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ANALYSIS OF GRADIENT FLOW OF A REGULARIZED MUMFORD-SHAH
FUNCTIONAL FOR IMAGE SEGMENTATION AND IMAGE INPAINTING

Xiaobing Feng1 and Andreas Prohl2

Abstract. This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by
Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002)
for image inpainting. It is shown that the gradient flow with L2×L∞ initial data possesses a global weak
solution, and it has a unique global in time strong solution, which has at most finite number of point
singularities in the space-time, when the initial data are in H1 × H1 ∩ L∞. A family of fully discrete
approximation schemes using low order finite elements is proposed for the gradient flow. Convergence
of a subsequence (resp. the whole sequence) of the numerical solutions to a weak solution (resp. the
strong solution) of the gradient flow is established as the mesh sizes tend to zero, and optimal and
suboptimal order error estimates, which depend on 1

ε
and 1

kε
only in low polynomial order, are derived

for the proposed fully discrete schemes under the mesh relation k = o(h
1
2 ). Numerical experiments are

also presented to show effectiveness of the proposed numerical methods and to validate the theoretical
analysis.
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1. Introduction

Image segmentation in computer vision aims at automatic partitioning of a given image on Ω ⊂ RN (N = 2, 3)
into regions where the gray-level function u : Ω → R is smooth, having only discontinuities across edges. A
variational model was proposed by Mumford and Shah [31, 32] to segment the image into as few and simple
regions as possible and thus detect essential structures of the image. Following earlier discrete models proposed
by D. Geman and S. Geman [24] and by Blake and Zisserman [7], they proposed to find:

( v,Γ ) := argmin
K⊂Ω closed
u∈H1(Ω\K)

E(u,K),
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for given g ∈ L2(Ω), α, β, γ ≥ 0. Where

E(u,K) :=
α

2

∫
Ω\K

| ∇u |2 dx+
1
2

∫
Ω

γ |u− g |2 dx+ βHN−1(K), (1.1)

and HN−1(K) denotes the (N − 1)-dimensional Hausdorff measure of K, which measures the “length” of the
set K.

Heuristically, we expect solutions to this problem to be smooth and close to the image g at places x �∈ Γ,
and Γ constitutes edges of the image. To show existence of solutions to the above problem, a weak formulation
was proposed by De Giorgi, Carriero and Leaci [17] by dropping the requirement that K is a closed set, and to
allow it to be the jump set of an SBV (Special Bounded Variation) function u. So the idea was to find

( ṽ, Sṽ ) := argmin
u∈SBV (Ω)

Ẽ(u),

where

Ẽ(u) :=
α

2

∫
Ω\Su

| ∇u |2 dx+
1
2

∫
Ω

γ |u− g |2 dx+ βHn−1(Su). (1.2)

SBV (Ω) denotes the set of special bounded variation functions, and Su stands for the jump set of u, the
complement of the set of all Lebesgue-points of u in Ω (cf. [4]). The existence of solutions to problem (1.2) was
established in [17], and ( v,Γ ) = ( ṽ, Sṽ ) was proved for a large range of applications.

Since the above variational problems require the computation of geometrical properties of the unknown set
of discontinuity boundaries, this results in considerable difficulties to numerically compute the solutions. In
fact, exact computation of solutions of this type free discontinuity problems can be very rarely performed, with
the exception of situations where some symmetries allow to reduce the problem to a one-dimensional problem.
To approximate and compute solutions to variational problems (1.1) and (1.2), the most popular and successful
approach is to use the theory of Γ-convergence [16]. This theory, introduced by De Giorgi and Franzoni in [18],
is designed to approximate a variational problem by a sequence of different (usually, regularized) variational
problems and ensures convergence of extremal values to extremal values and of minimizers to minimizers.

Several types of approximate variational problems for (1.1) and (1.2) have been studied extensively in the
literature. At least three classes of Γ-convergent approximations to the functional (1.2) were proposed and
analyzed in the literature. The first class is based on introducing higher-order singular perturbation terms
(cf. [9] and the references therein); the second class approximates the functional (1.2) by non-local functionals,
i.e., density functions are non-local (cf. [10]). The idea of the third class of approximations, which was proposed
by De Giorgi and developed by Gobbino (cf. [26] and reference therein), is to average the difference quotients
among all possible directions in the functional. One such example is

Jε(u) =
1
ε

∫
Ω

arctan
(
|u(x+ ε) − u(x)|2

ε

)
dx+

1
2

∫
Ω

γ |u− g|2 dx. (1.3)

Following an earlier idea of Blake and Zissermann [7], Chambolle [13, 14] proposed a discrete finite-difference
approximation and showed its Γ-convergence to the Mumford-Shah functional (1.1) in the one-dimensional case
and to an anisotropic version of (1.1) in the two-dimensional case. Probably, the best known and commonly used
approximation to the Mumford-Shah functional (1.1) is the following elliptic approximation due to Ambrosio
and Tortorelli [2, 3]:

ATε(u, ϕ) =
α

2

∫
Ω

(kε + ϕ2)| ∇u |2 dx+ β

∫
Ω

[
ε| ∇ϕ |2 +

1
4ε
f(ϕ)

]
dx+

1
2

∫
Ω

γ |u− g |2dx, (1.4)
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for f(ϕ) = (1 − ϕ)2, and 0 < kε = o(ε). The Γ-convergence of ATε(u, ϕ) to E(u,K) was established in [2, 3].
The motivation for this approximation came from the Modica-Mortola theorem [29, 30] which enables the
variational approximation of P (E,Ω), the perimeter of E in Ω, by the quadratic and elliptic Cahn-Hilliard
functional [12]. A key idea of Ambrosio and Tortorelli’s approximation is to replace the original “double well”
potential p(z) = z2(1−z)2 in the Cahn-Hilliard functional by the quadratic “single well” potential f(z) = (1−z)2
in order to approximate HN−1(K) in (1.1). The function ϕ in (1.4) can be regarded as a “phase function” so K
is roughly indicated by the set {ϕ ≈ 0}, whereas its complement in Ω corresponds to {ϕ ≈ 1}. Borrowing
terminologies from phase transition in materials science, ATε(u, ϕ) can be regarded as a phase field (diffuse
interface) model to the Mumford-Shah (sharp interface) model E(u,K).

Finite element approximations to the Mumford-Shah functional (1.1) based on the functional ATε(u, ϕ)
were first carried out by Bellettini and Coscia in [6]. It was shown that ATε : V h(Ω) × V h(Ω, [0, 1]) → R
Γ-converges to E : H1(Ω) × L∞(Ω) → R under the condition that the mesh size h = o(kε), provided that Su

is piecewise smooth. Here V h(Ω) denotes the continuous piecewise linear finite element space (cf. Sect. 3),
and V h(Ω, [0, 1]) =

{
vh ∈ V h(Ω) ; 0 ≤ vh(x) ≤ 1 ∀x ∈ Ω

}
. Later, Bourdin [8] extended the result of [6]

to general Su by using a result of Dibos and Séré [19] for approximating the set Su by piecewise smooth
hypersurfaces. Moreover, he showed that restricting functions ϕh ∈ V h(Ω) to values in [0, 1] is not necessary
since this constraint is already implicitly satisfied.

The main goal of this paper is to analyze the following gradient flow of the functional ATε:

ut − α div
((
kε + ϕ2

)
∇u
)

+ γ(u− g) = 0 in ΩT := (0, T )× Ω, (1.5)

ϕt − 2βε∆ϕ+ α| ∇u |2ϕ+
β

2ε
(ϕ − 1) = 0 in ΩT , (1.6)

∂u

∂n
=
∂ϕ

∂n
= 0 on ∂ΩT := (0, T )× ∂Ω, (1.7)

u(·, 0) = u0(·), ϕ(·, 0) = ϕ0(·) in Ω, (1.8)

and its fully discrete finite element approximations. The primary motivation for considering the above gradient
flow is to study the steepest descent method for minimizing the functional (1.4), which is often used in practice.
In addition, a good understanding of the above gradient flow paves the way for us to analyze the gradient
flow of the Mumford-Shah functional [23], in particular, in high dimensions. Numerical results of [21, 28] have
indicated various interesting stability and instability properties of the solutions of the gradient flow (1.5)–(1.8),
for certain choices of parameters α, β, γ, ε, kε > 0. Another goal of this work is to understand these observations
qualitatively by studying regularity and stability of the solutions of the above initial-boundary value problem,
as well as error estimates of their finite element approximations (cf. [22]).

We note that in the one-dimensional case, the gradient flow for the Mumford-Shah functional was studied
by Gobbino in [26], based on the nonlocal approximate functional (1.3). He established Γ-convergence of Jε(·)
to Ẽ(·) with respect to L2-topology, derived the gradient flow for Ẽ(·) by setting ε→ 0, and proved that solutions
to the limiting problem solve local heat equations, separated by an invariant set of jumps, i.e., S(u(t)) ⊆ S(u0),
for all t ≥ 0.

