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A MIXED–FEM AND BEM COUPLING FOR A THREE-DIMENSIONAL EDDY
CURRENT PROBLEM ∗, ∗∗
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Abstract. We study in this paper the electromagnetic field generated in a conductor by an alternating
current density. The resulting interface problem (see Bossavit (1993)) between the metal and the
dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-
FEM formulation is well posed and that it leads to a convergent Galerkin method.
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1. Introduction

The eddy current model is commonly used as an approximation of Maxwell equations in problems related
to machines working at power frequencies. Formally speaking, this sub-model is obtained by neglecting the
displacement currents in Ampère’s law. The paper of Ammari et al. [2] gives conditions under which the
approximation of Maxwell equations by the eddy current model is reliable.

The purpose of this paper is to provide a new method, based on a combination of finite elements (FEM)
and boundary elements (BEM), to compute the eddy currents generated in a passive conductor Ω ⊂ R3 by
a divergence free source current ĵ featuring sinusoidal dependence in time. We point out that, generally, the
eddy current problem is reformulated by expressing the magnetic field in terms of the electric field and vice
versa. The two formulations resulting from these two dual proceedings are equivalent at the continuous level
but they lead to different numerical schemes; in spite of the fact that in both cases the discretization process
relays upon the edge finite element method, which is recognized now to be well suited for the approximation of
electromagnetic vector-fields, see [4, 7, 9].

The idea of using FEM-BEM methods for solving eddy current problems in dimension three has been exploited
in several works of Bossavit [5,6,8,9]. The main idea of such an approach consists in providing non-local boundary
conditions for a finite element treatment of the problem in the conductor Ω where the eddy currents are to be
computed. These non-local boundary conditions are deduced from an integral representation of the solution in
the domain occupied by the dielectric medium. The formulations of Bossavit relay on the so-called one boundary
integral approach introduced by Johnson and Nédélec for the Laplace equation [21]. However, it is not written
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in the standard form of the Johnson–Nédélec formulation since the normal derivative on the interface boundary
is eliminated via Steklov–Poincaré operator. This method has been implemented in a code named TRIFOU
(cf. [5]) but, at the authors knowledge, an analysis of this coupling scheme is not available. In any case, the
analysis of the Johnson–Nédélec method requires an hypothesis that constitutes a severe limitation in practice:
the interface boundary Γ := ∂Ω must be regular since the term associated to the double layer potential must
be considered as a compact perturbation, cf. [21, 23, 25].

In recent years, a symmetric method for the coupling of finite element and boundary element methods has
been developed and applied to various interface problems, see [16, 18]. The most important feature of this
FEM-BEM approach is that it preserves the coercivity of the original problem and, by the way, relaxes the
regularity requirements on the coupling boundary. In this paper, we show that this coupling method can be
successfully applied to the eddy current interface problem studied by Bossavit. We prove convergence and error
estimates for this new coupling method. Moreover, thanks to the important tools given recently in [11, 12, 14],
our analysis can be carried out in the case of a Lipschitz domain Ω with no restrictions on its topology.

A similar program has been realized by Hiptmair in [20]. Hiptmair chooses in his formulation the electric
field as primary unknown. Furthermore, the non-local boundary condition on the FEM-BEM coupling interface
are deduced directly from a Stratton–Chu integral representation of the electric field. Our method, which has
been first presented in the two dimensional case in [24], is inspired from the TRIFOU method. It uses the
magnetic field and its scalar potential as principle unknowns.

Both approaches lead to systems of linear equations that have the same structure and the same size. However,
when Ω is non-simply connected, our method is more expensive than that of Hiptmair since the construction of
the discrete problem requires in our case the resolution of some auxiliary problems that depend on the geometry
and the topology of the conductor, see Section 6.

We finally point out that Hiptmair assumes in his paper [20] that the exiting current ĵ is supported inside
the conductor. This case can also be covered by our method without difficulty. Nevertheless, here we make the
opposite assumption: support

(̂
j
)
⊂ R3 \ Ω. In the latter case, it is necessary to remove the non-homogeneity

of the equation in order to obtain an adequate representation formula of the solution in the unbounded domain
R3 \Ω. Following [9], we show that it is easy to handle this additional difficulty when considering the magnetic
field as state variable.

The paper is organized as follows. In Section 2 we summarize some results from [11, 12, 14] concerning
function spaces of tangential traces and tangential differential operators defined on a Lipschitz boundary. In
Section 3, we introduce the model problem and derive its FEM-BEM formulation staring from an integral
representation formula for the scalar magnetic potential. We prove that the resulting weak formulation is
uniquely solvable. We prepare the discrete scheme of our variational problem by introducing in Section 4 the
edge finite element and by recalling some fundamental properties of the corresponding interpolation operator. In
Section 5, we treat separately the discretization of our problem in the simply connected case. The derivation of
the Galerkin scheme is straightforward and its convergence analysis relays on Céa’s lemma and the interpolation
error estimates given in the previous section. An optimal order of convergence in obtained. We also illustrate
in this section the applicability of our discrete scheme by describing its matrix representation. The derivation
of the discrete problem in the case of a non-simply connected conductor is less obvious, it requires several types
of approximations of the harmonic Neumann vector fields. These approximations are obtained by solving the
discrete auxiliary problems described in Section 6. The convergence analysis of the resulting discrete scheme
(in the non-simply connected case) is reported in Section 7.

2. Preliminaries

In the sequel we deal with complex valued functions and the symbol ı is used for
√
−1. Boldface letters will

denote vectors or vector–valued functions (in C3). We denote by α the conjugate of a complex number α ∈ C.
We also denote by |α| its modulus and by �α its real part. The symbol |·| will represent as well the 2-norm for
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vectors:

|q|2 = q · q :=
3∑
i=1

qiqi.

Throughout this paper C, with or without subscripts, will denote positive constants, not necessarily the same
at different occurrences, which are independent of the parameter h and functions involved.

In all the paper Ω is a bounded Lipschitz domain in R3 such that the complement Ωc := R3 \Ω is connected.
The domain Ω is the union of m connected components Ωj , j = 1, · · · ,m whose boundaries Γj are closed and
disjoint surfaces. Setting Γ = ∪mj=1Γj we get Γ = ∂Ω = ∂Ωc. Since the analysis given in the following can be
extended straightforwardly to the multi-connected case, for the sake of simplicity in exposition, we will assume
that Ω is also connected.

We remark that, under the above conditions, Ω and Ωc have the same first Betti number B. There exist B
disjoint connected open surfaces Σext

k ⊂ Ωc (respectively Σint
k ⊂ Ω), k = 1, · · · , B, such that Ω0

c := Ωc \∪Bk=1Σ
ext
k

(respectively Ω0 := Ω \∪Bk=1Σ
int
k ) is simply connected. The boundary curves γext

k := ∂Σext
k and γint

k := ∂Σint
k lie

on Γ.
We denote by

(f, g)0,Ω :=
∫

Ω

fg dx

the inner product in L2(Ω) and ‖·‖0,Ω the corresponding norm. As usual, ‖·‖s,Ω stands for the norm of the
Hilbertian Sobolev space Hs(Ω) ∀s ∈ R. We also recall that, for any t ∈ [−1, 1], the spaces Ht(Γ) have an
intrinsic definition (by localization) on the Lipschitz surface Γ due to their invariance under Lipschitz coordinate
transformations. We denote by ‖·‖t,Γ the norm in Ht(Γ) and by 〈·, ·〉t,Γ the duality pairing between H−t(Γ)
and Ht(Γ). Here L2(Γ) is taken as pivot space. Hence, if 0 < t ≤ 1 and λ ∈ L2(Γ) we have

〈λ, η〉t,Γ =
∫

Γ

λη dξ ∀η ∈ Ht(Γ).

In this paper, the spaces that are product forms of the previous function spaces are endowed with the natural
product norm and duality pairing without changing the notations since it will be clear from the context when
scalar or vector functions are used.

We set:

Hs(Ω) := (Hs(Ω))3, V :=
(
H1/2(Γ)

)3

, V′ :=
(
H−1/2(Γ)

)3

,

L2
t (Γ) :=

{
q ∈ L2(Γ); q · n = 0 on Γ

}
,

where n is the unit normal to Γ that points from Ω into Ωc. We also introduce the functional space

H(curl,Ω) :=
{
q ∈ L2(Ω); curl q ∈ L2(Ω)

}
;

endowed with the natural norm: ‖q‖2
H(curl,Ω) := ‖q‖2

0,Ω + ‖curl q‖2
0,Ω.

We shall make use of some recent results on the characterization of traces of functions in H(curl,Ω) and on
the properties of tangential differential operators defined on the Lipschitz manifold Γ. We present here a brief
description of these results and refer to [11–15] for details and proofs.

Let D(Ω) be the space of indefinitely differentiable functions on the closure of Ω. We define the tangential
components trace mapping πτ : D(Ω)3 → L2

t (Γ) and the tangential trace mapping γτ : D(Ω)3 → L2
t (Γ) as

q �→ n ∧ (q|Γ ∧ n) and q �→ q|Γ ∧ n respectively.
We denote by γ the standard trace operator acting on vectors: γ : H1(Ω) → V, γ(q) = q|Γ. Let γ−1 be one

of its continuous right inverses. We will also use the notation πτ (resp. γτ ) for the composite operator πτ ◦ γ−1
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(resp. γτ ◦ γ−1) which acts only on traces. By density of D(Ω)3|Γ into L2(Γ), the operators πτ and γτ can be
extended to linear continuous operators in L2(Γ).

The spaces Vγ := γτ (V) and Vπ := πτ (V) endowed with the norms

‖λ‖Vγ
:= inf

q∈V
{‖q‖V ; γτ (q) = λ} and ‖λ‖Vπ

:= inf
q∈V

{‖q‖V ; πτ (q) = λ}

are Hilbert spaces. We denote by V′
γ and V′

π their dual spaces respectively with L2
t (Γ) as pivot. We remark

that if Γ is a sufficiently smooth variety then Vγ = Vπ = TH1/2(Γ), where TH1/2(Γ) denotes the space of
vectors tangent to Γ that have components in H1/2(Γ). However, these two spaces are in general different; see
for example the characterizations given in [13] for Vγ and Vπ in the case of a polyhedral domain Ω.

We introduce the tangential differential operators

∇Γϕ := πτ (∇ϕ) and curlΓ ϕ := γτ (∇ϕ) ∀ϕ ∈ H2(Ω).

