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OPTIMAL ASYMPTOTIC ESTIMATES FOR THE VOLUME OF INTERNAL
INHOMOGENEITIES IN TERMS OF MULTIPLE BOUNDARY

MEASUREMENTS

Yves Capdeboscq1 and Michael S. Vogelius1

Abstract. We recently derived a very general representation formula for the boundary voltage per-
turbations caused by internal conductivity inhomogeneities of low volume fraction (cf. Capdeboscq
and Vogelius (2003)). In this paper we show how this representation formula may be used to obtain
very accurate estimates for the size of the inhomogeneities in terms of multiple boundary measure-
ments. As demonstrated by our computational experiments, these estimates are significantly better
than previously known (single measurement) estimates, even for moderate volume fractions.
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1. Introduction and main results

The problem of identifying internal inhomogeneities based on a few boundary measurements has received
quite a bit of attention (cf. [3, 4, 6, 7, 9–12] and [15]). One particular line of inquiry has been concerned with
the estimation of size based on a single boundary integral (cf. [1, 2] and [13]). The main result in [1] provides
optimal upper and lower bounds on the volume of the set of internal inhomogeneities in terms of a single integral
(measurement) which represents the difference in “total work” when compared to the homogeneous situation. It
seems quite natural to ask if (and how) one may improve such estimates for the volume of the inhomogeneities if
one is permitted to make multiple measurements. The goal in this paper is to provide an answer to this question
in the case of m measurements (boundary integrals) for a domain Ω ⊂ R

m. The simple, improved estimates
we derive are shown to be rigorous, improved bounds in the asymptotic limit when the inhomogeneities are of
small relative volume, and furthermore, computational evidence demonstrates that they are significantly closer
to the actual volume than the one-measurement estimates, even for moderate volume fractions. It remains an
interesting open problem to design improved, multiple measurement estimates using a number of measurements
different from the dimension, m. It should also be interesting to investigate if effective multiple measurement
estimates may be designed in such a way, that they truly bound the volume without any (asymptotic) size
restrictions.

Consider a conducting object which occupies a bounded, smooth domain Ω ⊂ R
m, and which conducts direct

currents. Let γ0(·) denote the smooth background conductivity, that is, the conductivity in the absence of any
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inhomogeneities. We suppose that

0 < c0 ≤ γ0(x) ≤ C0 <∞, x ∈ Ω

for some fixed constants c0 and C0. The function ψ denotes the imposed boundary current. It suffices that
ψ ∈ H−1/2(∂Ω), with

∫
∂Ω
ψ dσ = 0. The background voltage potential, U , is the solution to the boundary

value problem

∇ · (γ0(x)∇U) = 0 in Ω, (1)

γ0(x)
∂U

∂n
= ψ on ∂Ω.

Here n denotes the unit outward normal to the domain Ω.
Let ωε denote a set of “inhomogeneities” inside Ω. The geometric assumptions about the set of “inhomo-

geneities” are very simple: we suppose ωε is measurable, and separated away from the boundary, in the sense
that

dist(ωε, ∂Ω) > d0 > 0. (2)

Most importantly, we suppose that 0 < |ωε| is small, where |ωε| denotes the Lebesgue measure of ωε. It is in
order to emphasize this smallness assumption that we have decided to use the subscript ε. Let γ̂ε denote the
conductivity profile in the presence of the inhomogeneities. The function γ̂ε is equal to γ0, except on the set of
inhomogeneities; on the set of inhomogeneities we suppose that γ̂ε equals the restriction of some other smooth
function, γ1, with

0 < c1 ≤ γ1(x) ≤ C1 <∞, x ∈ Ω.

In other words

γ̂ε(x) =
{
γ0(x), x ∈ Ω \ ωε

γ1(x), x ∈ ωε.

The voltage potential in the presence of the inhomogeneities is denoted uε(x). It is the solution to

∇ · (γ̂ε(x)∇uε) = 0 in Ω, (3)

γ̂ε(x)
∂uε

∂n
= ψ on ∂Ω.

We normalize both U and uε by requiring that

∫
∂Ω

U dσ = 0, and
∫

∂Ω

uεdσ = 0.

For y ∈ Ω let N(·, y) be the the solution to the boundary value problem

∇x · (γ0(x)∇xN(x, y)) = δy in Ω,

γ0(x)
∂N

∂nx
=

1
|∂Ω| on ∂Ω.
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The function N(x, y) may be extended by continuity to y ∈ Ω. For y ∈ ∂Ω the function N(·, y) may also be
interpreted as the solution to the boundary value problem

∇x · (γ0(x)∇xN(x, y)) = 0 in Ω,

γ0(x)
∂N

∂nx
= −δy +

1
|∂Ω| on ∂Ω.

