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Abstract. The limit behavior of the solutions of Signorini’s type-like problems in periodically perfo-
rated domains with period ε is studied. The main feature of this limit behaviour is the existence of a
critical size of the perforations that separates different emerging phenomena as ε → 0. In the critical
case, it is shown that Signorini’s problem converges to a problem associated to a new operator which
is the sum of a standard homogenized operator and an extra zero order term (“strange term”) coming
from the geometry; its appearance is due to the special size of the holes. The limit problem captures the
two sources of oscillations involved in this kind of free boundary-value problems, namely, those arising
from the size of the holes and those due to the periodic inhomogeneity of the medium. The main
ingredient of the method used in the proof is an explicit construction of suitable test functions which
provide a good understanding of the interactions between the above mentioned sources of oscillations.
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1. Introduction

The general question which will make the object of this paper is the homogenization of Signorini’s type-like
problems in perforated domains. Their classical weak formulations involve a standard variational inequality (in
the sense of Lions and Stampacchia [22]), corresponding to a nonlinear free boundary-value problem. Such a
model was introduced in the earliest ’30 by Signorini [25] (see also Fichera [20]) for studying problems arising
in elasticity, and more precisely problems involving an elastic body under unilateral contact shear forces acting
on its boundary. For a nice presentation of the mechanical aspects behind Signorini’s problem (and also for
some mathematical and historical backgrounds) we refer to Duvaut and Lions [19] (see also Brézis [4]).

Let Ω be an open bounded set in Rn and let us perforate it by holes. As a result, we obtain an open
set Ωε which will be referred to as being the perforated domain; ε represents a small parameter related to
the characteristic size of the perforations. As usual in homogenization, we shall be interested in obtaining a
suitable description of the asymptotic behavior, as ε tends to zero, of the solution uε in such domains. We will
wonder, for example, whether the solution uε converges to a limit u as ε→ 0. And if this limit exists, can it be
characterized?
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Let us consider a family of inhomogeneous media occupying the region Ω, parameterized by ε and represented
by n×n coercive matrices Aε(x) with real-valued entries defined on Ω. The positive parameter ε will thus also
define a length scale measuring how densely the inhomogeneities of the medium are distributed in Ω. Indeed, one
of our main goals in this paper will be to understand the interactions between these two sources of oscillations
represented by the parameter ε, namely, those coming from the geometry (more exactly, the size of the holes)
and those due to the inhomogeneity of the medium (the rapidly oscillating entries of the matrix Aε(x)).

With Ωε we associate the following nonempty closed convex subset of H1(Ωε):

Kε =
{
v ∈ H1(Ωε) | v = 0 on ∂Ω, v ≥ 0 on Sε

}
, (1.1)

where Sε is the boundary of the holes and ∂Ω is the external boundary of Ω (we assume that Sε ∪ ∂Ω = ∅).
Our main motivation is to study the asymptotic behavior of the solution of the following variational problem
in Ωε: 

Find uε ∈ Kε such that∫
Ωε

AεDuεD(vε − uε)dx ≥
∫
Ωε

f(vε − uε)dx ∀vε ∈ Kε, (1.2)

where f is a given function in L2(Ω).
The solution uε of (1.2) is also known to be characterized as being the solution of the following non-linear free

boundary-value problem: Find a function uε and two subsets Sε
0 and Sε

+ such that Sε
0 ∪Sε

+ = Sε, Sε
0 ∩Sε

+ = ∅,
and −div(AεDuε) = f in Ωε,

uε = 0 on Sε
0 , A

εDuε · ν ≥ 0 on Sε
0 ,

uε > 0 on Sε
+, A

εDuε · ν = 0 on Sε
+,

(1.3)

where ν is the exterior unit normal to the surface Sε. This means that we can distinguish on Sε two a priori
unknown subsets Sε

0 and Sε
+ where uε satisfies complementary boundary conditions coming from the following

global constraints:
uε ≥ 0, AεDuε · ν ≥ 0 and uεAεDuε · ν = 0 on Sε. (1.4)

In this paper, we will be concerned with a special type of heterogeneities of the medium, called periodic structures
which are defined by

Aε(x) = A
(x
ε

)
·

Here A = A(y) is a continuous matrix-valued function on Rn which is Y -periodic and Y =
(− 1

2 ,
1
2

)n is the
basic cell. From a geometrical point of view, we will just consider periodic perforated structures obtained by
removing periodically from Ω, with period ε, an elementary hole T which has been appropriated rescaled. In
the sequel, we reserve the symbol # to denote periodicity properties.

We introduce some non-degeneracy assumptions on the materials to ensure the well-posedness of the above
problem (1.2): 

A ∈ L∞# (Rn)n×n, or when necessaryA ∈ C0
#(Rn) or evenA ∈ W 1,∞

# (Rn)n×n,

A is a symmetric matrix,
for some 0 < α < β, one hasα |ξ|2 ≤ A(y)ξ · ξ ≤ β |ξ|2 ∀ξ, y ∈ Rn.

Under the above hypotheses, it is well-known by a classical existence and uniqueness result of Lions and
Stampacchia [22] that (1.2) is a well-posed problem.

Several situations can occur depending on the asymptotic behavior of the size of the holes. The main feature
of our results shows the existence of a critical size that separates different behaviors of the solution uε as ε→ 0.
This size is of order εn/(n−2) if n ≥ 3 and of order exp(−1/ε2) if n = 2. To simplify matters, in what follows we
shall just focus on the case n ≥ 3, which will be treated explicitly. The case n = 2 is completely analogous, but
since most of the formulas involved have different analytic expressions, we shall omit to treat it. For details in
somewhat similar computations, the interested reader is referred to [9, 10].
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Besides this so-called critical case (referred to as Case 1 throughout the paper and described in the next
paragraph below), there are three other cases that will be also considered explicitly. Case 2 is characterized by
the fact that the holes are much smaller than the critical ones. As expected, in this case they are too small to
produce any visible contribution at the limit. So the solution uε will just converge to the solution of a classical
homogenized Dirichlet problem in Ω associated to the matrix A. Case 3 is when the size of the holes is bigger
than the critical one, but still smaller than the period ε. The holes being big enough, the positivity constraint
of the solution uε imposed only on Sε will become at the limit the positivity condition, u ≥ 0, on the whole
of the domain Ω. The limit problem will be therefore an obstacle problem associated to the corresponding
homogenized medium. Then, in this case, the holes don’t play an important role in the homogenized problem,
they just spread the positivity condition all over the domain. Case 4 is similar to the previous one and it is
characterized by the fact that the size of the holes is exactly of order ε. The solution uε also converges in this
case to an obstacle problem, but associated to the homogenization of a periodic heterogeneous and perforated
medium. The influence of the holes comes twofold: on one hand, they spread the positivity condition on Sε to
the whole of Ω and on the other one, their size do affect the homogenized medium.

In the critical case (Case 1), the limit of uε is the solution of a problem in Ω associated with a new operator
which is the sum of the standard homogenized one as in Case 2 or 3, and of an extra term (“the strange term”)
that comes in from the geometry (the size of the holes). Be aware that this extra term only appears in this
particular case, showing the importance of their size in front of their shape. More precisely, the solution uε

converges to the unique solution of the following variational equality:
Find u ∈ H1

0 (Ω) such that∫
Ω

A0DuDvdx− 〈µ0u
−, v

〉
H−1(Ω),H1

0 (Ω)
=
∫
Ω

fvdx ∀v ∈ H1
0 (Ω). (1.5)

Here, A0 is the classical homogenized matrix, whose entries are defined as follows:

a0
ij =

1
|Y |

∫
Y

(
aij(y) + aik(y)

∂χj

∂yk

)
dy,

in terms of the functions χj, j = 1, ..., n, solutions of the so-called cell problems{−divy(A(y)Dy(yj + χj)) = 0 in Rn,

χj − Y periodic,

and µ0 is given by

µ0 = inf
ζ∈H1(Rn)


∫

Rn

A(0)DζDζdx | ζ ≥ 1 q.e. on T

 ,

T being the elementary hole, and the holes of Ωε being of the size εn/(n−2) and periodically distributed with
period ε.

In this limit problem we can see that all the ingredients of our Signorini’s inequality (1.2) are present. As
already mentioned, two sources of oscillations are involved in (1.2) and we can now see that both are captured at
the limit. Those coming from the periodic heterogeneous structure of the medium are reflected by the presence
of the homogenized matrix A0, and those due to the critical size of the holes are reflected by the appearance of
the strange term µ0. The second ingredient contained in (1.5) is the spreading effect of the unilateral condition
uε ≥ 0 on Sε which can be seen by the fact that the strange term only charges the negative part of u; it is
indeed just the negative part u− that is penalized at the limit.

The method we will use is the one introduced by Tartar [27, 28] for studying homogenization problems. It
consists of constructing suitable test functions that are used in our variational inequalities.
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In studying the general problem (1.2) we will consider three increasingly levels of generality for the matrix A.
In Section 2 we start by analyzing the simplest case, that of the operator −∆, which corresponds to A = I.
Section 3 deals with the so-called regular materials in the sense of [11], materials which are characterized by a
divergence-free matrix A. The general case is considered in Section 4, by using suitable test functions whose
construction is based on a general rearrangement technique due to De Giorgi [18] (see also [1]). This allows us to
construct an ad-hoc test function which enables us to capture simultaneously both sources of oscillations already
mentioned. The first two steps (A = I and regular materials) do not require such a sophisticated construction
of the test functions since in these cases there is no interaction between our two different sources of oscillations;
at most one of the source is significant at the limit.

This paper is a generalization of the well-known seminal work of Cioranescu and Murat [9]. In this article,
the authors deal with the asymptotic behavior of solutions of Dirichlet problems in perforated domains, showing
the appearance of a “strange” extra-term as the period of the perforations tends to zero and the holes are of
critical size. They also consider the constraint uε ≥ 0 on the holes. In our paper, we generalize their method
and framework to a class of Signorini’s problem, involving just a positivity condition imposed on the boundary
of the holes. Our results show that one is led to analogous limit problems despite the fact that the constraint
is only acting on Sε.