We also note that a slightly modified Mumford-Shah model has recently been proposed by Esedoglu and
Shen [21] as an image inpainting model, and Ambrosio and Tortorelli’s elliptic approximation was also used as
a vehicle for numerical simulations. The proposed image inpainting model has exactly the same form as the
Mumford-Shah model (1.1), and the proposed elliptic approximation has exactly the same form as the Ambrosio
and Tortorelli’s approximation. The only difference is that the parameter γ in (1.1) and (1.4) now stands for
the indicator function γD(x) of Ω \D, where D denotes the inpainted region of an image. We like to remark
that, as a by-product, the results of the present paper also apply to this image inpainting model.

The paper is organized as follows. Section 2 devotes to analyzing the initial-boundary value problem (1.5)–
(1.8). We first establish existence of weak solutions for u0, g in L2(Ω) and ϕ0 ∈ L∞(Ω), then prove that the
system has a unique global in time strong solution, which has at most finite number of point singularities
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in the space-time, when the initial data (u0, ϕ0) ∈ H1(Ω) × H1(Ω) ∩ L∞(Ω). Our proof is based on a local
energy idea due to Struwe [35]. A priori solution estimates are established in various norms, especially, by
tracing their precise dependence on data (u0, ϕ0) and g, as well as on parameters ε, α, β and γ. These results
play a crucial role for understanding stability properties of the flow and for establishing error estimates for
finite element approximations in the next section. Based on the analytical results of Section 2, Section 3
studies qualitatively finite element approximations of the gradient flow (1.5)–(1.8). We formulate and analyze a
family of fully discrete finite element approximations using implicit Euler discretization in time, and continuous,
piecewise linear finite element discretization in space. Optimal and suboptimal order error bounds, which show
dependence on 1

ε and 1
kε

only in low polynomial order, are derived for the proposed fully discrete schemes under
the mesh relation k = o(h

1
2 ). It is shown that semi-implicit treatment of the nonlinear term in (1.5) or in (1.6)

results in schemes which satisfy a discrete energy law, while the same discrete energy law may not hold for the
fully implicit scheme. On the other hand, as expected, the fully implicit scheme produces smaller errors than
its semi-implicit counterparts do, although they have same asymptotic rate of convergence. Section 4 gathers
numerical experiments derived from the introduced semi-discretization in Section 3 to study the gradient flow
for different initial data.

2. Analysis of the initial-boundary value problem (1.5)–(1.8)

The first goal of this section is to establish existence, uniqueness, stability and regularity properties for
the gradient flow (1.5)–(1.8). The second goal is to derive a priori estimates, by tracing dependence on the
parameters ε, kε, α, β and γ (or γD). The results of this section will serve as the theoretical foundation for
analyzing space-time discretizations of (1.5)–(1.8) in the next section, they will also play a crucial role for
studying the gradient flow of the Mumford-Shah functional in [23].

Standard function space and norm notation are used in this paper, we refer to [1, 15, 27, 34] for their precise
definitions. Throughout this paper, unless stated otherwise, C will be used to denote a generic positive constant,
which is independent of the parameters ε, kε, α, β and γ, as well as data u0, ϕ0, g, and solution (u, ϕ ).

2.1. Existence of weak solutions

We begin this subsection with the definition of weak solutions to (1.5)–(1.8).

Definition 2.1. Let Ω ⊂ RN (N = 2, 3) be a domain with Lipschitz boundary ∂Ω. For given data (u0, ϕ0 ) ∈
[L2(Ω)]2 with 0 ≤ ϕ0 ≤ 1 a.e. in Ω, and g ∈ L2((0, T );L2(Ω)), a pair of functions (u, ϕ) is said to be a weak
solution to (1.5)–(1.8) if (u, ϕ ) ∈ [L∞((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω))]2 satisfies (1.5)–(1.8) in distribution
sense, and 0 ≤ ϕ ≤ 1 a.e. in ΩT .

Remark 2.1. It is not hard to check that a weak solution (u, ϕ ) also satisfies (ut, ϕt ) ∈ [L2((0, T ); H−2(Ω))]2.
An application of Aubin-Lions embedding lemma [27,34] implies that (u, ϕ ) ∈ [C0((0, T ); L2(Ω))]2, hence, two
equations in (1.8) are well-defined.

The existence of a weak solution is given by the following theorem.

Theorem 2.1. Given (u0, ϕ0 ) ∈ [L2(Ω)]2 with 0 ≤ ϕ0 ≤ 1 a.e. in Ω, and g ∈ L2
(
(0, T );L2(Ω)

)
, let τ(t) be

any positive C1 function on [0, T ] such that τ(0) = 0. Then, (1.5)–(1.8) possesses a weak solution (u, ϕ ) which
satisfies for s ∈ [0, T ]

‖ u(s) ‖2
L2 +

∫ s

0

[
2α
(
kε‖∇u ‖2

L2 + ‖ϕ∇u ‖2
L2

)
+ γ‖ u ‖2

L2

]
dt ≤ B0 (2.1)

‖ϕ(s) ‖2
L2 +

∫ s

0

[
4βε‖∇ϕ ‖2

L2 + 2α‖ϕ∇u ‖2
L2 +

β

2ε
‖ f(ϕ) ‖L1

]
dt ≤ B1, (2.2)

τ(s)ATε

(
u(s), ϕ(s)

)
+
∫ s

0

τ(t)
[
‖ ut ‖2

L2 + ‖ϕt ‖2
L2

]
dt =

∫ s

0

τ ′(t)ATε(u, ϕ) dt, (2.3)
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where
B0 := ‖ u0 ‖2

L2 + ‖√γ g(t) ‖2
L2(L2), B1 := ‖ϕ0 ‖2

L2 + β |Ω| ε−1.

Moreover, if u0 ∈ L∞(Ω) and g ∈ L∞(ΩT ), then u satisfies the following weak maximum principle,

min
{

min
ΩT

g, min
Ω
u0

}
≤ u(x, t) ≤ max

{
max
ΩT

g, max
Ω

u0

}
a.e. (x, t) ∈ ΩT . (2.4)

Proof. Since solvability follows easily from applying the standard energy method [27] provided that a priori
estimates (2.1)–(2.3) and 0 ≤ ϕ ≤ 1 can be verified, we only give a proof for these estimates in the following.

Since ϕ and ψ := ϕ− 1 satisfy, respectively,

ϕt − 2βε∆ϕ+
[
α| ∇u |2 +

β

2ε

]
ϕ ≥ 0, ϕ(0) = ϕ0 ≥ 0,

ψt − 2βε∆ψ +
[
α| ∇u |2 +

β

2ε

]
ψ ≤ 0, ψ(0) = ϕ0 − 1 ≤ 0,

testing the first equation by ϕ− := max{−ϕ, 0} and the second by ψ+ := max{ψ, 0}, and using the fact that
ϕ(0)− = 0 and ψ(0)+ = 0 immediately yields 0 ≤ ϕ(t, x) ≤ 1, a.e. (t, x) ∈ ΩT .

Next, (2.1) and (2.2) follows directly from testing (1.5) by u and (1.6) by ϕ, respectively.
To show (2.3), testing (1.5) by τ(t)ut and (1.6) by τ(t)ϕt, and adding the resulted equations we get

d
dt
[
τ(t)ATε

(
u(t), ϕ(t)

) ]
+ τ(t)

[
‖ ut(t) ‖2

L2 + ‖ϕt(t) ‖2
L2

]
= τ ′(t)ATε

(
u(t), ϕ(t)

)
. (2.5)

Then (2.3) follows from integrating (2.5) in t from 0 to s and using the assumption τ(0) = 0.
Finally, it remains to verify (2.4). Define

κ1 := min
{

min
ΩT

g, min
Ω
u0

}
, κ2 := max

{
max
ΩT

g, max
Ω

u0

}
·

The assertion immediately follows from testing (1.5) by (u − κ1)− and (u − κ2)+, respectively. The proof is
complete. �
Remark 2.2. (a). Note that B0 is independent of ε, but B0 grows linearly in ε−1. This is expectable since ϕ
should have large gradient (corresponding to small ε) near the edges of an image. Since (2.2) implies that
‖∇ϕ ‖L2(ΩT ) = O(ε−1), we conclude that the width of smeared edges of Ambrosio-Tortorelli’s approximation
model (1.4) is not bigger than O(ε) order.

(b). Since u0 ∈ L∞(Ω) and g ∈ L∞(ΩT ) are satisfied for all image applications, practically, (2.4) holds in
general.