In the recent paper [8] we derived a representation formula for (all possible limits of) (uε − U)|∂Ω as |ωε| → 0.

Theorem 1. Let ωεn be a sequence of measurable subsets, with |ωεn | → 0, for which (2) holds. Given any
ψ ∈ H−1/2(∂Ω), with

∫
∂Ω
ψ dσ = 0, let U and uεn denote the solutions to (1) and (3), respectively. There exists

a subsequence, also denoted ωεn, a regular probability measure, µ, and a matrix valued function M ∈ L2(Ω, dµ)
such that

(uεn − U)(y) = |ωεn |
∫

Ω

(γ1 − γ0)(x)Mij(x)
∂U

∂xi

∂N

∂xj
(x, y) dµ(x) + o(|ωεn |) y ∈ ∂Ω. (4)

The values of the function M(·) are symmetric, positive definite matrices µ almost everywhere in the set
{x : γ0(x) �= γ1(x)}. The subsequence ωεn , the probability measure µ, and the function M ∈ L2(Ω, dµ) are
independent of the boundary flux ψ. The term o(|ωεn |) is such that ‖o(|ωεn |)‖L∞(∂Ω)/|ωεn | converges to 0 for
any fixed ψ ∈ H−1/2, and uniformly on {ψ :

∫
∂Ω
ψ dσ = 0, ‖ψ‖L2(∂Ω) ≤ 1}.

It is clear that there is not in general an asymptotic representation formula for the entire original sequence ωεn ;
different subsequences may be associated with different measures µ and different polarization tensors M(·). The
measures µ have compact support (contained in {x ∈ Ω : dist(x, ∂Ω) ≥ d0}), and it is possible to establish
bounds for the tensor M (µ almost everywhere in the set {x : γ0(x) �= γ1(x)}). Indeed in [8] we proved that

min
{

1,
γ0

γ1

}
|ξ|2 ≤Mijξiξj ≤ max

{
1,
γ0

γ1

}
|ξ|2. (5)

Let a
(

γ0
γ1

)
and h

(
γ0
γ1

)
denote the averages given by

a

(
γ0

γ1

)
=

1
m

(
m− 1 +

γ0

γ1

)
, h

(
γ0

γ1

)
= m

(
m− 1 +

γ1

γ0

)−1

·

This is the arithmetic average and the harmonic average of m− 1 copies of 1 and one copy of γ0
γ1

, respectively.
In the last section of this paper we shall derive an improved bound for the trace of M , namely

mh

(
γ0

γ1

)
≤ trace(M) ≤ ma

(
γ0

γ1

)
· (6)

We note that ∫
∂Ω

∂N

∂xj
(x, y)ψ(y) dσy = − ∂U

∂xj
(x).

Multiplication of (4) by ψ and integration over ∂Ω thus yields the following formula for the “difference in total
work” ∫

∂Ω

(uεn − U)ψ dσ = −|ωεn |
∫

Ω

(γ1 − γ0)Mij
∂U

∂xi

∂U

∂xj
dµ+ o(|ωεn |). (7)
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From now on we shall assume that the known conductivities γ0 and γ1 are constants, with γ0 �= γ1. If ψ is not
identically zero, then introduction of the bounds (5) into (7) leads to

min
{

1,
γ1

γ0

}
1

|γ1 − γ0|max |∇U |2
∣∣∣∣
∫

∂Ω

(uε − U)ψ dσ
∣∣∣∣ ≤ |ωε|(1 + o(1))

≤ max
{

1,
γ1

γ0

}
1

|γ1 − γ0|min |∇U |2
∣∣∣∣
∫

∂Ω

(uε − U)ψ dσ
∣∣∣∣ .

Consider in particular the boundary currents ψ(i) = γ0ni, 1 ≤ i ≤ m, with corresponding potentials u(i)
ε and

U (i) = xi + const. Let D(i) denote the boundary data corresponding to these currents

D(i) =
∫

∂Ω

(
u(i)

ε − U (i)
)
ψ(i) dσ = γ0

∫
∂Ω

(
u(i)

ε − xi

)
ni dσ, 1 ≤ i ≤ m.

Here repeated indices do not indicate summation. The preceeding bounds for the volume of the inhomogeneities
now translate into

Asymptotic estimates for |ωε| in terms of a single measurement, D(i):

min
{

1,
γ1

γ0

} |D(i)|
|γ1 − γ0| ≤ |ωε|(1 + o(1)) ≤ max

{
1,
γ1

γ0

} |D(i)|
|γ1 − γ0| · (8)

In order to obtain size estimates based on m simultaneous measurements, we simply form the sum of (7) with
ψ = γ0ni, for i = 1 . . .m,

m∑
i=1

D(i) =
m∑

i=1

γ0

∫
∂Ω

(
u(i)

εn
− xi

)
ni dσ = −|ωεn |

∫
Ω

(γ1 − γ0) trace(M) dµ+ o(|ωεn |).