It is clear that ∇Γ : H3/2(Γ) → Vπ and curlΓ : H3/2(Γ) → Vγ are continuous, where the Hilbert space
H3/2(Γ) :=

{
ϕ|Γ, ϕ ∈ H2(Ω)

}
is endowed with the norm

‖λ‖3/2,Γ := inf
ϕ∈H2(Ω)

{
‖ϕ‖2,Ω ; γ(ϕ) = λ

}
·

Let H−3/2(Γ) be the dual space of H3/2(Γ) with L2(Γ) as pivot space. We define divΓ : V′
π → H−3/2(Γ) by the

duality

〈divΓ λ, ϕ〉3/2,Γ := −〈λ, ∇Γϕ〉V′
π×Vπ

∀ϕ ∈ H2(Ω),

where 〈·, ·〉3/2,Γ denotes the duality pairing between H−3/2(Γ) and H3/2(Γ) while 〈·, ·〉V′
π×Vπ

denotes the duality
pairing between V′

π and Vπ . Similarly, curlΓ : V′
γ → H−3/2(Γ) is defined by

〈curlΓλ, ϕ〉3/2,Γ := 〈λ, curlΓ ϕ〉V′
γ×Vγ

∀ϕ ∈ H2(Ω).

Now, the Green’s formula

(u, curl v)0,Ω − (curl u, v)0,Ω = 〈γτu, πτv〉V′
π×Vπ

∀u ∈ D(Ω)3, ∀v ∈ H1(Ω), (1)

and the density of D(Ω)3 in H(curl,Ω) permit one to prove that γτ : H(curl,Ω) → V′
π is linear continuous

since by construction πτ (H1(Ω)) = Vπ. Actually, a more precise result has been proved in [15]. Let us introduce
the space

H−1/2(divΓ,Γ) :=
{

λ ∈ V′
π; divΓ λ ∈ H−1/2(Γ)

}
endowed with the graph norm ‖λ‖2

H−1/2(divΓ,Γ) := ‖λ‖2
V′
π

+ ‖divΓ λ‖2
−1/2,Γ.

Theorem 2.1. The tangential trace mapping γτ : H(curl,Ω) → H−1/2(divΓ,Γ) is continuous, surjective and
possesses continuous right inverses.

We associate to any g ∈ H−1/2(divΓ,Γ) the unique solution Rg of

find Rg ∈ H(curl,Ω) such that γτRg = g and

(Rg, q)H(curl,Ω) = 0 ∀q ∈ H(curl,Ω) ∩ ker γτ ,
(2)
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where (·, ·)H(curl,Ω) stands for the inner product of H(curl,Ω). We remark that we have just defined a continuous
right inverse R : H−1/2(divΓ,Γ) → H(curl,Ω) of γτ since, by virtue of the closed graph theorem,

‖Rg‖H(curl,Ω) ≤ C ‖g‖H−1/2(divΓ,Γ) ∀g ∈ H−1/2(divΓ,Γ). (3)

We point out that taking u = ∇ϕ in (1), with ϕ ∈ H1(Ω), one may also deduce that

curlΓ : H1/2(Γ) → V′
π

is linear and bounded.
We introduce the harmonic Neumann vector-fields associated with Ωc and Ω by

H(Ωc) :=
{
v ∈ L2(Ωc); curl v = 0, div v = 0, v · n|Γ = 0

}
and

H(Ω) :=
{
v ∈ L2(Ω); curl v = 0, div v = 0, v · n|Γ = 0

}
respectively and let

H :=
{
λ ∈ L2

t (Γ); curlΓλ = 0, divΓ λ = 0
}
·

In fact, H is none other than the direct sum of the tangential traces of the Neumann fields associated with Ω
and Ωc: H = γτ (H(Ωc)) ⊕ γτ (H(Ω)), see [11]. We point out that we are denoting here by γτ the tangential
traces from both sides of Γ.

Let X be the subspace of H(curl,Ω) defined by

X :=
{
q ∈ H(curl,Ω); curl q · n = 0 in H−1/2(Γ)

}
·

Proposition 2.2. The space X is closed in H(curl,Ω). Moreover, we have the direct sum

γτ (X) = curlΓ
(
H1/2(Γ)

)
⊕ H.

Proof. If q ∈ H(curl,Ω) then it is clear that curl q ∈ H(div,Ω) where

H(div,Ω) :=
{
u ∈ L2(Ω); div u ∈ L2(Ω)

}
·

This space is endowed with the norm ‖u‖2
H(div,Ω) := ‖u‖2

0,Ω +‖div u‖2
0,Ω. It is well known that the normal trace

operator v �→ v · n is linear continuous from H(div,Ω) onto H−1/2(Γ). Thus X is the kernel of a continuous
linear operator on H(curl,Ω) and the first assertion of the proposition follows.

Taking v = ∇ϕ in (1) with ϕ ∈ H2(Ω) we obtain:

−(u ∧ n, ∇Γϕ)0,Γ = (curl u, ∇ϕ)0,Ω = (curl u · n, ϕ)0,Γ, ∀u ∈ D(Ω)3.

Now, by definition of divΓ

〈divΓ(u ∧ n), ϕ〉1/2,Γ = 〈curl u · n, ϕ〉1/2,Γ ∀u ∈ D(Ω)3, ∀ϕ ∈ H1/2(Γ),

since H2(Ω)|Γ is dense in H1/2(Γ). Therefore, we deduce the identity

divΓ γτu = curl u · n ∀u ∈ H(curl,Ω), (4)

by virtue of the density of D(Ω)3 in H(curl,Ω).
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The result follows now from (4) and the following characterization of the kernel of divΓ (cf. Th. 3.2 in [11])

ker (divΓ) ∩H−1/2(divΓ,Γ) = curlΓ(H1/2(Γ)) ⊕ H. (5)

�
Proposition 2.3. The following identity holds true

(u, curl v)0,Ω − (curl u, v)0,Ω = (gu, n ∧ gv)0,Γ ∀u,v ∈ X, (6)

where gu (respectively gv) is the component of γτu (respectively γτv) that belongs to H.

Proof. It turns out that Green’s formula (1) is still valid for functions u,v ∈ H(curl,Ω) if the right hand side
of the identity is adequately interpreted by means of the Hodge decomposition, see Proposition 3.7 in [11].
Identity (6) is then a direct consequence of the resulting integration by part formula. �

Theorem 2.4. Let X̂ be the closed subspace of X defined by

X̂ := {q ∈ X; (q, curlRg)0,Ω = (curl q, Rg)0,Ω ∀g ∈ H} ·

Then, X may be written as a direct sum of X̂ and R(H):

X = X̂⊕R(H)

and there exists a constant α0 > 0 such that

α0(‖q̂‖H(curl,Ω) + ‖Rgq‖H(curl,Ω)) ≤ ‖q‖H(curl,Ω) ∀q = q̂ + Rgq ∈ X (7)

with q̂ ∈ X̂ and gq ∈ H.

Proof. First of all, it is clear that X̂ is a closed subspace of X. Now, notice that g ∈ H if and only if n ∧ g
belongs to H since divΓ(n ∧ g) = −curlΓg and curlΓ(n ∧ g) = divΓ g, cf. [14]. Given q ∈ X, Proposition 2.2
implies that γτq ∈ curlΓ(H1/2(Γ))⊕H. Let gq be the component of γτq that belongs to H. Taking u = q and
v = R(n ∧ gq) in (6) we deduce that

‖gq‖2
0,Γ = (curl q, R(n ∧ gq))0,Ω − (q, curlR(n ∧ gq))0,Ω. (8)

It follows that a function q ∈ X belongs to X̂ if and only if γτq ∈ curlΓ(H1/2(Γ)). Furthermore, the decompo-
sition q = (q −Rgq) + Rgq shows that the direct sum asserted in the Theorem holds true since q−Rgq ∈ X̂.

In order to prove (7) we first observe that the continuity of the lifting R and the imbedding L2
t (Γ) ↪→ V′

π

give
‖Rg‖H(curl,Ω) ≤ C0 ‖g‖H−1/2(divΓ,Γ) = C0 ‖g‖V′

π
≤ C0 ‖g‖0,Γ ∀g ∈ H.

We use this estimate to deduce from (8) that

‖gq‖2
0,Γ ≤ C0 ‖q‖H(curl,Ω) ‖n ∧ gq‖0,Γ .

Combining the last two inequalities we obtain that

‖Rgq‖H(curl,Ω) ≤ C2
0 ‖q‖H(curl,Ω) ∀q ∈ X

and (7) follows. �
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Proposition 2.5. The linear operator curlΓ : H1/2(Γ)/C → γτ (X̂) is an isomorphism.

Proof. As divΓ : V′
π → H−3/2(Γ) is continuous, H−1/2(divΓ,Γ) is a closed subspace of V′

π and H has a finite
dimension, we deduce from (5) that curlΓ(H1/2(Γ)) is closed in V′

π. Taking into account that ker (curlΓ) ∩
H1/2(Γ) = C (cf. Cor. 3.7 in [14]) we deduce from the closed graph theorem that curlΓ : H1/2(Γ)/C →
curlΓ(H1/2(Γ)) = γτ (X̂) is an isomorphism. �

3. Statement of the problem

Our purpose is to compute eddy currents induced in the conductor Ω by an inductive coil which carries
low-frequency alternative current. We assume that there is no fields at the initial time and that ĵs is a given
current density. We suppose ĵs of the form

ĵs(t,x) := �[eıωtjs(x)],

where js(x) has a bounded support included in Ωc and satisfies the compatibility condition div js(x) = 0.
We may assume that all quantities occurring in Maxwell’s equations feature sinusoidal dependence on time

with a small angular frequency ω > 0. We have the representations

Ê(t,x) := �[eıωtE(x)] and Ĥ(t,x) := �[eıωtH(x)]

for the electric and magnetic fields respectively. The complex amplitudes E(x) and H(x) are then found to
be solutions of the following eddy currents model which is derived from Maxwell’s equations in time harmonic
regime after neglecting displacement currents (see [2] for a justification of this approximation):

ıωµH + curlE = 0 in R3; (9)

curlH = js + σE in R3; (10)

div(εE) = 0 in Ωc; (11)

H(x) = O

(
1
|x|

)
, as |x| → ∞; (12)

E(x) = O

(
1
|x|

)
, as |x| → ∞. (13)

Here, the conductivity σ, the permeability µ and the electric permittivity ε are real valued and bounded functions
that satisfy the conditions:

support(σ) = Ω, and σ(x) ≥ σ0 > 0 ∀x ∈ Ω;

µ(x) ≥ µ0 > 0 ∀x ∈ Ω with µ(x) = µ0 in Ωc;

ε(x) ≥ ε0 > 0 ∀x ∈ Ω ∪ support(js) and ε(x) = ε0 elsewhere.