One of the main elements of our method is the existence of some special test functions wε previously
introduced in the original paper [7] and satisfying hypotheses (H.0)–(H.5) below (see Chap. 2). It is well-
known that these hypotheses force some geometrical restrictions, even if it was proved by J. Casado-Dı́az [6]
that the existence of functions wε vanishing on T ε and weakly converging to 1 in H1(Ω) (hypotheses (H.1)–
(H.3)) is sufficient. Another method was introduced by V.A. Marcenko and E.Ja. Hrouslov in their book [23]
and then developed in the setting of nonlinear problems by I.V. Skrypnik [26]. This method also undergoes
geometrical restrictions. Recently, G. Dal Maso and A. Garroni [15] were able to overcome this weakness of the
method by using different test functions. The introduction of these test functions allowed them to recover by
the method of test functions due to Tartar previous results obtained for the Dirichlet problem with holes by
the Γ-convergence method without making any assumption on the geometry (most of these results are due to
G. Dal Maso, see e.g. [12], [13]). It also opened new ways for solving more general cases of Dirichlet problems for
monotone operators (see G. Dal Maso and F. Murat [16] and J. Casado-Dı́az [7]). Also, notice that in a recent
paper, G. Dal Maso and F. Murat [17] (see also A. Kovalevsky [21]) are addressing the very general problem of
finding the asymptotic behavior of solutions of linear Dirichlet problems with simultaneously varying operators
and domains, emphasizing the interest of understanding the interaction between these two sources of oscilla-
tions. This result was generalized to the case of Dirichlet problems for monotone operators by C. Calvo-Jurado
and J. Casado-Dı́az in [5].

As already mentioned, the method we follow in the present paper is the method of Tartar [27]. However, it is
worth mentioning that the Γ-convergence of integral functionals involving oscillating obstacles is an alternative
which already proved to be a successful one. Extensive references on this topic can be found in the monographs
of Dal Maso [14] and of Braides and Defranceschi [3]. For example, our main result concerning the critical
case (it establishes that uε converges to the solution of (1.5); see Th. 4.1 below) can also be interpreted as the
Γ-convergence of the functionals

v 7−→
∫
Ωε

A
(x
ε

)
DvDvdx− 2

∫
Ωε

fvdx+ IKε(v)

(where IKε is the indicator function of the setKε, i.e. IKε is equal to zero if v belongs to Kε and +∞ otherwise)
to the limit functional

v 7−→
∫
Ω

A0DvDvdx− 2
∫

Ω

fvdx+
〈
µ0, (v−)2

〉
H−1(Ω),H1

0 (Ω)
,

which is the energy functional associated to (1.5).
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Finally, a word about the notation adopted in this work. Apart from the usual norms in Sobolev spacesH1(Ω),
H2(Ω), we will use the following semi-norms,

|v|2H1(Ω) =
n∑

j=1

∥∥∥∥ ∂v∂xj

∥∥∥∥2

L2(Ω)

, |v|2H2(Ω) =
n∑

i,j=1

∥∥∥∥ ∂2v

∂xi∂xj

∥∥∥∥2

L2(Ω)

·

Also, throughout the paper, by C we shall denote a generic fixed strictly positive constant, whose value can
change from line to line.

2. The classical strange term in Signorini’s problem

In this chapter, we will consider the classical Signorini’s problem for the operator −∆ in periodically perfo-
rated domains. We will treat separately the situation in which the size of the holes is strictly smaller than the
distance between them and the situation in which the holes are of similar size compared to the period. The
first one will be referred to as the case of small holes, while for the second one we shall use the terminology of
big holes.

Let Ω be a smooth bounded connected open subset of Rn and let T be another open bounded subset of Rn,
with a smooth boundary ∂T (of class C2). We shall refer to T as being the elementary hole. We assume that 0
belongs to T and that T is star-shaped with respect to 0. Since T is bounded, to simplify matters, without loss
of generality, we shall assume that T ⊂ Y , where Y = (− 1

2 ,
1
2 )n is the representative cell in Rn.

Let ε be a real parameter taking values in a sequence of positive numbers converging to zero and let r : R+ →
R+ be a continuous map, which will allow us to distinguish between the above mentioned situations. In the
sequel, we will make various further assumptions on the asymptotic behavior of this function, as ε→ 0. Some
of them are as follows:

lim
ε→0

r(ε)
ε

= 0 and r(ε) < ε/2 (2.1)

and

r(ε) ∼ ε, (2.2)

this last one meaning, for example, that r(ε) = Cε.
For each ε and for any integer vector i ∈ Zn, we shall denote by T ε

i the translated image of r(ε)T by the
vector εi, i ∈ Zn:

T ε
i = εi + r(ε)T.

Also, let us denote by T ε the set of all the holes contained in Ω, i.e.

T ε =
⋃{

T ε
i | T ε

i ⊂Ω, i ∈ Zn
} ·

Set

Ωε = Ω \ T ε.

Hence, Ωε is a periodically perforated domain with holes of the size r(ε). All of them have the same shape, the
distance between two adjacent holes is of order ε and they do not overlap. Also, let us remark that the holes
do not intersect the boundary ∂Ω.

Let

Sε = ∪{∂T ε
i | T ε

i ⊂Ω, i ∈ Zn}·
So

∂Ωε = ∂Ω ∪ Sε.



778 C. CONCA ET AL.

We shall also use the following notations:

|ω|=the Lebesgue measure of any measurable subset ω of Rn,

χ
ω

= the characteristic function of the set ω,

Y ∗ = Y \ T ,

and

θ =
|Y ∗|
|Y | ·

Moreover, for an arbitrary function ψ ∈ L2(Ωε), we shall denote by
∼
ψ its extension by zero inside the holes:

∼
ψ=

{
ψ in Ωε,

0 in Ω \ Ωε.

2.1. Setting of the problem

As already mentioned in Introduction, we are interested in studying the behavior of solutions, in such
perforated domains, of variational inequalities with highly oscillating obstacles constraints.

Define the unilateral convex set

Kε =
{
v ∈ H1(Ωε) | v = 0 on ∂Ω, v ≥ 0 on Sε

} · (2.3)

For a given function f ∈ L2(Ω), let us consider the following variational inequality:
Find uε ∈ Kε such that∫
Ωε

DuεD(vε − uε)dx ≥
∫
Ωε

f(vε − uε)dx ∀vε ∈ Kε. (2.4)

Since Kε is a nonempty convex set, for any given f ∈ L2(Ω), the above variational inequality has a unique
solution uε ∈ H1(Ωε) (thanks to the classical existence result of Lions and Stampacchia [22]).

We shall be interested in getting the asymptotic behavior of this solution, when ε → 0. This will obviously
depend on the behavior of the size r(ε) of the holes. Exactly like in [9], we shall see that there exists a
“critical” size of the holes that separates different possible asymptotic behaviors of our solution. This size is
r(ε) ∼ εn/(n−2) (recall that we restrict ourselves to the case n ≥ 3).

2.2. Unilateral constraint problems in perforated domains with small holes

In the situation of small holes, the function r = r(ε) is characterized by condition (2.1). Moreover, as already
mentioned in introduction, to describe the asymptotic behavior of the solution of problem (2.4), the following
cases have to be distinguished:

Case 1. The size r(ε) of the holes is exactly of the order of εn/(n−2). That means that there exists δ > 0 such
that

lim
ε→0

r(ε)ε−
n

n−2 = δ. (2.5)

We shall refer to this case as being the “critical” one.

Case 2. The order of the size r(ε) of the holes is smaller than the critical size, i.e. the case in which

lim
ε→0

r(ε)ε−
n

n−2 = 0. (2.6)
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Case 3. The order of the size r(ε) of the holes is bigger that the critical one, i.e. the case in which

lim
ε→0

r(ε)ε−
n

n−2 = +∞. (2.7)

Case 1. Let us start with the case of critical holes. Following [9], we know that for this geometry there exist a
sequence of auxiliary functions wε and a distribution µ such that the following hypotheses are satisfied:

(H.0) 0 ≤ wε ≤ 1 a.e. in Ω;

(H.1) wε ∈ H1(Ω);

(H.2) wε = 0 on the holes T ε;

(H.3) wε ⇀ 1 weakly in H1(Ω);

(H.4) µ ∈W−1,∞(Ω);

(H.5)


For every sequence vε such that vε = 0 on T ε satisfying vε ⇀ v,
weakly in H1(Ω), with v ∈ H1(Ω), one has
〈−∆wε, ϕvε〉H−1(Ω),H1

0 (Ω) → 〈µ, ϕv〉
H−1(Ω),H1

0 (Ω)
for all ϕ ∈ D(Ω).

Under these hypotheses, let us recall that it was proved in [9] that

〈µ, ϕ〉 = lim
ε→0

∫
Ω

|Dwε|2 ϕdx for any ϕ ∈ D(Ω). (2.8)

So µ, the limit in the distribution sense of |Dwε|2, is a positive measure.
As we know from [9], despite the fact that these hypotheses may sound a little bit strange, today they

proved to be quite natural. In fact, they are verified not just for our particular geometry, but for much more
general situations. In their original paper, Cioranescu and Murat made several useful remarks for a better
understanding of the geometrical information contained in these hypotheses. Some of them will be very useful
in what follows. For the sake of completeness, we have decided to recall them here.

Remark 2.1. If there exist wε and µ satisfying hypotheses (H.0) to (H.5), they are “quasi-unique”. Indeed, if
we consider two pairs (wε, µ) and (wε, µ) satisfying hypotheses (H.0)–(H.5), one has{

µ = µ,
wε − wε → 0 strongly in H1

loc(Ω).

Remark 2.2. Hypothesis (H.5) could be replaced by the following one:

(H.5)′


There exist two sequences µε, νε ∈ H−1(Ω) such that µε → µ
strongly in H−1(Ω), νε ⇀ µ weakly in H−1(Ω) and 〈νε, vε〉 = 0,
for any vε ∈ H1

0 (Ω) with vε = 0 on the holes T ε.
In fact, −∆wε = µε − νε in Ω.

Or by

(H.5)′′


For every sequence vε such that vε = 0 on T ε satisfying vε ⇀ v,
weakly in H1

0 (Ω), with v ∈ H1
0 (Ω), one has

〈−∆wε, vε〉H−1(Ω),H1
0 (Ω) → 〈µ, v〉

H−1(Ω),H1
0 (Ω)

.

Clearly, (H.5)′ ⇒(H.5)′′ ⇒(H.5) and it is proved in [9] that (H.5)′ is satisfied for our special geometry.

Remark 2.3. Hypothesis (H.5)′′, together with (H.0), enables us to prove (2.8) for test functions
ϕ ∈ H1

0 (Ω) ∩ L∞(Ω).
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Also, we recall the following result (for a detailed proof, see again [9]):

Proposition 2.4. Assume that hypotheses (H.1) to (H.5) are satisfied. For any sequence zε and z such that
zε = 0 on the holes T ε and zε ⇀ z weakly in H1

0 (Ω), one has

lim inf
ε→0

∫
Ω

|Dzε|2 dx ≥
∫
Ω

|Dz|2 dx+
〈
µ, z2

〉 · (2.9)

Moreover, if zε satisfies ∫
Ω

|Dzε|2 dx→
∫
Ω

|Dz|2 dx+
〈
µ, z2

〉
, (2.10)

then
zε − wεz → 0 strongly in W 1,1

0 (Ω). (2.11)

Remark 2.5. This result can be improved if one assumes that the limit z is more regular, say z ∈ W 1,p
0 (Ω),

with p > 2. For example, if z ∈ C1
0 (Ω), the strong convergence in (2.11) takes place in H1

0 (Ω).

