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SOLUTION OF DEGENERATE PARABOLIC VARIATIONAL INEQUALITIES
WITH CONVECTION

Jozef Kacur1 and Roger Van Keer2

Abstract. Degenerate parabolic variational inequalities with convection are solved by means of a
combined relaxation method and method of characteristics. The mathematical problem is motivated
by Richard’s equation, modelling the unsaturated – saturated flow in porous media. By means of the
relaxation method we control the degeneracy. The dominance of the convection is controlled by the
method of characteristics.
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1. Introduction

In this paper we consider the parabolic convection-diffusion variational inequality

(∂tb(u), v−u)+(A∇u,∇(v−u))+(div F̄ (x, u), v−u)+(g(t, u), v−u)Γ2 ≥ (f(t, u), v−u) ∀v ∈ L2(I,K) (1)

with u(x, 0) ∈ K.
Here, (., .) is the scalar product in L2(Ω), Ω ⊂ R

N is a bounded domain with Lipschitz continuous boundary
∂Ω, I ≡ (0, T ), W 1

2 (Ω) is the standard first order Sobolev space, V ≡ {v ∈ W 1
2 : v = 0 on Γ1}, K is a closed

convex set in V and u : I → V is an abstract function. Let (u, v)Γ2 =
∫
Γ2
uv dx; Γ1 and Γ2 ⊂ ∂Ω are open with

Γ1 ∩ Γ2 = ∅ and meas N−1Γ1 + meas N−1Γ2 = meas N−1∂Ω.
We assume that b(s) is increasing, A(x) is a possitive definite symmetric matrix, ∂sF̄ (x, s) is bounded and g,

f are sublinear in u. The problem (1) includes many practical problems governed by convection-diffusion phe-
nomena with adsorption, with unilateral conditions (in Ω or on ∂Ω). IfK ≡ V then (1) represents the variational
formulation of degenerate convection-diffusion problem, which also includes “porous media type equation” with
convection, which can be dominant. It is well known that the numerical approximation (convergence analysis
and implementation) of these type of problems is very difficult, since the solution can possess the finite support
with sharp fronts on the boundary of the support. We present a motivating example concerning the flow in
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unsaturated-saturated porous media governed by Richard’s equation

∂tθ = div (k(h)A(x)∇(h + z)). (2)

Here, θ is the volumetric water content, h is the pressure head, k is the hydraulic permeability. We use the Van
Genuchten–Mualem model, describing the retention and permeability curves

θ = θ(h) = θr +
θs − θr

(1 + (αh)n)m
, k̃(S) = S1/2

(
1 −

(
1 − S1/m

)m)2

,

where S = θ−θr

θs−θr
is the effective saturation and k(h) = k̃(θ(h)) for h < 0, k(h) = 1 for h > 0. Here, θr, θs,

1 < n and m, (m = 1− 1
n ), are so called soil parameters. We verify that (2) is a degenerate parabolic equation

where the degeneracy occurs in both elliptic and parabolic (storativity) terms. This generates two interfaces
in the flow: the interface between dry and wet regions and the interface between unsaturated (h < 0) and
saturated (h > 0) zones. These degeneracies can be transformed only to the parabolic term, using Kirchhoff’s
transformation

u := β(h) =
∫ h

0

k(z)dz, b(u) := θ(β−1(u)).

Then, for h < 0 (unsaturated zone) we obtain

∂tb(u) − div (A(x)∇u) − ∂zK(x, b(u)) = 0, (3)

where K(x, b(u)) = A(x)ēk̃(b(u)), ē being the unit vector in direction z. The unknown u varies in the inter-
val (u∗, 0). Moreover, we can verify that b′(u∗) = ∞. The flow in the saturated zone h ≥ 0 is governed by
Darcy’s law, which leads to the mathematical model

Se∂th− div (A(x)∇(h + z)) = 0, (4)

where Se is the specific (elasticity) storativity coefficient, k(h) ≡ 1 for h ≥ 0 and θ = Seh – see [6]. Also here
we can use Kirchhoff’s transformation and obtain u = h for h > 0, b(u) = Seu and K(x, b(u)) = A(x)ē. If we
prolong u and b(u) for u > 0, then (3) describes unsaturated-saturated flow in porous media. We can shift the
unknown so that u∗ will be translated to 0. Then, we are looking for a nonegative solution of (1). Generally,
we are not able to guarantee that the numerical approximations of such a solution will be nonnegative too.
Therefore, it is natural to reformulate (3) in terms of a variational inequality and to look for the solution in
a closed convex set K = {v ∈ V : v ≥ 0}. Thus, we arrive at a variational inequality of the type (1) with
degenerated b(u). The degeneracy b′(u∗) = ∞ gives rise to sharp fronts between the wet region and the dry
region (h = −∞, i.e. u = u∗) in the unsaturated part of the porous media (infiltration phenomenon). The
solution has a sharp front there. In this case the convective term K(x, b(u)) is effected by the gravitation. The
boundedness of ∂uK(x, b(u)) is required in our numerical approximation. We can verify that ∂uK(x, b(u)) is
bounded (uniformly in x ∈ Ω for u ≥ u∗ ) provided that m < 1 − 2

n . If we accept m = 1− 1
n , then we have the

requirement n ≥ 2, which is satisfied for a large scale of porous media.
The mathematical formulation of (3) in terms of variational inequalities also allows us to consider unilateral

boundary conditions which are quite natural for the unsaturated-saturated flow – see [2]. For an illustration we
present the following model. Let us assume that on the part Γ2 ⊂ ∂Ω the medium is in contact with water, or
air, or with both of them. When it is in contact with water, then a positive pressure has to be prescribed. When
the medium is in contact with air, then either the flux is zero and the pressure is nonpositive (not prescribed),
or the flux is positive and the pressure is zero (overflow). The mathematical formulation is as follows – see [2]

