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THE EFFECT OF REDUCED INTEGRATION
IN THE STEKLOV EIGENVALUE PROBLEM ∗

Maŕıa G. Armentano
1

Abstract. In this paper we analyze the effect of introducing a numerical integration in the piecewise
linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error
estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular
eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than
those obtained using exact integration when the mesh size is small enough.
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1. Introduction

The aim of this paper is to analyze the effect of introducing a numerical integration in the piecewise linear
finite element approximation of the Steklov eigenvalue problem.

Increasing attention has recently been paid to the problem of approximating the vibration modes of a structure
in contact with an incompressible fluid. The most usual procedure in engineering practice is to eliminate the
fluid variable by using the so-called added mass formulation [5,9]. This consists of taking into account the effect
of the fluid by means of a Neumann-to-Dirichlet operator on the fluid-solid interface. This approach yields an
eigenvalue problem similar to the Steklov eigenvalue problem considered here.

There are relatively few papers treating the effect of numerical integration on eigenvalue approximation. For
second order selfadjoint eigenvalue problems Banerjee and Osborn [3] prove that finite element approximations
with quadrature rules satisfy the same estimates that hold with exact integration when the quadrature rules
have appropriate degrees of precision. In [1], Armentano and Durán analyze the effect of a quadrature rule
known as “mass-lumping” for second order selfadjoint eigenvalue problems.

For a Steklov eigenvalue problem optimal order error estimates in H1 norm are obtained in [5] for the
piecewise linear finite element approximation when exact integration is used. As far as we know, error estimates
for the eigenfunction have not been proved when some quadrature rule is introduced.

The goal of this paper is to obtain optimal error estimates in H1 and L2-norms for the eigenfunctions when a
quadrature rule is introduced in the computation of the right-hand side of the weak form of the equation of the
Steklov eigenvalue problem. In order to obtain these estimates we prove that the order of the difference between
the eigenfunction approximation obtained using the quadrature rule and the eigenfunction approximation with
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exact integration is higher than the order between the eigenfunction approximation with exact integration and
the exact one.

Moreover, using our error estimates we will show that, for singular eigenfunctions, the eigenvalues obtained
using reduced integration are better approximations that those obtained using exact integration when the mesh
size is small enough. So, we extend the results obtained in [1] for the second order selfadjoint eigenvalue problems
to the Steklov eigenvalue problem.

The paper is organized as follows. First, in Section 2, we present the Steklov eigenvalue problem and the
approximation problem with and without quadrature rule. Section 3 deals with error estimates in H1 and
L2-norms for the eigenfunctions. Finally in Section 4 we use the error estimates obtained in Section 3 to prove
that, for singular eigenfunctions, the eigenvalues obtained using the reduced integration introduced in Section 2
are better approximations that those obtained using exact integration when the mesh size is small enough.

2. The Steklov eigenvalue problem

Let Ω ⊂ R
2 be a bounded polygonal domain. We consider the following Steklov eigenvalue problem [2]:

−4u + u = 0 in Ω
∂u

∂n
= λu on Γ = ∂Ω. (2.1)

The variational problem associated with (2.1) is given by:
Find λ and u ∈ H1(Ω), u 6= 0 satisfying

a(u, v) = λ

∫
Γ

uv ∀v ∈ H1(Ω)

‖u‖L2(Γ) = 1 (2.2)

where a(u, v) =
∫
Ω∇u∇v +

∫
Ω uv, which is continuous and coercive on H1(Ω).

It is known that the solution of this problem is given by a sequence of pairs (λj , uj), with positive eigenval-
ues λj diverging to +∞ [10]. We assume the eigenvalues to be increasingly ordered: 0 < λ1 ≤ · · · ≤ λj ≤ · · ·
The associated eigenfunctions satisfy uj ∈ H1+r(Ω), where r = 1 if Ω is convex and r < π

ω (with ω being the
largest inner angle of Ω) otherwise (see for example [8]).