The main convergence result of this section (given by Th. 2.6 below) involves any extension ûε of the
solution uε of the variational inequality (2.4) inside the holes such that it depends continuously on uε and it is
positive in T ε. This extension actually doesn’t play any important role in the proof of the convergence result.
In fact, for example, one could just decide to use the positive part of any classical continuous extension of uε.
For explicit constructions of such extensions, the interested reader is referred, for example, to [8, 10]. Another
possibility is to extend uε inside the holes in such a way that{

∆ûε = 0 in T ε,

ûε = uε on Sε.
(2.12)

Then, since uε ∈ Kε, by the maximum principle we have ûε ≥ 0 on the holes and ûε ∈ H1
0 (Ω). Also, (ûε)− = 0

on the holes and (ûε)− ∈ H1
0 (Ωε).

Theorem 2.6. Under hypotheses (H.0)–(H.5), one can construct an extension ûε of the solution uε of the
variational inequality (2.4), positive inside the holes, such that

ûε ⇀ u weakly in H1
0 (Ω),

where u is the unique solution of the so-called homogenized problem
Find u ∈ H1

0 (Ω) such that∫
Ω

DuDvdx− 〈µu−, v〉
H−1(Ω),H1

0 (Ω)
=
∫
Ω

fvdx ∀v ∈ H1
0 (Ω). (2.13)

Moreover, we have the following corrector-type result

lim
ε→0

∫
Ωε

∣∣Du+
ε −Du+

∣∣2 = 0 (2.14)

and
(ûε)− − wεu− → 0 strongly in W 1,1

0 (Ω). (2.15)
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Remark 2.7. The solution of the variational inequality (2.4) is constrained to be positive on the boundary
of the holes T ε. When passing to the limit, in the regions where u is nonpositive, the obstacle 0 is “seen”
by uε and the price to be paid is just the appearance of the penalization term −〈µu−, v − u〉 in the variational
inequality (2.13). This fact can be better observed when looking at equations (2.14) and (2.15). Indeed, the
positive part u+

ε of the solution of our variational inequality does not see the oscillations of the obstacle, so
we get strong convergence. Contrary, the negative part (ûε)− is zero inside the holes and it behaves like the
solution of a variational inequality in the perforated domain Ωε with Dirichlet conditions on ∂Ωε. This explains
the corrector result for (ûε)−, which is analogous to the result obtained for the solutions of equations (see [9],
Th. 3.4).

Remark 2.8. Let us note that, as in Remark 2.5, (ûε)− − wεu− converges actually strongly to zero in a
better space than W 1,1

0 (Ω), namely in W 1,q
0 (Ω), q > 1. This result can be even improved if u− is more regular

than H1
0 (Ω).

Proof of Theorem 2.6. We divide the proof into four steps.

First step. Let us introduce the following functionals defined on H1(Ωε) and, respectively, H1
0 (Ω):

Jε(v) =
∫
Ωε

|Dv|2 dx− 2
∫
Ωε

fvdx

and
J0(v) =

∫
Ω

|Dv|2 dx+
〈
µ, (v−)2

〉− 2
∫
Ω

fvdx,

where the term
〈
µ, (v−)2

〉
is the duality pairing between µ, which belongs to W−1,∞(Ω) (see (H.4)) and (v−)2,

which belongs to W 1,1
0 (Ω), as v− is in H1

0 (Ω).
It is well known that the solution uε of the variational inequality (2.4) is also the unique solution of the

minimization problem {
Find uε ∈ Kε such that
Jε(uε) = inf

v∈Kε
Jε(v). (2.16)

Let v ∈ H1
0 (Ω) ∩ L∞(Ω) be given and let us consider

vε = v+ − wεv−.

Obviously, vε ∈ Kε, which will allow us to take it as a test function in (2.4) and vε → v strongly in L2(Ω).
Now, using vε in (2.4), we get:

Jε(uε) ≤ Jε(vε). (2.17)
But

Jε(vε) =
∫
Ωε

∣∣Dv+ − wεDv− − v−Dwε
∣∣2 dx− 2

∫
Ωε

f(v+ − wεv−)dx

=
∫
Ωε

∣∣Dv+
∣∣2 dx+

∫
Ωε

|wε|2 ∣∣Dv−∣∣2 dx+
∫
Ωε

∣∣v−∣∣2 |Dwε|2 dx

−2
∫
Ωε

wεDv+Dv−dx− 2
∫
Ωε

v−Dv+Dwεdx

+2
∫
Ωε

wεv−Dv−Dwεdx− 2
∫
Ωε

f(v+ − wεv−)dx. (2.18)
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Due to (H.3), it is easy to pass to the limit in almost all the terms of the above identity. For the term∫
Ωε |v−|2 |Dwε|2 dx, we simply use Remark 2.3. Hence, we obtain

lim
ε→0

Jε(vε) =
∫
Ω

∣∣Dv+
∣∣2 dx+

∫
Ω

∣∣Dv−∣∣2 dx+
〈
µ, (v−)2

〉− 2
∫
Ω

f(v+ − v−)dx

=
∫
Ω

|Dv|2 dx+
〈
µ, (v−)2

〉− 2
∫
Ω

fvdx = J0(v).

So, from (2.17) we get

lim sup
ε→0

Jε(uε) ≤ J0(v), (2.19)

for any v ∈ H1
0 (Ω) ∩ L∞(Ω).

Second step. Let uε ∈ Kε be the solution of the variational inequality (2.4) and let ûε be the extension of uε

inside the holes given by (2.12).
If we take vε = 0, which is obviously admissible, as a test function in (2.4), we get∫

Ωε

|Duε|2 dx ≤ 2
∫
Ωε

fuεdx.

Clearly, ∥∥ûε
∥∥

H1
0 (Ω)

≤ C.

Consequently, by passing to a subsequence, still denoted by ûε, we can assume that there exists u ∈ H1
0 (Ω) such

that

ûε ⇀ u weakly in H1
0 (Ω).

It remains to identify the limit variational inequality satisfied by u.

Third step. Let us decompose ûε as (ûε)+ − (ûε)−. Obviously, since (ûε)+ is bounded in H1
0 (Ω), it converges

weakly in H1
0 (Ω) to u+. So using the classical lower semicontinuity of the energy

∫
Ω |Dv|2 dx, we have

lim inf
ε→0

∫
Ωε

∣∣D(ûε)+
∣∣2 dx ≥

∫
Ω

∣∣Du+
∣∣2 dx. (2.20)

On the other hand, (ûε)− is also bounded in H1
0 (Ω) and it converges weakly in H1

0 (Ω) to u−.
Let ϕ ∈ D(Ω). Consider the integral

Xε =
∫
Ωε

∣∣D(ûε)− − ϕDwε − wεDϕ
∣∣2 dx.

By construction Dwε = wε = 0 on the holes and also, due to the fact that ûε ≥ 0 on the holes, D(ûε)− =
(ûε)− = 0 on holes. So, we get (ûε)− ∈ H1

0 (Ωε) and

Xε =
∫
Ω

∣∣D(ûε)− − ϕDwε − wεDϕ
∣∣2 dx.
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Expanding Xε, which is obviously nonnegative, we get∫
Ω

∣∣D(ûε)− − ϕDwε − wεDϕ
∣∣2 dx =

∫
Ω

∣∣D(ûε)−
∣∣2 dx+

∫
Ω

|ϕ|2 |Dwε|2 dx+
∫
Ω

|wε|2 |Dϕ|2 dx

− 2
∫
Ω

wεD(ûε)−Dϕdx − 2
∫
Ω

DwεD(ûε)−ϕdx+ 2
∫
Ω

wεDwεϕDϕdx ≥ 0. (2.21)

Let us extract a subsequence, still denoted by ε, such that

lim
ε→0

∫
Ω

∣∣D(ûε)−
∣∣2 dx = lim inf

ε→0

∫
Ωε

∣∣D(ûε)−
∣∣2 dx.

Now, we can easily pass to the limit in each term of the right-hand side of (2.21), except in the fifth one. For
this term, taking ϕ(ûε)− as a test function in the decomposition given by Remark 2.2, we have∫

Ω

DwεD(ûε)−ϕdx+
∫
Ω

Dwε(ûε)−Dϕdx =
〈
µε, ϕ(ûε)−

〉− 〈νε, ϕ(ûε)−
〉 · (2.22)

Since (ûε)− = 0 on the holes, passing to the limit in (2.22), we get

lim
ε→0

∫
Ω

DwεD(ûε)−ϕdx =
〈
µ, ϕu−

〉 ·
Hence, from (2.21), we obtain

lim inf
ε→0

∫
Ωε

∣∣D(ûε)−
∣∣2 dx ≥ 2

∫
Ω

Du−Dϕdx−
∫
Ω

|Dϕ|2 dx− 〈µ, ϕ2
〉

+ 2
〈
µ, ϕu−

〉 ·
The above inequality holds true for all ϕ ∈ D(Ω). Let us choose ϕ converging strongly to u− in H1

0 (Ω). We have

lim inf
ε→0

∫
Ωε

∣∣D(ûε)−
∣∣2 dx ≥

∫
Ω

∣∣Du−∣∣2 dx+
〈
µ, (u−)2

〉 · (2.23)

Finally, from (2.20) and (2.23) we get

lim inf
ε→0

∫
Ωε

∣∣Dûε
∣∣2 dx ≥

∫
Ω

|Du|2 dx+
〈
µ, (u−)2

〉 · (2.24)

On the other hand, since ûε ⇀ u weakly in H1
0 (Ω) and strongly in L2(Ω), we have

lim
ε→0

∫
Ωε

fuεdx = lim
ε→0

∫
Ω

fûεχ
Ωε

dx =
∫
Ω

fudx.

Hence
lim inf

ε→0
Jε(uε) ≥ J0(u). (2.25)
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Recalling (2.19) and (2.25), we have just proved that u ∈ H1
0 (Ω) satisfies∫

Ω

|Du|2 dx+
〈
µ, (u−)2

〉− 2
∫
Ω

fudx ≤
∫
Ω

|Dv|2 dx+
〈
µ, (v−)2

〉− 2
∫
Ω

fvdx,

for any v ∈ H1
0 (Ω) ∩ L∞(Ω) and hence, for any v ∈ H1

0 (Ω).
So the function u is the unique solution of the minimization problem{

Find u ∈ H1
0 (Ω) such that

J0(u) = inf
v∈H1

0 (Ω)
J0(v). (2.26)

As u is uniquely determined, the whole sequence ûε converges to u and the first part of Theorem 2.6 is proved.

Fourth step. In order to prove the corrector result given by (2.14) and (2.15), let us notice that (2.19) implies
that

lim sup
ε→0

Jε(uε) ≤ inf
v∈H1

0 (Ω)
J0(v) = J0(u).