Proposition 3.1 in [2] shows that if H(x) and E(x) are solutions of (9)–(13), then, they behave as O
(

1
|x|2

)
when |x| goes uniformly to infinity. Consequently, both vector fields are square integrable on all R3. This is the
starting point in [2] to derive a variational formulation of the eddy currents model in terms of the unknown E
and study its well-posedness.
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In this paper, we proceed as in [9] to deduce a weak formulation that only conserves the unknown H. We
begin by testing equation (9) by a smooth function q in R3 which is divergence and rotational free in Ωc. Then,
we use a Green formula to obtain

ıω(µH,q)0,R3 + (E, curl q)0,Ω = 0.

Furthermore, (10) implies that E = σ−1 curlH in Ω. This permits us to eliminate the electric field E from the
last equation:

ıω(µH,q)0,R3 + (σ−1 curlH, curl q)0,Ω = 0, (14)

for all smooth functions q that are divergence and rotational free in Ωc.
Equation (9) shows that H is divergence free in Ωc and (10) reduces to curlH = js in Ωc. It is convenient

to change the unknown H in (14) for a function which is also rotational free in Ωc. To this end, we introduce
the vector-field

as(x) :=
1
4π

∫
R3

js(y)
|x − y| dy, (15)

and consider h := (H− curl as). It follows from the Biot and Savart formula that curl h = 0 in Ωc and h is
evidently still divergence free in Ωc. Let us now substitute H by h in (14):

ıω(µh,q)0,R3 + (σ−1 curl h, curl q)0,Ω = −ıω(µ curl as,q)0,R3 − (σ−1js, curl q)0,Ω. (16)

Here, the test function q satisfies the same conditions as above.

3.1. The scalar magnetic potential

We introduce the Beppo–Levi space:

W 1(Ωc) :=

distributions p in Ωc;
p√

1 + |x|2
∈ L2(Ωc), ∇p ∈ L2(Ωc)

 ,

and recall that the semi-norm ‖∇(·)‖0,Ωc
is a norm in W 1(Ωc) equivalent to the natural norm; i.e., there exists

a constant C > 0 such that (see [28]):

∥∥∥∥∥∥ p√
1 + |x|2

∥∥∥∥∥∥
2

0,Ωc

+ ‖∇p‖2
0,Ωc

≤ C ‖∇p‖2
0,Ωc

∀p ∈ W 1(Ωc). (17)

We will need a basis of the finite dimensional space H(Ωc) of harmonic Neumann vector-fields associated with Ωc.
To this end, we follow [17] and consider the set {Σext

1 , · · · ,Σext
B } of orientable cutting surfaces in Ωc introduced

in Section 2. We fix a unit normal nk on each Σext
k pointing from the face Σ+

k of Σext
k into the face Σ−

k . Recall
that we denoted Ω0

c := Ωc \ ∪Bk=1Σ
ext
k . For any function z ∈ W 1(Ω0

c) we use the notation [z]k := z|Σ+
k
− z|Σ−

k
.

Moreover, we denote by ∇z the gradient of z in the sense of distributions in Ω0
c . It belongs to L2(Ω0

c) and
therefore it can be extended to L2(Ωc). We denote ∇̃z the resulting extended vector-field.
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Theorem 3.1. For any k = 1, · · · , B, the problems: Find zk ∈W 1(Ω0
e) such that

∆zk = 0 in Ω0
c ;

∂zk
∂n

= 0 on Γ;[
∂zk
∂n

]
�

= 0 on Σext
� ,  = 1, · · · , B;

[zk]� = δk� on Σext
� ,  = 1, · · · , B;

(18)

admit unique solutions. Moreover, the set
{
∇̃zk, k = 1, · · · , B

}
is a basis of H(Ωc).

We have the following representation of rotational free vector-fields in Ωc, see Remark 7 in [17].

Lemma 3.2. It holds that{
u ∈ L2(Ωc); curl u = 0 in Ωc

}
= ∇(W 1(Ωc)) ⊕ H(Ωc).

Moreover the sum is L2(Ωc)-orthogonal.

It follows that there exist functions ψ and ϕ in W1(Ωc) and unique sets of coefficients {βk, k = 1, · · · , B}
and {ζk, k = 1, · · · , B} such that h|Ωc = ∇ψ +

∑B
k=1 βk∇̃zk and q|Ωc := ∇ϕ +

∑B
k=1 ζk∇̃zk. The L2(Ωc)-

orthogonality of ∇(W1(Ωc)) and H(Ωc) gives

(h, q)0,Ωc = (∇ψ, ∇ϕ)0,Ωc +
B∑

k,�=1

βkζ�

(
∇̃zk, ∇̃z�

)
0,Ωc

and, recalling that ∆ψ = div h = 0, Green’s formula yields (Lem. 3.10 in [3]):

(h, q)0,Ωc =
〈
∂ψ

∂n
, ϕ

〉
1/2,Γ

+
B∑

k,�=1

βkζ�

〈
∂zk
∂n

, 1
〉

1/2,Σext
�

.

We introduce the matrix N :=
(〈

∂zk
∂n , 1

〉
1/2,Σext

�

)
k,�=1,···,B

. It is clear that Nk,� = N�,k and, due to (17), a vector

ζ ∈ CB satisfies

Nζ · ζ =

(
∇
(

B∑
k=1

ζkzk

)
, ∇

(
B∑
k=1

ζ�z�

))
Ω0
c

= 0

if and only if ζ = 0. This means that N is Hermitian and positive definite.
After multiplying equation (16) by 1−ı

ωµ0
and substituting the term (h, q)0,Ωc by the expression obtained above

we arrive at the following identity:

a(h, q) − (1 + ı)
〈
∂ψ

∂n
, ϕ

〉
1/2,Γ

+ (1 + ı)Nβ · ζ =

− (1 + ı)(µ/µ0 curl as,q)0,Ω + (1 + ı) 〈curl as · n, ϕ〉1/2,Γ , (19)

where β := (βk)k=1,···,B, ζ := (ζk)k=1,···,B and

a(h, q) = (1 + ı)(µ/µ0h,q)0,Ω + (1 − ı)/(ωµ0)
(
σ−1 curl h, curl q

)
0,Ω

.
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3.2. Boundary integral equations

Let E(x,y) := 1
4π|x−y| be the fundamental solution of the Laplace equation in R3. As ψ is harmonic in Ωc,

it has the following integral representation:

ψ(x) =
∫

Γ

∂E(x,y)
∂n(y)

ψ(y) dξy −
∫

Γ

E(x,y)
∂ψ

∂n
dξy ∀x ∈ Ωc,

which, in its turn, provides boundary integral identities relating on Γ the trace of ψ and its normal derivative
∂ψ
∂n = µ/µ0h · n, denoted from now on λ (cf. [16]):

ψ =
(

1
2
I + K

)
ψ − Vλ; (20)

λ = −Hψ +
(

1
2
I − K′

)
λ. (21)

The operators involved in (20) are the single layer potential V and the double layer potential K. They are
formally defined by

Vλ(x) :=
∫

Γ

E(x,y)λ(x) dξy , and Kϕ(x) :=
∫

Γ

∂E(x,y)
∂n(y)

ϕ(y) dξy (x ∈ Γ),

respectively. We recall below some well-known properties of V and K (see [22]).

Lemma 3.3. The operators K : H1/2(Γ) → H1/2(Γ) and V : H−1/2(Γ) → H1/2(Γ) are bounded. Moreover there
exists α1 > 0 such that

〈η,Vη〉1/2,Γ ≥ α1 ‖η‖2
−1/2 , ∀η ∈ H−1/2(Γ).

We introduce the adjoint operator iπ : V′
π → V′ of πτ and define Ṽ := V ◦ iπ where V is assumed here to

act component wise on vector-fields iπ(λ) ∈ V′ for any λ ∈ V′
π. It is evident that Ṽ : V′

π → V is linear
and continuous. The boundary integral operators involved in equation (21) are K′, the adjoint of K, and the
hypersingular operator

Hϕ(x) := − ∂

∂n(x)

∫
Γ

∂E(x,y)
∂n(y)

ϕ(y) dξy (x ∈ Γ),

which is related, as we will see in the following result, to the single layer operator Ṽ via tangential derivatives.

Lemma 3.4. The operator H : H1/2(Γ) → H−1/2(Γ) is bounded and it is related to Ṽ by means of the following
identity:

〈Hψ, ϕ〉1/2,Γ =
〈
curlΓ ϕ, πτ Ṽ

(
curlΓ ψ

)〉
V′
π×Vπ

∀ψ, ϕ ∈ H1/2(Γ). (22)

Moreover, there exists a constant α2 > 0 such that

〈Hϕ,ϕ〉1/2,Γ ≥ α2 ‖ϕ‖2
H1/2(Γ)/C

∀ϕ ∈ H1/2(Γ)/C.

Proof. The proof given in Theorem 3.3.2 in [28] for the continuity of H : H1/2(Γ) → H−1/2(Γ) is valid verbatim
for Lipschitz boundaries. See also Theorem 7.8 in [22].

We will also show that the reasoning given in Theorem 3.3.2 in [28] to deduce the relationship between Ṽ
and H in the case of a regular boundary Γ can be adapted to our case.

Let us introduce the Hilbert space

Z :=
{
v ∈ H1(Ω)/C × W1(Ωc); ∆v = 0 in Ω and Ωc,

[
∂v

∂n

]
Γ

= 0
}
,
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where the brackets [·]Γ represent the jump across Γ. Thus,[
∂v

∂n

]
Γ

:=
∂(v|Ω)
∂n

− ∂(v|Ωc)
∂n

·

We associate to any function ϕ ∈ H1/2(Γ) the unique solution uϕ ∈ Z of the variational formulation

(∇uϕ, ∇v)0,Ω + (∇uϕ, ∇v)0,Ωc =
〈
ϕ,

∂v

∂n

〉
1/2,Γ

∀v ∈ Z. (23)

The gradient of uϕ in the sense of D′(R3 \ Γ) belongs to L2(R3 \ Γ). We extend it to L2(R3) and denote, as
before, the resulting vector-field ∇̃uϕ. A proof similar to the one given in [15] for Lemma 3.1 permits one to
obtain the following jump relation

∇uϕ = ∇̃uϕ − ϕnδΓ in D′ (R3
)3
,

where 〈ϕnδΓ, z〉D′(R3)×D(R3) := 〈ϕ, z|Γ · n〉0,Γ for all z ∈ D(R3)3. Besides, we deduce from the fact that

div
(
∇̃uϕ

)
= 0 the equation

−∆
(
∇̃uϕ

)
= curl curl(ϕnδΓ)

and thus
∇̃uϕ = E ∗ curl curl(ϕnδΓ).