(i) h+ = p ∗ (data) on Γ2 where h > 0;
(ii) k(h)A(∇h + ē).ν ≤ 0 on Γ2 where h = 0;
(iii) k(h)A(∇h + ē).ν = 0 on Γ2 where h < 0.
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Here, h+ := max{h, 0}. The vector ν is the outward unit normal vector to ∂Ω. Both conditions (ii) and (iii)
can be formulated in the form

k(h)A(∇h+ ē).ν(h − w) ≤ 0 on Γ2, ∀w : w+ = p ∗ .

We assume that p∗ ∈ L2(I,W 1
2 ) and p∗ ≥ 0. The mathematical formulation of this type of boundary conditions

leads again to a variational inequality of the type (1). Using Kirchhoff’s transformation (including the shifting
mentioned above) we take the convex set L2(I,K) in the form {v ∈ L2(I, V ) : v ≥ 0, (v+u∗)+ = β(p∗) on Γ2}.
Integrating by parts in (1) for a smooth solution u we obtain(

A
(
∇u+ ēk̃(b(u))

)
.ν, u− v

)
Γ2

≤ 0,

from which the conditions (ii) and (iii) follow since sgn (u− v) = sgn (h− w).
The mathematical model (1) has been analysed with respect to existence and uniqueness of the solution in [1]

and [27]. Richard’s equation (3) has been solved (by finite volume approximations) in [12] under the assumption
that b is Lipschitz continuous. The variational inequality (1) has been solved by the relaxation method in [3]
without convective term and with a Lipschitz continuous b.

The aim of our paper is to approximate the solution to (1) by the method of semi-discretization in time and
by full discretization techniques and to prove their convergence. The approximation method is based on the
relaxation method (to control the degeneracy of b) – see [3, 15, 17–19,25], and on a modification of the method
of characteristics – see [4, 5, 7–11, 20, 22, 28, 29] among others. We follow the idea of regularized characteristics
analysed in [20]. This allows us to include the dominance of the convective term F̄ , which, in addition, may
depend on the unknown u.

In Section 2 we present the approximation scheme and we specify the assumptions on the data. The conver-
gence of the semi-discretization scheme is proved in Section 3. The full discretization method is discussed in
Section 4.

2. Variational solution and the approximation scheme

By C we denote a generic positive constant. By L∞, L2, W 1
2 , L2(I, L2), L2(I, V ), L2(I, V ∗), (V ⊂ W 1

2 is a
subspace), we denote standard functional spaces (see [23]). Let ‖.‖∞, ‖.‖0, ‖.‖ and ‖.‖∗ be the norms in L∞,
L2, V and V ∗, respectively.

We shall introduce the following 5 hypotheses:
(H1) b′(s) ≥ γ > 0 and |b(s)| ≤ C(1 + |s|) ∀s ∈ R, b(0) = 0. There exist regularizations bn(s) with the

properties:
(i) bn(s) → b(s) for n→ ∞ locally uniformly;
(ii) |bn(s)| ≤ C1 + C2|s|;
(iii) min{b′(s), µ} ≤ b′n(s) ≤ Kn ) ∀s ∈ R, with Kn → ∞ for n→ ∞ and with 0 < µ < Ce.

(H2) A(x) is symmetric and uniformly positive definite,
i.e. (A(x)ξ, ξ) ≥ C|ξ|2 ∀x ∈ Ω, ∀ξ ∈ R

N .
(H3) ‖∂sF̄ (x, s)‖∞ ≤ C, |div xF̄ (x, s)| ≤ C1(1 + |s|).
(H4) |f(t, x, s)| ≤ C(1 + |s|), |∂tg(t, x, s)| ≤ C(1 + |s|) and

|∂sg(t, x, s)| ≤ C, ∀(x, t) ∈ Ω × I, ∀s ∈ R.
(H5) u0 ∈ K (K being a closed convex set in V ).

Remark 1. The regularization bn(s) of b(s) can be constructed as follows. Put

�n(z) := min{b′(z),Kn} and bn(s) :=
∫ s

0

�n(z)dz,

where Kn → ∞ for n→ ∞.
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If b(u) is not Lipschitz continuous, then we are not able to guarantee that ∂tb(u) ∈ L2(I, V ∗). If ∂tb(u) ∈
L2(I, V ∗) and v ∈ L2(I,K) with ∂tv ∈ L2(I, L2), then

∫ t

0

〈∂tb(u), v − u〉dt = (b(u(t) − b(u0), v(t) − u(t)) −
∫ t

0

((b(u) − b(u0)), ∂t(v − u)).

Thus, in the general case we weaken the variational solution to (1) using integration by parts in the t-variable.
We define the weak variational solution to (1) as follows

Definition 1. u ∈ L2(I, V ), with b(u) ∈ L2(I × Ω), is a weak variational solution to (1) iff

−
∫ t

0

(b(u) − b(u0), ∂t(v − u)) + (b(u(t) − b(u0), v(t) − u(t))

+
∫ t

0

(A∇u,∇(v − u))dx+
∫ t

0

(div F̄ (x, u), v − u)dt ≥∫ t

0

(f(t, u), v − u)dx, ∀v ∈ L2(I,K) with ∂tv ∈ L2(I, L2).