2.2. Regularity and uniqueness properties of weak solutions

In this section we address regularity and uniqueness properties of weak solutions to (1.5)–(1.8) with more
regular datum functions. Special attention will be given on deriving a priori estimates with explicit dependence
on the parameters ε, kε, α, β, γ, and the data (u0, ϕ0) and g. Such a priori estimates will be useful for finite
element error analysis in the next section. It turns out that estimates in L2(ΩT ) of all first order derivatives
of the solutions are easy to get due to the fact that there is an underlying energy law for every gradient flow.
However, it is far from straightforward to derive a priori estimates for the second order derivatives of the
solution due to the strong nonlinearity. To overcome the difficulty, we use an idea of Struwe [35] to examine the
solution’s behavior based on a local energy law, and show that the system has a unique global in time strong
solution which is (strongly) differentiable in space-time, away from at most finitely many points {(x�, t� )}K

�=1

in ΩT .
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We start with the energy law for the gradient flow (1.5)–(1.8).

Theorem 2.2. In addition to assumptions of Theorem 2.1, suppose that (u0, ϕ0 ) ∈
[
H1(Ω)

]2, and g ∈
L2(Ω) is independent of t. Then, weak solutions (u, ϕ ) to (1.5)–(1.8) satisfy (u, ϕ ) ∈

[
L∞((0, T );H1(Ω)

)
∩

H1
(
(0, T );L2(Ω)

)]2 and the energy law

ess sup
t∈[0,T ]

ATε

(
u(t), ϕ(t)

)
+
∫ T

0

[
‖ϕt ‖2

L2 + ‖ ut ‖2
L2

]
dt = ATε(u0, ϕ0). (2.6)

Proof. It suffices to prove (2.6), which follows in the same way as for (2.3) (cf. (2.5)) with τ(t) ≡ 1. Since
ATε(u0, ϕ0) <∞, (2.6) follows from integrating (2.5) in t from 0 to s ∈ [0, T ]. The proof is complete. �

Definition 2.2. A weak solution (u, ϕ) is called a quasi-strong solution if (u, ϕ) ∈ [H1((0, T );L2(Ω)) ∩
L∞((0, T );H1(Ω))]2.

For x0 ∈ Ω, let BR(x0) denote the ball of radius R (> 0) centered at x0. Define the local energy over
BR(x0) as

ATε

(
(u(t), ϕ(t));BR(x0)

)
=
α

2

∫
BR(x0)

(kε + ϕ2)| ∇u |2 dx

+ β

∫
BR(x0)

[
ε| ∇ϕ |2 +

1
4ε
f(ϕ)

]
dx+

1
2

∫
BR(x0)

γ |u− g |2 dx. (2.7)

Next, we show that a local version of (2.6), referred as the local energy law, also holds for the gradient
flow (1.5)–(1.8).

Lemma 2.1. Let (u0, ϕ0 ) ∈
[
H1(Ω)

]2. For x0 ∈ Ω, let B2R0(x0) be the largest ball contained in Ω with the
center at x0. Then, for all 0 < R ≤ R0, there holds

ATε

(
(u(T ), ϕ(T ));BR(x0)

)
≤ ATε

(
(u0, ϕ0);B2R(x0)

)
+

B2T

R2
ATε(u0, ϕ0) ∀T ≥ 0,

where B2 := 16
[
α(1 + kε) + βε

]
.

Proof. Let φ be a cutoff function satisfying φ ∈ C∞
0

(
B2R(x0)

)
, 0 ≤ φ ≤ 1 in Ω, φ ≡ 1 in BR(x0), and | ∇φ | ≤ 2

R .
Testing (1.5)–(1.6) with (φ2ut, φ

2ϕt ) and applying Young’s inequality lead to

∫
Ω

[
|ut |2 + |ϕt |2

]
φ2 dx+

d
dt

[
kεα

2

∫
Ω

| ∇u |2φ2 dx+ βε

∫
Ω

| ∇ϕ |2φ2 dx

+
α

2

∫
Ω

| ∇u |2ϕ2φ2 dx+
1
2

∫
Ω

γ|u− g |2φ2 dx+
β

4ε

∫
Ω

|ϕ− 1 |2φ2 dx
]

≤ 2kεα| (∇u, φ∇φut) | + 4βε| (∇ϕ, φ∇φϕt) | + 2α| (ϕ2∇u, φ∇φut) |

≤ 2k2
εα

2

∫
Ω

| ∇u |2| ∇ϕ |2 dx+ 4β2ε2
∫

Ω

| ∇ϕ |2| ∇φ |2 dx+ 2α2

∫
Ω

ϕ4| ∇u |2| ∇φ |2 dx+
∫

Ω

[
|ut |2 + |ϕt |2

]
φ2 dx

≤ 16
R2

[
kεα+ α+ βε

]
ATε(u0, ϕ0) +

∫
Ω

[
|ut |2 + |ϕt |2

]
φ2 dx.

Integration over time then implies the assertion. �
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To proceed, we need some notation. Suppose (u0, ϕ0 ) ∈
[
H1(Ω)

]2
, for any given ε1 > 0, let R1 > 0 be the

maximal number such that
sup
x0∈Ω

ATε

(
(u0, ϕ0);B2R1(x0)

)
< ε1, (2.8)

and let T1 > 0 be a number such that any weak solution (u, ϕ ) of (1.5)–(1.8) taking the initial value (u0, ϕ0)
satisfies

sup
x0∈Ω

ATε

((
u(t), ϕ(t)

)
;BR1(x0)

)
< 2ε1. (2.9)

Note that, in view of the local energy law of Lemma 2.1, we may let T1 = ε1R2
1

B2ATε(u0,ϕ0)
·

Theorem 2.3. Let N = 2, suppose that ATε(u0, ε0) < ∞. For sufficiently small ε1 = O(εk2
ε), choose T1

as above, (1.5)–(1.8) has a unique strong solution (u, ϕ ) ∈
[
L∞((0, T1);H1(Ω)

)
∩ L2

(
(0, T1); H2(Ω)

)]2 which
satisfies

max
[0,T1)

(
‖∇u ‖2

L2 + ‖∇ϕ ‖2
L2

)
+
∫ T1

0

(
α‖
√
k2

ε + ϕ2 ∆u ‖2
L2 + βε‖∆ϕ ‖2

L2

)
ds

≤ C0 :=
Cεkε

B2

[
R2

1

ATε(u0, ϕ0)
‖ γg ‖2

L2 + kε

]
.

Proof. It suffices to derive the desired a priori error estimate and prove the uniqueness. We divide the proof
into three steps.

Step 1. Existence: a first a priori bound. Testing equations (1.5)–(1.6) with (−∆u,−∆ϕ) gives

1
2

d
dt
(
‖∇u ‖2

L2 + ‖∇ϕ ‖2
L2

)
+
α

2
‖
√
kε + ϕ2∆u ‖2

L2 + 2βε‖∆ϕ ‖2
L2 +

β

2ε
‖∇ϕ ‖2

L2 + ‖√γ∇u ‖2
L2

≤ 1
2αkε

‖ γ g ‖2
L2 + 2α| (ϕ∇ϕ,∇u∆u) | + α| (| ∇u |2ϕ,∆ϕ) |. (2.10)

The last two terms can be bounded as follows

2α | (ϕ∇ϕ,∇u∆u) | + α | (| ∇u |2ϕ,∆ϕ) | ≤ α

4
‖ϕ∆u ‖2

L2 + βε‖∆ϕ ‖2
L2

+ 2α ‖∇ϕ ‖4
L4 +

[
2α+

α2

4βε

]
‖∇u ‖4

L4. (2.11)

Step 2. Existence: control of (∇u,∇ϕ ). Let {φi}i≥1 be a smooth partition of unity subordinate to a cover
of Ω by balls {BR1(xi)}i≥1 with finite overlaps satisfying 0 ≤ φi ≤ 1, | ∇φi | ≤ 2

R1
, and

∑
i≥1 φ

2
i = 1. Then,

interpolating L4 norm by L2 and H1 norms and using (2.9) we have

‖∇ϕ(t) ‖4
L4 =

∑
i≥1

∫
Ω

| ∇ϕ(t) |4φ2
i dx (2.12)

≤ C
∑
i≥1

‖∇ϕ ‖2
L2(BR1 (xi))

[
‖∇2ϕ ‖2

L2(BR1(xi))
+ ‖ |∇ϕ| |∇φi| ‖2

L2(BR1 (xi))

]

≤ C

βε
sup

i
ATε

((
u(t), ϕ(t)

)
;BR1(xi)

) [
‖∇2ϕ(t) ‖2

L2 +
1

βεR2
1

ATε(u0, ϕ0)
]

≤ Cε1
βε

[
‖∆ϕ(t) ‖2

L2 +
1

βεR2
1

ATε(u0, ϕ0)
]

∀t ∈ [0, T1).
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Here we have used the Calderón-Zygmund inequality to get the last inequality. Similarly, we have

‖∇u(t) ‖4
L4 ≤ Cε1

kε

[
‖∆u(t) ‖2

L2 +
1

kεR2
1

ATε(u0, ϕ0)
]

∀t ∈ [0, T1). (2.13)

We recall that T1 depends on ε1 linearly in the form T1 = ε1R2
1

B2ATε(u0,ϕ0)
·

Substituting (2.11)–(2.13) into (2.10) yields

1
2

d
dt
(
‖∇u ‖2 + ‖∇ϕ ‖2

)
+
α

4
‖
√
kε + ϕ2∆u ‖2

L2 + βε‖∆ϕ ‖2
L2 + ‖√γ∇u ‖2

L2 +
β

2ε
‖∇ϕ ‖2

L2

≤ 1
2αkε

‖ γg ‖2
L2 +

2αε1C
βε

[
‖∆ϕ(t) ‖2

L2 +
1

βεR2
1

ATε(u0, ϕ0)
]

+
(
α(8βε+ α)ε1C

4βεkε

)[
‖∆u(t) ‖2

L2 +
1

kεR2
1

ATε(u0, ϕ0)
]
.