Now, notice that the identities

〈curl(ϕnδΓ), z〉D′(R3)×D(R3) = (ϕ, curl z · n)0,Γ = (ϕ, curlΓ(πτz))0,Γ ∀z ∈ D
(
R3
)3

lead to the expression curl(ϕnδΓ) = iπ(curlΓ ϕ)δΓ. Consequently, we may write

∇̃uϕ = curlS(iπ curlΓ ϕ)

where S is the vector layer potential:

Sz(x) :=
∫

Γ

E(x,y)z(y) dξy , ∀z ∈ C0(Γ)3
(
x ∈ R3 \ Γ

)
.

We recall here that S can be extended to a continuous mapping S : V′ → W1
(
R3
)3, see Proposition 4.1 in [15].

We deduce from (23) and the fact that Hψ = ∂uψ
∂n the identity (see the proof of Th. 3.3.2 in [28])

〈Hψ, ϕ〉1/2,Γ =
(
∇̃uψ, ∇̃uϕ

)
0,R3

∀ψ, ϕ ∈ H1/2(Γ).

Using the expression obtained above for ∇̃uψ gives

〈Hψ, ϕ〉1/2,Γ =
(
curlS(iπ curlΓ ψ), ∇̃uϕ

)
0,Ω

+
(
curlS(iπ curlΓ ψ), ∇̃uϕ

)
0,Ωc

.

Notice now that Green’s formula (1) is valid in Ωc for functions v ∈ W1(Ωc)3 and u ∈ H(curl,Ωc) by virtue of
the density of D(Ωc)3 in both W1(Ωc)3 and H(curl,Ωc), cf. [19, 28]. Then, we may apply (1) separately in Ω
and Ωc and add up to arrive at(

curlS(iπ curlΓ ψ), ∇̃uϕ
)

0,Ω
+
(
curlS(iπ curlΓ ψ), ∇̃uϕ

)
0,Ωc

=
〈[
γτ

(
∇̃uϕ

)]
Γ
, πτS

(
iπ curlΓ ψ

)〉
V′
π×Vπ

.
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Taking into account that
[
γτ

(
∇̃uϕ

)]
Γ

= curlΓ[uϕ] = curlΓ ϕ we obtain

〈Hψ, ϕ〉1/2,Γ =
〈
curlΓ ϕ, πτS

(
iπ curlΓ ψ

)〉
V′
π×Vπ

.

and identity (22) follows since πτ ◦ S ◦ iπ = πτ ◦ Ṽ .
Finally, the H1/2(Γ)/C-coercivity of H is a direct consequence of Proposition 2.5 and Theorem 4.2 in [15],

which states that there exists a constant α3 > 0 such that〈
u, πτ

(
Ṽu

)〉
V′
π×Vπ

≥ α3 ‖u‖2
V′
π

∀u ∈ V′
π. (24)

�

3.3. The variational formulation

Our purpose now is to perform the coupling of the boundary integral equations (20) and (21) with (19). First
of all, the continuity of the tangential trace of the magnetic field on Γ implies that γτh = curlΓ ψ+

∑B
k=1 βkgk,

where gk := γτ (∇̃zk) ∈ H. Thus, it is clear that we have to ask h to be in the Hilbert space X. Furthermore,
Theorem 2.4 ensures the existence of a unique vector-field ĥ ∈ X̂ such that h|Ω = ĥ +

∑B
k=1 βkRgk with

curlΓ ψ = γτ ĥ. For any test function q ∈ X̂, we will also write q|Ω = q̂ +
∑B

k=1 ζkRgk with self evident
notations. Combining equations (20) and (21) with (19) we deduce that our problem may be formulated as
follows: find ĥ ∈ X̂, β ∈ CB and λ ∈ H−1/2

0 (Γ) such that

A
((

ĥ,β
)
, (q̂, ζ)

)
− (1 + ı)

〈
λ,

(
1
2
I − K

)
ϕ

〉
1/2,Γ

= −(1 + ı)(µ/µ0 curl as,q)0,Ω + (1 + ı) 〈curl as · n, ϕ〉1/2,Γ(
1
2
I − K

)
ψ + Vλ = 0,

(25)
for all q̂ ∈ X̂ and for all ζ ∈ CB where q̂ and ϕ ∈ H1/2(Γ)/C are related on Γ by curlΓ ϕ = γτq. The sesquilineal
form A(·, ·) is defined by

A
((

ĥ,β
)
, (q̂, ζ)

)
:= a

(
ĥ +

B∑
k=1

βkRgk, q̂ +
B∑
�=1

ζ�Rg�

)
+ (1 + ı)Nβ · ζ + d

(
γτ ĥ, γτ q̂

)
where

d
(
γτ ĥ, γτ q̂

)
:= (1 + ı)

〈
γτ q̂, πτ

(
Ṽγτ ĥ

)〉
V′
π×Vπ

.

By virtue of Proposition 2.5 we may write ψ = curl−1
Γ γτ ĥ and ϕ = curl−1

Γ γτ q̂. Furthermore, Lemma 3.3
and the fact that K1 = −1/2 prove that 1

2I − K is bounded from H1/2(Γ)/C into itself. Consequently, (1
2I −

K) curl−1
Γ : γτ (X) → H1/2(Γ)/C is continuous. We may then eliminate the scalar potential ψ from our weak

formulation. Indeed, testing the complex conjugate of the second equation of (25) with (1 − ı)η we obtain:

find
(
ĥ, β

)
∈ X̂× CB and λ ∈ H

−1/2
0 (Γ) such that;

A
((

ĥ,β
)
, (q̂, ζ)

)
− b (γτ q̂, λ) = L((q̂, ζ)) ∀q̂ ∈ X̂, ∀ζ ∈ CB

b∗(γτ ĥ, η) + c(λ, η) = 0 ∀η ∈ H−1/2
0 (Γ),

(26)
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where

b(γτq, η) := (1 + ı)
〈
η,

(
1
2
I − K

)
curl−1

Γ (γτq)
〉

1/2,Γ

b∗(γτq, η) := b(γτq, η)

and
c(λ, η) := (1 − ı)

〈
η,Vλ

〉
1/2,Γ

.

The right-hand side is given by

L((q̂, ζ)) := −(1 + ı)

(
µ/µ0 curl as, q̂ +

B∑
k=1

ζkRgk

)
0,Ω

+ (1 + ı)〈γτ q̂, πτas〉V′
π×Vπ

.

Let W :=
(
X̂× CB

)
× H−1/2

0 (Γ). We simplify the notation and denote h̃ :=
((

ĥ,β
)
, λ
)

and q̃ := ((q̂, ζ), η)
the elements of W. The space W is provided with its natural Hilbertian norm:

‖q̃‖2
W := ‖q‖2

H(curl,Ω) + |ζ|2 + ‖η‖2
−1/2,Γ .

We introduce the sesquilinear form

A
(
h̃, q̃

)
:= A

((
ĥ,β

)
, (q̂, ζ)

)
− b(γτ q̂, λ) + b∗

(
γτ ĥ, η

)
+ c(λ, η)

and denote
F(q̃) := L((q̂, ζ)).

Problem (26) may be written in terms of these notations:

find h̃ ∈ W;

A
(
h̃, q̃

)
= F(q̃) ∀q̃ ∈ W.

(27)

Proposition 3.5. Problem (27) has a unique solution.

Proof. We deduce from the results given in Section 2 and from Lemma 3.3 that A(·, ·) and L(·) are bounded.
Moreover, we have the identity

�[A(q̃, q̃)] = �[A((q̂, ζ), (q̂, ζ)) + c(η, η)].

Thus, Lemma 3.3 gives rise to the following inequality

�[A(q̃, q̃)] ≥ min
{

1,
minx∈Ω σ

−1(x)
ωµ0

}∥∥∥∥∥q̂ +
B∑
k=1

ζkRgk

∥∥∥∥∥
2

H(curl,Ω)

+ ρmin(N) |ζ|2 + α1 ‖η‖2
−1/2,Γ ∀q̃ ∈ W,

where ρmin(N) > 0 denotes the smallest eigenvalue of N. Applying (7) we deduce that there exists a constant
α∗ > 0 such that

�[A(q̃, q̃)] ≥ α∗ ‖q̃‖2
W ∀q̃ ∈ W,

where we used that the norms ζ →
∥∥∥∑B

k=1 ζkRgk
∥∥∥
H(curl,Ω)

and ζ → |ζ| are equivalent in CB. The result is

then a consequence of the Lax–Milgram lemma. �



304 S. MEDDAHI AND V. SELGAS

Notice that in the particular case of a simply connected domain Ω, the unknown β equals zero and then
problem (27) reduces to:

find
(
ĥ, λ

)
∈ X̂ × H−1/2

0 (Γ);

Asc

((
ĥ, λ

)
, (q̂, η)

)
= L((q̂,0)) ∀(q̂, η) ∈ X̂× H−1/2

0 (Γ),
(28)

where
Asc

((
ĥ, λ

)
, (q̂, η)

)
:= A

((
ĥ,0

)
, (q̂,0)

)
− b(γτ q̂, λ) + b∗

(
γτ ĥ, η

)
+ c(λ, η).

4. The discrete spaces

In what follows we assume that Ω has a polyhedral boundary. Let Th be a regular family of tetrahedral
meshes of Ω. As usual, h stands for the largest diameter of all tetrahedron T in τh. Notice that Th induces
on Γ a triangulation Th(Γ) composed of triangles. We may assume, without loss of generality, that for all
k = 1, · · · , B, the boundaries γext

k := ∂Σext
k and γint

k := ∂Σint
k are closed paths of Γ formed by edges of Th(Γ)

and that they intersect only in one point.
Let us introduce Nédélec’s edge finite elements, [27]. The local representation on T of the lowest order finite

element of Nédélec is given by
ND(T ) :=

{
a ∧ x + b; a,b ∈ C3

}
·

The corresponding global space is made of functions that are locally in ND(T ) and that have continuous
tangential components across the faces of the triangulation Th:

NDh(Ω) :=
{
q ∈ H(curl,Ω); q|T ∈ ND(T ), ∀T ∈ Th

}
·

Let us introduce the space Xh := NDh(Ω) ∩ X. We will seek an approximation of the first unknown ĥ of
problem (27) in

X̂h :=
{
q ∈ Xh;

∫
γ

q · t ds = 0, for all closed paths γ of edges in Th(Γ)
}
,

where t is a unit tangential vector along γ. The finite dimensional space Mh corresponding to the unknown λ
is given by piecewise constant functions relative to the triangulation of Γ:

Mh :=
{
η ∈ L2(Γ);

∫
Γ

η dξ = 0, η|F ∈ C for all face F of Th(Γ)
}
·

Let us show that we are constructing a conforming approximation scheme. We first introduce some notations:
For any oriented closed path γ ⊂ Γ and for any p ∈ H1(Γ \ γ) we denote by [p]γ the jump of p across γ. We
will also denote by ∇̃Γp the extension to L2

t (Γ) of the tangential gradient ∇Γp of p in the sense of D′(Γ \ γ).
Similarly, c̃urlΓp will represent the extension of the tangential rotational of p to L2

t (Γ).