Let ui be an approximation of u(x, t) at time points t = ti, ti = iτ , i = 1, . . . , n, where τ = T
n is the time step.

To control the convective term generated by F̄ (x, u) we use the method of characteristics in the following
way. Let ϕi(x) be the approximate characteristic map for the time interval (ti−1, ti) defined by

ϕi(x) := x− τωh ∗ ∂uF̄ (x, ui−1), (ωh ∗ z)(x) =
∫

RN

ωh(x − ξ)z(ξ)dξ,

where ωh is a modifier:

ωh(x) = h−Nω1(
x

h
),

with

ω1(x) = κ exp
( |x|2
|x|2 − 1

)
for |x| ≤ 1, ω1 = 0 for |x| ≥ 1,

∫
RN

ω1(x)dx = 1.

We shall assume that h = τω for ω ∈ (0, 1). The map ϕi(x) is a regularization of the map ϕ̄(x) := x −
τ∂uF̄ (x, ui−1), which is the Euler-backwards approximation of the ϕ̃i(x)-characteristic defined by the ODE

dX(s; ti, x)
ds

= F̄ (X(s; ti, x), ui−1(X(s; ti, x)) for s ∈ (ti−1, ti) (5)

with the initial condition X(ti; ti, x) = x. Then ϕ̃i(x) ≡ X(ti−1; ti, x).
To control the dominance of the convective term and the degeneracy of the parabolic term we suggest the

following approximation scheme. We determine ui at the time point ti (assuming that ui−1 is known) from the
elliptic variational inequality

1
τ

(λi(ui − ui−1), v − ui) + (A∇ui,∇(v − ui)) + (g(t, ui), v − ui)Γ2 ≥

(H(t, ui−1), v − ui) − 1
τ
(ui−1 − ui−1 ◦ ϕi, v − ui), ∀v ∈ K, (6)

where
H(t, ui−1) := f(ti, x, ui−1) − div xF̄ (x, ui−1)
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and where λi ∈ L∞(Ω) is a relaxation function which has to satisfy the “convergence condition”

∥∥∥∥λi − bn(ui) − bn(ui−1)
ui − ui−1

∥∥∥∥
∞
< τ. (7)

Here, the convective term is included in the source term. In fact, the scheme (6, 7) is implicit with respect to
(λi, ui). To determine λi we propose the iteration procedure

(λi,k−1(ui,k − ui−1), v − ui,k) + τ(A∇ui,k,∇(v − ui,k)) + τ(gi, v − ui,k)Γ2 ≥
τ(H(ti, ui−1), v − ui,k) − (ui−1 − ui−1 ◦ ϕi, v − ui,k) ∀v ∈ K, (8)

with

λi,k :=
bn(ui,k) − bn(ui−1)

ui,k − ui−1
· (9)

This concept of relaxation of the parabolic term has been used for variational equations in [17–19]. In fact,
updating the value λi,k, we can simultaneously update the convective term, where in the place of ∂uF̄ (x, ui−1)
we can take ∂uF̄ (x, ui,k−1) to evaluate ϕi(x).

Another practical improvement can be realized by shortening the time step in the convective process and
thus increasing the order of approximation. In this case we use Euler’s backwards approximation in (5) with
smaller time steps. Let I l

i = (t(l)i−1 − t
(l−1)
i−1 ), l = 1, . . . ,m, where t(0)i−1 = ti−1 and t(m)

i−1 ≡ ti. We denote

v(x) := ∂uF̄ (x, ui−1), vh := ωh ∗ v ≡ vh
0 , v

h
1 (x) := x−

(
t
(1)
i−1 − ti−1

)
vh
0 (x)

and

v
(h)
l (x) := vh

l−1(x) −
(
t
(l)
i−1 − t

(l−1)
i−1

)
vh

(
vh

l−1(x)
)
.

Then we put

ϕ̃i(x) := vh
m−1(x) −

(
ti − t

(m−1)
i−1

)
vh

(
vh

m−1(x)
)
. (10)

Here, vh
l (x) represents the position of the initial point x after l smaller time steps along the approximated

characteristic in the time interval
(
t
(0)
i−1, t

(l)
i−1

)
.

Thus, our approximation scheme (6, 7), with the map ϕ̃i taken from (10), represents the approximation of
the solution in the time interval (ti−1, ti), based on superposition of the convective part, represented by the last
term of (6) (realized by shorter time steps I l

i) and the diffusive part (realized by the shorter time step τ).
The application of the method of characteristics requires the one to one property of the map ϕi. The

convergence analysis requires the Lipschitz-continuity of ϕi and its inverse. Since the velocity field represented
by v = ∂uF̄ (x, u) depends on the unknown u, it is difficult to guarantee the one to one property for the map ϕi

(resp. ϕ̃i) since it would lead to the boundedness of ∇v̄ and consequently to the boundedness of ∇u. But this is,
generally, not true (especially when a porous media type phenomenon occurs). That’s why we are regularizing v̄
by v̄h. This allows us to guarantee the one to one property of ϕi (see [20]).