Introduction of the bounds (6) (or more precisely the integral bounds mh
(

γ0
γ1

)
≤ ∫

trace(M) dµ ≤ ma
(

γ0
γ1

)
)

now leads to the following

Asymptotic estimates for |ωε| in terms of a m simultaneous measurements, D(i), 1 ≤ i ≤ m:

1

a
(

γ0
γ1

) |∑m
i=1D

(i)|
m|γ1 − γ0| ≤ |ωε|(1 + o(1)) ≤ 1

h
(

γ0
γ1

) |∑m
i=1D

(i)|
m|γ1 − γ0| · (9)

The main conclusion of this paper is that the estimates (9), even for moderate size volume, represent a significant
improvement over (8). We demonstrate this by means of computational experiments in the next section. The
only point in the derivation of (9) that is still missing is the verification of the bounds (6). This verification is
found in Section 3 of this paper. To minimize the amount of technicalities we only present the verification in
the case when γ0 �= γ1, and M are all constant (the latter naturally only on the support of µ). As pointed out
in Remark 2 of Section 3, what we rigorously establish for non-constant M (but constant γ0 and γ1) is that

mh

(
γ0

γ1

)
≤

∫
Ω

trace(M) dµ ≤ ma

(
γ0

γ1

)
,

which incidentally is exactly what we needed in our derivation of the m-measurement estimates (9). Our
approach is a variational one, the likes of which are often associated with the names of Hashin and Shtrikman.

The one-measurement estimates (8) are indeed true upper and lower bounds irrespective of the size of the
volume (see [1] and also [13]). This is not the case for the m-measurement estimates (9), as we shall see in the
next section.
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Figure 1. The four volume estimates in the case of a single concentric circular inhomogeneity.
The background conductivity, γ0, is 1. For the left graph γ1, the conductivity of the inhomo-
geneity, is 1/3, for the right graph γ1 is 3. The curves A and B represent the one-measurement
estimates (8); the curves C and D the two-measurement estimates (9).

The estimates provided here concern inhomogeneities of finite, non-zero conductivity. It should be interesting
to find similar estimates for inhomogeneities of extreme conductivity. Since the zero volume limit of the
voltage potentials in that case is not always equal to U , such estimates most likely will require extra geometric
assumptions about ωε – maybe in the spirit of those imposed in [2], in order to extend the one-measurement
bounds. The estimates presented here immediately carry over to the case of the Helmholtz equation – and with
some modifications very likely also to the full time-harmonic Maxwell equations.

2. Computational experiments

The main goal of this section is to provide computational evidence of the increased accuracy of the estimates
based on multiple measurements. However, before we proceed with this task we want to illustrate a point we
made earlier, namely that (9) are only true bounds in the asymptotic sense. To see this let Ω ⊂ R

2 be the unit
disk and consider a single inhomogeneity in the form of a concentric disk of radius 0 < r < 1. In Figure 1 we
display the actual volume of the inhomogeneity versus each of the four bounds in (8) and (9) (expressed as a
percentage of the total volume of Ω). For easy comparison we also plot the line of slope one, which represents the
best possible estimate for |ωε|, namely its exact value. We take γ0 = 1. The left graph in Figure 1 corresponds
to γ1 = 1/3, the right graph corresponds to γ1 = 3. The curves A and B represent the upper and lower one-
measurement estimates from (8). The curves C and D represent the upper and lower two-measurement estimates
from (9). As pointed out earlier the curves A and B are true bounds for any size inhomogeneity. Concerning
the upper two-measurement estimate (curve C) the right graph clearly shows that this may indeed be strictly
below the exact volume for any positive value. For the present family of concentric circular inclusions the lower
two-measurement estimate (curve D) is, for sufficiently small volume, a true lower bound. For relatively large
volume this lower estimate may, however, strictly exceed the exact value, as evidenced in the graph to the left.
We can construct examples where the lower two-measurement estimate fails to be a strict lower bound before
the upper estimate fails to be a strict upper bound, by replacing the dilated circles in the present example with
dilated ellipses of a sufficiently high aspect ratio.