Then, the desired estimate follows from integrating in t from 0 to T1 after choosing ε1 = O(εk2
ε).

Step 3. Uniqueness: We now show that the space
[
L∞((0, T );H1(Ω)

)
∩L2

(
(0, T );H2(Ω)

)]2 is a uniqueness
class. Suppose (ui, ϕi ) for i = 1, 2 are two strong solutions corresponding to the same datum functions (u0, ϕ0 ),
and g. Let e = u1 − u2 and η = ϕ1 − ϕ2, subtracting equations satisfied by (ui, ϕi ) leads to the following
“error” equations which hold in distributional sense,

et − α div
(
(kε + ϕ2

1)∇e+ η(ϕ1 + ϕ2)∇u2

)
+ γe = 0 in ΩT , (2.14)

ηt − 2βε∆η +
(
α| ∇u1 |2 +

β

2ε

)
η + α

(
| ∇u1 |2 − |∇u2 |2

)
ϕ2 = 0 in ΩT , (2.15)

∂e

∂n
=
∂η

∂n
= 0 on ∂ΩT , (2.16)

e(·, 0) = η(·, 0) = 0 in Ω. (2.17)

Testing (2.14) by e and (2.15) by η we obtain

1
2

d
dt

‖ e ‖2
L2 + αkε‖∇e ‖2

L2 + α‖ϕ1∇e ‖2
L2 + ‖√γe ‖2

L2 = −α
(
(ϕ1 + ϕ2)∇u2η,∇e

)
, (2.18)

1
2

d
dt

‖ η ‖2
L2 + 2βε‖∇η ‖2

L2 + α‖∇u1η ‖2
L2 +

β

2ε
‖ η ‖2

L2 = −α
(
[| ∇u1 |2 − |∇u2 |2]ϕ2, η

)
. (2.19)

Reversing the roles of (u1, ϕ1) and (u2, ϕ2) in the above derivation then gives

1
2

d
dt

‖ e ‖2
L2 + αkε‖∇e ‖2

L2 + α‖ϕ2∇e ‖2
L2 + ‖√γe ‖2

L2 = −α
(
(ϕ1 + ϕ2)∇u1η,∇e

)
, (2.20)

1
2

d
dt

‖ η ‖2
L2 + 2βε‖∇η ‖2

L2 + α‖∇u2η ‖2
L2 +

β

2ε
‖ η ‖2

L2 (2.21)

= −α
(
[| ∇u1 |2 − |∇u2 |2]ϕ1, η

)
. (2.22)
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Now, adding (2.20) to (2.18), and (2.21) to (2.19), we finally get

d
dt

‖ e ‖2
L2 + 2αkε‖∇e ‖2

L2 + α
[
‖ϕ1∇e ‖2

L2 + ‖ϕ2∇e ‖2
L2

]
+ 2‖√γe ‖2

L2 = −α
(
(ϕ1 + ϕ2)(∇u1 + ∇u2)η,∇e

)
,

(2.23)
d
dt

‖ η ‖2
L2 + 4βε‖∇η ‖2

L2 + α
[
‖∇u1η ‖2

L2 + ‖∇u2η ‖2
L2

]
+
β

ε
‖ η ‖2

L2 = −α
(
[| ∇u1 |2 − |∇u2 |2](ϕ1 + ϕ2), η

)
= −α

(
(ϕ1 + ϕ2)(∇u1 + ∇u2)η,∇e

)
.

(2.24)

We bound the term on the right hand sides of (2.23) and (2.24) as follows,

| 2α
(
(ϕ1 + ϕ2)(∇u1 + ∇u2)η,∇e

)
| ≤ 2α‖ϕ1 + ϕ2 ‖L∞‖∇e ‖L2‖∇(u1 + u2) ‖L4‖ η ‖L4

≤ 8α
kε

‖∇(u1 + u2) ‖2
L4‖ η ‖2

L4 +
αkε

2
‖∇e ‖2

L2

≤ 8Cα2

βεk2
ε

‖∇(u1 + u2) ‖4
L4‖ η ‖2

L2 + 2βε‖∇η ‖2
L2 +

αkε

2
‖∇e ‖2

L2. (2.25)

Since ui ∈ L2((0, T );H2(Ω)) ⊂ L4((0, T );W 1,4(Ω)), it follows from adding (2.23) to (2.24), using (2.25) and the
Gronwall’s inequality that

‖ e(t) ‖2
L2 + ‖ η(t) ‖2

L2 = 0 ∀ t ∈ [0, T ∗].
Hence, uniqueness follows. �
Remark 2.3. Step 3 above actually shows that [L∞((0, T );H1(Ω))∩L4((0, T );W 1,4(Ω))]2 is a uniqueness class
in both cases N = 2 and N = 3.

The following lemma is now a consequence of Theorem 2.3.

Corollary 2.1. Let N = 2, and ε1, T1 be same as in Theorem 2.3. Suppose (u0, ϕ0 ) ∈
[
H2(Ω)

]2. Then,
(u, ϕ ) ∈

[
L∞((0, T1);H2(Ω)

)]2, and

(i) ess sup
[0,T1)

(
‖ ut ‖2

L2 + ‖ϕt ‖2
L2

)
+
∫ T1

0

[
α‖
√
kε + ϕ2 ∇ut ‖2

L2 + α‖ϕt∇u ‖2
L2 + βε‖∇ϕt ‖2

L2

]
ds

≤ C1 := exp
(
α(B2C0 + ε1)C

βB2

)[
‖ ut(0) ‖2

L2 + ‖ϕt(0) ‖2
L2

]
.

(ii) ess sup
[0,T1)

(
α2kε‖

√
kε + ϕ2 ∆u ‖2

L2 + β2ε2‖∆ϕ ‖2
L2

)
≤ C2 := C1 +

α2ε(1 + kε)C
R2

1

,

(iii)
∫ T1

0

‖ utt ‖2
H−1 ds ≤ C3 := 2C1 + 2‖ γ ‖2

L∞ATε(u0, ϕ0),

(iii)
∫ T1

0

‖ϕtt ‖2
H−1 ds ≤ C4 := C C1

[
8β
(
ε+ βkε

)
+

√
C2ATε(u0, ϕ0)

αk3
ε

]
.

Proof. (i) Differentiating (1.5) and (1.6) in t yields

utt − α div
(
(kε + ϕ2)∇ut + 2ϕϕt∇u

)
+ γut = 0 in ΩT , (2.26)

ϕtt − 2βε∆ϕt + 2α〈∇u,∇ut〉ϕ+ α| ∇u |2ϕt +
β

2ε
ϕt = 0 in ΩT . (2.27)
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Testing (2.26) with ut and (2.27) with ϕt, and adding the resulting equations lead to

1
2

d
dt
(
‖ ut ‖2

L2 + ‖ϕt ‖2
L2

)
+ α‖

√
kε + ϕ2∇ut ‖2

L2 + α‖ϕt∇u ‖2
L2 + 2βε‖∇ϕt ‖2

L2 +
β

2ε
‖ϕt ‖2

L2 + ‖√γ ut ‖2
L2

≤ Cα2

βε
‖∇u ‖4

L4‖ϕt ‖2
L2 + βε‖∇ϕt ‖2

L2 +
α

2
‖ϕ∇ut ‖2

L2 .

By (2.13), the first term on the right hand side can be bounded as

Cα2

βε
‖∇u ‖4

L4‖ϕt ‖2
L2 ≤ Cα2ε1

βεkε

[
‖∆u(t) ‖2

L2 +
1

kεR2
1

ATε(u0, ϕ0)
]
‖ϕt ‖2

L2 .

The regularity of the initial data ensures the existence of lims→0 ‖ ut(s) ‖L2 and lims→0 ‖ϕt(s) ‖L2 . Recall that
ε1 = O(εk2

ε), the assertion (i) then follows from applying the Gronwall’s lemma and Theorem 2.3.