Then, from (2.19), (2.23) and (2.25) we get immediately∫
Ωε

∣∣D(ûε)+
∣∣2 dx→

∫
Ω

∣∣Du+
∣∣2 dx

and ∫
Ω

∣∣D(ûε)−
∣∣2 dx→

∫
Ω

∣∣Du−∣∣2 dx+
〈
µ, (u−)2

〉 ·
From these two results, both assertions (2.14) and (2.15) can be easily obtained, the first one by classical
arguments and the second one by using Proposition 2.4 (recall that (ûε)− vanishes on the holes). Moreover,
using Poincaré’s inequality, we can write ∫

Ωε

∣∣(ûε)+ − u+
∣∣2 dx→ 0.

This completes the proof of Theorem 2.6. �
Remark 2.9. Note that we could easily get the liminf inequality (2.23) by using Proposition 2.4, for zε = (ûε)−.
But since we didn’t provided a proof of this proposition, we preferred, for the sake of completeness, to give a
detailed proof of the liminf inequality contained in (2.23).

Case 2. Let us consider now the case in which the order of the size of the holes is smaller than the critical
size, i.e. the case in which r(ε) satisfies (2.6). There exists an extension ûε of the solution uε of the variational
inequality (2.4), positive inside the holes (for example, that given by (2.12)), such that

ûε ⇀ u weakly in H1
0 (Ω),

where u is the unique solution of the following limit problem{−∆u = f in Ω,
u ∈ H1

0 (Ω). (2.27)

Indeed, it is not difficult to see that in this case we get wε → 1 strongly in H1(Ω) and µ = 0. So, the holes are
too small to provide any contribution (“strange term”) in the limit equation.
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Case 3. Let us consider now the case in which the size of the holes is bigger than the critical one, i.e.
the case in which r(ε) satisfies (2.7). Again, there exists an extension ûε of the solution uε of the variational
inequality (2.4), positive inside the holes (for example, that given by (2.12)), such that

ûε ⇀ u weakly in H1
0 (Ω),

where u is the unique solution of the following obstacle problem
u ∈ H1

0 (Ω), u ≥ 0 in Ω,∫
Ω

|Du|2 dx− 2
∫
Ω

fudx ≤
∫
Ω

|Dv|2 dx− 2
∫
Ω

fvdx ∀ v ∈ H1
0 (Ω), v ≥ 0 in Ω. (2.28)

Indeed, if v ∈ H1
0 (Ω), v ≥ 0 in Ω, then v ∈ Kε and

Jε(v) =
∫
Ωε

|Dv|2 dx− 2
∫
Ωε

fvdx→
∫
Ω

|Dv|2 dx− 2
∫
Ω

fvdx,

since the Lebesgue measure of T ε converges to zero.
On the other hand, if uε is the solution of our problem then, by (2.12), there exists an extension ûε on the

entire Ω such that, since BC0εn/(n−2) ⊂ Br(ε), (ûε)− = 0 on ∪iBC0εn/(n−2) , for any fixed constant C0.
Reasoning as in the first case (or simply using Prop. 2.4) and using a self-contained notation, we get∫

Ω

|Du|2 dx+
〈
µ

C0
, (u−)2

〉
≤ lim inf

ε→0

∫
Ω

∣∣Dûε
∣∣2 dx ≤ C,

for any C0. If we let C0 → +∞, then µ
C0

→ +∞ and, hence,
∫
Ω
(u−)2dx ≤ 0, i.e. u ≥ 0. This completes the

proof of (2.28).

2.3. Unilateral constraint problems in perforated domains with big holes

Recall that in this situation, the function r = r(ε) satisfies the condition (2.2). As already mentioned in
introduction we will refer to this situation as Case 4.

The main result of this section is the following one:

Theorem 2.10. One can construct an extension ûε of the solution uε of the variational inequality (2.4), positive
inside the holes, such that

ûε ⇀ u weakly in H1
0 (Ω),

where u is the unique solution of
u ∈ H1

0 (Ω), u ≥ 0 in Ω,∫
Ω

QDuDudx− 2
∫
Ω

fudx ≤
∫
Ω

QDvDvdx− 2
∫
Ω

fvdx ∀v ∈ H1
0 (Ω), v ≥ 0 in Ω. (2.29)

Here, Q = ((qij)) is the classical homogenized matrix, whose entries are defined as follows:

qij = δij +
1

|Y ∗|
∫

Y ∗

∂χj

∂yi
dy (2.30)
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in terms of the functions χ
j
, i = 1, ..., n, solutions of the so-called cell problems


−∆χ

j
= 0 in Y ∗,

∂(χj + yj)
∂ν

= 0 on ∂T,

χj Y − periodic.

The constant matrix Q is symmetric and positive-definite.

Proof. We shall not go here into the details of this proof, because in Section 4, Section 4.2, we shall provide a
complete proof of a more general result, namely the homogenization of a variational inequality similar to (2.4),
but for a general nonisotropic material with periodic rapidly oscillating coefficients. The scalar case will be a
straightforward consequence of Theorem 4.6. �

Remark 2.11. Following the same techniques as in [9], it is easy to establish the analogue of Theorem 2.6 in
the case of variational inequalities of type (2.4) written for operators in divergence form −div(A grad), where
A is a coercive matrix, not necessarily symmetric, with entries in L∞(Ω).

Remark 2.12. It is worthwhile to remark that even if the hypotheses (H.0)–(H.5) are strongly dependent on
the geometry, they are general enough to be satisfied not just for our particular framework, but for several other
situations. In [9], the authors discuss various situations for which these hypotheses are satisfied. Of course,
as a consequence, this means that all our previous results for Signorini’s problem (2.4) hold also for the above
mentioned geometries.

3. Homogenization of Signorini’s problem for regular materials

In this section we will consider Signorini’s problem in a similar geometry as in the previous section, but in a
more general framework. The domain Ωε, instead of being filled in by an homogeneous material represented by
the operator −∆, will be filled in by a regular material in the sense of [11].

Let A ∈ L∞# (Ω)n×n be a symmetric matrix whose entries are Y -periodic, bounded and measurable real
functions. Let us suppose that A satisfies the usual coerciveness assumption: there exist two positive constants α
and β, with 0 < α < β, such that, for any constant vector ξ ∈ Rn and any y ∈ Y ,

α |ξ|2 ≤ Aξ · ξ ≤ β |ξ|2 .

We shall denote by Aε(x) the value of A(y) at the point y = x/ε, i.e. Aε(x) = A(x
ε ).

Definition 3.1. We call the material represented by the matrix A regular if it admits H2-estimates uniform
in ε, i.e., there exists a constant C independent of ε such that for all given f ∈ L2(Rn) and for any sequence
vε ⇀ v weakly in H1(Rn) such that

−div(AεDvε) = f in Rn,

one has
|vε|H2(Rn) ≤ C ‖f‖L2(Rn) .

In [11] it is proved that smooth regular materials can be characterized as follows:

Theorem 3.2. Assume that A ∈ W 1,∞
# (Y )n×n. Then the following statements are equivalent:

(i) divA = 0 in Rn;
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(ii) there exists a constant C > 0, independent of ε, but depending on ‖A‖W 1,∞(Y )n×n, such that, for all
f ∈ L2(Rn), we have

|vε|H2(Rn) ≤ C ‖f‖L2(Rn) .

Remark 3.3. If the matrix A represents a regular material and if Ω is a bounded domain in Rn, by a localization
procedure (see [11]), one can easily prove that for all f ∈ L2(Ω), for any sequence vε ⇀ v weakly in H1(Ω)
satisfying −div(AεDvε) = f in Ω and for all ω ⊂⊂ Ω, we have

|vε|H2(ω) ≤ C ‖f‖L2(ω) ,

where C is independent of ε.

Remark 3.4. Recall that the function v involved in the definition of a regular material is known to satisfy the
so-called homogenized equation, which in this particular case reduces to

−div(ADv) = f in Rn.

So the homogenized matrix is nothing else but A, the average of A over Y .

For more details and nontrivial examples of such materials, see [11].

Consider the following unilateral convex set

Kε =
{
v ∈ H1(Ωε) | v = 0 on ∂Ω, v ≥ 0 on Sε

}
, (3.1)

with Ωε and Sε as in Section 2. For a given function f ∈ L2(Ω), let us consider the following variational
inequality: 

Find uε ∈ Kε such that∫
Ωε

AεDuεD(vε − uε)dx ≥
∫
Ωε

f(vε − uε)dx ∀ vε ∈ Kε. (3.2)

Since Kε is a nonempty convex set, for any given f ∈ L2(Ω), the above variational inequality has a unique
solution uε ∈ H1(Ωε).

As before, we shall be interested in getting the asymptotic behavior of this solution, when ε → 0. Exactly
like in Section 2, there exists a “critical” size of the holes that separates different possible asymptotic behaviors
of our solution. This size is again r(ε) ∼ εn/(n−2). In this chapter, we shall restrict ourselves to the case of
critical holes (Case 1 in Sect. 2).

The main result of this section is the following one:

Theorem 3.5. One can construct an extension ûε of the solution uε of the variational inequality (3.2), positive
inside the holes, such that

ûε ⇀ u weakly in H1
0 (Ω),

where u is the unique solution of
Find u ∈ H1

0 (Ω) such that∫
Ω

ADuDvdx− 〈µ0u
−, v

〉
H−1(Ω),H1

0 (Ω)
=
∫
Ω

fvdx ∀v ∈ H1
0 (Ω). (3.3)

Here, A is the mean value of the matrix A and it coincides, in this case, with the homogenized matrix associated
to Aε and

µ0 = inf
w∈H1(Rn)


∫

Rn

A(0)DwDwdx | w ≥ 1 q.e. on T

 ·
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Moreover, we have the following corrector-type result:

lim
ε→0

∫
Ωε

∣∣Du+
ε −Du+

∣∣2 = 0 (3.4)

and (
ûε
)− − wε

Nu
− → 0 strongly in W 1,1

0 (Ω), (3.5)
as ε→ 0 and N →∞.

In order to prove this theorem, we will need some preliminary calculations and we start by introducing some
new notations. Let Yε = εY denote the periodicity cell and let N ∈ N, N > 1. Let wε

N be the unique solution
of the following minimization problem on Yε:

min
w∈H1(Yε)


∫
Yε

AεDwDwdx
∣∣ w = 0 in T ε, w = 1 on Yε\BNr(ε)

 , (3.6)

where BNr(ε) is the ball of radius Nr(ε) and center 0 included in Yε. We extend wε
N by ε-periodicity to all

of Rn.
Let us compute

∫
Ω
AεDwε

NDw
ε
Ndx. We have∫
Ω

AεDwε
NDw

ε
Ndx ' |Ω|

εn

∫
Yε

AεDwε
NDw

ε
Ndx,

since the number of cells Y i
ε included in Ω is equivalent to |Ω| /εn. Hence

∫
Ω

AεDwε
NDw

ε
Ndx ' |Ω|

εn
min

w∈H1(Yε)


∫

BNr(ε)

AεDwDwdx
∣∣ w = 0 in T ε, w = 1 on ∂BNr(ε)

 ·

By changing the scale, x = r(ε)y, we get

∫
Ω

AεDwε
NDw

ε
Ndx ' r(ε)n−2 |Ω|

εn
min

w∈H1(BN (0))


∫

BN

A

(
r(ε)
ε
y

)
DwDwdy | w = 0 in T, w = 1 on ∂BN

 ,

(3.7)
where we notice that the hole r(ε)T has been transformed into the elementary hole T .