We note that even if they are not true bounds the two-measurement estimates are still closer to the true
volume, than the one-measurement estimates, for relative volumes fractions up to 20%.
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Figure 2. The asymptotic effectivities of the four volume estimates as a function of the as-
pect ratio, ρ. The clusters around the curves A and B correpond to the one-measurement
estimates (8). The curves A and B themselves corespond to the “average” one-measurement
estimates. The curves C and D correspond to the two-measurement estimates (9).

The m-measurement estimates were designed to be highly accurate in the limit as the volume fraction of
inhomogenities approaches 0. Our next experiment is intended to quantify this statement. We consider again the
two dimensional case (m = 2) and we take sets of inhomogeneities in the form of (finite) unions of infinitesimally
small ellipses. We suppose all the ellipses (in one set of inhomogeneities) are identical and of aspect ratio ρ (by
the aspect ratio of an ellipse we mean the ratio between its major and minor axis). The orientations and the
locations are arbitrary, subject only to the condition that the ellipses stay well separated and away from the
boundary. Due to these assumptions we may use the first term in the representation formula (7) to approximate
the boundary data D(i). For an explicit formula for M in the case of ellipses, see [7]. If we suppose there are
K ellipses and that the major axis of jth ellipse is rotated by an angle of θj counterclockwise from the x1 axis,
then it is easy to calculate that D(i), i = 1, 2, are well approximated by

D̃(1) = −|ωε|
K

K∑
j=1

(γ1 − γ0)γ0(ρ+ 1)
[

cos2 θj

γ0ρ+ γ1
+

sin2 θj

γ0 + γ1ρ

]
,

and

D̃(2) = −|ωε|
K

K∑
j=1

(γ1 − γ0)γ0(ρ+ 1)
[

sin2 θj

γ0ρ+ γ1
+

cos2 θj

γ0 + γ1ρ

]
·

Let U1, L1, and UΣ, LΣ, denote the upper and lower estimates for the total volume of the inhomogenities in
the case of one measurement

(
D̃(1)

)
and two measurements

(
D̃(1) + D̃(2)

)
respectively. Figure 2 provides a
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comparison of the four estimates by displaying the “effectivities”

(A) : U1/|ωε| = max{γ0, γ1}ρ+ 1
K

K∑
j=1

[
cos2 θj

γ0ρ+ γ1
+

sin2 θj

γ0 + γ1ρ

]
,

(B) : L1/|ωε| = min{γ0, γ1}ρ+ 1
K

K∑
j=1

[
cos2 θj

γ0ρ+ γ1
+

sin2 θj

γ0 + γ1ρ

]
,

and

(C) : UΣ/|ωε| =
(1 + ρ)2(γ0 + γ1)2

4(γ0ρ+ γ1)(γ0 + γ1ρ)
,

(D) : LΣ/|ωε| =
(1 + ρ)2γ0γ1

(γ0ρ+ γ1)(γ0 + γ1ρ)
,

as functions of the ellipse aspect ratio, ρ. The closer the effectivity is to 1 the better the estimate – asymptotic
lower bounds have effectivity ≤ 1, asymptotic upper bounds effectivity ≥ 1. The effectivities of the estimates
using two measurements ((C) and (D)) are independent of the orientations of the ellipses. The effectivities of
the estimates using one measurement depend on the set of rotations θj : for each value of the aspect ratio we
have generated 100 random sets of rotations of the K(= 10) ellipses. Each point of “the cluster” around curve
A represents the effectivity of a one-measurement upper bound each point of “the cluster” around curve B
represents the effectivity of a one-measurement lower bound. The curves A and B are the graphs of

U1/|ωε| = max{γ0, γ1} (ρ+ 1)2(γ0 + γ1)
2(γ0ρ+ γ1)(γ0 + γ1ρ)

,

and

L1/|ωε| = min{γ0, γ1} (ρ+ 1)2(γ0 + γ1)
2(γ0ρ+ γ1)(γ0 + γ1ρ)

·

These represent the average bounds (average effectivities) supposing the rotations are independent and uniformly
distributed. These may also be obtained as an average of the bound using measurement D̃(1) and the bound
using measurement D̃(2) for a fixed (but arbitrary) set of orientations. The fairest comparison of the effectivities
using one and two measurements is probably to take the effectivity of the minimal upper bound obtained using
D̃(1) and D̃(2), and the effectivity of the maximal lower bound obtained using D̃(1) and D̃(2), and compare
these to the effectivities UΣ/|ωε| and LΣ/|ωε|. In this context we note that points of “the top cluster” below the
curve A and points of “the bottom cluster” above the curve B represent such minimal and maximal bounds,
respectively. For the computation presented here we have taken γ0 = 1 and γ1 = 3. Figure 2 quite clearly
documents the improvement in the estimates obtained using two simultaneous measurements, when compared
to those using a single measurement.