Lemma 1. There exists τ0, τ1, (τ1 < τ0), such that

(i) 1
2 |x− y| ≤ |ϕi(x) − ϕi(y)| ≤ 2|x− y| for τ ≤ τ0

(ii) 1
2 |x− y| ≤ |ϕ̃i(x) − ϕ̃i(y)| ≤ 2|x− y| for τ ≤ τ1

for all x, y ∈ Ω̄, and i = 1, . . . , n, where ϕ̃i is from (10).
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Proof. Assertion (i) is proved in [20]. To proove (ii) we use (10) and the fact that ∇vh
l = ∇vh

l−1(1 + τl∇y(vh)),
(τl ≡ |Ii

l |, y = ∇vh
l−1(x)). We use |∇ωh ∗ g| ≤ C

h ‖g‖∞ ≤ C
h . Then we obtain

|∂xj{ϕ̃i(x)}j − 1| ≤ τ

h
C(1 +

τ

h
C + (

τ

h
)2C2 + · · · + (

τ

h
)m−1Cm−1) ≤ C

τ

h

1
1 − (τ/h)C

,

|∂xj{ϕ̃i(x)}k| ≤ C
τ

h

1
1 − (τ/h)C

,

for any j and k = 1, . . . , N, j �= k,. Here {v̄}j is the jth component of v̄.
Since h = τω , with ω ∈ (0, 1), we obtain the required estimate (ii). �

The function ϕi maps Ω into Ωi ⊂ Ω∗ for i = 1, . . . , n, where Ω∗ ⊃ Ω is a small neighbourhood provided
that τ ≤ τ0. If ϕi(x) /∈ Ω then we extend ui−1 from W 1

2 (Ω) to ũi−1 ∈ W 1
2 (Ω∗) so that (see [26], prolongation of

Nikolskij),

‖ũi−1‖W 1
2 (Ω∗) ≤ C‖ui−1‖W 1

2 (Ω). (11)

Remark 2. The existence of the function ui ∈ K satysfying (6), resp. (8), is guaranteed by [24] and by
the fact that ui−1 ∈ L2(Ω) implies that ui−1 ◦ ϕi ∈ L2(Ω) because of Lemma 1. The convergence of the
iterations (8) and (9) has been analysed in [19] for variational equalities. The analysis can be adopted for
variational inequalities.

3. Convergence of the scheme (6, 7)

First, we prove some a priori estimates for {ui}n
1 and then we show the compactness of {ūn}∞n=1 in the

corresponding functional spaces. Here, we define the Rothe’s functions

ūn(t) := ui and un(t) := ui−1 +
t− ti−1

τ
(ui − ui−1) (12)

for t ∈ (ti−1, ti), i = 1, . . . , n.

Lemma 2. Under the assumptions (H1)–(H5) it holds that

max
1≤j≤n

∫
Ω

Bn(uj)dx ≤ C,
n∑

i=1

‖ui‖2τ ≤ C, max ‖uj‖0 ≤ C,

j∑
i=1

(
bn(ui) − bn(ui−1)

τ
,
ui − ui−1

τ

)
τ ≤ ε

j∑
i=1

‖δui‖2
0τ + Cε,

where ε > 0 is any small, fixed number.

Proof. We split

λi(ui − ui−1) = bn(ui) − bn(ui−1) + χi(ui − ui−1)τ, (13)
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where ‖χi‖∞ ≤ 1 and next we put v = u∗ (u∗ ∈ K is fixed) into (6). We multiply the resulting inequality
with τ and sum up for i = 1, . . . , j. We obtain

j∑
i=1

(bn(ui) − bn(ui−1), ui) +
j∑

i=1

(A∇ui,∇ui)τ ≤
j∑

i=1

(bn(ui) − bn(ui−1), u∗) +
j∑

i=1

(A∇ui,∇u∗)τ

+
j∑

i=1

(χi(ui − ui−1), ui − u∗)τ +
j∑

i=1

(g(ti, ui−1), ui − u∗)Γ2τ

+
j∑

i=1

(H(ti, ui−1), ui − u∗)τ +
j∑

i=1

(ui−1 − ui−1 ◦ ϕi, ui − u∗).

This inequality is briefly denoted as J1 + J2 ≤ J3 + · · ·+ J8. We successively estimate all terms. First we have

J1 =
j∑

i=1

(bn(ui) − bn(ui−1), ui)

= (bn(uj), uj) − (bn(u0), u0) −
j∑

i=1

(bn(ui−1), ui − ui−1)

≥ (bn(uj), uj) − (bn(u0), u0) −
j∑

i=1

∫
Ω

∫ uj

uj−1

bn(z)dz

≥
∫

Ω

Bn(uj)dx−
∫

Ω

Bn(u0)dx, (14)

where Bn(s) = sbn(s) − ∫ s

0
bn(z)dz. From hypotesis (H2) and from Young’s inequality, (ab ≤ δ a2

2 + 1
2δ b

2, δ > 0
arbitrary), we can estimate

J2 ≥ C

j∑
i=1

‖∇ui‖2
0τ, |J3| ≤ β‖uj‖2 − Cβ ,

|J4| ≤ β

j∑
i=1

‖∇ui‖2
0 + Cβ , |J5| ≤ C1 + C2

j∑
i=1

‖ui‖2
0τ.

To estimate the boundary term we use (H4), the continuous imbedding V ↪→ L2(∂Ω) and the inequality,
(see [26]),

‖v‖2
∂Ω ≤ ε‖∇v‖2

0 + Cε‖v‖2
0, ∀v ∈ W 1

2 , ε > 0 arbitrary. (15)
Then we obtain

|J6| ≤ ε

j∑
i=1

‖∇ui‖2
0τ + Cε

j∑
i=1

‖ui‖2
0τ + C.