Let us introduce the sequence µε
N of positive Radon measures on Ω defined by

〈µε
N , ϕ〉 =

∫
Ω

AεDwε
NDw

ε
Nϕdx, (3.8)

for any ϕ ∈ C0
0 (Ω).

Lemma 3.6. Assume that the matrix A is continuous. Then the sequence µε
N converges weakly * in the space

of Radon’s measures on Ω to a limit measure µN defined, for any ϕ ∈ C0
0 (Ω), by

〈µN , ϕ〉 = µN

∫
Ω

ϕdx, (3.9)
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where

µN = inf
w∈H1(BN (0))


∫

BN (0)

A(0)DwDwdx | w = 0 in T, w = 1 on ∂BN

 · (3.10)

Proof. By the continuity of the matrix A, we have that

µε
N = min

w∈H1(BN (0))


∫

BN

A

(
r(ε)
ε
y

)
DwDwdy | w = 0 on T, w = 1 on ∂BN


converges to µN , as ε→ 0.

Since we are in the critical case, the coefficient in front of the definition of µε
N remains bounded, as ε → 0.

Moreover, without loss of generality, one can choose this coefficient to be constant equal to one and we will do
that in what follows inside the proof (we can choose, in fact, δ in (2.5) such that lim

ε→0

r(ε)n−2

εn |Ω| = 1). Then

|〈µε
N , ϕ〉| ≤ C ‖ϕ‖C0

0(Ω) ,

for any ϕ ∈ C0
0 (Ω), i.e. the sequence µε

N remains bounded as ε → 0 in the space of Radon’s measures on Ω.
We can therefore extract a subsequence, still denoted by µε

N , weakly * convergent to a positive measure which,
thanks to the continuity of A, is obviously µN , defined by (3.8). Since µN has been identified, this means that
the whole sequence µε

N converges to µN . This ends the proof of Lemma 3.6. �

Our next goal is to let N → +∞. Obviously, we get

lim
N→∞

µN = µ0, (3.11)

where, for any ϕ ∈ C0
0 (Ω),

〈µ0, ϕ〉 = µ0

∫
Ω

ϕdx (3.12)

and

µ0 = inf
w∈H1(Rn)


∫

Rn

A(0)DwDwdx | w ≥ 1 q.e. on T

 · (3.13)

An immediate consequence of Lemma 3.6 is the fact that the sequence wε
N is bounded in H1(Ω), and hence

relatively compact in L2(Ω). Introducing χε equal to one on
⋃

i(Y
i
ε \Bi

Nr(ε)) and zero elsewhere, we have

(wε
N − 1)χε = 0 on Rn

and it is not difficult to see that wε
N → 1 strongly in L2(Ω).

Remark 3.7. Exactly like in Section 2, Section 2.1, using the coercivity of the matrix A and arguing like in [9],
Lemma 2.8, one can prove that there exist two sequences λε

N , ν
ε
N ∈ H−1(Ω) such that λε

N → µN strongly in
H−1(Ω), νε

N ⇀ µN weakly in H−1(Ω) and 〈νε
N , vε〉 = 0, for any vε ∈ H1

0 (Ω) with vε = 0 on the holes T ε. In
fact,

−div(AεDwε
N ) = λε

N − νε
N in Ω. (3.14)
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Proof of Theorem 3.5. We shall divide the proof into four steps.
First step. Let us introduce the following functionals defined on H1

0 (Ωε) and, respectively, H1
0 (Ω):

Jε(v) =
∫
Ωε

AεDvDvdx − 2
∫
Ωε

fvdx

and
J0(v) =

∫
Ω

ADvDvdx +
〈
µ0, (v−)2

〉− 2
∫
Ω

fvdx.

Let v ∈ D(Ω) be given and, for a fixed N , let us consider

vε = v+ − wε
Nv

−,

with wε
N defined by (3.6). Obviously, vε ∈ Kε which will allow us to take it as a test function in (3.2) and

vε → v strongly in L2(Ω). Using vε in (3.2), we get

Jε(uε) ≤ Jε(vε). (3.15)

Let us compute Jε(vε). We have

Jε(vε) =
∫
Ωε

AεD(v+ − wε
Nv

−)D(v+ − wε
Nv

−)dx− 2
∫
Ωε

f(v+ − wε
Nv

−)dx

=
∫
Ωε

AεDv+Dv+dx+
∫
Ωε

Aε(wε
N )2Dv−Dv−dx+

∫
Ωε

AεDwε
NDw

ε
N (v−)2dx− 2

∫
Ωε

Aεwε
NDv

+Dv−dx

− 2
∫
Ωε

Aεv−Dv+Dwε
Ndx+ 2

∫
Ωε

Aεwε
Nv

−Dv−Dwε
Ndx− 2

∫
Ωε

f(v+ − wε
Nv

−)dx. (3.16)

Due to our hypotheses, it is easy to pass to the limit in almost all the terms of (3.16). For the term∫
Ωε A

εDwε
NDw

ε
N |v−|2 dx we use Lemma 3.5 and the fact that (v−)2 is a continuous function with compact

support. For the sixth term we use the same procedure we have already used in the proof of the limsup inequal-
ity for the case of −∆, i.e. to take wε

N (v−)2 as a test function in the decomposition of −div(AεDwε
N ) given in

Remark 3.7 (or we can use the fact that ξ, the weak limit in L2(Ω) of AεDwε
N , is zero).

Hence, taking the supremum in N , we have

lim
ε→0

Jε(vε) =
∫
Ω

ADv+Dv+dx+
∫
Ω

ADv−Dv−dx+
〈
µ0, (v−)2

〉− 2
∫
Ω

f(v+ − v−)dx

=
∫
Ω

ADvDvdx +
〈
µ0, (v−)2

〉− 2
∫
Ω

fvdx = J0(v).

So, from (3.15) we get
lim sup

ε→0
Jε(uε) ≤ J0(v), (3.17)

for any v ∈ D(Ω).

Second step. Let uε ∈ Kε be the solution of the variational inequality (3.2) and, as before, let ûε be the
extension of uε inside the holes given by (2.12). Clearly,∥∥ûε

∥∥
H1

0 (Ω)
≤ C.



A GENERALIZED STRANGE TERM IN SIGNORINI’S TYPE PROBLEMS 791

Consequently, by passing to a subsequence, still denoted by ûε, we can assume that there exists u ∈ H1
0 (Ω) such

that
ûε ⇀ u weakly in H1

0 (Ω).
It remains to identify the limit variational inequality satisfied by u.

Third step. Let us decompose ûε as (ûε)+ − (ûε)−. Obviously, since (ûε)+ is bounded in H1
0 (Ω), it converges

weakly in H1
0 (Ω) to u+.

By the classical lower semicontinuity of the energy, we have

lim inf
ε→0

∫
Ω

AεD(ûε)+D(ûε)+dx ≥
∫
Ω

ADu+Du+dx. (3.18)

On the other hand, (ûε)− is also bounded in H1
0 (Ω) and it converges weakly in H1

0 (Ω) to u−.
Let ϕ ∈ D(Ω). Consider, for fixed N , the integral

Xε =
∫
Ωε

Aε(Du−ε − ϕDwε
N − wε

NDϕ)(Du−ε − ϕDwε
N − wε

NDϕ)dx.

By construction Dwε
N = wε

N = 0 on the holes and also, due to the fact that ûε ≥ 0 on the holes, D(ûε)− =
(ûε)− = 0 on holes. So, we get (ûε)− ∈ H1

0 (Ωε) and

Xε =
∫
Ω

Aε(D(ûε)− − ϕDwε
N − wε

NDϕ)(D(ûε)− − ϕDwε
N − wε

NDϕ)dx.

Expanding Xε, which is obviously nonnegative, we get∫
Ω

AεD(ûε)−D(ûε)−dx+
∫
Ω

Aεϕ2Dwε
NDw

ε
Ndx+

∫
Ω

Aε |wε
N |2DϕDϕdx − 2

∫
Ω

Aεwε
ND(ûε)−Dϕdx

− 2
∫
Ω

AεDwε
ND(ûε)−ϕdx+ 2

∫
Ω

Aεwε
NDw

ε
NϕDϕdx ≥ 0. (3.19)

Let us extract a subsequence, still denoted by ε, such that

lim
ε→0

∫
Ω

AεD(ûε)−D(ûε)−dx = lim inf
ε→0

∫
Ω

AεD(ûε)−D(ûε)−dx.

We can easily pass to the limit in each term of the left-hand side of (3.19), except in the first, the fourth and
the fifth ones. We intent, in fact, to evaluate the liminf of the first term. So it will be enough to evaluate the
limit of the fourth and the fifth term.

For the term −2
∫
Ω
AεDwε

ND(ûε)−ϕdx, taking ϕ(ûε)− as a test function in the decomposition given in
Remark 3.7, we have∫

Ω

AεDwε
ND(ûε)−ϕdx+

∫
Ω

AεDwε
N (ûε)−Dϕdx =

〈
λε

N , ϕ(ûε)−
〉− 〈νε

N , ϕ(ûε)−
〉 ·

Since (ûε)− = 0 on the holes, passing to the limit in the above equality, we get

lim
ε→0

∫
Ω

AεDwε
ND(ûε)−ϕdx =

〈
µN , ϕu

−〉 , (3.20)
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since

lim
ε→0

∫
Ω

AεDwε
N (ûε)−Dϕdx = 0.

Indeed, if we denote the weak limit in L2(Ω) of AεDwε
N by ξ, then∫

Ω

AεDwε
Nϕdx→

∫
Ω

ξϕdx

and also, due to the fact that we are dealing with regular materials, a simple application of the classical
compensated compactness lemma shows that∫

Ω

AεDwε
Nϕdx→ 0.

So ξ = 0 and consequently lim
ε→0

∫
ΩA

εDwε
N (ûε)−Dϕdx = 0. Hence (3.20) is proved.

Let us look at the fourth term in (3.19).∫
Ω

Aεwε
ND(ûε)−Dϕdx = −

∫
Ω

AεDwε
N (ûε)−Dϕdx −

∫
Ω

Aεwε
N (ûε)−∆ϕdx→ −

∫
Ω

ξu−Dϕdx−
∫
Ω

Au−∆ϕdx

=
∫
Ω

ADu−Dϕdx.