Proposition 4.1. The finite dimensional space X̂h is a subspace of X̂.

Proof. Let us first report a result due to Buffa [11]: The space H is spanned by
{
∇̃Γp

ext
k , k = 1, · · · , B

}
∪{

∇̃Γp
int
k , k = 1, · · · , B

}
where, for each k, pext

k ∈ H1(Γ \ γext
k ) and pint

k ∈ H1(Γ \ γint
k ) are the unique (up to a

constant) solutions of
−∆Γp

ext
k = 0 in Γ \ γext

k

[pext
k ]γext

k
= 1, [∇Γp

ext
k · νext

k ]γext
k

= 0,
(29)
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and
−∆Γp

int
k = 0 in Γ \ γint

k

[pk]γint
k

= 1,
[
∇Γp

int
k · νint

k

]
γint
k

= 0,
(30)

respectively. We denoted here by νext
k (respectively ν int

k ) a normal unit vector to γext
k (respectively γint

k ) that
lies in the tangent plane of Γ.

Let q be an arbitrary element of X̂h and gk := ∇̃Γp
ext
k ∧ n = c̃urlΓpext

k ∈ H. We apply (1) to obtain

(q, curlRgk)0,Ω − (curl q, Rgk)0,Ω =
∫

Γ

γτq · (n ∧ gk) dξ

and, recalling that divΓ(γτq) = 0, an integration by part formula yields:∫
Γ

γτq · (n ∧ gk) dξ =
∫

Γ\γext
k

γτq · ∇̃Γp
ext
k dξ =

∫
γext
k

γτq · νext
k [pext

k ]γext
k

ds =
∫
γext
k

(q ∧ n) · νext
k ds.

The last integral vanishes since (q∧n) · νext
k = q · (n∧ νext

k ) and n∧ νext
k is a unit tangential vector along γext

k .
Repeating the same steps with gk := ∇̃Γp

int
k ∧ n, (k = 1, · · · , B), we arrive at the conclusion that

(q, curlRg)0,Ω − (curl q, Rg)0,Ω = 0, ∀g ∈ H,

and the result follows. �

4.1. An explicit basis of X̂h

We introduce

E0
h := {E edge of Th; E � Γ} , VΓ

h := {v vertex of Th(Γ)} and FΓ
h := {F face of Th(Γ)} ·

We assume that the sets E0
h, VΓ

h and FΓ
h are numbered and, in the sequel, v0 stands for the last vertex of VΓ

h

and F0 stands for the last face of FΓ
h .

For any vertex v of Th we denote by ϕv the piecewise linear and continuous function characterized by
ϕv(v′) = δvv′ for all vertex v′ of Th. Now, given any edge E of Th we denote by qE the function uniquely
determined in NDh(Ω) by the conditions

∫
E qE · tE′ ds = δEE′ for all edge E′ of Th. The following result

provides an explicit basis of the space X̂h.

Proposition 4.2. The set
Bh :=

{
qE ; E ∈ E0

h

}
∪
{
∇ϕv; v ∈ VΓ

h \ {v0}
}

forms a basis of X̂h.

Proof. Let us first prove that Bh is a free set of vector fields of X̂h. We consider coefficients
{
αE , E ∈ E0

h

}
and{

αv; v ∈ VΓ
h \ {v0}

}
such that ∑

E∈E0
h

αEqE +
∑
v �=v0

αv∇ϕv = 0.

Then

γτ

∑
E∈E0

h

αEqE +
∑
v �=v0

αv∇ϕv

 = curlΓ

∑
v �=v0

αvϕv

 = 0.

Consequently,
∑

v �=v0 αvϕv must be constant on Γ. However, we already know that
∑

v �=v0 αvϕv(v0) = 0. Thus,
the function

∑
v �=v0 αvϕv vanishes identically on Γ and therefore αv = 0 for all v ∈ VΓ

h \ {v0}. Now, it is also
clear that αE = 0 for all E ∈ E0

h.
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It only remains to show the inclusion
X̂h ⊆ span {Bh}

where span {Bh} is the vectorial space spanned by Bh. We know that the tangential trace γτq of a function
q ∈ X̂h is a divergence free piecewise constant tangential vector-field on Th(Γ). Furthermore, as it has a
vanishing circulation along any closed path γ:

∫
γ γτq · t ds = 0. Then, there exists a (unique up to an additive

constant) piecewise linear and continuous function ψ such that γτq = curlΓ ψ. The function ψ can be uniquely
determined by imposing the condition ψ(v0) = 0. Let us consider now the extension ψ̃ of ψ to Ω given by the
continuous and piecewise linear function that vanishes at all interior vertices. It follows that γτq = γτ∇ψ̃ and
hence

q −∇ψ̃ ∈ ker γτ ∩ NDh(Ω) = span
{
qE ; E ∈ E0

h

}
·

We conclude by noting that ∇ψ̃ ∈ span
{
∇ϕv; v ∈ VΓ

h \ {v0}
}
. �

4.2. The interpolation operator

Now, we need to introduce some useful properties of the interpolation operator Ih,Ω relative to the Nédélec
finite element space NDh(Ω). For any r ≥ 0, we introduce the Sobolev space

Hr(curl,Ω) := {q ∈ Hr(Ω), curl q ∈ Hr(Ω)}

and endow it with its Hilbertian norm ‖q‖2
Hr(curl,Ω) = ‖q‖2

r,Ω + ‖curl q‖2
r,Ω. For any edge E of Th, we denote

by tE a unit tangential vector along E and introduce the moments mE(q) defined for a regular function q by

mE(q) :=
∫
E

q · tE ds.

If γ is a path formed by edges E of Th we will also denote mγ(q) :=
∑

E∈γ
∫
E q · tE ds.

It turns out that if r > 1/2 then, one may use a duality argument to extend the definition of mE(q) to any
function q ∈ Hr(curl,Ω), see Lemma 5.1 in [1] or Lemma 4.7 in [3]. It follows that the interpolation operator
Ih,Ω : Hr(curl,Ω) → NDh(Ω) associated to the edge finite element, which is characterized by∫

E

Ih,Ωq · tE ds = mE(q) for all edge E of Th, (31)

is uniformly bounded and we have the following interpolation error estimate (Prop. 5.6 in [1]):

‖q − Ih,Ωq‖H(curl,Ω) ≤ C hr ‖q‖Hr(curl,Ω) ∀q ∈ Hr(curl,Ω), (1/2 < r ≤ 1). (32)

Proposition 4.3. Let r be a real number > 1/2. If q ∈ Hr(curl,Ω) ∩ X̂ then Ih,Ωq belongs to X̂h.

Proof. We will first prove that

q ∈ Hr(curl,Ω); curl q · n = 0 ⇒ curl(Ih,Ωq) · n = 0. (33)

Let F be an arbitrary face of Th(Γ). Applying Stokes’ theorem yields∫
F

curl(Ih,Ωq) · n dξ =
∫
∂F

(γτIh,Ωq) · nF ds =
∫
∂F

Ih,Ωq · tF ds,

where nF is the unit normal vector along ∂F and tF := n∧nF is a unit tangential vector along ∂F . Hence, by
virtue of (31) ∫

F

curl(Ih,Ωq) · n dξ =
∫
∂F

Ih,Ωq · tF ds = m∂F (q) =
∫
F

curl q · n dξ = 0.
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It follows that (33) holds true since curl(Ih,Ωq) · n ∈Mh for all q ∈ Hr(curl,Ω) ∩ X.
Now, using Green’s formula (1) and following the steps given in the proof of Proposition 4.1 we obtain that

Hr(curl,Ω) ∩ X̂ =
{
q ∈ Hr(curl,Ω) ∩ X; mγint

k
(q) = 0 and mγext

k
(q) = 0 ∀k = 1, · · · , B

}
·

Let γ be an arbitrary closed path of edges in Th(Γ) and let Σ be a connected open surface contained in Ω and
such that ∂Σ = γ. It is clear that we can choose Σ in such a way that Σext

k ∩ Σ = ∅ or Σint
k ∩ Σ = ∅ for some

index k ∈ {1, · · · , B}. To fix the ideas, let us assume that k0 ∈ {1, · · · , B} is such that Σext
k0

∩Σ = ∅. We consider
a Lipschitz open set V that satisfies V ⊂ Ω, Σ∪Σext

k0
⊂ ∂V and ∂V \ (Σ∪Σext

k0
) ⊂ Γ. Then, by Gauss’ formula,

0 =
∫
∂V

curl q · n dξ =
∫

Σ

curl q · n dξ +
∫

Σext
k0

curl q · n dξ ∀q ∈ Hr(curl,Ω) ∩ X̂

and by Stokes’ formula

mγ(q) =
∫

Σ

curl q · n dξ = −
∫

Σext
k0

curl q · n dξ = −mγext
k0

(q) = 0 ∀q ∈ Hr(curl,Ω) ∩ X̂.

Thus, we have just shown that

Hr(curl,Ω) ∩ X̂ = {q ∈ Hr(curl,Ω) ∩ X; mγ(q) = 0, for all closed paths γ of edges in Th(Γ)} ·

After this new characterization of the space Hr(curl,Ω)∩ X̂, the result is a direct consequence of (33) and the
definition (31) of the interpolation operator Ih,Ω. �

5. The Galerkin method in the simply connected case

In this section we will study separately the discrete scheme of problem (27) when Ω is simply connected. By
virtue of the finite element spaces introduced in the previous section, the Galerkin scheme reads

find
(
ĥh, λh

)
∈ X̂h ×Mh;

Asc

((
ĥh, λh

)
, (q̂, η)

)
= L((q̂,0)) ∀(q̂, η) ∈ X̂h ×Mh.

(34)

Theorem 5.1. Assume that the exact solution
(
ĥ, λ

)
of (28) belongs to (Hr(curl,Ω) × Hr−1/2(Γ)) ∩ (X̂ ×

H−1/2
0 (Γ)) for some 1/2 < r ≤ 1. Then, there exists a constant C independent of h such that∥∥∥ĥ − ĥh

∥∥∥
H(curl,Ω)

+ ‖λ− λh‖−1/2,Γ ≤ C hr
(
‖h‖r,Ω + ‖curl h‖r,Ω + ‖λ‖r−1/2,Γ

)
.