(ii) First, testing (1.6) by −βε∆ϕ and using (2.13) we get

β2ε2‖∆ϕ ‖2
L2 ≤ ‖ϕt ‖2

L2 + α2‖∇u ‖4
L4 ≤ ‖ϕt ‖2

L2 +
α2ε1C

kε
‖∆u ‖2

L2 +
α2ε1C

k2
εR

2
1

ATε(u0, ϕ0) . (2.28)

Then, testing (1.5) by −αkε∆u and using (2.12) and (2.13) we obtain

α2kε‖
√
kε + ϕ2 ∆u ‖2

L2 ≤ ‖ ut ‖2
L2 + α2kε

(
‖∇u ‖4

L4 + ‖∇ϕ ‖4
L4

)
≤ ‖ ut ‖2

L2 +
α2ε1kεC

βε
‖∆ϕ ‖2

L2 +
α2ε1(1 + kε)C

kε
‖∆u ‖2

L2

+
[
α2ε1(β2ε2 + k3

ε)C
β2ε2k2

εR
2
1

]
ATε(u0, ϕ0).

(iii) From (2.26) we have

‖ utt ‖2
H−1 ≤ 2α

[
‖
√
kε + ϕ2∇ut ‖2

L2 + ‖ϕt∇u ‖2
L2

]
+ 2‖ γ ‖2

L∞‖ ut ‖2
L2.

The assertion follows from integrating the above inequality in t from 0 to T1 and using (i) and (2.6).
(iv) From (2.27), the assertions (i)-(ii) and (2.6) we conclude

∫ T1

0

‖ϕtt ‖2
H−1 ds ≤ 8

∫ T1

0

[
β2ε2‖∇ϕt ‖2

L2 + α‖∇u · ∇utϕ ‖2
H−1 + α2‖ |∇u |2ϕt ‖2

H−1 +
β2

ε2
‖ϕt ‖2

L2

]
ds

≤ 8C1β

(
ε+

βT1

ε2

)
+ Cα2

∫ T1

0

‖∇u ‖2
L4

[
‖ϕ∇ut ‖2

L2 + ‖∇uϕt ‖2
L2

]
ds

≤ 8C1β

(
ε+

βk2
ε

ε

)
+ Cα

∫ T1

0

‖∆u ‖L2‖∇u ‖L2

[
α‖ϕ∇ut ‖2

L2 + α‖∇uϕt ‖2
L2

]
ds

≤ 8C1β
(
ε+ βkε

)
+
C
√
C2ATε(u0, ϕ0)
√
αk

3
2
ε

C1.

The proof is complete. �

Remark 2.4. We note that by Morrey’s lemma, a maximum radius R1 = R1(ε, kε;α, β) in (2.8) can be
computed explicitly for a given ε1 when the initial data (u0, ϕ0 ) ∈

[
H2(Ω)

]2.
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The local strong solution exists until the first time T = t1 such that

lim sup
t→T

(
ATε

(
(u(t), ϕ(t));BR(x0)

))
≥ ε1 ∀R > 0 .

By Theorem 2.2, ut, ϕt ∈ L2(ΩT ), hence the L2-limits u1 = limt→T u(t) and ϕ1 = limt→T ϕ(t) exist. Let (v, ψ)
be a local strong solution of (1.5)–(1.8) over the time interval [T, T ) with initial data (u1, ϕ1) at time T . The
composed function

( ũ(t), ϕ̃(t) ) =
{

(u(t), ϕ(t) ) for 0 ≤ t ≤ T,
( v(t), ψ(t) ) for T ≤ t ≤ T ,

then actually is a quasi-strong solution of (1.5)–(1.8) over the time interval [0, T ]. It is easy to see that this
extension process can be continued until T = ∞.

We now prove that there are at most finite number of restarts in the above extension process. Moreover, we
show that such a “piecewise” (in t) strong solution has at most finite number of point singularities in space-time
where the solution ceases to be strong, and it is unique in this class. To state the result, we need the following
notation

YT (Ω) :=


χ ∈ L∞((0, T );H1(Ω)

)
: ∃ ( tk, xk )K

k=1 : ∆χ ∈ L2
(
ΩT \

⋃
1≤k≤K

Bδ(tk, xk)
)
, ∀ δ > 0


 ·

Theorem 2.4. Let N = 2 and T = ∞. Suppose ATε(u0, ϕ0) < ∞ and g ∈ L2(Ω). Then, there exist at most
finite number space-time points (xk, tk ), 1 ≤ k ≤ K such that (1.5)–(1.8) has a unique solution in

[
YT (Ω)

]2.

Proof. Since existence has been showed above, it suffices to prove that the singularity set must be finite in
space-time and uniqueness. The idea of the proof is borrowed from [35].

Let t = t1 be the first singular time, and

Sing(t) =
{
x0 ∈ Ω : ∀R > 0 : lim sup

t→t

ATε

(
(u(t), ϕ(t));BR(x0)

)
> ε1

}
·

We want to show that Sing(t) is finite: suppose x1, ..., xK ∈ Sing(t). Choose R > 0 such that B2R(xi) ∩
B2R(xj) = ∅ (i �= j), and fix τ ∈

[
t − ε1R2

2B2AT (u0,ϕ0)

)
, where B2 is the constant in Lemma 2.1 and ε1 = O(εk2

ε)
same as in Theorem 2.2. According to Lemma 2.1,

Kε1 ≤
K∑

k=1

lim sup
t→t

ATε

(
(u(t), ϕ(t));BR(xi)

)

≤
K∑

i=1

[
ATε

(
u(τ), ϕ(τ);B2R(xi)

)
+
ε1
2

]
≤ ATε(u0, ϕ0) +

Kε1
2
,
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and hence K = K1 = card
(
Sing(t1)

)
≤ 2ATε(u0, ϕ0)ε−1

1 . Moreover, for (u1, ϕ1 ) = limt→t1(u(t), ϕ(t) ) we have

ATε(u1, ϕ1) = lim
R→0

ATε

((
u1, ϕ1

)
; Ω \

K1⋃
i=1

B2R(xi)

)

≤ lim
R→0

lim sup
t→t1

ATε

((
u(t), ϕ(t)

)
; Ω \

K1⋃
i=1

B2R(xi)

)

≤ lim
R→0

lim sup
t→t1

[
ATε

(
u(t), ϕ(t)

)
−

K1∑
i=1

ATε

(
(u(t), ϕ(t));B2R(xi)

) ]

≤ lim
R→0

[
ATε(u0, ϕ0) − lim inf

t→t1

K1∑
i=1

ATε

(
(u(t), ϕ(t));B2R(xi)

) ]

≤ ATε(u0, ϕ0) −
K1∑
i=1

lim
R→0

lim sup
t→t1

ATε

(
(u(t), ϕ(t));BR(xi)

)
≤ ATε(u0, ϕ0) −K1ε1.

Similarly, let K2,K3, ... be the number of singular points at consecutive times t2 < t3 < ..., and let (uj , ϕj ) =
limt→tj

(u(t), ϕ(t) ), for j = 2, 3, .... By induction, we have

ATε(uj , ϕj) ≤ ATε(uj−1, ϕj−1) −Kjε1 ≤ ... ≤ ATε(u0, ϕ0) − (K1 + ...+Kj)ε1.

This implies that the total number K of singular points, hence also the number of singular times tj is finite.
Indeed, K ≤ ATε

(
u0, ε0

)
ε−1
1 .

The finite number of singular times together with Theorem 2.1 implies uniqueness of solutions in the
class YT . �
Remark 2.5. (a) It is not clear whether singularity really exists for a fixed ε, the above theorem describes the
worst possible scenario when it does1.

(b) The estimate K ≤ ATε

(
u0, ε0

)
ε−1
1 indicates that K could tend to infinity very fast as ε→ 0.

3. Analysis of fully discrete finite element approximations

In this section, we shall propose a family of fully discrete finite element discretizations for the gradient
flow (1.5)–(1.8), including mass lumping strategies. Three (semi-)implicit schemes for both “consistent” and
mass lumped spatial discretizations are analyzed in detail. We prove convergence of solutions to these discrete
schemes (“mass lumped version”) to weak and (piecewise) strong solutions of (1.5)–(1.8), and establish optimal
order error estimates for the numerical solutions (“consistent version”) in the case that (1.5)–(1.8) possesses
strong solutions.