In order to approximate the eigenvalue λ and its associated eigenfunction u we consider {Th} a triangulation
of Ω such that any two triangles in Th share at most a vertex or an edge. Let h stand for the mesh-size; namely
h = maxT∈Th

hT , with hT being the diameter of the triangle T . We assume that the family of triangulations Th

satisfies a minimal angle condition, i.e., there exists a constant σ > 0 such that hT

ρT
≤ σ, where ρT is the

diameter of the largest circle contained in T .
We consider the standard finite element space:

Vh = {v ∈ H1(Ω) : v|T ∈ P1 ∀T ∈ Th}
where P1 denotes the space of linear polynomials.

Then, the standard finite element approximation problem is the following:
Find λh and uh ∈ Vh, uh 6= 0 such that

a(uh, v) = λh

∫
Γ

uhv ∀v ∈ Vh

‖uh‖L2(Γ) = 1. (2.3)

Let βj , 1 ≤ j ≤ Nh (Nh = number of nodes) be the Lagrange basis of degree one, i.e., βj |T ∈ P1 ∀T ∈ Th

such that βj(ni) = δi,j where ni denotes the node i. The generalized eigenvalue problem is given by: find
uh =

∑Nh

j=1 zjβj such that
Az = λhBz
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where
Ai,j =

∫
Ω

∇βi∇βj +
∫

Ω

βiβj

and
Bi,j =

∫
Γ

βiβj .

Another possible discretization is obtained by using quadrature rule on the right hand side of (2.3). If we use
in the computation of the matrix B the trapezoid rule we obtain another generalized eigenvalue problem

Az = λI
hB̃z

where the matrix B̃ is diagonal. The variational problem is in this case:
Find λI

h and uI
h ∈ Vh, uI

h 6= 0 such that

a(uI
h, v) = λI

h

∫
Γ

Ih(uI
hv) ∀ v ∈ Vh,

‖uI
h‖L2(Γ) = 1 (2.4)

where Ih denotes the piecewise linear interpolation on the vertices of the triangulation Th which lies on Γ.
The two problems given above reduce to generalized eigenvalue problems where the matrix A is positive

definite and symmetric, and the matrices B and B̃ are non-negative definite, symmetric, and both of them have
rank Mh = number of vertices on Γ. They attain a finite number of eigenpairs (λh,j , uh,j) and (λI

h,j , u
I
h,j), 1 ≤

j ≤ Mh, respectively, with positive eigenvalues which we assume increasingly ordered: 0 < λh,1 ≤ · · · ≤ λh,Mh

and 0 < λI
h,1 ≤ · · · ≤ λI

h,Mh
.

In order to simplify notation from now on we will drop the subindex j in λj , λh,j , λ
I
h,j , uj, uh,j, u

I
h,j and we

denote by C a generic constant not necessarily the same at each occurrence.

3. Error estimates

Following the arguments given in [5] error estimates in H1 norm can be obtained for the eigenfunction
approximation using the standard finite element method (2.3), i.e., it can be seen that there exists a constant C
such that

‖u− uh‖H1(Ω) ≤ Chr. (3.5)
In order to obtain error estimates for the eigenfunction, when a quadrature rule is introduced, we will use the
spectral approximation theory given in [2].

Let T, Th : H1(Ω) → H1(Ω) be the bounded linear operators defined by
{

Tf ∈ H1(Ω)

a(Tf, v) = b(f, v) ∀v ∈ H1(Ω)
(3.6)

{
Thf ∈ Vh

a(Thf, v) = b(f, v) ∀v ∈ Vh

(3.7)

where b(f, v) =
∫
Γ

fv. The non-zero eigenvalues of T are the reciprocals of the eigenvalues of (2.2) and the
non-zero eigenvalues of Th are the reciprocals of the eigenvalues of (2.3) and T and (2.2), Th and (2.3) have the
same eigenfunctions. Now, we introduce another operator T I

h : H1(Ω) → H1(Ω) defined by

{
T I

hf ∈ Vh

a(T I
hf, v) = bI(f, v) ∀v ∈ Vh

(3.8)
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where bI(f, v) =
∫
Γ

I(Ph(f)v) with Ph being the L2 projection on Γ onto the piecewise linear continuous
functions, i.e., ∫

Γ

Ph(f)v =
∫

Γ

fv ∀v ∈ Vh. (3.9)

It is easy to see that the non-zero eigenvalues of T I
h are the reciprocals of those of (2.4) and T I

h and (2.4) have
the same eigenfunctions.