Moreover, we readily get

|J7| ≤ C1 + C2

j∑
i=1

‖ui‖2
0τ.

The critical point is to estimate J8. For this purpouse we use the formula

ui−1 − ui−1 ◦ ϕi

τ
=

∫ 1

0

∇ũi−1(x+ s(ϕi(x) − x))ds · ωh ∗ ∂uF̄ (x, ui−1). (16)
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Since ∂uF̄ (x, ui−1) is bounded, (see (H3)), ωh ∗ ∂uF̄ (x, ui−1) is bounded too. Now we use (11) and Young’s
inequality to obtain

|J8| ≤ β

j∑
i=1

‖∇ui‖2
0τ + Cβ

j∑
i=1

‖ui‖2
0τ + C.

The asymptotic properties of bn(s) guarantee that

γs2 − C2 ≤ Bn(s) ≤ C1s
2 + C2, (17)

where γ is from hypotesis (H1). Consequently we get from (14)

J1 ≥ ε‖uj‖2
0 − C. (18)

Substituting the estimates for J1, ..., J8 in the inequality J1 + J2 ≤ J3 + ...+ J8 and using Gronwall’s argument
we conclude that

max
1≤i≤n

‖ui‖0 ≤ C, max
1≤i≤n

∫
Ω

Bn(ui)dx ≤ C,

j∑
i=1

‖ui‖2τ ≤ C. (19)

Next we put v = ui−1 into (6) and sum up for i = 1, . . . , j. We use the decomposition (13) and (16). In addition
we apply the a priori etimates (19). This leads to

j∑
i=1

(
bn(ui) − bn(ui−1)

τ
,
ui − ui−1

τ

)
τ +

j∑
i=1

(A∇ui,∇(ui − ui−1)) +
j∑

i=1

(g(t, ui−1), ui − ui−1)Γ2

≤ ε

j∑
i=1

‖δui‖2
0τ + Cε

j∑
i=1

‖ui‖2τ + τ

j∑
i=1

‖δui‖2
0τ. (20)

For the 2nd term of the LHS, we use the symmetry of A to get

j∑
i=1

(A∇ui,∇(ui − ui−1)) ≥ 1
2
(A∇uj ,∇uj) − 1

2

j∑
i=1

(A∇u0,∇u0) +
1
2
(A∇(ui − ui−1),∇(ui − ui−1))

≥ Ce(‖∇uj‖2
0 +

j∑
i=1

‖∇(ui − ui−1)‖2
0) − C2. (21)

There exists L > 0 such that g̃(t, x, s) := g(t, x, s) −Ls is decreasing in s. Then due to hypothesis (H4) we can
estimate

j∑
i=1

(g̃(t, ui−1), ui − ui−1)Γ2 ≥
∫

Γ2

[G(tj , uj) −G(0, u0)]dx − C

j∑
i=1

‖ui‖2
0τ,

where G(t, x, s) =
∫ s

0 g̃(t, x, z)dz. Moreover, we have

j∑
i=1

(ui−1, ui − ui−1)Γ2 =
1
2
‖uj‖2

Γ2
− 1

2
‖u0‖2

Γ2
− 1

2

j∑
i=1

‖ui − ui−1‖2
Γ2
.
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Estimating the boundary terms we further use (15) and (19) to obtain

j∑
i=1

(g(t, ui−1), ui − ui−1)Γ2 ≥

ε‖∇uj‖2
0 − Cε‖uj‖2

0 − C

j∑
i=1

‖ui‖2
0τ − C

j∑
i=1

‖∇ui‖2
0τ − ε

j∑
i=1

‖∇(ui − ui−1‖2
0 − Cετ

j∑
i=1

‖δui‖2
0τ − Cε ≥

ε‖∇uj‖2
0 − Cετ

j∑
i=1

‖δui‖2
0τ − Cε. (22)

We invoke (21) and (22) in (20). Then from (H1) and from Gronwall’s argument we deduce the last estimate
in Lemma 2. �

A subsequence of {n} is denoted again by {n}.
Lemma 3. {ūn}∞1 and {bn(ūn)}∞1 are compact in L2(QT ). There exists u ∈ L2(I,K) such that ūn → u,
bn(ūn) → b(u) in L2(I, L2) and ūn ⇀ u in L2(I, V ). Moreover, ∂tu ∈ L2(I, L2) and ∂tu

n ⇀ ∂tu in L2(I, L2).

Proof. We define

ρ(s) = min{b′(s), µ} and W (s) =
∫ s

0

ρ(z)dz.

From (H1) we have that b′n(s) ≥ γ > 0 and(
bn(ui) − bn(ui−1)

τ
,
ui − ui−1

τ

)
≥ γ‖δ(ui)‖2

0.

Then, choosing ε sufficiently small in the last estimate in Lemma 2, we get the a priori estimate

n∑
i=1

‖δui‖2
0τ ≤ C.