3.1. Fully discrete schemes

In the sequel, we assume that Ω ⊂ RN is a polygonal domain. Let Th be a quasi-uniform triangulation of Ω
(K ∈ Th are tetrahedrons when N = 3) with mesh size h ∈ (0, 1). Let V h denote the finite element space of
continuous, piecewise linear functions associated with Th, that is,

V h = V h(Ω) :=
{
vh ∈ C0(Ω); vh|K ∈ P1(K), ∀K ∈ Th

}
·

1A recent discussion with John W. Barrett leads us to conclude that for each fixed ε > 0, the singularity set of the solution
to (1.5)–(1.8) is empty. This conclusion can be proved by using an argument of [5] where a similar parabolic system is studied.
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Let {tm}M
m=0 be an equidistant partition of [0, T ] of mesh size k ∈ (0, 1) and introduce the notation dtu

m :=
(um −um−1)/k. We now define the following family of consistent fully discrete finite element discretizations for
the gradient flow (1.5)–(1.8): Find (um

h , ϕ
m
h ) ∈ [V h]2 for m = 0, 1, 2, · · · ,M such that

(
dtu

m
h , vh

)
+ α

(
kε∇um

h + |ϕm,µ
h |2 ∇um

h ,∇vh

)
+
(
γ [um

h − gm], vh

)
= 0 ∀vh ∈ V h , (3.1)(

dtϕ
m
h , ψh

)
+ 2βε

(
∇ϕm

h ,∇ψh

)
+ α

(
|∇um,ν

h |2ϕm
h , ψh

)
+
β

2ε
(
ϕm

h − 1, ψh

)
= 0 ∀ψh ∈ V h , (3.2)

with some starting value (u0
h, ϕ

0
h ) ∈ [V h]2.

Approximation of weak solutions requires a modification of this scheme (“mass lumped version”) that has a
maximum principle for discrete solutions {ϕm

h }: find (um
h , ϕ

m
h ) ∈ [V h]2 for m = 0, 1, 2, · · · ,M such that

(
dtu

m
h , vh

)
+ αkε

(
∇um

h ,∇vh

)
+ α

(
|ϕm,µ

h |2 ∇um
h ,∇vh

)
h

+
(
γ [um

h − gm], vh

)
= 0 ∀vh ∈ V h, (3.3)(

dtϕ
m
h , ψh

)
+ 2βε

(
∇ϕm

h ,∇ψh

)
+ α

(
|∇um,ν

h |2ϕm
h , ψh

)
h

+
β

2ε
(
ϕm

h − 1, ψh

)
h

= 0 ∀ψh ∈ V h, (3.4)

with some starting value (u0
h, ϕ

0
h ) ∈ [V h]2.

In both above discretizations, (·, ·) denotes the standard inner product of L2(Ω), and

ϕm,µ
h := µϕm + (1 − µ)ϕm−1 ∀µ ∈ [0, 1],

um,ν
h := ν um + (1 − ν)um−1 ∀ ν ∈ [0, 1].

Moreover, lumped mass integration in (3.3)–(3.4) is defined by

(χ, η)h =
∑

K∈Th

∫
K

Ih(χη) dx ∀χ, η ∈ C(Ω), (3.5)

where Ih : C(Ω) → V h denotes the (linear) Lagrange interpolation operator on Th. We recall the following
properties of lumped mass integration (cf. Appendix of [20]),

| (χh, ηh)h − (χh, ηh) | ≤ Ch2 ‖χh ‖H1 ‖ ηh ‖H1 ∀χh, ηh ∈ V h, (3.6)

| (χh, η)h − (χh, η) | ≤ Ch2 ‖χh ‖H1 ‖ η ‖H2 ∀χh ∈ V h , ∀ η ∈ H2(Ω), (3.7)

c0‖χh ‖L2 ≤ ‖χh ‖h :=
(
(χh, χh)h

) 1
2 ≤ c1‖χh ‖L2 ∀χh ∈ V h, (3.8)

where ci > 0, i = 0, 1 does not depend on h.

Remark 3.1. If µν �= 0, the above family of schemes is fully implicit, and if µν = 0, the family is semi-
implicit. In the rest of this section, we will mainly consider the following cases of (µ, ν). (i) (µ, ν) = (0, 1), (ii)
(µ, ν) = (1, 0), and (iii) (µ, ν) = (1, 1). We also remark that the unique solvability of (3.1)–(3.2), and (3.3)–(3.4)
is trivial for the cases (i) and (ii). For the case (iii), it can be shown by using a fixed point argumentation in
view of the a priori estimates to be given in Lemma 3.1 below.

3.2. Convergence of the fully discrete schemes

In this section we shall establish convergence of a subsequence (resp. the whole sequence) of the fully discrete
solution defined by (3.3)–(3.4) to a weak solution (resp. the strong solution) of (1.5)–(1.8) as h, k → 0. We
begin the subsection with a definition of acute triangulations [15], which will be imposed to ensure that the
discrete maximum principle holds for the solution {ϕm

h }·
Definition 3.1. A triangulation Th is said to be an acute triangulation if there exists θ0 > 0 such that every
interior angle of all elements in Th is less than or equal to π

2 − θ0.
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Lemma 3.1. The solutions (um
h , ϕ

m
h ) of both (3.1)–(3.2) and (3.3)–(3.4) satisfy the following estimates:

max
0≤m≤M

‖ um
h ‖2

L2 + k

M∑
m=1

{
k‖ dtu

m
h ‖2

L2 + αkε‖∇um
h ‖2

L2 + α‖ϕm,µ∇um
h ‖2

h

+αc20‖ϕm,µ∇um
h ‖2

L2 + ‖√γ um
h ‖2

L2

}
≤ ‖ u0

h ‖2
L2 + k

M∑
m=1

‖√γ gm ‖2
L2, (3.9)

max
0≤m≤M

‖ϕm
h ‖2

L2 + k
M∑

m=1

{
k‖ dtϕ

m
h ‖2

L2 + 4βε‖∇ϕm
h ‖2

L2 + α‖ϕm
h ∇um,ν ‖2

h

+αc20‖ϕm
h ∇um,ν ‖2

L2 +
β

2ε
‖ϕm

h − 1 ‖2
L2

}
≤ ‖ϕ0

h ‖2
L2 +

βT

2ε
|Ω|. (3.10)

In the case (3.3)–(3.4), and for an acute triangulation Th of Ω, h2 ≤ Cθ0βεk, and 0 ≤ ϕ0
h ≤ 1, then

0 ≤ ϕm
h ≤ 1 ∀ 0 ≤ m ≤M, a.e. x ∈ Ω. (3.11)

Where Cθ0 is positive constant which depends on θ0 but is independent of h.

Proof. The proof for (3.1, 3.2) is in the same line as that for Theorem 2.1. (3.9) and (3.10) are obtained by
testing (3.1) by um

h and testing (3.2) by ϕm
h , respectively, and applying the operator k

∑�
m=1 (� ≤ M) to the

resulting inequalities. For (3.3, 3.4), since Ih is linear and | ∇um
h |
∣∣
K
≡ const for any K ∈ Th, elementwise

application of (3.8) then yields assertions (3.9) and (3.10), respectively.
To show (3.11), let {φi}I

i=1 denote the canonical basis of V h, K := {kij}I
i,j=1 be the stiffness matrix,

M := {mij}I
i,j=1 the mass matrix, Mh := {mh

ij}I
i,j=1 the lumped mass matrix, and Mh

σ = {(mh
σ)ij}I

i,j=1,
σ ∈ R

I a scaled lumped mass matrix, that is

kij := (∇φi,∇φj) , mij := (φi, φj) , mh
ij = (φi, φj)h =

∫
Ω

Ih(φiφj) dx,
(
mh

σ

)
ij

= |σi |2mh
ij .

Consider aij := 1
kmij + βεkij + α

(
mh

∇um,ν
h

)
ij

+ β
2εm

h
ij . Since Th is acute, there exists Cθ0 > 0, such that

kij ≤ −Cθ0 < 0 uniformly in h, for any pair of adjacent nodes. This implies aij ≤ 0, provided i �= j and
0 ≤ k−1 ≤ Cθ0h

−2; {aij}I
i,j=1 is thus an M -matrix.