Proof. We deduce from Proposition 4.3 and Céa’s estimate(∥∥∥ĥ − ĥh
∥∥∥2

H(curl,Ω)
+ ‖λ− λh‖2

−1/2,Γ

)1/2

≤ C inf
(q̂,η)∈X̂h×Mh

(∥∥∥ĥ− q̂
∥∥∥2

H(curl,Ω)
+ ‖λ− η‖2

−1/2,Γ

)1/2

that (∥∥∥ĥ − ĥh
∥∥∥2

H(curl,Ω)
+ ‖λ− λh‖2

−1/2,Γ

)1/2

≤ C(‖h− Ih,Ωh‖2
H(curl,Ω) + ‖λ− ρhλ‖2

−1/2,Γ)1/2,
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where ρh is L2(Γ)-orthogonal projection operator onto the subspace of piecewise constant functions with respect
to Th(Γ). Then, the theorem follows directly from (32) and the fact that

‖λ− ρhλ‖−1/2,Γ ≤ C hr ‖λ‖r−1/2,Γ , ∀λ ∈ Hr−1/2(Γ). (35)

�

5.1. Matrix form of the discrete problem

We denote by 1F (x) the indicator function of a face F ∈ FΓ
h and by |F | its area. Then, it is straightforward

that the set {
ρF (x) :=

1
|F |1F (x) − 1

|F0|
1F0(x); F ∈ FΓ

h \ {F0}
}

is a basis of Mh.
We have at our disposal explicit basis of both X̂h and Mh. Hence, we are in a position to give the matricial

formulation of the discrete problem (34). If we set

ĥh(x) :=
∑
E∈E0

h

hEqE(x) +
∑

v∈VΓ
h\{v0}

hv∇ϕv(x)

and
λh(x) :=

∑
F∈FΓ

h\{F0}
λFρF (x)

the linear system associated to (34) takes the following form AΩ (1 + ı)(AΩΓ)� 0
(1 + ı)AΩΓ AΓ +D (1 + ı)(B)�

0 (1 − ı)B −V

hΩ

hΓ

λ

 =

fΩ

fΓ

0

 (36)

with the obvious definition for hΩ, hΓ and λ and where the superscript (·)� denotes transposition. The entries
of the matrices that appears in (36) are defined by:

AΩ
E,E′ := a(qE ,qE′) AΩΓ

E,v := (µ/µ0qE , ∇ϕv)0,Ω

AΓ
v,v′ := (1 + ı)(µ/µ0∇ϕv, ∇ϕv′ )0,Ω Dv,v′ := (1 + ı)(curlΓ ϕv′ , πτV curlΓ ϕv, )0,Γ

Bv,F := −(ρF , (1/2 −K)ϕv)0,Γ VF,F ′ := (1 − ı)(ρF ′ , VρF )0,Γ.

The right hand side is given by

fΩ
E := −(1 + ı)(µ/µ0 curl as, qE)0,Ω fΓ

v := (1 + ı)(as, curlΓ ϕv)0,Γ.

Notice that although the inverse of the tangential operator curlΓ is used in the definition of the form b(γτq, η),
it does not take place in the computation of the entries of the corresponding matrix B. Therefore the numerical
scheme is implementable. Suitable choices of quadrature formulae for the computation of the singular boundary
integrals and efficient strategies for the resolution of the linear system (whose matrix is not Hermitian) are the
aim of forthcoming work.

6. The discrete problem in the non-simply connected case

When Ω is not simply connected, we need several types of approximations of the harmonic Neumann vector-
fields H(Ωc) in order to derive the completely discrete problem. The discretization process requires the resolution
of the following auxiliary problems.
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6.1. First auxiliary problem

Our first goal consists in computing an approximation Nh of matrix N. In other words, it is necessary to
obtain approximations of the fluxes

(〈
∂zk
∂n , 1

〉
1/2,Σext

�

)
k,�=1,···,B

of the harmonic Neumann vector-fields across

the cutting surfaces Σext
� . To this end, for each k, we solve the exterior problem (18) by a scheme based on a

coupling of the Raviart–Thomas finite element method with a boundary element method, [26].
Let us consider a connected and simply connected polyhedron O such that Ω ∪

(
∪Bk=1Σ

ext

k

)
⊂ O. We set

Q0 := O \
{

Ω ∪
(
∪Bk=1Σ

ext

k

)}
, Q := O \ Ω and Λ := ∂O.

We deduce immediately from (18) that pk := ∇̃zk|Q belongs to the following closed subspace of H(div, Q)

Y :=
{
q ∈ L2(Q); div q = 0 in Q and q|Γ · n = 0 in H−1/2(Γ)

}
and satisfies the variational equation

(pk, q)0,Q = 〈q · nk, 1〉1/2,Σext
k

+ 〈q · n, zk〉1/2,Λ ∀q ∈ Y,

where we are assuming that the normal vector n on Λ is pointing from Q into R3 \ O. Furthermore, as zk is
harmonic in R3 \O we deduce that the last equation may be coupled with boundary integral equations (similar
to (20) and (21)) relating zk and its normal derivative pk ·n on Λ. This leads to the following weak formulation
(see [26] for more details):

find pk ∈ Y and φk ∈ H1/2(Λ)/C such that;

(pk, q)0,Q + 〈q · n, Vpk · n〉1/2,Λ −
〈
q · n,

(
1
2
I + K

)
φk

〉
1/2,Λ

= 〈q · nk, 1〉1/2,Σext
k
,

−
〈(

1
2
I + K′

)
pk · n, χ

〉
1/2,Λ

− 〈Hφk, χ〉1/2,Λ = 0,

(37)

for all functions q ∈ Y and χ ∈ H1/2(Λ)/C. We point out here that the variable φk represents (up to an additive
constant) the trace of zk on Λ.

Let us now consider a regular family of triangulations {Th(Q)}h of Q by tetrahedra T of diameter no greater
than h > 0. We assume that, for any h, the set Th(Ω) ∪ Th(Q) is a triangulation of O. This implies that the
triangulation induced by Th(Q) on Γ is identical to Th(Γ). We may assume, without loss of generality, that the
cutting surfaces Σext

� is union of faces of tetrahedra T ∈ Th(Q) for each mesh Th(Q). Finally, we denote by
Th(Λ) the triangulation induced by Th(Q) on Λ.

We introduce a conforming discretization of H(div,Ω) with the aid of lowest order Raviart–Thomas finite
element space (cf. [10, 29])

RT h(Q) := {q ∈ H(div,Ω); q|T ∈ RT (T ) ∀T ∈ Th(Q)}

where RT (T ) :=
{
ax + b, a ∈ C, b ∈ C3

}
.
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The discrete counterpart of problem (37) is formulated as follows:

find pk,h ∈ Yh and φk,h ∈ Ψh/C such that;

(pk,h, q)0,Q +
〈
q · n, Vpk,h · n

〉
1/2,Λ

−
〈
q · n,

(
1
2
I + K

)
φk,h

〉
1/2,Λ

= 〈q · nk, 1〉1/2,Σext
k

;

−
〈(

1
2
I + K′

)
pk,h · n, χ

〉
1/2,Λ

− 〈Hφk,h, χ〉1/2,Λ = 0;

(38)

for all functions q ∈ Yh and χ ∈ Ψh/C, where Yh := RT h(Q) ∩Y and Ψh is the space of piecewise linear and
continuous functions on Λ with respect to Th(Λ).

We point out that, for the sake of brevity, we deliberately eliminated here the Lagrange multiplier associated
to the constraint div pk = 0. However, in practice it is a hard task to find a basis of Yh because of the divergence
free condition. Usually, it is more convenient to implement the discrete problem:

find pk,h ∈ RT 0
h(Q), φk,h ∈ Ψh/C and zk ∈Mh such that;

(pk,h, q)0,Q + (Vpk,h · n, q · n)0,Λ −
((

1
2
I + K

)
φk,h, q · n

)
0,Λ

= (1, q · nk)0,Σext
k

;

−
(
pk,h · n,

(
1
2I + K

)
χ
)
0,Λ

− (V(curlΓ φk,h), curlΓ χ)0,Λ = 0;

(div pk,h, v)0,Q = 0;

(39)

for all functions q ∈ RT 0
h(Q), χ ∈ Ψh/C and v ∈ Mh, where RT 0

h(Q) := {q ∈ RT h(Q); q|Γ · n = 0} and
the multiplier zk,h lives in the space Mh of piecewise constant functions with respect to Th(Q). We know
from [26] that (39) is a well posed problem. Notice that, here again, we also take advantage of Lemma 3.4 and
substitute H by V since the latter integral operator have a less severe singularity.

Once the function pk,hcomputed for 1 ≤ k ≤ B, we may approximate N by the matrix

Nh :=

(∫
Σext
�

pk,h · n dξ

)
1≤k,�≤B

.

6.2. Second auxiliary problem

We are now concerned with the problem of finding an adequate approximation of the lifting Rgk to Ω of the
tangential trace gk := γτpk. To this end, we must first provide an approximation gk,h of gk. Notice that it is
not suitable to obtain such an approximation from the solution of problem (38) since pk,h furnishes only good
approximations of the fluxes of pk. Thus, we are obliged to solve a new auxiliary problem. Fortunately, the
problem can be posed in the bounded domain Q.

We deduce from Proposition 3.14 in [3] that the space of harmonic Neumann vector-fields H(Ωc) is also
spanned by the functions

{
∇̃wk, k = 1, · · · , B

}
, where for any k = 1, · · · , B, wk ∈ W 1(Ω0

e) solves

∆wk = 0 in Ω0
c ;

∂wk
∂n

= 0 on Γ;

[wk]� = const. and
[
∂wk
∂n

]
�

= 0,  = 1, · · · , B;〈
∂wk
∂n

, 1
〉

1/2,Σext
�

= δk�,  = 1, · · · , B.

(40)
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It is straightforward that the two basis of H(Ωc) are related by

wk =
B∑
�=1

[wk]� z� and zk =
B∑
�=1

〈
∂zk
∂n

, 1
〉

1/2,Σext
�

w�.

The last identities may also be written

wk =
B∑
�=1

N−1
k,� z� and zk =

B∑
�=1

Nk,� w� (41)

since it is clear that
∑B

j=1

〈
∂zk
∂n , 1

〉
1/2,Σext

j

[wj ]� = δk�, 1 ≤ k,  ≤ B.

Let us introduce the closed subspace Θ of H1(Q0) defined by

Θ :=
{
θ ∈ H1(Q0); [θ]� = const.,  = 1, · · · , B

}
·

We notice that (41) yields ∂wk
∂n |Λ =

∑B
�=1 N−1

k,�
∂z�
∂n |Λ. Thus, following the steps given in the proof of Proposi-

tion 3.14 in [3], one can see that the solution of (40) satisfies the variational formulation

find wk ∈ Θ/C such that;

(∇wk, ∇θ)0,Q0 = [θ]k +
B∑
�=1

N−1
k,� 〈p� · n, θ〉1/2,Λ ∀θ ∈ Θ/C;

(42)

where we still denote here by pk the solution of (37). This problem has a unique solution by virtue of the
Lax–Milgram lemma.