First, we will obtain error estimates in L2(Γ) for the eigenfunction approximation when exact integration is
used. The following estimate holds

Proposition 3.1. Let (λ, u) and (λh, uh) be the solutions of problems (2.2) and (2.3), respectively. Then there
exists a constant C such that

‖uh − u‖L2(Γ) ≤ Ch
3
2 r.

Proof. Let e = Tf −Thf with f being an eigenfunction of the problem (2.2). In order to obtain error estimates
in L2(Γ) we consider the following auxiliary problem:

−4φ + φ = 0 in Ω
∂φ

∂n
= e on Γ.

Let φI ∈ Vh be the Lagrange interpolation of φ. By subtracting (3.7) from (3.6) we have that a(e, φI) = 0.
Then,

‖e‖2
L2(Γ) =

∫
Γ

e2 =
∫

Γ

∂φ

∂n
e =

∫
Ω

∇φ∇e +
∫

Ω

φe

= a(φ, e) = a(φ− φI , e) ≤ ‖φ− φI‖H1(Ω)‖e‖H1(Ω).

Using standard finite element estimates [6, 7] and the same arguments given in Proposition 4.4 of [5] we have
that

‖e‖2
L2(Γ) ≤ Ch

r
2 ‖φ‖

H1+ r
2 (Ω)

‖e‖H1(Ω) ≤ Ch
r
2 ‖e‖L2(Γ)‖e‖H1(Ω).

Therefore by using the error estimates in H1 (see [5]) we have that

‖e‖2
L2(Γ) ≤ Ch

3
2 r‖e‖L2(Γ)‖f‖H1(Ω)

but, since f is an eigenfunction we have that there exists a constant C such that ‖f‖H1(Ω) ≤ C‖f‖L2(Γ) and so,

‖e‖L2(Γ) ≤ Ch
3
2 r‖f‖L2(Γ) (3.10)

and using the spectral approximation theory (see [2]) we obtain the desired result. �

For second order-elliptic eigenvalue problems, reference [3] contains error estimates considering numerical
integration under the assumption that the eigenfunction is smooth. However, their arguments can be used
to obtain error estimates when the eigenfunction are non-smooth. As far as we know, error estimates for the
Steklov eigenvalue problem have not been proved when some integration rule is introduced. Our next goal
is to obtain error estimates for the Steklov eigenvalue problem using the reduced integration defined in (2.4).
We will prove that the order of the difference between the eigenfunction approximation obtained using the
quadrature rule and the eigenfunction approximation with exact integration is higher than the order between
the eigenfunction approximation with exact integration and the exact one.
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The following approximation result holds:

Theorem 3.1. There exists a constant C > 0 such that for any f ∈ H1(Ω) we have

‖(Th − T I
h )f‖H1(Ω) ≤ Ch‖f‖H1(Ω).

Moreover, if f is an eigenfunction of the problem (2.2), we have

‖(Th − T I
h )f‖H1(Ω) ≤ Ch

3
2 ‖f‖H1(Ω).

Proof. For any f ∈ H1(Ω) and v ∈ Vh from (3.7)–(3.9) we have that

a
((

Th − T I
h

)
f, v
)

=
∫

Γ

fv − I(Ph(f)v) =
∫

Γ

Ph(f)v − I(Ph(f)v). (3.11)

Let {`k}1≤k≤Mh
be the edges of the mesh lying on Γ then,

∫
Γ

Ph(f)v − I(Ph(f)v) =
∑
`k⊂Γ

∫
`k

Ph(f)v − I(Ph(f)v) ≤
∑
`k⊂Γ

‖Ph(f)v − I(Ph(f)v)‖L1(`k).

Using standard error estimates for interpolation (see for example [7]), the fact that Ph(f) and v are functions
in Vh and Cauchy–Schwarz inequality we have

∑
`k⊂Γ

‖Ph(f)v − I(Ph(f)v)‖L1(`k) ≤ C
∑
`k⊂Γ

|`k|2|Ph(f)v|W 2,1(`k) ≤ C
∑
`k⊂Γ

|`k|2‖
∂Ph(f)

∂`k
‖L2(`k)‖

∂v

∂`k
‖L2(`k).