Now, the desired discrete maximum principle follows from testing (3.2) by [ϕm
h ]− := Ih(ϕm

h )− and [ϕm
h −1]+ :=

Ih(ϕm
h − 1)+, as well as utilizing an inductive argument used in the proofs of Lemmas 4.1 and 4.2 of [33]. �

We introduce the following modified energy AT ε : V h × V h → R,

AT ε(um
h , ϕ

m
h ) =

α

2
(
kε‖∇um

h ‖2
L2 + ‖ϕm

h ∇um
h ‖2

h

)
+ βε‖∇ϕm

h ‖2
L2 +

β

2ε
‖ϕm − 1 ‖2

h +
γ

2
‖ um

h − g ‖2
L2. (3.12)

It follows from (3.8) that

min{c0, 1}ATε(um
h , ϕ

m
h ) ≤ AT ε(um

h , ϕ
m
h ) ≤ max{c1, 1}ATε(um

h , ϕ
m
h ). (3.13)



GRADIENT FLOW OF A REGULARIZED MUMFORD-SHAH FUNCTIONAL 305

Lemma 3.2. Suppose that g is independent of t, then the solution (um
h , ϕ

m
h ) of (3.3)-(3.4) satisfies the following

equations.
(i) For (µ, ν) = (1, 0) and (µ, ν) = (0, 1), there holds for all 1 ≤ � ≤M

AT ε(u�
h, ϕ

�
h) + k

�∑
m=1

[
‖ dtu

m
h ‖2

L2 + ‖ dtϕ
m
h ‖2

L2

]
+
k2

2

�∑
m=1

[
αkε‖ dt∇um

h ‖2
L2 + α‖ϕm,µ dt∇um

h ‖2
h

+ ‖√γ dtu
m
h ‖2

L2 + 2βε‖ dt∇ϕm
h ‖2

L2 + α‖∇um,ν dtϕ
m
h ‖2

h +
β

2ε
‖ dtϕ

m
h ‖2

h

]
= AT ε(u0

h, ϕ
0
h). (3.14)

(ii) For (µ, ν) = (1, 1), there holds for all 1 ≤ � ≤M

AT ε(u�
h, ϕ

�
h)+ k

�∑
m=1

[
‖ dtu

m
h ‖2

L2 + ‖ dtϕ
m
h ‖2

L2

]
+
k2

2

�∑
m=1

[
αkε‖ dt∇um

h ‖2
L2 +α‖ϕm,µ dt∇um

h ‖2
h + ‖√γ dtu

m
h ‖2

L2

+ 2βε‖ dt∇ϕm
h ‖2

L2 + α‖∇um,ν dtϕ
m
h ‖2

h +
β

2ε
‖ dtϕ

m
h ‖2

h + α
(
dt|ϕm

h |2, dt|∇um
h |2
)
h

]
= AT ε(u0

h, ϕ
0
h) . (3.15)

Moreover, statements (i) and (ii) also hold for the solution of (3.1)–(3.2) with ATε(·, ·) and ‖ · ‖L2 being in
place of AT ε(·, ·) and ‖ · ‖h, respectively.

Proof. The proof of (3.14) is in the same line as that of (2.6). That is, the assertion follows from testing (3.3)
by dtu

m
h and (3.4) by dtϕ

m
h , using the algebraic formulas

(dtξ
m) ξm =

1
2
dt|ξm|2 +

k

2
|dtξ

m|2,

dt(ξmψm) = ξmdtψ
m + ψm−1dtξ

m = ψmdtξ
m + ξm−1dtψ

m,

adding two resulting equations and applying the operator k
∑�

m=1 (� ≤M) to the sum.
(3.15) follows from repeating the above procedure. The only difference is that we now need to use the

following algebraic formula to handle the nonlinear terms

ξmdtψ
m + ψmdtξ

m = dt(ξmψm) + k dtξ
m dtψ

m.

The proof is complete. �

Remark 3.2. If g ∈ L2
(
(0, T );L2(Ω)

)
, similar estimates to (3.14) and (3.15) hold for (um

h , ϕ
m
h ). Since in this

case we need to control the term (g, dtu
m
h ) by 1

2‖ g ‖2
L2 + 1

2‖ dtu
m
h ‖2

L2 , hence, we do not get equalities like (3.14)
and (3.15), instead, we now obtain inequalities with a term involves gm on the right-hand sides.

Corresponding estimates to (3.14) and (3.15) for (3.3, 3.4) in terms of ATε(·) and mesh-independent norms
immediately follow from (3.13) and (3.8).

We remark that estimate (3.15) is not in a closed form, since the last term on the left-hand side does not
have a fixed sign. In fact, it is not clear if that term can be absorbed by the positive terms that proceed it,
allowing that h, k and Th satisfy some constraints.
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For the fully discrete finite element solutions {um
h } and {ϕm

h }, we define their constant and linear interpola-
tions in t as follows:

uh(·, t) := um
h , uh(·, t) := um−1

h ∀ t ∈ (tm−1, tm), 1 ≤ m ≤M, (3.16)

uh(·, t) :=
t− tm−1

k
um

h +
tm − t

k
um−1

h ∀ t ∈ [tm−1, tm], 1 ≤ m ≤M ; (3.17)

ϕh(·, t) := ϕm
h , ϕ

h
(·, t) := ϕm−1

h ∀ t ∈ (tm−1, tm), 1 ≤ m ≤M, (3.18)

ϕh(·, t) :=
t− tm−1

k
ϕm

h +
tm − t

k
ϕm−1

h ∀ t ∈ [tm−1, tm], 1 ≤ m ≤M, (3.19)

uh(·, 0) = uh(·, 0) = uh(·, 0) := u0
h, ϕh(·, 0) = ϕ

h
(·, 0) = ϕh(·, 0) := ϕ0

h. (3.20)

Clearly, uh, uh, ϕh and ϕ
h

are continuous in x but discontinuous in t. On the other hand, uh and ϕh are
continuous in both x and t.

Theorem 3.1. Let (uh, ϕh ) be the solution of (3.3)–(3.4), which is defined on an acute triangulation Th, and
h2 ≤ Cθ0βεk. Suppose that the starting value (u0

h, ϕ
0
h ) satisfies

lim
h,k→0

(
‖ u0

h − u0 ‖L2 + ‖ϕ0
h − ϕ0 ‖L2

)
= 0 . (3.21)

Let (µ, ν) = (1, 1). Then there exists a subsequence of {(uh, ϕh )} (still denoted by the same notation) and a
solution (u, ϕ ) of (1.5)–(1.8) such that

lim
h,k→0

(
‖ uh − u ‖L2(L2) + ‖ϕh − ϕ ‖L2(L2)

)
= 0 , (3.22)

lim
h,k→0

(
‖ uh − u ‖L2(L2) + ‖ϕ

h
− ϕ ‖L2(L2)

)
= 0 , (3.23)

lim
h,k→0

(
‖ uh − u ‖L2(L2) + ‖ϕh − ϕ ‖L2(L2)

)
= 0 . (3.24)

Proof. First we notice that (3.9)–(3.11) imply the following (uniform in h and k) estimates:

‖∇uh ‖L2(L2) ≤ 2‖∇uh ‖L2(L2) = 2‖∇uh ‖L2(L2) = 2

(
k

M∑
m=1

‖∇um
h ‖2

L2

) 1
2

≤ C√
kε

, (3.25)

‖ uh ‖L∞(L2) ≤ ‖ uh ‖L∞(L2) = ‖ uh ‖L∞(L2) = max
0≤m≤M

‖ um
h ‖L2 ≤ C, (3.26)

M∑
i=1

‖ um
h − um−1

h ‖2
L2 ≤ C, (3.27)

‖∇ϕh ‖L2(L2) ≤ 2‖∇ϕh ‖L2(L2) = 2‖∇ϕ
h
‖L2(L2) = 2

(
k

M∑
m=1

‖∇ϕm
h ‖2

L2

) 1
2

≤ C√
ε
, (3.28)

0 ≤ min
0≤m≤M

ϕm
h ≤ ϕh(x, t), ϕh(x, t), ϕ

h
(x, t) ≤ max

0≤m≤M
ϕm

h ≤ 1 (x, t) ∈ ΩT , (3.29)

M∑
i=1

‖ϕm
h − ϕm−1

h ‖2
L2 ≤ C. (3.30)
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Then there exist convergent subsequences of {uh} and {ϕh} (denoted by the same notation) and a pair of
functions ( û, ϕ̂ ) ∈ [L∞((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω))]2 such that as h, k → 0

uh −→ û weakly� in L∞((0, T );L2(Ω)), (3.31)

weakly in L2((0, T );H1(Ω))

ϕh −→ ϕ̂ weakly� in L∞(ΩT ) , (3.32)

weakly in L2((0, T );H1(Ω)).

Following a standard procedure (cf. [25]), it can be shown that

uh −→ û, ϕh −→ ϕ̂ strongly in L2(ΩT ), (3.33)

by first proving {(uh, ϕh )} is a Cauchy sequence in [L2(ΩT )]2 for almost every t ∈ [0, T ]. We remark that (3.21)
is required in this step.

Hence, (3.33) implies that there exist subsequences of {uh} and {ϕh} (still denoted by the same notation)
such that

uh −→ û, ϕh −→ ϕ̂ a.e. in ΩT , (3.34)

which and (3.29) immediately imply

0 ≤ ϕ̂(x, t) ≤ 1 for a.e. (x, t) ∈ ΩT . (3.35)

From (3.27) we have

‖ uh − uh ‖2
L2(L2) =

∫ T

0

‖ uh − uh ‖2
L2 dt (3.36)

=
M∑

m=1

‖ um
h − um−1

h ‖2
L2

∫ tm

tm−1

(
tm − t

k

)2

dt

=
k

3

M∑
m=1

‖ um
h − um−1

h ‖2
L2 ≤ C k.