The bounds in the estimate (6) for the trace of the polarization tensor M are achieved for circular and
“thin strip” inhomogeneities, respectively. In terms of the two-measurement volume estimates this implies that
the upper estimate is asymptotically exact for circular inhomogeneities (ρ = 1) and that the lower estimate is
asymptotically exact for “thin strip” inhomogeneities (ρ→ ∞). Figure 2 clearly confirms this assertion.

Our last set of experiments provide a comparison of the accuracy of the four estimates in a fairly generic two
dimensional setting. The sets of inhomogenities are finite unions of (in this case 10) ellipses. Figure 3 shows a
typical configuration.

The data, D(i), i = 1, 2, which we need for the one-measurement and two-measurement volume estimates,
are generated by (approximately) solving the corresponding elliptic boundary value problems (using a boundary
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Figure 3. Typical configuration. The “dotted” curves indicate the two ellipses with the “most
extreme” aspect ratios.
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Figure 4. The four volume estimates in the case of 10 “random” elliptical inhomogeneities.
The background conductivity, γ0, is 1. For the left graph γ1, the conductivity of the inhomo-
geneities, is 1/3, for the right graph γ1 is 3. The curves A and B represent the one-measurement
estimates (8), the curves C and D the two-measurement estimates (9).

integral formulation). The volume of inhomogeneities ranges from very small to 15% of the volume of the full
domain (the unit disk). Given a desired volume fraction we select the aspect ratios (between 1 and 6) the
locations, and the orientations of the ellipses randomly. The (length of the) major axis of the (10) ellipses
is then taken to be the same, the exact value determined from the desired volume fraction. Constraints are
built in to assure that the ellipses are well separated and away from the boundary. In Figure 4 we display the
curves corresponding to the four estimates (and the straight line corresponding to the exact value of |ωε|) for
volume fractions between 0 and 15%. In the case of the one-measurement estimates we display the best upper
estimate, and the best lower estimate arising from the two data, D(i), i = 1, 2 (i.e. the minimum of the two
upper estimates and the maximum of the two lower estimates, respectively). This figure clearly illustrates our
assertion that the two-measurement estimates represent a significant improvement (over the one-measurement
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estimates) even for moderate size inhomogeneity volume fractions. We notice a certain similarity between the
generic behaviour illustrated in Figure 4 and the behaviour observed for the rather special example in Figure 1
(as far as volume fractions below 15% are concerned). The fact that it is (again) the upper estimate that fails
to be a strict bound can be attributed to our aspect ratio restriction (between 1 and 6) which admits circles
but not “very thin strips”.

3. Bounds for the polarization tensor

According to [8] the tensor valued field M(x) in the representation formula (4) is defined by the (limiting)
relationship ∫

Ω

Mijξiξjφdµ = |ωεn |−1

∫
ωεn

∇vεn · ∇V φdx+ o(1),

for any φ ∈ C0(Ω). Here V and vε are solutions to

∇ · (γ0∇V ) = ∇ · (γ0ξ) in Ω, γ0
∂V

∂n
= γ0ξ · n on ∂Ω.

and

∇ · (γ̂ε∇vε) = ∇ · (γ0ξ) in Ω, γ̂ε
∂vε

∂n
= γ0ξ · n on ∂Ω. (10)

We note that V has a very simple formula, namely V (x) = ξ · x+ const. The probability measure µ is the limit
(in the sense of measures) of 1

|ωεn |1ωεn
. Since the sets ωε all lie inside a smooth compact set K, the support of

the measure µ lies inside the same set K ⊂⊂ Ω. The limiting relationship defining M may thus be written∫
K

Mijξiξjφdµ = |ωεn |−1

∫
ωεn

∇vεn · ∇V φdx+ o(1), (11)

for any φ ∈ C0. It is very useful to note that the tensor M is completely independent of the domain Ω.

Proposition 1. Suppose ωε ⊂⊂ K ⊂⊂ Ω1 ⊂ Ω2, and let v(i)
ε denote the solutions to (10) corresponding to the

domains Ωi, i = 1, 2, for some fixed vector ξ. Then

|ωε|−1

∫
ωε

∇v(1)
ε · ∇V φdx = |ωε|−1

∫
ωε

∇v(2)
ε · ∇V φdx + o(1),

for any φ ∈ C0.