Now using the following inverse estimate: ‖ ∂w
∂`k

‖L2(`k) ≤ C

|`k|
1
2
‖w‖

H
1
2 (`k)

∀w ∈ Vh [6, 7] and Cauchy–Schwarz

inequality we get

∫
Γ

Ph(f)v − I(Ph(f)v) ≤ Ch
∑
`k⊂Γ

‖Ph(f)‖
H

1
2 (`k)

‖v‖
H

1
2 (`k)

≤ Ch

(∑
`k⊂Γ

‖Ph(f)‖2

H
1
2 (`k)

) 1
2
(∑

`k⊂Γ

‖v‖2

H
1
2 (`k)

) 1
2

.

(3.12)
Since

∑
`k⊂Γ ‖w‖2

H
1
2 (`k)

≤ C‖w‖2

H
1
2 (Γ)

for any w ∈ H
1
2 (Γ) we have

∫
Γ

Ph(f)v − I(Ph(f)v) ≤ Ch‖Ph(f)‖
H

1
2 (Γ)

‖v‖
H

1
2 (Γ)

.

Then using that there exits a constant C such that ‖Ph(f)‖
H

1
2 (Γ)

≤ C‖f‖
H

1
2 (Γ)

( [6], [7]) and a trace theorem
we get

∫
Γ

Ph(f)v − I(Ph(f)v) ≤ Ch‖f‖
H

1
2 (Γ)

‖v‖
H

1
2 (Γ)

≤ Ch‖f‖H1(Ω)‖v‖H1(Ω).

So, the first result follows by taking v = Thf − T I
hf .

If f is an eigenfunction of the problem (2.2) f lies in H1+r(Ω) with 1
2 < r ≤ 1.
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So, instead of (3.12) we have in this case

∫
Γ

Ph(f)v − I(Ph(f)v) ≤ C
∑
`k⊂Γ

|`k|2‖
∂Ph(f)

∂`k
‖L2(`k)‖

∂v

∂`k
‖L2(`k) ≤ Ch

3
2

∑
`k⊂Γ

‖Ph(f)‖H1(`k)‖v‖H
1
2 (`k)

≤ Ch
3
2

(∑
`k⊂Γ

‖Ph(f)‖2
H1(`k)

) 1
2
(∑

`k⊂Γ

‖v‖2

H
1
2 (`k)

) 1
2

(3.13)

and using the same arguments given above we have∫
Γ

Ph(f)v − I(Ph(f)v) ≤ Ch
3
2 ‖Ph(f)‖H1(Γ)‖v‖H

1
2 (Γ)

≤ Ch
3
2 ‖f‖H1(Γ)‖v‖H

1
2 (Γ)

≤ Ch
3
2 ‖f‖H1+r(Ω)‖v‖H

1
2 (Γ)

≤ Ch
3
2 ‖f‖H1+r(Ω)‖v‖H1(Ω).

Since f is an eigenfunction from the same arguments given in Proposition 4.4 in [5] and the trace theorem we
know that there exists a constant C such that ‖f‖H1+r(Ω) ≤ C‖f‖

H
1
2 (Γ)

≤ C‖f‖H1(Ω). Therefore, the proof

concludes by taking v = Thf − T I
hf . �

Corollary 3.1. Let u and uI
h be the eigenfunctions of the problems (2.2) and (2.4) respectively. There exists a

constant C such that
‖u− uI

h‖H1(Ω) ≤ Chr.

Proof. It is a consequence of the error estimate ‖(T − Th)f‖H1(Ω) ≤ Chr‖f‖H1(Ω) [5], Theorem 3.1 and Theo-
rem 7.1 in [2]. �

In order to obtain L2(Γ) error estimates for eigenfunctions when reduced integration is used we consider the
following theorem.

Theorem 3.2. Let f be the eigenfunction of the problem (2.2). There exists a constant C > 0 such that

∥∥(Th − T I
h

)
f
∥∥

L2(Γ)
≤ Ch

3
2 ‖f‖L2(Γ). (3.14)

Moreover, if {Th} is quasi-uniform, i.e., there exists a constant δ > 0 such that h
hT

≤ δ, ∀T ∈ Th, then, for any
γ ∈ (0, 1

2 ), γ ≤ r
2 there exists a constant C = C(γ) such that

‖(Th − T I
h )f‖L2(Γ) ≤ Ch

3
2+γ‖f‖L2(Γ).