We introduce

Θh :=
{
θ ∈ H1(Q0); θ|T ∈ P1(T ), ∀T ∈ Th(Q) and [θ]� = const. 1 ≤  ≤ B

}
,

where P1(T ) the space of linear functions on T . Consider the following discrete version of problem (42):

find wk,h ∈ Θh/C such that;

(∇wk,h, ∇θ)0,Q0 = [θ]k +
B∑
�=1

(
N−1
h

)
k,�

〈p�,h · n, θ〉1/2,Λ ∀θ ∈ Θh/C;
(43)

where pk,h is the solution of (38) and
{(

N−1
h

)
k,�
, 1 ≤ k,  ≤ B

}
are the entries of matrix N−1

h .
We can now take

gk,h := γτ

(
∇̃zk,h

)
= c̃urlΓzk,h

where zk,h :=
∑B
�=1(Nh)k,� w�,h, for any 1 ≤ k ≤ B.

6.3. Third auxiliary problem

Let us introduce a discrete version Rh : γτ (NDh(Ω)) → NDh(Ω) of the right inverse R of γτ . To this end,
for any gh ∈ γτ (NDh(Ω)), we consider the unique solution Rhgh of

find Rhgh ∈ NDh(Ω) such that γτRhgh = gh and

(Rhgh, q)H(curl,Ω) = 0 ∀q ∈ NDh(Ω) ∩ ker γτ .
(44)
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Notice that the vector-fields ∇̃zk,h, k = 1, · · · , B, belong to NDh(Q). It follows that gk,h := γτ (∇̃zk,h) ∈
γτ (NDh(Q)) = γτ (NDh(Ω)). Hence, we are allowed to extend each tangential vector-field gk,h to Ω by means
of the discrete operator Rh, i.e., for each k = 1, · · · , B, we can compute Rhgk,h ∈ NDh(Ω).

With this last ingredient, we are now ready to define the discrete problem corresponding to (27).

6.4. Discrete version of problem (27)

Let us denote Wh :=
(
X̂h × CB

)
×Mh. We introduce the following discrete problem associated to (27):

find h̃h ∈ Wh;

Ah

(
h̃h, q̃

)
= Fh(q̃) ∀q̃ ∈ Wh,

(45)

where

Fh(q̃) := −(1 + ı)(µ/µ0 curl as, q̂ +
B∑
k=1

ζkRhgk,h)0,Ω + (1 + ı)〈γτ q̂, πτas〉V′
π×Vπ

and
Ah

(
h̃, q̃

)
:= Ah

((
ĥ,β

)
, (q̂, ζ)

)
− b(γτ q̂, λ) + b∗

(
γτ ĥ, η

)
+ c(λ, η)

with

Ah

((
ĥ,β

)
, (q̂, ζ)

)
:= a

(
ĥ +

B∑
k=1

βkRhgk,h, q̂ +
B∑
�=1

ζ�Rhg�,h

)
+ (1 + ı)Nhβ · ζ + d

(
γτ ĥ, γτ q̂

)
.

7. Convergence analysis in the non-simply connected case

7.1. Analysis corresponding to the first auxiliary problem

In the sequel, we denote by sQ ∈ (1/2, 1) the exponent of maximal regularity in Q of the solution of
Laplace operators with L2(Q) right-hand side and homogeneous Neumann boundary datum (see Rem. 3.8
in [3]). Similarly, sΩ is the exponent of maximal regularity in Ω of Laplace operators with L2(Ω) right-hand
side and homogeneous Neumann boundary datum.

Theorem 7.1. The principal unknown pk of (37) belongs to Hs(Q) for all 0 ≤ s < sQ.

Proof. We know from Theorem 4.3 in [1] that for each δ ∈ (0, 1/2) the space{
q ∈ H(curl, Q) ∩ H(div, Q); q · n ∈ Hδ(∂Q)

}
is continuously embedded in Hε(Q), where 0 ≤ ε < min(1/2 + δ, sQ).

In our case, pk · n = 0 on Γ and pk is the gradient of a function that is harmonic in an open neighborhood
of Λ. By virtue of the local character of the regularity of solutions of Laplace equation we deduce that the
regularity of pk depends only on sQ. �
Theorem 7.2. Problems (37) and (38) are well posed and there exists a constant C > 0 independent of h such
that

‖pk − pk,h‖0,Q + ‖φk − φk,h‖H1/2(Λ)/C
≤ Chs

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
for all 1/2 < s < sQ.

Proof. The well posedness of (37) and (38) can be obtained from [26] by reproducing verbatim the proof given
there in the bidimensional case. However, as we are not considering the Lagrange multiplier corresponding
to the divergence free condition, there is no need here of the so called inf-sup condition. The properties of



A BEM–FEM METHOD FOR A 3-D EDDY CURRENT PROBLEM 313

the integral operators given in Lemma 3.3 and Lemma 3.4 shows that the Lax–Milgram theorem applies here
directly to provide existence and uniqueness for problem (37) and Céa’s lemma gives the following abstract
error estimate

‖pk − pk,h‖0,Q + ‖φk − φk,h‖H1/2(Λ)/C
≤ C0

{
inf

(q,χ)∈Yh×Θh/C

‖(pk, φk) − (q, χ)‖L2(Q)×H1/2(Λ)/C

}
· (46)

Let Πh,Q be the classical interpolation operator related to RT h(Q), see [10, 29] for the definition and basic
properties. We know that Πh,Q : Y ∩Hs(Q) → Yh is uniformly bounded for all s > 1/2 and the interpolation
error estimate

‖q − Πh,Qq‖0,Q ≤ C1h
s ‖q‖s,Q ∀q ∈ Y ∩ Hs(Q), (1/2 < s ≤ 1)

holds true. In fact, in the classical literature [10, 29], the proof of the last estimate is only given for integer
values of s. However, the proof for 1/2 < s < 1 may also be obtained by the usual Bramble–Hilbert lemma and
some scaling arguments close to those derived in Lemma 5.5 in [1].

Let us now consider the Lagrange interpolation operator Lh,Λ defined from the space of continuous functions
on Λ onto Ψh. It is well known that the estimate

‖χ− Lh,Λχ‖1/2,Λ ≤ C2 h
s ‖χ‖s+1/2,Λ ∀χ ∈ Hs+1/2(Λ) (s > 0)

is satisfied for some constant C2 > 0 that only depends on the shape regularity of the mesh.
We conclude by using the last two interpolation error estimates and (46). �

Corollary 7.3. There exists an h0 ∈ (0, 1) such that Nh is invertible for all 0 < h ≤ h0. Moreover, we have
the error estimate

‖N− Nh‖ +
∥∥N−1 − N−1

h

∥∥ ≤ C hs max
k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
, (0 < h ≤ h0),

for some constant C independent of h.

Proof. We deduce from the continuity of the normal trace on Σl in Y ⊂ H(div, Q) that∣∣∣〈(pk − pk,h) · n, 1〉1/2,Σ�
∣∣∣ ≤ C1 ‖pk − pk,h‖0,Q (1 ≤  ≤ B).

Hence, applying Theorem 7.2, we obtain the estimate

‖N− Nh‖ ≤ C2 max
k

‖pk − pk,h‖0,Q ≤ C2 h
smax

k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
· (47)

Now, recall that N is Hermitian and positive definite and hence it is invertible. Considering the Neumann
series, it is easy to prove that if h0 ∈ (0, 1) is such that

∥∥N−1(N − Nh)
∥∥ ≤ 1/2 for all 0 < h ≤ h0 then N−1

h

exists and ∥∥N−1
h

∥∥ ≤
∥∥N−1

∥∥
1 − ‖N−1(Nh − N)‖ ≤ 2

∥∥N−1
∥∥ (0 < h ≤ h0).

Finally, ∥∥N−1 − N−1
h

∥∥ =
∥∥N−1(Nh − N)N−1

h

∥∥ ≤ 2
∥∥N−1

∥∥2 ‖Nh − N‖ ,

and the remaining estimate follows from (47). �
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7.2. Analysis corresponding to the second auxiliary problem

Theorem 7.4. There exists a constant C independent of h such that

‖∇wk −∇wk,h‖0,Q ≤ C hsmax
k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
(1/2 < s < sQ).

Proof. Straightforward manipulations yield to the following first Strang estimate

‖∇(wk − wk,h)‖0,Q0 ≤ 2 inf
θ∈Θh

‖∇(wk − θ)‖0,Q0

+ sup
θ∈Θh/C

∑B
�=1

∣∣∣N−1
k,� 〈p� · n, θ〉1/2,Λ − (N−1

h )k,� 〈p�,h · n, θ〉1/2,Λ
∣∣∣

‖∇θ‖0,Q0

·

The second term in the right-hand side of the last inequality is bounded as follows:∣∣∣N−1
k,� 〈p� · n, θ〉1/2,Λ −

(
N−1
h

)
k,�

〈p�,h · n, θ〉1/2,Λ
∣∣∣

≤ C
{∥∥N−1 − N−1

h

∥∥ ∣∣∣〈p�,h · n, θ〉1/2,Λ∣∣∣+ ∥∥N−1
∥∥ ∣∣∣〈p� · n − p�,h · n, θ〉1/2,Λ

∣∣∣} ·

Trace theorems give∣∣∣N−1
k,� 〈p� · n, θ〉1/2,Λ −

(
N−1
h

)
k,�

〈p�,h · n, θ〉1/2,Λ
∣∣∣

≤ C
{∥∥N−1 − N−1

h

∥∥ ‖p�,h‖0,Q +
∥∥N−1

∥∥ ‖p� − p�,h‖0,Q

}
‖θ‖1,Q0 .

It is well known that the semi-norm ‖∇(·)‖0,Q is equivalent to ‖·‖1,Q0 on H1(Q0)/C. Thus, we arrive at the
estimate∣∣∣N−1

k,� 〈p� · n, θ〉1/2,Λ −
(
N−1
h

)
k,�

〈p�,h · n, θ〉1/2,Λ
∣∣∣

‖∇θ‖0,Q0

≤ C
{∥∥N−1 − N−1

h

∥∥ ‖p�,h‖0,Q +
∥∥N−1

∥∥ ‖p� − p�,h‖0,Q

}
·

(48)
Now, let us introduce the Nédélec finite element space relative to the triangulation Th(Q):

NDh(Q) :=
{
q ∈ H(curl, Q); q|T ∈ ND(T ), ∀T ∈ Th(Q)

}
·

We denote by Ih,Q the associated interpolation operator. Owing to Theorem 7.1, we have that ∇̃wk|Q ∈ Hs(Q)
for all 1/2 < s < sQ. Thus, Ih,Q(∇̃wk) is well defined and Remark 5.6 in [19] implies that curl Ih,Q(∇̃wk) = 0
since curl(∇̃wk) = 0. Applying Lemma 4.3 in [3] we deduce that Ih,Q(∇̃wk) is the gradient of a function in Θh.
It follows that

inf
θ∈Θh

‖∇wk −∇θ‖0,Q0 ≤
∥∥∥∇̃wk − Ih,Q

(
∇̃wk

)∥∥∥
0,Q

.