Proof of Proposition 1. The second estimate in Lemma 1 of [8] asserts that, given any η > 0,
∥∥∥v(2)

ε − V (2)
∥∥∥

L2(Ω2)
≤ Cη|ωε| 12+ 1

m∗−η,

with m∗ = max{m, 2}. Here V (2)(x) = ξ · x + c2, with c2 chosen so that
∫

∂Ω2
V (2) dσ = 0. Let D = {x ∈ Ω2 :

dist(x, ∂Ω1) < δ} be a sufficiently small neighborhood of ∂Ω1. Since the function v
(2)
ε − V (2) is γ0-harmonic

outside K, elliptic estimates imply that∥∥∥v(2)
ε − V (2)

∥∥∥
C1(D)

≤ Cη|ωε| 12+ 1
m∗−η.
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Hence ∥∥∥∥∥γ̂ε
∂v

(2)
ε

∂n
− γ̂ε

∂v
(1)
ε

∂n

∥∥∥∥∥
C0(∂Ω1)

=

∥∥∥∥∥γ0
∂v

(2)
ε

∂n
− γ0

∂V (2)

∂n

∥∥∥∥∥
C0(∂Ω1)

≤ Cη|ωε| 12+ 1
m∗−η,

and therefore, by energy estimates

∥∥∥∇v(2)
ε −∇v(1)

ε

∥∥∥
L2(Ω1)

≤ C‖γ̂ε
∂v

(2)
ε

∂n
− γ̂ε

∂v
(1)
ε

∂n
‖H−1/2(∂Ω1) ≤ Cη|ωε| 12+ 1

m∗−η.

This last inequality immediately implies that
∣∣∣∣|ωε|−1

∫
ωε

(∇v(2)
ε −∇v(1)

ε ) · ∇V φdx
∣∣∣∣ ≤ C|ωε|−1‖∇v(2)

ε −∇v(1)
ε ‖L2(Ω1)|ωε| 12

≤ Cη|ωε| 1
m∗−η,

as desired. �

We now suppose that γ0, γ1, and M are constant (the latter naturally only on the support of µ) with γ0 �= γ1.
This assumption is conceptually not very restrictive, but technically it simplifies the proof of the bounds (6) for
the trace of M , since it eliminates any need for localization. By inserting φ = γ1 − γ0 in the identity (11) we
now obtain

(γ1 − γ0)Mijξiξj = |ωεn |−1

∫
ωεn

(γ1 − γ0)∇vεn · ∇V dx+ o(1).

We may rewrite

|ωε|−1

∫
ωε

(γ1 − γ0)∇vε · ∇V dx = |ωε|−1

∫
ωε

(γ1 − γ0)|∇V |2 dx+ |ωε|−1

∫
ωε

(γ1 − γ0)(∇vε −∇V ) · ∇V dx

= |ωε|−1

∫
ωε

(γ1 − γ0)|∇V |2 dx+ |ωε|−1

∫
ωε

(γ1 − γ0)∇wε · ∇V dx,

where wε = vε − V is the solution to

∇ · (γ̂ε∇wε) = ∇ · ((γ0 − γ1)1ωεξ) in Ω, γ̂ε
∂wε

∂n
= 0 on ∂Ω.

Alternatively wε is the minimizer (in H1(Ω)) of the energy expression

∫
Ω

γ̂ε

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεξ

∣∣∣∣
2

dx,

and

min
w∈H1(Ω)

∫
Ω

γ̂ε

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεξ

∣∣∣∣
2

dx =
∫

Ω

γ̂ε

∣∣∣∣∇wε +
(γ1 − γ0)

γ1
1ωεξ

∣∣∣∣
2

dx

=
∫

ωε

(γ1 − γ0)2

γ1
|ξ|2 dx+

∫
ωε

(γ1 − γ0)∇wε · ξ dx,
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so that

|ωε|−1

∫
ωε

(γ1 − γ0)∇vε · ∇V dx = |ωε|−1

∫
ωε

(γ1 − γ0)|∇V |2 dx+ |ωε|−1

∫
ωε

(γ1 − γ0)∇wε · ∇V dx,

= (γ1 − γ0)
γ0

γ1
|ξ|2 + |ωε|−1 min

w∈H1(Ω)

∫
Ω

γ̂ε

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεξ

∣∣∣∣
2

dx.