This estimate and (19)3 can be respectively rewritten in the form∫
I

‖∂tu
n‖2

0 dt ≤ C,

∫
I

‖ūn‖2 dt ≤ C, (23)

which implies the compactness of {ūn} in L2(I, L2) because of Rellich’s compactness argument (W 1
2 ↪→ L2) –

see [26]. Consequently, there exists a subsequence of {ūn}∞n=1 and a function u ∈ L2(I, L2) such that ūn → u
in L2(I, L2) (a subsequence of {ūn} is denoted again by {ūn}). From the first estimate in (23) we deduce that∫

I

‖un − ūn‖2
0 dt ≤ C

n
and ∂tu

n ⇀ χ in L2(I, L2).

The 1st inequality implies that also un → u in L2(I, L2). Thus we find that χ ≡ ∂tu. From the asymptotic
properties of bn, (see (H1), (part (ii)) we have

C2(|ūn| − 1) ≤ bn(ūn) ≤ C1(1 + |ūn|),

which implies that bn(ūn) → b(u) in L2(I, L2). The weak convergence ūn ⇀ u in L2(I, V ) is a consequence of
Lemma 2. Since L2(I,K) is a closed convex subset of L2(I, V ), we have that u ∈ L2(I,K). Thus Lemma 3 is
proved. �
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Now we can formulate our main result. By {ūn̄} we denote a suitable subsequence of {ūn}.
Theorem 1. If the assumptions (H1)–(H5) are satisfied, then there exists a weak variational solution u to the
problem (1) in the sense of Definition 1. Moreover, ūn̄ → u in L2(I, L2), ūn̄ ⇀ u in L2(I, V ), where {ūn} is
from (6, 7) and (12). If the weak variational solution is unique, then the original sequence {ūn} is convergent.

Proof. We rewrite (6) in the form

(∂tb̃n(ūn), v − ūn) + (χ̄n(ūn − ūn
τ ), v − ūn) + (A∇ūn,∇(v − ūn)) + (ḡn(t, ūn

τ ), v − ūn)Γ2 ≥

(H̄n(t, ūn
τ ), v − ūn) −

(
1
τ

(ūn
τ − ūn

τ ◦ ϕ̄n), v − ūn

)
∀v ∈ L2(I,K), (24)

where
ūn

τ := ūn(t− τ) (ūn(s) = u0 for s ∈ (−τ, 0)),
and where

b̃n(ūn) = bn(ūn) +
t− ti−1

τ
(bn(ūn) − bn(ūn

τ )) for t ∈ (ti−1, ti), i = 1, . . . , n,

and
ḡn(t, s) = g(ti, s) for t ∈ (ti−1, ti), i = 1, . . . , n.

Similary, we introduce H̄n, F̄n(t, ūn
τ ) and ϕ̄n. We first integrate (24) over (0, t). The first term leads to

Jn(t) ≡
∫ t

0

(∂t(b̃n(ūn) − b̃n(u0)), v − un)dz

= (b̃n(ūn(t) − bn(u0), v(t) − u(t))

−
∫ t

0

(b̃n(ūn(z)) − bn(u0), ∂t(v − un)dz.

From Lemma 3 we deduce that

Jn(t) → (b(u(t)) − b(u(0)), v(t) − u(t)) −
∫ t

0

(b(u) − b(u0), ∂t(v − u))dt. (25)

To this end notice that∣∣∣∣
∫ t

0

(∂t(b̃n(ūn) − b̃n(u0), ūn − un)dt
∣∣∣∣ ≤ 2

∫
I

‖bn(ūn) − bn(ūn
τ )‖0 ‖∂tu

n‖0 dt

≤ C

(∫
I

‖bn(ūn) − bn(ūn
τ )‖2

0 dt
)1/2

→ 0 for n→ ∞,

since ūn → u and ūn
τ → u in L2(I, L2).

Similarly we obtain for the 2nd term in (24)

∫ t

0

(χ̄n(ūn − ūn
τ ), ūn − ūn

τ )dt → 0 for n→ ∞. (26)

From ūn ⇀ u in L2(I, V ) it follows that

∫ t

0

(A∇ūn,∇v)dt →
∫ t

0

(A∇u,∇v)dt (27)
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and also

lim
∫ t

0

(A∇ūn,∇ūn)dt ≥
∫ t

0

(A∇u,∇u)dt, (28)

since
∫ t

0 (A∇w,∇w)dt is convex in w and consequently lower semicontinuous.
From ūn

τ → u in L2(I, L2) and from ūn
τ ⇀ u in L2(I, V ) we have that ūn

τ → u in L2(I, L2(∂Ω)) – see (14)
or [21]. Then, we have for the boundary term in (24)

∫ t

0

(ḡn(t, ūn
τ ), v − ūn)Γ2dt →

∫ t

0

(g(t, u), v − u)Γ2dt. (29)

Similarly, we obtain

∫ t

0

(H̄n(t, ūn), v − ūn)dt→
∫ t

0

(f(t, u) − divx F̄ (x, u), v − u)dt. (30)

To take the limit n→ ∞ in the last term of (24) we use the formula (16) and denote

∇w̄n
τ :=

∫ 1

0

∇ũn
τ (x+ s(ϕ̄n(x) − x))ds.

Due to (11) and Lemma 2, {∇w̄n
τ }∞0 is bounded in L2(I, V ). Thus ∇w̄n

τ ⇀ ψ in L2(I, L2). From

w̄n
τ − ūn

τ =
∫ 1

0

(ũn
τ (x+ s(ϕ̄n(x) − x) − ūn

τ )ds

=
∫ 1

0

∫ 1

0

∇ũn
τ (x+ sr(ϕ̄n(x) − x)ds dr. ωh ∗ ∂uF̄

n(x, ūn
τ )τ

(for a.e. x) we deduce that

∫
I

‖w̄n
τ − ūn

τ ‖2
0 dt ≤ C‖ūn‖2

L2(I,V )τ ≤ Cτ → 0 for n→ ∞

since ‖ωh ∗ ∂uF̄ (x, ūn
τ )‖∞ ≤ C.

