪ Aϕ

k+1

)
.

(iii’) Set

δ λ = −λk on Ik+1 and solve for δ λ ∈ H−1

δ λ+ γA−1(δ λ) = −λk + λ̄− γ ψ + γA−1(f − λk) in Aψ
k+1

δ λ+ γA−1(δ λ) = −λk + λ̄− γ ϕ+ γA−1(f − λk) in Aϕ
k+1.

As in the proof of Theorem 2.2 one argues that F is Newton–differentiable. To characterize the generalized
derivative we set

cψ = λ̄+ γ
(
A−1(f − λ) − ψ

)
, cϕ = λ̄+ γ

(
A−1(f − λ) − ϕ

)
,

and

Aψ = {x : cψ(x) > 0}, Aϕ = {x : cϕ(x) < 0}, I = Ω \ (Aψ ∪ Aϕ).
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A generalized derivative is given by

G(λ) = I + γ χAψA
−1 + γ χAϕA

−1 = I + γ χAA−1,

where A = Aϕ ∪ Aψ . Existence and uniform boundedness of the inverses of G(λ) is verified as in the proof of
Theorem 2.2. �

5. Numerical experiments

In this section we describe some numerical experiments to illustrate and confirm our results. The problem
under consideration is 

−∆y + λ = f in Ω,

y = 0 on ∂Ω

y ≤ ψ, λ ≥ 0, (λ, y − ψ)L2(Ω) = 0

(5.1)

which is discretized by means of node–based finite differences. In the one-dimensional case Ω = (0, 1) with
grid {xi} = { i

m}mi=0 and in the two–dimensional case Ω = (0, 1) × (0, 1) with grid {xi,j} = {( im , jm}mi,j=0. The
functions y, λ, f and ψ are discretized by grid functions denoted by the same symbol and −∆ is discretized by
the three-, respectively five-point finite difference stencil. It is well-known that the resulting discretized operator
−∆h satisfies the discrete maximum principle. Unless specified otherwise the algorithms are initialized with the
unconstrained solution to (5.1), i.e. ψ = ∞.

Example 5.1. Here Ω = (0, 1), f = 1
4 × sin(5x), ψ = 1

4 , and m = 100. For all runs that we report upon the
primal–dual active set algorithm converges in finitely many steps, i.e. the situation discussed in Proposition 2.1
occurs. We denote the number of iterations that are required until the algorithm reaches the solution of the
discretized problem by iter. For γ > 0 the iterates of the algorithm are denoted by yk, the solution by yγ .
Similarly Ak stands for the active sets of the iterates, Aδ for the active set corresponding to solution yδ. In
this example as well as in Examples 5.2 and 5.3 below the algorithm was terminated when in two successive
iterations the active sets coincide. The current variables then give the solution of the discretized problem.

Let us start with some general observations for the numerical solution:
• yγ2 ≤ yγ1 for γ1 ≤ γ2 and λ̄ = 0;
• yγ1 ≤ yγ2 for γ1 ≤ γ2 and λ̄ = max(0, f + ∆kψ);
• Ak+1 ⊂ Ak for γ > 0 and λ̄ = 0 or λ̄ = max(0, f + ∆hψ);
• iter (γ1) ≥ iter (γ2) if γ1 ≤ γ2;
• for large γ changes after the initialization phase from active to inactive occur only along the boundary

of Ak. This is not the case for small γ.
In Table 1 we report the required number of iterations and the cardinality of the active set A as a function of γ,
for λ̄ = 0.

Table 1.

γ 2.5 5 10 20 100 1000 10000

iter 4 4 6 6 15 20 20

#(Aγ) 29 26 23 22 19 18 18

The results of Table 1 suggest to combine the primal–dual active set strategy with a continuation procedure
with respect to γ: Thus we start with small γ and use the solution as initialization for the algorithm with
larger γ. Table 2 shows that this continuation method is effective.
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Table 2.

γ 5 20 104

iter 5 3 4

Concerning superlinear convergence of the algorithm for fixed γ ∈ (1,∞) it is not obvious whether the continuous
result can be used as indicator for the discrete one, due to finite speed of propagation of the discrete Laplacian.
In Table 3 we report the results for the quotients

qk = (yk+1 − y20)T∆h(yk+1 − y20)�(yk − y20)∆h(yk − y20),

for selected values of k, where λ̄ = 0, γ = 104.

Table 3.

k 2 6 10 13 14 15 16 17 18

qk 0.84 0.80 0.72 0.62 0.58 0.51 0.43 0.31 0.13

It is quite typical for the runs that we tested that the quotients decrease approximately by one power of 10,
between initialization and final result.

Example 5.2. For this example Ω = (0, 1) × (0, 1), f = 500 x sin(5x) cos(2y), ψ = 1 on the annulus, R =
{(x, y) : .2 <

√
x2 + y2 < .4}, ψ = 10 on Ω R, and m = 200. Again the algorithm with λ̄ = 0 and λ̄ =

max(0, f + ∆hψ) terminates after finitely many iterations. The same observations can be made as for the
one-dimensional example above. Typical results for λ̄ = 0 and various values of γ are given in Table 4.

Table 4.