In other words we have

(γ1 − γ0)Mijξiξj = (γ1 − γ0)
γ0

γ1
|ξ|2 + |ωεn |−1 min

w∈H1(Ω)

∫
Ω

γ̂εn

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεn

ξ

∣∣∣∣
2

dx+ o(1). (12)

From this identity we immediately conclude that

(γ1 − γ0)
γ0

γ1
|ξ|2 ≤ (γ1 − γ0)Mijξiξj ≤ (γ1 − γ0)|ξ|2,

or

min
{

1,
γ0

γ1

}
I ≤M ≤ max

{
1,
γ0

γ1

}
I, (13)

as was proven (in its stronger, local form) in [8]. As we have already seen these bounds for the polarization
tensor M immediately lead to optimal asymptotic bounds for |ωε| in terms of a single boundary integral. When
it comes to establishing optimal asymptotic bounds for |ωε| in terms of multiple boundary integrals (as we
did earlier in this paper) then we need optimal, geometry independent bounds for the trace of M . In this
connection we note that the trace bounds mmin

{
1, γ0

γ1

}
and mmax

{
1, γ0

γ1

}
which follow directly from (13) are

not optimal. Indeed, the optimal bounds are

m2γ0

γ1 + (m− 1)γ0
= mh

(
γ0

γ1

)
≤ trace(M) ≤ ma

(
γ0

γ1

)
=

(m− 1)γ1 + γ0

γ1
· (14)

The remainder of this section is devoted to a derivation of (14). We have already observed that the tensor M
is independent of the domain Ω; due to the variational characterization (12) this asserts that the value

|ωε|−1 min
w∈H1(Ω)

∫
Ω

γ̂ε

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεξ

∣∣∣∣
2

dx

is independent of Ω, modulo terms of order o(1). In the same fashion we can prove that the above minimum
(modulo terms of order o(1)) is “independent of the boundary conditions” placed on w, in the sense that we may
replace H1(Ω) by H1

0 (Ω) = {w ∈ H1(Ω) : w = 0 on ∂Ω} or H1
per = {w ∈ H1

loc : w(x+Tej) = w(x), j = 1 . . .m}
(the latter when Ω is the taken to be a sufficiently large cube Ω = Q = [0, T ]m). We shall use the ensuing
characterization

(γ1 − γ0)Mijξiξj = (γ1 − γ0)
γ0

γ1
|ξ|2 + |ωεn |−1 min

w∈H1
per(Q)

∫
Q

γ̂εn

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεn

ξ

∣∣∣∣
2

dx+ o(1), (15)

together with the Hashin–Shtrikman variational technique described by Kohn and Milton (cf. [14]) to derive
the improved bounds (14) for the trace of the tensor M . For completeness and the convenience of the reader
we provide some of the details.
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Sketch of proof of (14). By introducing a constant reference medium (with conductivity c < min{γ0, γ1}), by
writing the part of the energy which pertains to the “positive” conductivity perturbation γ̂ε − c as a maximum
over “dual fields”, and by interchanging the order of the minimization and the maximization (which can be
justified) we arrive at the following variational principle

min
w∈H1

per(Q)

∫
Q

γ̂ε

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεξ

∣∣∣∣
2

dx = c|ωε| (γ1 − γ0)2

γ2
1

|ξ|2 + sup
σ∈L2

per

[
−

∫
Q

(γ̂ε − c)−1|σ|2 dx

+2
∫

Q

(γ1 − γ0)
γ1

1ωεξ · σ dx

+c
∫

Q

〈
L

(
1
c
σ +

(γ1 − γ0)
γ1

1ωεξ

)
,
1
c
σ +

(γ1 − γ0)
γ1

1ωεξ

〉
dx

]
,

where L denotes the operator L = −∇∆−1∇·, ∆−1, being the inverse of the Laplace operator with peri-
odic boundary conditions. Similarly, by introducing a constant reference medium (with conductivity c >
max{γ0, γ1}), by writing the part of the energy which pertains to the “negative” conductivity perturbation
γ̂ε − c as a minimum over “dual fields”, and by interchanging the order of the two minimizations, we arrive at
the variational principle

min
w∈H1

per(Q)

∫
Q

γ̂ε

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεξ

∣∣∣∣
2

dx = c|ωε| (γ1 − γ0)2

γ2
1

|ξ|2 + inf
σ∈L2

per

[
−

∫
Q

(γ̂ε − c)−1|σ|2 dx

+2
∫

Q

(γ1 − γ0)
γ1

1ωεξ · σ dx

+c
∫

Q

〈
L

(
1
c
σ +

(γ1 − γ0)
γ1

1ωεξ

)
,
1
c
σ +

(γ1 − γ0)
γ1

1ωεξ

〉
dx

]
.