Hence, from (3.19), taking the supremum in N , we obtain

lim inf
ε→0

∫
Ωε

AεD(ûε)−D(ûε)−dx ≥ 2
∫
Ω

ADu−Dϕdx−
∫
Ω

ADϕDϕdx − 〈µ0, ϕ
2
〉

+ 2
〈
µ0, ϕu

−〉 · (3.21)

The above inequality holds true for all ϕ ∈ D(Ω). Let us choose ϕ converging strongly to u− in H1
0 (Ω). We have

lim inf
ε→0

∫
Ω

AεD(ûε)−D(ûε)−dx ≥
∫
Ω

ADu−Du−dx+
〈
µ0, (u−)2

〉 · (3.22)

Finally, from (3.18) and (3.22) we get

lim inf
ε→0

∫
Ω

AεDûεDûεdx ≥
∫
Ω

ADuDudx+
〈
µ0, (u−)2

〉 · (3.23)

On the other hand, since ûε ⇀ u weakly in H1
0 (Ω) and strongly in L2(Ω), we have

lim
ε→0

∫
Ωε

fuεdx = lim
ε→0

∫
Ω

fûεχ
Ωε

dx =
∫
Ω

fudx. (3.24)

Hence
lim inf

ε→0
Jε(uε) ≥ J0(u). (3.25)
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Recalling (3.17) and (3.25), we have just proved that u ∈ H1
0 (Ω) satisfies∫

Ω

ADuDudx+
〈
µ0, (u−)2

〉− 2
∫
Ω

fudx ≤
∫
Ω

ADvDvdx +
〈
µ0, (v−)2

〉− 2
∫
Ω

fvdx,

for any v ∈ D(Ω) and hence, by density, for any v ∈ H1
0 (Ω). So, the function u is the unique solution of the

minimization problem {
Find u ∈ H1

0 (Ω) such that
J0(u) = inf

v∈H1
0 (Ω)

J0(v).

As u is uniquely determined, the whole sequence ûε converges to u and the third step of the proof is finished.

Fourth step. To conclude the proof of Theorem 3.5 we just need to get the corrector result given by (3.4)
and (3.5). From the results of the previous step, we have immediately∫

Ωε

AεD(ûε)+D(ûε)+dx→
∫
Ω

ADu+Du+dx (3.26)

and ∫
Ω

AεD(ûε)−D(ûε)−dx→
∫
Ω

ADu−Du−dx+
〈
µ0, (u−)2

〉 · (3.27)

From these two convergences, both assertions (3.4) and (3.5) can be easily obtained, the first one by classical
arguments and the second one by stating the following proposition whose proof will be given later on and which
generalize Proposition 2.4 to the case of regular materials.

Proposition 3.8. Let zε be any given sequence in H1
0 (Ω) such that zε = 0 on the holes T ε and zε converges

weakly in H1
0 (Ω) to a given element z. If zε satisfies∫

Ω

AεDzεDzεdx→
∫
Ω

ADzDzdx+
〈
µ0, z

2
〉
, (3.28)

then

zε − wε
Nz → 0 strongly in W 1,1

0 (Ω), (3.29)

for ε→ 0 and N →∞.

From (3.27) we see that the hypotheses of Proposition 3.8 are fulfilled by choosing zε = (ûε)−. Then the
corrector result (3.5) for (ûε)− is nothing else but the conclusion of the above mentioned proposition. We
conclude by proving Proposition 3.8.

Proof of of Proposition 3.8. The proof follows step by step the proof of Proposition 2.4 (see Cioranescu and
Murat [9]). Let ϕ ∈ D(Ω). We begin by developing the following expression

Xε =
∫
Ω

Aε(D(ûε)− − ϕDwε
N − wε

NDϕ)(D(ûε)− − ϕDwε
N − wε

NDϕ)dx.
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We get

Xε =
∫
Ω

AεD(ûε)−D(ûε)−dx +
∫
Ω

Aεϕ2Dwε
NDw

ε
Ndx+

∫
Ω

Aε |wε
N |2DϕDϕdx

− 2
∫
Ω

Aεwε
ND(ûε)−Dϕdx− 2

∫
Ω

AεDwε
ND(ûε)−ϕdx + 2

∫
Ω

Aεwε
NDw

ε
NϕDϕdx.

One can pass to the limit in all these six terms following the same procedure as in Step 3. By doing
this, one reach immediately the conclusion that Xε → 0, as ε → 0 and N → ∞, which ends the proof of
Proposition 3.8. �

4. Homogenization of Signorini’s problem for periodic heterogeneous media

In this section we consider the case of a general medium represented by a coercive periodic matrix with
rapidly oscillating entries. The geometrical framework is the same as in the previous chapters and again we
shall deal just with the two interesting geometrical cases: the critical case (Case 1 in Sect. 2) and the case of
big holes, i.e., holes of the same size as the period (Case 4 in Sect. 2).

Let A ∈ L∞# (Ω)n×n be a symmetric matrix whose entries are Y -periodic, bounded and measurable real
functions. Let us suppose that A satisfies the usual coerciveness assumption: there exist two positive constants α
and β, with 0 < α < β, such that, for any constant vector ξ ∈ Rn and any y ∈ Y,

α |ξ|2 ≤ Aξ · ξ ≤ β |ξ|2 .

We shall denote by Aε(x) the value of A(y) at the point y = x/ε, i.e. Aε(x) = A(x
ε ). We further assume that A

is continuous with respect to y.
For a given function f ∈ L2(Ω), let us consider again the following variational inequality:

Find uε ∈ Kε such that∫
Ωε

AεDuεD(vε − uε)dx ≥
∫
Ωε

f(vε − uε)dx ∀vε ∈ Kε, (4.1)

with Kε defined in the previous chapters. As before, the above variational inequality has a unique solution
uε ∈ H1(Ωε).

4.1. Small holes (Critical case)

In this case, the limit of uε will be the solution of a Dirichlet problem in Ω associated with a new operator
which is the sum of the standard homogenized one and an extra term (“strange term”) that comes in from the
geometry. The limit problem takes into account all the ingredients involved in (4.1). It captures the oscillations
coming both from the periodic heterogeneous structure of the medium and those one due to the critical size
of the holes. The other ingredient contained in problem (4.2) below is the spreading effect of the unilateral
condition uε ≥ 0 on Sε which can be seen by the fact that the strange term only charges the negative part of u.

Theorem 4.1. There exists an extension ûε of the solution uε of the variational inequality (4.1), positive inside
the holes, such that

ûε ⇀ u weakly in H1
0 (Ω),
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where u is the unique solution of
u ∈ H1

0 (Ω),∫
Ω

A0DuDvdx− 〈µ0u
−, v

〉
H−1(Ω),H1

0 (Ω)
=
∫
Ω

fvdx ∀v ∈ H1
0 (Ω). (4.2)

Here, A0 is the classical homogenized matrix, whose entries are defined as follows:

a0
ij =

1
|Y |

∫
Y

(
aij(y) + aik(y)

∂χj

∂yk

)
dy,

in terms of the functions χ
j
, j = 1, ..., n, solutions of the so-called cell problems

−divy(A(y)Dy(yj + χ
j
)) = 0 in Rn,

χ
j
− Y periodic,

and µ0 is given by

µ0 = inf
w∈H1(Rn)


∫

Rn

A(0)DwDwdx | w ≥ 1 q.e. on T

 · (4.3)

The constant matrix A0 is symmetric and positive-definite.

Remark 4.2. The results of Section 3 concerning the convergence of ûε to u and the identification of u can be
recovered immediately from Theorem 4.1, but the proof we give here is more general.

Remark 4.3. Without loss of generality, we can consider that the holes are spheres Br(ε)(εi) centered at the
lattice points εi and having the radius equal to r(ε). All the results of this section can be easily extended to
the case of nonspherical holes. In fact, instead of working on Br(ε)(εi), we can replace it by εi + r(ε)T and the
same conclusion follows upon replacing B1(0) by T in (4.15).

In order to prove Theorem 4.1, we shall use a technical result, based on the method introduced by De Giorgi [18]
to match boundary conditions for minimizing sequences (see also [1] for the application of De Giorgi’s method).
This will allow us to modify sequences of functions near the holes Br(ε)(εi) and to separate the contribution of
the gradient of our solution close and far from the holes. By doing this, we shall be able to capture, simultane-
ously, the oscillations in the functional coming from the periodic oscillations of the medium and those arising
from the oscillations of the boundaries of the holes.

In order to formulate this result in its full generality, let us introduce fε : Rn × Rn → [0,∞) to be a Borel
function such that fε(x, ·) is positively homogeneous of degree 2 for all x ∈ Rn and satisfies a growth condition
of order 2, uniformly in ε, i.e. there exist two strictly positive constants C1 and C2 such that, for any x and z:

C1 |z|2 ≤ fε(x, z) ≤ C2 |z|2 .

We recall the above mentioned technical result (for a detailed proof, see [1]):

Lemma 4.4. Let vε be a sequence weakly convergent to some v in H1
0 (Ω) and let k ∈ N be fixed. Let

Zε = {i ∈ Zn | dist(εi,Rn\Ω) > ε}

and let δε be a sequence of positive numbers with δε < ε/2.
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For all i ∈ Zε, there exist ki ∈ {0, ..., k − 1} such that, setting

Cε
i =

{
x ∈ Ω

∣∣∣∣ δε
2ki+1

< |x− εi| < δε
2ki

}
,

vε
i =

1
|Cε

i |
∫
Cε

i

vεdx (the mean value of vεon Cε
i )

and
δiε =

3
4

1
2ki

δε (the middle radius of Cε
i ),

there exists a sequence wε, with wε ⇀ v weakly in H1
0 (Ω), such that

wε = vε on Ω\
⋃
i∈Zε

Cε
i ,

wε(x) = vε
i if |x− εi| = δiε

and ∣∣∣∣∣∣
∫
Ω

(fε(x,Dwε)− fε(x,Dvε))dx

∣∣∣∣∣∣ ≤ C

k
· (4.4)

Moreover, if δε = o(ε) and the sequence (|Dvε|2) is equi-integrable, then we can choose ki = 0 for all i ∈ Zε.

Proof of Theorem 4.1. We divide the proof into three steps.

First step. Let uε ∈ Kε be the solution of the variational inequality (4.1) and let ûε the extension of uε inside
the holes given by (2.12). Clearly, ∥∥ûε

∥∥
H1

0 (Ω)
≤ C.

Consequently, by passing to a subsequence, still denoted by ûε, we can assume that there exists u ∈ H1
0 (Ω) such

that
ûε ⇀ u weakly in H1

0 (Ω).
It remains to identify the limit variational inequality satisfied by u.