In particular, if r < 1 we have ‖(Th − T I
h )f‖L2(Γ) ≤ Ch

3
2+ r

2 ‖f‖L2(Γ).

Proof. Let e = Thf − T I
hf with f being an eigenfunction of the problem (2.2) and φ being the solution of the

auxiliary problem

−4φ + φ = 0 in Ω
∂φ

∂n
= e on Γ. (3.15)

The variational problem associated with (3.15) is given by

a(φ, v) =
∫

Γ

ev ∀v ∈ H1(Ω).
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Let φh ∈ Vh be the solution of the discrete variational problem

a(φh, v) =
∫

Γ

ev ∀v ∈ Vh.

Then,

‖e‖2
L2(Γ) = a(e, φh) = a(Thf − T I

hf, φh) =
∫

Γ

fφh − I(Ph(f)φh)

=
∫

Γ

Ph(f)φh − I(Ph(f)φh). (3.16)

Then, ∫
Γ

Ph(f)φh − I(Ph(f)φh) ≤
∑
`k⊂Γ

‖Ph(f)φh − I(Ph(f)φh)‖L1(`k) ≤ C
∑
`k⊂Γ

|`k|2|Ph(f)φh|W 2,1(`k)

≤ C
∑
`k⊂Γ

|`k|2‖
∂Ph(f)

∂`k
‖L2(`k)‖

∂φh

∂`k
‖L2(`k).

By the same arguments used in the proof of Theorem 3.1 we have

‖Ph(f)φh − I(Ph(f)φh)‖L1(Γ) ≤ Ch
3
2 ‖Ph(f)‖H1(Γ)‖φh‖

H
1
2 (Γ)

≤ Ch
3
2 ‖f‖H1+r(Ω)‖φh‖H1(Ω). (3.17)

Since ‖φh‖H1(Ω) ≤ C‖e‖L2(Γ) and ‖f‖H1+r(Ω) ≤ C‖f‖
H

1
2 (Γ)

≤ C‖f‖H1(Ω) ≤ C‖f‖L2(Γ) we have that

‖Thf − T I
hf‖L2(Γ) ≤ Ch

3
2 ‖f‖L2(Γ)

and the first result holds.
Now, we assume that the triangulation {Th} satisfies the quasi-uniform condition, i.e., there is a constant

δ > 0 such that h
hT

≤ δ, ∀T ∈ Th.
Let γ ∈ (0, 1

2 ), γ ≤ r
2 then, using the inverse estimate ‖∂φh

∂`k
‖L2(`k) ≤ C

|`k|
1
2−γ

‖φh‖
H

1
2+γ(`k)

and Cauchy–Schwarz

inequality, instead of (3.17) we have in this case

‖Ph(f)φh − I(Ph(f)φh)‖L1(Γ) ≤ Ch
3
2+γ‖Ph(f)‖H1(Γ)‖φh‖

H
1
2+γ(Γ)

≤ Ch
3
2 +γ‖f‖H1+r(Ω)‖φh‖

H
1
2+γ(Γ)

≤ Ch
3
2+γ‖f‖H1+r(Ω)‖φh‖H1+γ(Ω).

Let Πh be the Lagrange interpolation operator, from Theorem 2.6 in [4] we know that there exists a constant C
such that

‖φ−Πhφ‖H1+γ (Ω) ≤ C‖φ‖H1+γ(Ω)

and therefore
‖Πhφ‖H1+γ (Ω) ≤ C‖φ‖H1+γ(Ω).

On the other hand from the inverse inequality given in Theorem 2.9 in [4] and standard error estimates we have
that

‖φh −Πhφ‖H1+γ (Ω) ≤ C
1
hγ
‖φh −Πhφ‖H1(Ω) ≤ C‖φ‖H1+γ (Ω).

So, ‖φh‖H1+γ (Ω) ≤ ‖φh −Πhφh‖H1+γ(Ω) + ‖Πhφ‖H1+γ (Ω) ≤ C‖φ‖H1+γ(Ω).
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Since ‖φ‖H1+γ (Ω) ≤ C‖φ‖
H1+ r

2 (Ω)
≤ C‖e‖L2(Γ) and ‖f‖H1+r(Ω) ≤ C‖f‖L2(Γ) we conclude that

‖Thf − T I
hf‖L2(Γ) ≤ Ch

3
2+γ‖f‖L2(Γ)

and we complete the proof. �
Now, we have the L2(Γ) error estimates for eigenfunctions when reduced integration is used.