γ 103 104 105 106 107 108 109

iter 5 8 12 27 35 36 36

#(Aγ) 3117 2530 2348 2306 2302 2301 2301

For λ̄ = max(0, f + ∆hψ) the number of required iterations is comparable and the final active sets for γ ≥ 108

is the same. For γ = 103 changes from active to inactive sets take place along the boundaries of these sets in
layers up to the depth of 16 pixels. Continuation procedures with respect to γ as explained in Example 5.1
again reduce the total number of iterations significantly, see Table 5.

Table 5.

γ 104 106 108

iter 8 5 1

We carried out computations with the same specifications as in Table 5 with a series of mesh-sizes character-
ized by m = (100, 200, 300, 400). The resulting number of total iterations are (11, 14, 16, 20). Again superlinear
convergence of the iterates can be observed. In Table 6 we give selected results for the quotients qk with
m = 200, γ = 108 and λ̄ = 0. Since in this case the algorithm terminates in 36 iterations we set qf = q36.
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Table 6.

k 1 8 15 22 29 31 33 35

qk 0.86 0.82 0.79 0.75 0.55 0.42 0.21 0.17

Tests with the smooth obstacle ψ = 8
((
x− 1

2

)2 +
(
y − 1

2

)2) − 1 give quite similar results. The iteration
procedure with the same values for γ as in Table 5 requires 16 iterations to obtain the solution, without
continuation procedure 44, for γ = 108.

Example 5.3. This is an example with lack of strict complementarity. The choice for Ω, and f is as in
Example 5.2. We set m=40. Let y∗h denote the solution to the unconstrained problem −∆hyh = f , and
define ψ = 10 except on S =

(
3
8 ,

5
8

)
, where it is set equal to y∗h. The algorithm with both λ̄ = 0 and

λ̄ = max(0, f + ∆hψ) terminates in 1 iteration for a large range of γ–values. In a similar experiment with
m = 30 and S replaced by

(
1
3 ,

2
3

)× ( 1
3 ,

2
3

)
the algorithm starts to chatter if λ̄ = 0, while it converges in finitely

many iterations comparable to those in Table 4 for λ̄ = max(0, f + ∆hψ). Due to finite precision arithmetic
and the fact that the active/inactive set structure and the stopping rule are determined by commands involving
machine zero, chattering in the case of lack of strict complementarity comes as no surprise. There are various
remedies to avoid chattering based on stopping rules involving machine epsilon. The alternative choice of using
λ̄ = max(0, f + ∆hψ) rather than λ̄ = 0 has consistently eliminated chattering in this and other examples. For
instance, again with m = 30, we chose ψ = 10 on Ω\S and ψ = y∗h− 1. In the interior of the active set we have
lack of strict complementarity and for λ̄ = 0 and γ > 106 the iterates chatter. With λ̄ = max(0, f + ∆hψ) no
chattering occurs.

In Examples 5.1 and 5.2 we investigated the case when the penalty parameter tends to ∞. For a specific
application it may be desirable to compute with a fixed penalty parameter. For this purpose the penalty param-
eter should be chosen such that the error due to penalization is of the same order as that due to discretization.
Theorems 3.2 and 3.3 then suggest to choose γ proportional to h−2. The success of this procedure is illustrated
in the following example.

Example 5.4. The following example from [5] (pp. 44–45). It represents an elasto–plastic torsion problem
formulated as obstacle problem on the unit disc Ω̃ with center at (0.5, 0.5). Let r =

√
(x1 − 0.5)2 + (x2 − 0.5)2,

d > 2 be a constant and set

ψ(x) = 1 − r, and f(x) = d.

Then the solution to the obstacle problem on Ω̃ is given by

y(x) =


1 − r if

2
d
≤ r ≤ 1

d

4

[(
1 − r2

)− (r − 2
d

)2
]

if 0 ≤ r ≤ 2
d
·

In our calculation we chose d = 5.123.
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Figure 1. Infeasible method.

To compute on the unit square Ω we used exact non–homogeneous boundary conditions assigned at the
boundary. The regularization parameter was γ =

∣∣λ̄∣∣∞ /h2 with h = 0.01. The exact interface Γ between the
active and inactive sets is given by r = 1 − 2

d . We use this example to demonstrate how the interface can be
approximated by our proposed algorithms. In the following figures we show the estimated interface for both
the infeasible (Γ1) and feasible (Γ2) method determined by means of

Γ1 = {x ∈ R2 : y − ψ = 0}
Γ2 = {x ∈ R2 : λ̄+ γ(y − ψ) = 0}

(5.2)

or alternatively by

Γ1 =
{
x ∈ R2 : y − ψ =

1
γ

}
Γ2 =

{
x ∈ R2 : λ̄+ γ(y − ψ) =

1
γ

}
·

(5.3)

Figure 1 shows a blow–up section of Γ and the Γ1’s for the infeasible method and Figure 2 shows a blow–up
section of Γ and the Γ2’s for the feasible method. The most outer curve is for the exact interface Γ both in
Figures 1 and 2. In this example the second estimates by (5.3) provide better and smoother estimates of the
interface Γ both for the infeasible and feasible methods than (5.2).
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Figure 2. Feasible method.
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