Thus, w̄n
τ → u in L2(I, L2). Recalling that ∇w̄n

τ ⇀ ψ in L2(I, L2) we have ψ ≡ ∇u. From Lemma 3 and
hypothesis (H3) we obtain ∂uF̄ (x, ūn

τ ) → ∂uF (x, u) in L2(I, L2) and, consequently,

ωh ∗ ∂uF̄ (x, ūn
τ ) → ∂uF̄ (x, u) a.e in Ω × I.

Therefore, [
ωh ∗ ∂uF̄ (x, ūn

τ )
]
(v − ūn) → ∂uF̄ (x, u)(v − u) in L2(I, L2)

and ∫ t

0

(ūn
τ − ūn

τ ◦ ϕn, v − ūn) →
∫ t

0

(∂uF̄ (x, u) · ∇u, v − u)dt. (31)
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Combining the limit results (25)–(31) in the inequality (24) we conclude that the function u from Lemma 3
satisfies the inequality

(b(u(t)) − b(u0), v(t) − u(t)) −
∫ t

0

(b(u) − b(u0), ∂t(v − u))dz

+
∫ t

0

(A∇u,∇(v − u)) + (div F̄ (x, u), v − u) ≥∫ t

0

(f(s, u(s)), v(s)) − u(s))}ds a.e. t ∈ I and ∀v ∈ L2(I,K).

Hence we conclude that u is a weak variational solution to (1). To show that ūn → u in L2(I, V ) we proceed
in the following way. We put v = u(t) in (24) and integrate over (0, t). Since ∂tu

n ⇀ ∂tu and b̃n(ūn) → b(u) in
L2(I, L2) we find by the same arguments as before (see (25)) that Jn → 0 for n → ∞. Next, the elliptic part
gives ∫ t

0

(A∇ūn,∇(ūn − u)) =
∫ t

0

(A∇(ūn − u),∇(ūn − u)) − Cn ≥ Ce

∫ t

0

‖∇(ūn − u)‖2
0 dt− Cn,

with

Cn =
∫ t

0

(A∇u,∇(ūn − u)) → 0 for n→ ∞
since ūn ⇀ u in L2(I, V ).

The remaining terms in (24) converge to 0 since ūn, ūn
τ → u in L2(I, L2))and also in L2(I, L2(Γ2)). Sumarizing

the above arguments, we obtain ūn → u in L2(I, V ) and the proof is complete. �
A stronger variational solution can be obtained when b is Lipschitz continuous. In that case we do not

regularize b by bn and in (6) and (7) we consider bn ≡ b.

Theorem 2. Let the assumptions of Theorem 1, except of parts (i)–(iv) in hypothesis (H1), be satisfied. If,
additionally, b is Lipschitz continuous, then there exists a variational solution u ∈ L2(I, V ), with ∂tb(u) ∈
L2(I, L2) which satisfies (1). The convergence results of Theorem 1 hold and, moreover, ∂tb(ūn(t)) ⇀ b(u) in
L2(I, L2) where ūn is from (6, 7) and (12), with bn(s) ≡ b(s). If the variational solution is unique, then the
original sequences {ūn}, {bn(ūn)} are convergent.

Proof. We obtain the same a priori estimates as in Lemma 2 and compactness result as in Lemma 3. From the
last estimate of Lemma 2 we obtain

n∑
i=1

‖b(ui) − b(ui−1)
τ

‖2
0τ ≤ C

n∑
i=1

(
b(ui) − b(ui−1)

τ
,
ui − ui−1

τ

)
τ ≤ C.

Then, ∂tb̃n(ūn) ⇀ χ in L2(I, L2). By the same arguments as in Lemma 3 we have bn(ūn) → b(u), ūn → u in
L2(I, L2). From the estimate

n∑
i=1

∥∥∥b̃n(ūn) − bn(ūn)
∥∥∥2

0
τ ≤ 2τ

n∑
i=1

∥∥∥∥b(ui) − b(ui−1)
τ

∥∥∥∥
2

0

τ → 0

we deduce that b̃n(ūn) → b(u), which, together with the weak convergence of ∂tb̃n(ūn), implies that χ ≡ ∂tb(u).
This readily leads to ∫ t+z

t

(
∂tb̃n(ūn), v − ūn

)
dt→

∫ t+z

t

(∂tb(u), v − u)dt ∀t ∈ I
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for any 0 < z ≤ z0. Next, we integrate (24) over (t, t + z) and take the limit for n → ∞ and conclude that
u ∈ L2(I,K) satisfies (1) for a.e. t ∈ I. The rest of the proof is the same as in Theorem 1. �
Remark 3. The uniqueness results for (1) are discussed in [1] and [27] under some additional structural
assumptions on F̄ (x, u).

Remark 4. The results of Theorem 1 and Theorem 2 also hold in the case that approximated characteristics
ϕ̃i are considered. One can verify that the problem (2) for unsaturated-saturated flow, governed by Richard’s
equation expressed in terms of Van Genuchten-Mualem’s model in the unsaturated zone and extended to (4)
for the saturated zone, satisfies the assumptions made in Theorem 1.