An interpolation error estimate similar to (32) gives now

inf
θ∈Θh

‖∇wk −∇θ‖0,Q0 ≤ C hs
∥∥∥∇̃wk∥∥∥

s,Q
(1/2 < s < sQ),

and the result follows from the last inequality (48), Theorem 7.2 and Corollary 7.3. �
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Corollary 7.5. For any 1 ≤ k ≤ B, let

zk,h :=
B∑
�=1

(Nh)k,� w�,h.

Then, there exists a constant C independent of h such that∥∥∥∇̃zk − ∇̃zk,h
∥∥∥

0,Q
≤ C hsmax

k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
for all 1/2 < s < sQ.

Proof. The triangle inequality yields∥∥∥∇̃zk − ∇̃zk,h
∥∥∥

0,Q
≤ ‖Nh‖ max

k

∥∥∥∇̃wk − ∇̃wk,h
∥∥∥

0,Q
+ ‖N − Nh‖ max

k

∥∥∥∇̃wk∥∥∥
0,Q

and the result is then a direct consequence of Theorem 7.4 and Corollary 7.3. �

7.3. Analysis corresponding to the third auxiliary problem

For any t ∈ (0, 1) we denote Vt
π := n ∧ (Ht(Γ) ∧ n) and let

Ht(divΓ,Γ) :=
{
λ ∈ Vt

π ; divΓ λ ∈ Vt
π

}
·

Endowed with the norm ‖λ‖2
Ht(divΓ,Γ) := ‖λ‖2

t,Γ + ‖divΓ λ‖2
t,Γ, Ht(divΓ,Γ) is a Hilbert space.

The following regularity result proved in Theorem A in [1] will be of utility in the sequel.

Theorem 7.6. For any 1/2 < s < sΩ, the extension operator R characterized by (2) is linear and bounded
from Hs−1/2(divΓ,Γ) onto Hs(curl,Ω).

Moreover, we have the following stability result, see Proposition 3.3 in [1].

Proposition 7.7. Assume that the family of triangulations {Th(Γ)}h induced by {Th}h on Γ is quasi-uniform.
Then there exists a positive constant constant C independent of h such that

‖Rhgh‖H(curl,Ω) ≤ C ‖gh‖H−1/2(divΓ,Γ) ∀gh ∈ γτ (NDh(Ω)).

Let us denote g̃k,h := γτ (Ih,Qpk) ∈ γ(NDh(Ω)), for all k = 1, · · · , B. We have the following auxiliary result.

Proposition 7.8. For any 1/2 < s < min(sQ, sΩ), there exists a constant C > 0 independent of h such that

‖Rgk −Rhg̃k,h‖H(curl,Ω) ≤ C hs ‖pk‖Hs(Ω) .

Proof. Let us first notice that, by virtue of Theorem 7.1, gk ∈ Hs−1/2(divΓ,Γ) for all 1/2 < s < sQ (recall that
divΓ gk = 0). Now, applying Theorem 7.6 we deduce that Rgk ∈ Hs(curl,Ω) for all 1/2 < s < min(sQ, sΩ).
Thus Ih,ΩRgk is well defined.

Now, as Rhg̃k,h − Ih,ΩRgk ∈ NDh(Ω) ∩ ker γτ , we have that

(Rhg̃k,h − Ih,ΩRgk, Rhg̃k,h − Ih,ΩRgk)H(curl,Ω) = (Rgk − Ih,ΩRgk, Rhg̃k,h − Ih,ΩRgk)H(curl,Ω)

≤ ‖Rgk − Ih,ΩRgk‖H(curl,Ω) ‖Rhg̃k,h − Ih,ΩRgk‖H(curl,Ω) .

Therefore, we obtain from the triangle inequality that

‖Rgk −Rhg̃k,h‖H(curl,Ω) ≤ 2 ‖Rgk − Ih,ΩRgk‖H(curl,Ω)
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and the the interpolation error estimate (32) gives

‖Rgk −Rhg̃k,h‖H(curl,Ω) ≤ C1 h
s ‖Rgk‖Hs(curl,Ω) (1/2 < s < min(sQ, sΩ)).

The result follows now from Theorem 7.6 and the trace theorem in Hs(Q). �

7.4. Convergence analysis of problem (45)

Let us begin with the following auxiliary lemma.

Lemma 7.9. For any 1/2 < s < min(sQ, sΩ), there exist constants C1 and C2 independent of h such that

|a(Rgk −Rhgk,h, q̂)| ≤ C1 h
s ‖q̂‖H(curl,Ω) max

k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
∀q̂ ∈ X̂h

and
|a(Rgk, Rg�) − a(Rhgk,h, Rhg�,h)| ≤ C2 h

smax
k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
·

Proof. Let us first bound the term ‖Rgk −Rhgk,h‖H(curl,Ω). By the triangle inequality

‖Rgk −Rhgk,h‖H(curl,Ω) ≤ ‖Rgk −Rhg̃k,h‖H(curl,Ω) + ‖Rh(g̃k,h − gk,h)‖H(curl,Ω) .

Now, on the one hand, Proposition 7.8 yields

‖Rgk −Rhg̃k,h‖H(curl,Ω) ≤ C3h
s ‖Rgk‖Hs(curl,Ω) (1/2 < s < min(sQ, sΩ))

and on the other hand, applying Proposition 7.7 we obtain

‖Rh(g̃k,h − gk,h)‖H(curl,Ω) ≤ C4 ‖g̃k,h − gk,h‖H−1/2(divΓ,Γ) .

The triangle inequality, the continuity of the tangential trace in H(curl,Ω) and the fact that the functions pk,
Ih,Qpk and ∇̃zk,h are rotational free, permit one to arrive at the following estimate

‖g̃k,h − gk,h‖H−1/2(divΓ,Γ) ≤ ‖gk − g̃k,h‖H−1/2(divΓ,Γ) + ‖gk − gk,h‖H−1/2(divΓ,Γ)

≤ C5

{
‖pk − Ih,Qpk‖0,Q +

∥∥∥pk − ∇̃zk,h
∥∥∥

0,Q

}
·

Finally, Corollary 7.5 and the interpolation error estimate (32) give

‖g̃k,h − gk,h‖H−1/2(divΓ,Γ) ≤ C6 h
smax

k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
for all 1/2 < s < sQ.

Combining the last estimates we deduce that

‖Rgk −Rhgk,h‖H(curl,Ω) ≤ C7 h
smax

k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
, (49)

for all 1/2 < s < min(sQ, sΩ).
The first estimate of the Theorem follows directly from (49) since the continuity of the sesquilinear form

a(·, ·) on H(curl,Ω) yields

|a(Rgk, q̂) − a(Rhgk,h, q̂)| ≤ C8 ‖q̂‖H(curl,Ω) ‖Rgk −Rhgk,h‖H(curl,Ω) .
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On the other hand,

|a(Rgk, Rg�) − a(Rhgk,h, Rhg�,h)| ≤ |a(Rgk −Rhgk,h, Rg�)| + |a(Rhgk,h, Rg� −Rhg�,h)|

≤ C8 ‖Rgk −Rhgk,h‖H(curl,Ω) ‖Rg�‖H(curl,Ω)

+C8 ‖Rhgk,h‖H(curl,Ω) ‖Rg� −Rhg�,h‖H(curl,Ω)

and ‖Rhgk,h‖H(curl,Ω) is uniformly bounded in h. Indeed, Proposition 7.7 and the continuity of the tangential
trace in H(curl,Ω) may be used to obtain the estimate

‖Rhgk,h‖H(curl,Ω) ≤ C9 ‖gk,h‖H−1/2(divΓ,Γ) := C9

∥∥∥γτ ∇̃zk,h∥∥∥
H−1/2(divΓ,Γ)

≤ C10

∥∥∥∇̃zk,h∥∥∥
H(curl,Q)

= C10

∥∥∥∇̃zk,h∥∥∥
0,Q

and Corollary 7.5 gives ∥∥∥∇̃zk,h∥∥∥
0,Q

≤ C11 max
k

{
‖pk‖s,Q0 + ‖φk‖s+1/2,Λ

}
·

Consequently, (49) permits also to obtain the second estimate of the Theorem. �

Theorem 7.10. Assume that the family of triangulations {Th(Γ)}h induced by {Th}h on Γ is quasi-uniform.

If the exact solution h̃ :=
((

ĥ,β
)
, λ
)

of (27) belongs to
(
Hr(curl,Ω) ∩ X̂ × CB

)
× Hr−1/2(Γ) ∩ H−1/2

0 (Γ)
with 1/2 < r ≤ 1, then, for h is sufficiently small, problem (45) admits a unique solution and there exists a
constant C independent of h such that

∥∥∥ĥ− ĥh
∥∥∥
H(curl,Ω)

+ |β − βh| + ‖λ− λh‖−1/2,Γ

≤ C hs
(
‖h‖s,Ω + ‖curl h‖s,Ω + ‖λ‖s−1/2,Γ + max

k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

})
for all 1/2 < s < min(r, sQ, sΩ).

Proof. It follows easily from (7.3) and (7.9) that∣∣∣A(
h̃, q̃

)
−Ah

(
h̃, q̃

)∣∣∣ ≤ C1 max
k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
hs
∥∥∥h̃∥∥∥

W
‖q̃‖W ∀h̃, q̃ ∈ W (50)

and

|F(q̃) −Fh(q̃)| ≤ C2 max
k

{
‖pk‖s,Q + ‖φk‖s+1/2,Λ

}
hs ‖q̃‖W ∀q̃ ∈ W (51)

for all 1/2 < s < min(sQ, sΩ).
As a consequence of (50), problem (45) is well posed if h is sufficiently small and we deduce immediately the

following Strang’s type abstract error estimate:

∥∥∥h̃ − h̃h
∥∥∥
W

≤ C inf
q̃∈Wh

{∥∥∥h̃ − q̃
∥∥∥
W

+ sup
w̃∈Wh

|A(q̃, w̃) −Ah(q̃, w̃)|
‖w̃‖W

}
+ sup

q̃∈Wh

|F(q̃) −Fh(q̃)|
‖q̃‖W

·

The result is now a direct consequence of (50), (51), (35) and the interpolation error estimate (32). �
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