Second step. Let us decompose ûε as (ûε)+− (ûε)−. Obviously, since (ûε)+ is bounded in H1
0 (Ω), it converges

weakly in H1
0 (Ω) to u+. We have

lim inf
ε→0

∫
Ω

AεD(ûε)+D(ûε)+dx ≥
∫
Ω

A0Du+Du+dx. (4.5)

It is worthwhile to notice that the contribution of D(ûε)+ inside the holes doesn’t play any role in passing to
the limit because we are dealing with an equi-integrable sequence of functions and the Lebesgue measure of the
holes goes to zero, as ε→ 0.

On the other hand, (ûε)− is also bounded in H1
0 (Ω) and it converges weakly in H1

0 (Ω) to u−. Since we intent
to prove that

lim inf
ε→0

∫
Ωε

AεDûεDûεdx ≥
∫
Ω

A0DuDudx+
〈
µ0, (u−)2

〉
, (4.6)

it suffices to get

lim inf
ε→0

∫
Ωε

AεD(ûε)−D(ûε)−dx ≥
∫
Ω

A0Du−Du−dx+
〈
µ0, (u−)2

〉 · (4.7)
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To this end we shall use Lemma 4.4, which obviously applies for our framework and for fε = AεD(ûε)−D(ûε)−.
Let us fix k and N ∈ N, with N > 1 and let us choose

δε = Nr(ε).

Obviously, δε = o(ε). Observe that since
∣∣D(ûε)−

∣∣2 is equi-integrable, we can choose ki = 0 for all i ∈ Zε. Let
us set

Cε
i =

{
x ∈ Ω

∣∣∣∣12Nr(ε) < |x− εi| < Nr(ε)
}
,

u−εi =
1
|Cε

i |
∫
Cε

i

u−ε dx (the mean value of u−ε on Cε
i )

and

δiε =
3
4
δε (the middle radius of Cε

i ).

Then, by virtue of Lemma 4.4, there exists a sequence vε, with vε ⇀ u− weakly in H1
0 (Ω), such that

vε = (ûε)− on Ω\
⋃
i∈Zε

Cε
i ,

vε(x) = u−εi if |x− εi| = δiε

and ∣∣∣∣∣∣
∫
Ω

(AεDvεDvε −AεD(ûε)−D(ûε)−)dx

∣∣∣∣∣∣ ≤ C

k
· (4.8)

Note that by this choice of δε we keep vε = (ûε)− = 0 on the holes.
Since ∫

Ωε

AεD(ûε)−D(ûε)−dx =
∫
Ω

AεD(ûε)−D(ûε)−dx,

using (4.8), we get ∫
Ω

AεD(ûε)−D(ûε)−dx ≥
∫
Ω

AεDvεDvεdx− C

k
·

Splitting the first term of the right-hand side, we have∫
Ω

AεD(ûε)−D(ûε)−dx ≥
∫

Ω\F ε

AεDvεDvεdx +
∫
F ε

AεDvεDvεdx− C

k
, (4.9)

where
F ε =

⋃
i∈Zε

B 3
4Nr(ε)(εi).

Since |F ε| → 0 as ε→ 0, we obviously have

lim inf
ε→0

∫
Ω\F ε

AεDvεDvεdx ≥
∫
Ω

A0Du−Du−dx. (4.10)
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So in order to get (4.7), it suffices to evaluate the liminf of
∫

F ε A
εDvεDvεdx and to let k →∞. To this end, we

will decompose the integral over F ε into a sum of integrals over each ball B 3
4Nr(ε)(εi). In each of these balls,

we perform the following change of variables

y =
x− εi
r(ε)

· (4.11)

Define ζ : B 3
4N (0) → R by

ζ(y) =


vε(εi+r(ε)y)

u−εi
if u−εi 6= 0,

0 if u−εi = 0.

By construction, for a fixed i, ζ ∈ H1(B 3
4N (0)), ζ = 1 on ∂B 3

4N (0) and ζ = 0 on the elementary hole B1(0). As
in Section 3, let us define, for each x ∈ B 3

4Nr(ε)(εi),

µN
0,ε(x) = inf

ζ∈H1(B 3
4 N

(0))


∫

B 3
4 N

(0)

A

(
x

ε
+
r(ε)
ε
y

)
DζDζdy

∣∣∣ ζ = 0 on B1(0), ζ = 1 on ∂B 3
4N (0)

 ·

Let us now calculate
∫

B 3
4 Nr(ε)(εi)

Aε(x)DvεDvεdx, which represents each of the terms in the sum giving the

second term in the right-hand side of (4.9). Performing the change of variables (4.11), we have∫
B 3

4 Nr(ε)(εi)

Aε(x)DvεDvεdx = εn

∫
B 3

4 N
(0)

A

(
εi
ε

+
r(ε)
ε
y

)∣∣∣u−εi∣∣∣2DζDζdy.
So to evaluate the liminf of

∫
F ε A

εDvεDvεdx, it suffices to evaluate

lim inf
ε→0

∑
i∈Zε

εn
∣∣∣u−εi∣∣∣2 µN

0,ε(εi),

and, like in [1], we will do this by rewriting the sum as an integral over Ω of step functions.
Let

gε(x) =
∑
i∈Zε

∣∣∣u−εi∣∣∣2 χYεi
(x) (4.12)

and
µN

0,ε =
∑
i∈Zε

µN
0,ε(εi)χYεi

. (4.13)

Hence, we have to compute

lim inf
ε→0

∫
Ω

µN
0,εg

εdx. (4.14)

Notice that since µN
0,ε is 1-periodic we have µN

0,ε(εi) = µN
0,ε(0).

Clearly, µN
0,ε is bounded in L∞(Ω), and hence, up to a subsequence, there exists µN

0 in L∞(Ω) such that
µN

0,ε
∗
⇀ µN

0 weakly * in L∞(Ω). Arguing as in Lemma 3.6, it is an easy matter to identify µN
0 . Indeed, by the

continuity of the matrix A, µN
0 is nothing else but the measure defined, for any ϕ ∈ C0

0 (Ω), by

〈
µN

0 , ϕ
〉

= µN
0

∫
Ω

ϕdx,
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where

µN
0 = inf

ζ∈H1(B 3
4 N

(0))


∫

B 3
4 N

(0)

A(0)DζDζdx
∣∣∣ ζ = 0 on B1(0), ζ = 1 on ∂B 3

4N (0)

 ·

On the other hand, the asymptotic behavior of gε is given by the following lemma, whose proof will be given
later on.

Lemma 4.5. The sequence gε defined by (4.12) converges strongly in L1(Ω) to |u−|2.

Putting together the convergence results for µN
0,ε and gε, we conclude

lim inf
ε→0

∫
Ω

µN
0,εg

εdx =
∫
Ω

µN
0

∣∣u−∣∣2 dx.

Letting N →∞, we have
lim

N→∞
µN

0 = µ0,

with

µ0 = inf
ζ∈H1(Rn)


∫

Rn

A(0)DζDζdx | ζ ≥ 1 q.e. on B1(0)

 · (4.15)

Hence

lim inf
ε→0

∫
F ε

AεDvεDvεdx ≥
∫
Ω

µ0(u−)2dx. (4.16)

Using (4.9), (4.10) and (4.16), we obtain

lim inf
ε→0

∫
Ωε

AεD(ûε)−D(ûε)−dx ≥
∫
Ω

A0Du−Du−dx+
〈
µ0, (u−)2

〉− C

k
·

Finally, letting k →∞ we get the desired liminf inequality (4.7) for (ûε)−. Putting together (4.5) and (4.7), we
get (4.6) and this concludes this step of the proof, since the linear term in the functional Jε passes immediately
to the limit, as ε→ 0.

Third step. Let v ∈ H1
0 (Ω)∩L∞(Ω) and let vε such that vε ⇀ v weakly in H1

0 (Ω) and strongly in L2(Ω) and
limε→0

∫
Ωε A

εDvεDvεdx =
∫
ΩA

0DvDvdx. Moreover, we can assume that |Dvε|2 is equi-integrable. Also, by
Lemma 4.4, it is not restrictive to assume that vε = vεi if |x− εi| = 3

4Nr(ε). Let

µN
0,ε(x) = inf

ζ∈H1(B 3
4 N

(0))


∫

B 3
4 N

(0)

A

(
x

ε
+
r(ε)
ε
y

)
DζDζdy

∣∣∣ ζ = 0 on B1(0), ζ = 1 on ∂B 3
4N (0)

 ·

Then, there exists ζε
i ∈ H1(B 3

4N (0)), ζε
i = 0 on B1(0), ζε

i = 1 on ∂B 3
4 N (0) such that

∫
B 3

4 N
(0)

A

(
εi
ε

+
r(ε)
ε
y

)
Dζε

i Dζ
ε
i dy ≤ µN

0,ε(εi) + ε. (4.17)
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Define

ṽε(x) =


(v+

ε − v−ε )(x) on Ω\⋃
i

B 3
4 Nr(ε)(εi),

v+
εi − v−εiζ

ε
i (
x− εi
r(ε)

) on
⋃
i

B 3
4Nr(ε)(εi).

(4.18)

Clearly ṽε ∈ Kε and ṽε → v strongly in L2(Ω). So

Jε(uε) ≤ Jε(ṽε). (4.19)

Performing the change of variables (4.11) in (4.17), we get

1
εn

∫
B 3

4 Nr(ε)(εi)

A
(x
ε

)
Dζε

i (
x− εi
r(ε)

)Dζε
i

(
x− εi
r(ε)

)
dx ≤ µN

0,ε(εi) + ε.

So ∫
F ε

A
(x
ε

)
D

[
v−εiζ

ε
i

(
x− εi
r(ε)

)]
D

[
v−εiζ

ε
i (
x − εi
r(ε)

)
]

dx ≤
∑
i

εn
∣∣∣v−εi∣∣∣2 µN

0,ε(εi) + εC. (4.20)

Hence, by (4.20)∫
Ω

AεDṽεDṽεdx =
∫

Ω\F ε

AεDvεDvεdx+
∫
F ε

AεD(v+
εi − v−εiζ

ε
i (
x− εi
r(ε)

))D(v+
εi − v−εiζ

ε
i (
x − εi
r(ε)

))dx

≤
∫
Ω

AεDvεDvεdx+
∑
i

εn
∣∣∣v−εi∣∣∣2 µN

0,ε(εi) + εC. (4.21)

Putting
µN

0,ε =
∑
i∈Zε

µN
0,ε(εi)χYεi

and again

gε =
∑
i∈Zε

∣∣∣v−εi∣∣∣2 χYεi
,

by Lemma 4.5, we have

lim sup
ε→0

∫
F ε

A
(x
ε

)
DṽεDṽεdx ≤ lim sup

ε→0

∑
i

εn
∣∣∣v−εi∣∣∣2 µN

0,ε(εi)

= lim sup
ε→0

∫
Ω

µN
0,εg

εdx =
∫
Ω

µN
0 (v−)2dx. (4.22)

Since the linear term in the functional Jε passes immediately to the limit, as ε → 0, letting N → ∞,
from (4.19)–(4.22) we get immediately

lim sup
ε→0

Jε(uε) ≤ J0(v), (4.23)

for any v ∈ H1
0 (Ω) ∩ L∞(Ω). Recalling (4.6) and (4.23), we have just proved that u ∈ H1

0 (Ω) satisfies∫
Ω

A0DuDudx+
〈
µ0, (u−)2

〉− 2
∫
Ω

fudx ≤
∫
Ω

A0DvDvdx+
〈
µ0, (v−)2

〉− 2
∫
Ω

fvdx,
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for any v ∈ H1
0 (Ω)∩L∞(Ω), and hence, by density, for any v ∈ H1

0 (Ω). So the function u is the unique solution
of the minimization problem {

Find u ∈ H1
0 (Ω) such that

J0(u) = inf
v∈H1

0 (Ω)
J0(v).