4. Full discretization scheme

The approximation {ūn} of (1) have been obtained by means of ui, i = 1, . . . , n, which are determined by
a linear elliptic variational inequality (6). The numerical realization of (6) can be performed by projection on
finite dimensional spaces, cf. [14].

In the case of variational equations, the space V is approximated by a finite dimensional subspace Vλ ⊂ V ,
such that Vλ → V in canonical sense, for λ→ 0, e.g. by using finite element spaces. In our variational problem
we have to approximate K by a finite dimensional space Kλ. We shall assume (see [14])

(H6) Kλ is a closed convex set in Vλ and the following conditions are satisfied:
(i) ∀v ∈ K, ∃vλ ∈ Kλ with vλ → v in V , for λ→ 0
(ii) If uλ ∈ Kλ and uλ ⇀ u in V for λ→ 0, then u ∈ K.

We can easily verify that if Kλ = K ∩ Vλ, (K ≡ {v ∈ V : V ≥ 0}, in our motivating problem of Section 1,
then the assumption (H6) is satisfied. Now, let uλ

i ∈ Kλ be the solution of the following variational inequality
(see (6))

1
τ

(
λi

(
uλ

i − ui−1

)
, v − uλ

i

)
+

(
A∇uλ

i ,∇
(
v − uλ

i

))
+

(
g

(
t, uλ

i−1

)
, v − uλ

i

)
Γ2

≥(
H

(
ti, u

λ
i−1

)
, v − uλ

i

) − (
uλ

i−1 − uλ
i−1 ◦ ϕi

λ, v − uλ
i

)
, ∀vλ ∈ Kλ,

where ϕi
λ := x− τωh ∗ ∂uF̄ (x, uλ

i−1).
By means of uλ

i , (i = 1, . . . , n), we construct the finite dimensional Rothe-function ūα(t), where α = (τ, λ).
Explicitly,

ūα(t) = uλ
i for t ∈ (ti−1, ti), i = 1, . . . , n; ūα(0) = uλ

0 ∈ Kλ.

Similary we introduce uα(t). Now we will prove the convergence ūα → u in the corresponding functional spaces
when α→ 0, where u is a weak variational solution to (1) (in the sense of Def. 1). Let {ᾱ} denote a subsequence
of {α}, α→ 0.

Theorem 3. Let the assumptions (H1)–(H6) be satisfied and let uλ
0 → u0 in L2(Ω) for λ → 0. Then ūᾱ → u

in L2(I, V ) and bn(ūᾱ) → b(u) in L2(I, L2) for α → 0, where u is a weak variational solution to (1). If the
variational solution is unique, then the original sequences are converging.

Proof. We can use all a priori estimates for {ūα} that we have obtained in Section 3 for {ūn}. We have
ūα(t) → u(t) for a.e. t ∈ I and ūα ⇀ u in L2(I, V ). We must verify that u ∈ L2(I,K). From the a priori
estimates we have that ‖ūα(t)‖ ≤ C for all t ∈ I. Then, at a fixed t we can choose a subsequence {ᾱ} of {α}
so that ūᾱ(t) ⇀ wt in V . On the other hand ūᾱ(t) → u(t) in L2 for a.e. t ∈ I. Hence, wt ≡ u(t). From this it
follows that the original sequence ūα(t) weakly converges to u(t) in V for a.e. t ∈ I. Then, u(t) ∈ K because
of (H6), (part (ii)). Thus, u ∈ L2(I,K). Now, we can follow the proof of Theorem 1. For any v ∈ L2(I,K) we
can construct a function vλ ∈ L2(I,Kλ) so that vα → v in L2(I, V ) – because of (H6), (part (i)). Next, we use
a test function vα (in the place of v in (6)) and take the limit α → 0. We obtain that u is a weak variational
solution to (1). To show the stronger convergence of {ūα} we follow the proof of Theorem 1.
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Again, in the place of v = u, we take the test function v = vα ∈ L2(I,Kλ) in (6) such that vα → u in
L2(I, V ). We find that ∫

I

‖∇(ūα − vα)‖2
0 dt→ 0 for α→ 0.

From this convergence and from the convergences ūα → u in L2(I, L2) and vα → u in L2(I, V ) for α → 0, we
conclude that ūα → u in L2(I, V ). Thus the proof is complete. �
Remark 5. In the present paper we have focused on the convergence analysis of the approximation method. The
practical implementation of the presented method, which is based on the concept of regularized characteristics,
may proceed similarly as for the numerical experiments in [22]. The difference is that now at every time section
t = ti, i = 1, ..., n an elliptic variational inequality has to be solved by FEMs instead of an elliptic variational
equality – however the transport parts remain the same. The crucial point in the implementation of the method
of characteristics is the evaluation of the storativity integrals (ui−1 ◦ ϕi, v), which can lead to instabilities and
to the violation of the mass balance. In [22] we have applied the method introduced in [7, 8]. The weak point
is the preservation of mass, especially for larger time steps.

Another efficient method which is based on the method of characteristics and which is mass preserving is
the ELLAM method, analysed in [11, 29]. Recently, two additional methods were developed. In the first one –
see [16] – the transport part too is realized by means of splitting into directions parallel to the coordinate axes.
In the second one – see [13] – “a flux-based method of characteristics” is introduced for FVMs using a general
(unstructured) domain decomposition.
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