If we now use only test functions of the form σ = λ1ωεξ in these two variational principles (as opposed to
arbitrary σ ∈ L2

per) then we arrive at the inequalities

min
w∈H1

per(Q)

∫
Ω

γ̂ε

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεξ

∣∣∣∣
2

dx ≥ c|ωε| (γ1 − γ0)2

γ2
1

|ξ|2 + max
λ∈R

[
− |ωε|(γ1 − c)−1λ2|ξ|2

+2|ωε| (γ1 − γ0)
γ1

λ|ξ|2 +
1
c

(
λ+ c

(γ1 − γ0)
γ1

)2

〈Aεξ, ξ〉
]
, (16)

for c < min{γ0, γ1}, and

min
w∈H1

per(Q)

∫
Ω

γ̂ε

∣∣∣∣∇w +
(γ1 − γ0)

γ1
1ωεξ

∣∣∣∣
2

dx ≤ c|ωε| (γ1 − γ0)2

γ2
1

|ξ|2 + min
λ∈R

[
− |ωε|(γ1 − c)−1λ2|ξ|2

+2|ωε| (γ1 − γ0)
γ1

λ|ξ|2 +
1
c

(
λ+ c

(γ1 − γ0)
γ1

)2

〈Aεξ, ξ〉
]
, (17)

for c > max{γ0, γ1}, respectively. In both cases Aε denotes the symmetric matrix given by (Aε)ij =

− ∫
Q

∂
∂xj

∆−1
(

∂
∂xi

1ωε

)
1ωε dx. Due to the fact that we impose periodic boundary conditions (as opposed to
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Dirichlet or Neumann boundary conditions) we have that ∆−1
(

∂
∂xi

1ωε

)
= ∂

∂xi
∆−1

(
1ωε − |ωε|

|Q|
)
, and therefore

trace(Aε) = −
∫

Q

(
1ωε −

|ωε|
|Q|

)
1ωε dx = −|ωε| +O(|ωε|2).

In combination with (15) the estimate (16) now yields

(γ1 − γ0)trace(M) ≥ m(γ1 − γ0)
γ0

γ1
+mc

(γ1 − γ0)2

γ2
1

+ max
λ∈R

[
−m(γ1 − c)−1λ2 + 2m

(γ1 − γ0)
γ1

λ− 1
c

(
λ+ c

(γ1 − γ0)
γ1

)2
]

=
(γ1 − γ0)

γ1

(
mγ0 + (m− 1)c

(γ1 − γ0)
γ1

+
(m− 1)2(γ1 − γ0)(γ1 − c)c

((m− 1)c+ γ1)γ1

)

for any c < min{γ0, γ1}. Similarly a combination of (15) and the estimate (17) yields

(γ1 − γ0)trace(M) ≤ m(γ1 − γ0)
γ0

γ1
+mc

(γ1 − γ0)2

γ2
1

+ min
λ∈R

[
−m(γ1 − c)−1λ2 + 2m

(γ1 − γ0)
γ1

λ− 1
c

(
λ+ c

(γ1 − γ0)
γ1

)2
]

=
(γ1 − γ0)

γ1

(
mγ0 + (m− 1)c

(γ1 − γ0)
γ1

+
(m− 1)2(γ1 − γ0)(γ1 − c)c

((m− 1)c+ γ1)γ1

)

for any c > max{γ0, γ1}. Since the left hand side, (γ1−γ0)trace(M), in each of these two bounds is independent
of c, the limiting bounds corresponding to c = min{γ0, γ1}, and c = max{γ0, γ1} respectively, are also valid.
Very simple manipulations show that these limiting bounds are equivalent to (14). �

Remark 1. A very related, but slightly different approach to derive the bounds (14) is to associate the
polarization tensor with the first order term in a low volume fraction perturbation of the effective tensor of a
two component mixture (with condutivities γ0 and γ1) and then perform an expansion (to first order) of the
classical Hashin-Shtrikman bounds, as derived for instance in [14]. This second approach has been carried out
in [16], resulting in geometry dependent bounds for the entire tensor M . The (geometry independent) trace
bounds (14) follow by fairly simple manipulations from the bounds derived in [16]. Concerning the optimality
of the bounds (14), it is very easy to see that the lower bound is achieved for an inhomogeneity in the shape of
a ball, in which case M is given by M = mγ0

γ1+(m−1)γ0
I. One gets arbitrarily close to the upper bound by taking

inhomogeneities in the shape of a thin sheets with thickness approaching 0, see [5]; one may also use ellipsoids
where one axis approaches 0 and the others stay fixed. For an explicit formula for M in the case of an ellipsoid
see [7] (for m = 2) and [16] (for m = 3).

Remark 2. In the absence of the assumption that M be constant on the support of µ (but still assuming
that γ0 and γ1 are different and constant) what we have really rigorously established is that

∫
Ω

trace(M)dµ =∫
K

trace(M)dµ satisfies

mh

(
γ0

γ1

)
≤

∫
Ω

trace(M)dµ ≤ ma

(
γ0

γ1

)
·

For our application to m-mesurement estimates in this paper, these are really the only bounds we need, as
noted near the end of Section 1.
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