Corollary 3.2. Let (λ, u) and (λI
h, uI

h) be the solutions of problems (2.2) and (2.4) respectively. Then there
exists a constant C such that

‖u− uI
h‖L2(Γ) ≤ Ch

3
2 r.

Proof. The result is a consequence of (3.10), Theorem 3.2 and the spectral approximation theory [2]. �

4. Advantages of reduced integration

The goal of this section is to show that if the eigenfunction of problem (2.2) is singular the eigenvalue
approximation given by using reduced integration (2.4) is better than the eigenvalue approximation given by
the standard finite element (2.3) for h small enough. So, we extend the results obtained in [1] for second
order-elliptic eigenvalue problems to the Steklov eigenvalue problem.

First, we will show that the eigenvalue obtained by reduced integration is always below the one obtained by
the standard finite element approximation, i.e, λI

h ≤ λh.
For each boundary edge {`k}1≤k≤Mh

we denote by p1(`k) and p2(`k) the extremes of the edge `k.
Then we have

Lemma 4.1. For any vh ∈ Vh,∫
Γ

(
Ih(v2

h)− v2
h

)
=

1
6

∑
`k⊂Γ

(vh(p1(`k))− vh(p2(`k)))2 |`k|

in particular ∫
Γ

Ih(v2
h) ≥

∫
Γ

v2
h.

Proof. Since vh is a piecewise linear function we observe that∫
Γ

v2
h =

∑
`k⊂Γ

(
v2

h(p1(`k)) + v2
h(p2(`k)) + 4v2

h(m`k
)
) |`k|

6

where m`k
denote the midpoint of the edge `k. From vh(m`k

) = vh(p1(`k))+vh(p2(`k))
2 and

∫
Γ

Ih(v2
h) =

∑
`k⊂Γ

(
v2

h(p1(`k)) + v2
h(p2(`k))

) |`k|
2

we have that∫
Γ

(I(v2
h)− v2

h) =
∑
`k⊂Γ

(
v2

h(p1(`k)) + v2
h(p2(`k))

) |`k|
2
−
(
v2

h(p1(`k)) + v2
h(p2(`k)) + vh(p1(`k)vh(p2(`k))

) |`k|
3

=
∑
`k⊂Γ

(
v2

h(p1(`k)) + v2
h(p2(`k))− 2vh(p1(`k))vh(p2(`))

) |`k|
6

and therefore the Lemma holds. �
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As a consequence of the previous Lemma we have that

Corollary 4.1. For any vh ∈ Vh , γ ∈ (0, 1
2 ), there exists a constant C = C(γ) such that

0 ≤
∫

Γ

Ih(v2
h)− v2

h ≤ Ch1+2γ‖vh‖2

H
1
2 +γ(Γ)

.

Proof. Using Lemma 4.1 and the fact that ∂vh

∂`k
= vh(p2(`k))−vh(p1(`k))

|`k| we have that

∫
Γ

(
Ih(v2

h)− v2
h

)
=

1
6

∑
`k⊂Γ

((vh(p1(`k))− vh(p2(`k)))2 |`k| =
1
6

∑
`k⊂Γ

(
∂vh

∂`k

)2

|`k|3 =
1
6

∑
`k⊂Γ

∥∥∥∥∂vh

∂`k

∥∥∥∥
2

L2(`k)

|`k|2.

Since, for any γ ∈ (0, 1
2 ), there exists a constant C = C(γ) such that ‖∂vh

∂`k
‖L2(`k) ≤ C

|`k|
1
2−γ

‖vh‖
H

1
2+γ(`k)

we

obtain ∫
Γ

Ih(v2
h)− v2

h ≤
1
6
C
∑
`k⊂Γ

‖vh‖2

H
1
2+γ(`k)

|`k|1+2γ ≤ Ch1+2γ‖vh‖2

H
1
2+γ(Γ)

and we conclude the proof. �
Theorem 4.1. Let λ, λh and λI

h, be the eigenvalues of problems (2.2)–(2.4) respectively. Then

λ ≤ λh and λI
h ≤ λh. (4.18)