As u is uniquely determined, the whole sequence ûε converges to u and Theorem 4.1 is proved. �

Proof of Lemma 4.5. Let gε =
∑
i∈Zε

∣∣∣u−εi∣∣∣2 χYεi
.

We know that (ûε)− → u− strongly in L2(Ω). Also

lim sup
ε→0

∫
Ω

gεdx ≤ C.

Indeed, using Poincaré’s inequality

∑
i∈Zε

∫
Yεi

∣∣∣(ûε)− − u−εi
∣∣∣2 dx ≤ Cε2

∫
Ω

∣∣D(ûε)−
∣∣2 dx,

we get

lim sup
ε→0

∫
Ω

gεdx ≤ lim sup
ε→0

2

∑
i∈Zε

∫
Yεi

∣∣∣(ûε)− − u−εi
∣∣∣2 +

∫
Ω

∣∣(ûε)−
∣∣2 dx


≤ 2

∫
Ω

∣∣u−∣∣2 dx ≤ C.

So

I =
∫
Ω

∣∣∣gε − ∣∣u−∣∣2∣∣∣ dx =
∫
Ω

∣∣∣gε − ∣∣(ûε)−
∣∣2 +

∣∣(ûε)−
∣∣2 − ∣∣u−∣∣2∣∣∣dx

≤
∫
Ω

∣∣∣gε − ∣∣(ûε)−
∣∣2∣∣∣ dx+

∫
Ω

∣∣∣∣∣(ûε)−
∣∣2 − ∣∣u−∣∣2∣∣∣ dx. (4.24)

It suffices to evaluate the limsup of the first term of the right-hand side of (4.24).

lim sup
ε→0

∫
Ω

∣∣∣gε − ∣∣(ûε)−
∣∣2∣∣∣dx ≤ C lim sup

ε→0

∑
i∈Zε

∫
Yεi

∣∣∣∣∣∣∣u−εi∣∣∣2 − ∣∣(ûε)−
∣∣2∣∣∣∣dx

≤ C lim sup
ε→0

∑
i∈Zε

∫
Yεi

∣∣∣u−εi − (ûε)−
∣∣∣ ∣∣∣u−εi + (ûε)−

∣∣∣dx. (4.25)



802 C. CONCA ET AL.

By Hölder’s inequality

lim sup
ε→0

I ≤ C lim sup
ε→0

∑
i∈Zε

∫
Yεi

∣∣∣u−εi − (ûε)−
∣∣∣2 dx


1
2

· lim sup
ε→0

∫
Ω

(
gε +

∣∣(ûε)−
∣∣2)dx


1
2

≤ C lim
ε→0

ε

∫
Ω

∣∣D(ûε)−
∣∣2 dx


1
2

= 0. (4.26)

So

lim sup
ε→0

∫
Ω

∣∣∣gε − ∣∣u−∣∣2∣∣∣ dx = 0

and hence
gε → ∣∣u−∣∣2 strongly in L1(Ω). (4.27)

�

4.2. Holes of the same size as the period

As already mentioned in the introduction, the asymptotic behavior of the solution uε in this case is governed
by an obstacle problem associated to the homogenized medium, which we recall that it is represented by the
classical homogenized matrix A0

p defined below.

Theorem 4.6. There exists an extension ûε of the solution uε of the variational inequality (4.1), positive inside
the holes, such that

ûε ⇀ u weakly in H1
0 (Ω),

where u is the unique solution of
u ∈ H1

0 (Ω), u ≥ 0 in Ω,∫
Ω

A0
pDuDudx− 2

∫
Ω

fudx ≤
∫
Ω

A0
pDvDvdx − 2

∫
Ω

fvdx ∀v ∈ H1
0 (Ω), v ≥ 0 in Ω. (4.28)

Here, A0
p = (a0

ij) is the classical homogenized matrix, whose entries are defined as follows:

a0
ij =

1
|Y ∗|

∫
Y ∗

(
aij(y) + aik(y)

∂χj

∂yk

)
dy,

in terms of the functions χj , j = 1, ..., n, solutions of the so-called cell problems


−divyA(y)(Dyχj

+ ej) = 0 in Y ∗,

A(y)(Dχ
j
+ ej) · ν = 0 on ∂T,

χ
j
∈ H1

#Y (Y ?),
∫

Y ?

χ
j

= 0,

where ei, 1 ≤ i ≤ n, are the elements of the canonical basis in Rn. The constant matrix A0 is symmetric and
positive-definite.
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Proof. Let uε be the solution of the variational inequality (4.1). We shall use the same extension ûε as in the
previous cases (see (2.12)). It is not difficult to see that ûε is bounded in H1

0 (Ω). So by extracting a subsequence,
one has

ûε ⇀ u weakly in H1
0 (Ω).

Since uε ∈ Kε, then ûε ≥ 0 on the holes, i.e. ûεχ
T ε

≥ 0 in Ω. Passing to the limit, we get u(1 − θ) ≥ 0,

0 < θ < 1 in Ω, and therefore u ≥ 0 in Ω.
Let ϕ ∈ D(Ω), ϕ ≥ 0 and ψ ∈ D(Ω), 0 ≤ ψ ≤ 1 with ψ ≡ 1 on supp(ϕ). By classical regularity results

χi ∈ L∞. Using the boundedness of χi and ϕ, there exists M ≥ 0 such that∥∥∥∥ ∂ϕ∂xi

∥∥∥∥
L∞

∥∥∥∥χi

∥∥∥∥
L∞

< M.

Let

vε =

(
ϕ+

∑
i

ε
∂ϕ

∂xi
(x)χ

i

(x
ε

)
+ δ

)
ψ, (4.29)

where δ is chosen such that

ε

∥∥∥∥ ∂ϕ∂xi

∥∥∥∥
L∞

∥∥∥∥χi

∥∥∥∥
L∞

< Mε = δ.

Then vε ≥ 0 in Ω if ε is enough small. Also vε ∈ H1
0 (Ω), and hence vε ∈ Kε which will allow us to take it as a

test function in (4.1). Moreover, vε → ϕ strongly in L2(Ω).
Let us compute Dvε:

Dvε = Dϕ+
∑

i

∂ϕ

∂xi
(x)Dχ

i
(
x

ε
) + ε

(∑
i

D
∂ϕ

∂xi
(x)χ

i
(
x

ε
) +MDψ

)
.

So

Dvε =
∑

i

∂ϕ

∂xi
(x)(ei +Dχ

i
(
x

ε
)) + ε

(∑
i

D
∂ϕ

∂xi
(x)χ

i
(
x

ε
) +MDψ

)
.

Using vε as a test function in (4.1), we can write∫
Ωε

AεDuεDvεdx ≥
∫
Ωε

f(vε − uε)dx+
∫
Ωε

AεDuεDuεdx.

In fact, we have ∫
Ω

Dûε ˜(tAεDvε)dx ≥
∫
Ωε

f(vε − uε)dx+
∫
Ωε

AεDuεDuεdx. (4.30)

Denote

θA0
pej =

1
|Y ∗|

∫
Y ∗

tA(y)(Dχ
j
+ ej)dy, (4.31)

where θ = |Y ∗| / |Y |. Neglecting the term ε(
∑

iD
∂ϕ
∂xi

(x)χ
i
(x

ε ) +MDψ) which actually tends strongly to zero,

we can pass immediately to the limit in the left-hand side of (4.28). Hence∫
Ω

Dûε ˜(tAεDvε)dx→
∫
Ω

θA0
pDuDϕdx. (4.32)
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It is not difficult to pass to the limit in the first term of the right-hand side of (4.28). Indeed, since vε → ϕ
strongly in L2(Ω), we get ∫

Ωε

f(vε − uε)dx =
∫
Ω

fχΩε (vε − ûε)dx→
∫
Ω

fθ(ϕ− u)dx. (4.33)

So, it remains to pass to the limit only in the last term of (4.28). For doing this, we can write down the
subdifferential inequality∫

Ωε

AεDuεDuεdx ≥
∫
Ωε

AεDwεDwεdx+ 2
∫
Ωε

AεDwε(Duε −Dwε)dx, (4.34)

for any wε ∈ H1
0 (Ω), wε ≥ 0 in Ω. Reasoning as before and choosing

wε =

(
ϕ+

∑
i

ε
∂ϕ

∂xi
(x)χ

i

(x
ε

)
+ εM

)
ψ,

where ϕ, ψ and M enjoy similar properties as the corresponding ϕ, ψ and M , the right-hand side of the
inequality (4.32) passes to the limit and one has

lim inf
ε→0

∫
Ωε

AεDuεDuεdx ≥
∫
Ω

θA0
pDϕDϕdx+ 2

∫
Ω

θA0
pDϕ(Du−Dϕ)dx,

for any ϕ ∈ D(Ω), ϕ ≥ 0. But since u ∈ H1
0 (Ω) and u ≥ 0 in Ω, taking ϕ→ u strongly in H1

0 (Ω), we conclude

lim inf
ε→0

∫
Ωε

AεDuεDuεdx ≥
∫
Ω

θA0
pDuDudx. (4.35)

Putting together (4.30), (4.31) and (4.33), we get∫
Ω

θA0
pDuDϕdx ≥

∫
Ω

fθ(ϕ− u)dx+
∫
Ω

θA0
pDuDudx,

for any ϕ ∈ D(Ω), ϕ ≥ 0, and hence by density for any v ∈ H1
0 (Ω), v ≥ 0.

So, finally, we obtain ∫
Ω

A0
pDuD(v − u)dx ≥

∫
Ω

f(v − u)dx,

which is just the limit problem (4.26). This completes the proof of Theorem 4.6. �

Remark 4.7. The choice of the test function (4.27) gives, in fact, a first-corrector term for the weak convergence
of ûε to u.
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