Proof. Let T , Th and T I
h be the operators defined in (3.6)–(3.8) and let µj , µh,j and µI

h,j, the corresponding
eigenvalues which we assume non increasingly ordered, i.e., µ1 ≥ µ2 ≥ · · ·µj ≥ · · · , µh,1 ≥ µh,2 ≥ · · · ≥ µh,Mh

and µI
h,1 ≥ µI

h,2 ≥ · · · ≥ µI
h,Mh

.
It is known that the eigenvalues can be characterized using the maximum-minimum principle [10], i.e., for any
j, 1 ≤ j ≤ Mh we have that

µj = max
Vj

min
v∈Vj

b(v, v)
a(v, v)

(4.19)

and

µh,j = max
Vh,j

min
vh∈Vh,j

b(vh, vh)
a(vh, vh)

µI
h,j = max

Vh,j

min
vh∈Vh,j

bI(vh, vh)
a(vh, vh)

(4.20)

where Vj denote any subspace of H1(Ω) of dimension j and Vh,j denote any subspace of Vh of dimension j.
Since Vh ⊂ H1(Ω) we have that µj ≥ µh,j .

In view of Lemma 4.1 we have that for any j, 1 ≤ j ≤ Mh

bI(vh, vh)
a(vh, vh)

≥ b(vh, vh)
a(vh, vh)

∀vh ∈ Vh,j . (4.21)

So, µI
h,j ≥ µh,j,1 ≤ j ≤ Mh.

The proof concludes by using that the non-zero eigenvalues of T , Th and T I
h are the reciprocals of the

eigenvalues of (2.2), (2.3) and (2.4), respectively. �
The next Lemma, which follows from Lemma 5.1 of [3] or Lemma 2.2 of [1], gives an expression for the

difference between λ and the approximation given by reduced integration λI
h.

Lemma 4.2. Let (λ, u) and (λI
h, uI

h) be the solutions of problems (2.2) and (2.4) respectively. Then we have
that

λI
h − λ = ‖uI

h − u‖2
H1(Ω) − λ‖uI

h − u‖2
L2(Γ) − λI

h

(∫
Γ

Ih((uI
h)2)− (uI

h)2
)

. (4.22)
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Now, we assume that the triangulation {Th} satisfies the quasi-uniform condition, i.e., there is a constant δ > 0
such that h

hT
≤ δ, ∀T ∈ Th. Then we have the following result.

Corollary 4.2. Let λ and λI
h be the eigenvalues of problems (2.2) and (2.4) respectively. If there exists a

constant C such that ‖uI
h − u‖H1(Ω) ≥ Chr with r < 1 then, for h small enough, we have

λ ≤ λI
h. (4.23)

Proof. The proof follows the same argument given in [1]. From Lemma 4.2 we know that

λI
h − λ =

∥∥uI
h − u

∥∥2

H1(Ω)
− λ

∥∥uI
h − u

∥∥2

L2(Γ)
− λI

h

(∫
Γ

Ih

((
uI

h

)2)− (uI
h

)2)
. (4.24)

From Corollary 4.1, taking γ = r
2 we have

∫
Γ

Ih((uI
h)2)− (uI

h)2 ≤ Ch1+r‖uI
h‖2

H
1
2+ r

2 (Γ)
.

Since, ‖uI
h‖H

1
2+ r

2 (Γ)
≤ C‖uI

h‖H1+ r
2 (Ω)

≤ C(‖uI
h − Πhu‖

H1+ r
2 (Ω)

+ ‖Πhu‖
H1+ r

2 (Ω)
) using Theorems 2.6 and 2.9

in [4], Corollary 3.1 and standard error estimates for interpolation we obtain

‖uI
h‖H1+ r

2 (Ω)
≤ C(

1
h

r
2
‖uI

h −Πhu‖H1(Ω) + ‖u‖
H1+ r

2 (Ω)
) ≤ C.

So, the order of the third term on the right hand side of (4.24) is h1+r.
From our hypothesis, the first term on the right hand side of (4.24) is greater than a constant times h2r and,

in view of Corollary 3.2, the order of the second term is h3r. Therefore if h is small enough, the sign of λI
h − λ

is given by the first term on (4.24) so, we conclude the proof. �
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