Similarly,

‖ uh − uh ‖2
L2(L2) + ‖ϕh − ϕh ‖2

L2(L2) + ‖ϕh − ϕ
h
‖2

L2(L2) ≤ C k . (3.37)

In view of (3.33), (3.36, 3.37), we conclude that (3.22, 3.24) hold provided that we can show ( û, ϕ̂ ) is a weak
solution of (1.5)–(1.8).

Let φ ∈ C∞
0 ((0, T )) and ( v, ψ ) ∈ [C∞(Ω)]2. It follows from the finite element theory [11,15] that there exists

a sequence {( vh, ψh )} ∈ [V h]2 which converges to ( v, ψ ) strongly in [W 1,∞(Ω)]2. Now multiply (3.3) and (3.4)
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by φ(t) and integrate in t from 0 to T to get

∫ T

0

[ (
uh(t), φ′(t)vh

)
− α

(
[kε + |ϕh|2]∇uh,∇(φ(t)vh)

)
−
(
γ [uh − gh], φ(t)vh

) ]
dt =

∫ T

0

∫
Ω

(
Ih
[
|ϕh|2 ∇uh∇(φ(t)vh)

]
− |ϕh|2 ∇uh∇(φ(t)vh)

)
dxdt,

∫ T

0

[ (
ϕh, φ

′(t)ψh

)
− 2βε

(
∇ϕh,∇(φ(t)ψh)

)
− α

(
|∇uh|2ϕh, φ(t)ψh

)
− β

2ε
(
ϕh − 1, φ(t)ψh

) ]
dt =

α

∫ T

0

∫
Ω

(
Ih
[
|∇uh|2ϕhφ(t)ψh

]
−|∇uh|2ϕhφ(t)ψh

)
dxdt+

β

2ε

∫ T

0

∫
Ω

(
Ih
[
(ϕh−1)φ(t)ψh

]
− (ϕh−1)φ(t)ψh

)
dxdt,

where gh denotes the (upper) constant interpolation of {gm} in t (cf. (3.16)).
Sending h, k → 0 in the last two inequalities, it follows from (3.31)–(3.36) and a separability argument for

L2
(
(0, T );L1(Ω)

)
that

∫ T

0

[ (
û(t), φ′(t)v

)
− α

(
[kε − |ϕ̂|2]∇û,∇(φ(t)v)

)
−
(
γ [û− g], φ(t)v

) ]
dt = 0,

∫ T

0

[ (
ϕ̂, φ′(t)ψ

)
− 2βε

(
∇ϕ̂,∇(φ(t)ψ)

)
− α

(
|∇û|2ϕ̂, φ(t)ψ

)
+
β

2ε
(
ϕ̂− 1, φ(t)ψ

) ]
dt = 0,

that is, ( û, ϕ̂ ) satisfies (1.5)–(1.7) in the distribution sense.
Finally, it remains to show û(0) = u0 and ϕ̂(0) = ϕ0. This follows the same guidelines. The main difference is

that now we choose φ ∈ C∞([0, T ]) such that φ(0) = 1 and φ(T ) = 0, and use the integration by parts formulas

∫ T

0

(
uh

′(t), φ(t)vh

)
dt = −

∫ T

0

(
uh(t), φ′(t)vh

)
dt+

(
u0

h, φ(0)vh

)
,

∫ T

0

(
ϕh

′(t), φ(t)vh

)
dt = −

∫ T

0

(
ϕh(t), φ′(t)vh

)
dt+

(
ϕ0

h, φ(0)vh

)

and (3.21). The proof is complete. �

For the cases (µ, ν) = (1, 0) and (µ, ν) = (0, 1), to show that (uh, ϕh ) has a subsequence satisfying (3.22)–
(3.24), we need to use the stronger estimate (3.14) in order to ensure ∇uh, ∇uh and ∇uh, respectively, ∇ϕh, ∇ϕh

and ∇ϕ
h

converge (weakly) to the same limit.

Theorem 3.2. Let (uh, ϕh ) be the solution of (3.3)–(3.4) which is defined on an acute triangulation Th, and
h2 ≤ Cθ0βεk. Suppose that the starting value (u0

h, ϕ
0
h ) satisfies (3.21) and the constraint ATε(u0

h, ϕ
0
h) < ∞.

Then, the conclusions of Theorem 3.1 hold for the semi-implicit schemes corresponding to (µ, ν) = (1, 0) and
(µ, ν) = (0, 1).

Proof. Since the proof follows the exact same lines as that of Theorem 3.1, we only sketch the main differences.
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In addition to the estimates (3.25)–(3.30), from (3.14) we also get

‖ (uh)t ‖L2(L2) =

(
k

M∑
m=1

‖ dtu
m
h ‖2

L2

) 1
2

≤ C, (3.38)

‖∇uh ‖L∞(L2) ≤ ‖∇uh ‖L∞(L2) = ‖∇uh ‖L∞(L2) = max
0≤m≤M

‖∇um
h ‖L2 ≤ C√

kε

, (3.39)

M∑
i=1

‖∇um
h −∇um−1

h ‖2
L2 ≤ C√

kε

, (3.40)

‖ (ϕh)t ‖L2(L2) =

(
k

M∑
m=1

‖ dtϕ
m
h ‖2

L2

) 1
2

≤ C, (3.41)

‖∇ϕh ‖L∞(L2) ≤ ‖∇ϕh ‖L∞(L2) = ‖∇ϕ
h
‖L∞(L2) = max

0≤m≤M
‖∇ϕm

h ‖L2 ≤ C√
ε
, (3.42)

M∑
i=1

‖∇ϕm
h −∇ϕm−1

h ‖2
L2 ≤ C√

ε
· (3.43)

From (3.40) we have

‖∇uh −∇uh ‖2
L2(L2) =

∫ T

0

‖∇uh −∇uh ‖2
L2 dt (3.44)

=
M∑

m=1

‖∇um
h −∇um−1

h ‖2
L2

∫ tm

tm−1

(
tm − t

k

)2

dt

=
k

3

M∑
m=1

‖∇um
h −∇um−1

h ‖2
L2 ≤ C k√

kε

·

Similarly,

‖∇uh −∇uh ‖2
L2(L2) ≤ C k√

kε

, (3.45)

‖∇ϕh −∇ϕh ‖2
L2(L2) ≤ C k√

ε
, (3.46)

‖∇ϕh −∇ϕ
h
‖2

L2(L2) ≤ C k√
ε
· (3.47)

The remaining part of the proof is to extract a convergent subsequence of {(um
h , ϕ

m
h )} (still denoted by the

same notation) and then pass to the limit. Due to the stronger estimates in (3.38)–(3.47), it is easier to pass to
the limits because now not only uh, uh and uh, respectively, ϕh, ϕh and ϕ

h
, converge strongly to the same limit

in L2(ΩT ), but also their respective gradients converge weakly� to the same limit in L∞((0, T );H1(Ω)
)
. Also,

in view of (3.38) and (3.41), (3.33) follows directly from applying an Aubin-Lions compactness lemma [27,34]. �
For (u0, ϕ0 ) ∈

[
H1(Ω)

]2, since (piecewise) strong solutions are unique in the sense of Theorem 2.4, then we
have

Corollary 3.1. Suppose ATε(u0, ϕ0) < ∞ and g ∈ L2(Ω). Let Th be an acute triangulation of Ω, and h2 ≤
Cθ0βεk in scheme (3.3)–(3.4). Then, the whole sequence {(uh, ϕh )} of each of the fully implicit and semi-
implicit finite element solutions satisfies (3.22)–(3.24).
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Remark 3.3. We conclude this subsection by commenting on the choices of the starting value (u0
h, ϕ

0
h ) for

the fully discrete finite element schemes in (3.3)–(3.4). It follows from [15] that if we set u0
h = Qhu0 and

ϕ0
h = Qhϕ0, the L2-projections of u0 and ϕ0 in V h, respectively, then all the requirements of Theorems 3.1

and 3.2 for (u0
h, ϕ

0
h ) are satisfied. We also note that u0

h = Ihu0 and ϕ0
h = Ihϕ0, the piecewise linear interpo-

lations of u0 and ϕ0 into V h, satisfy the constraints of Theorem 3.1, but may fail to satisfy the requirement
“ATε(Ihu0, Ihϕ

0) <∞ uniformly in h” of Theorem 3.2.

3.3. Error estimates for the fully discrete schemes

In this last section, we shall derive some error estimates for the fully discrete finite element solutions defined
in (3.1)–(3.2) in the two dimensional case (i.e. N = 2), provided that the solution (u, ϕ ) of (1.5)–(1.8) belongs
to
[
L∞((0, T );W 1,∞(Ω)

)
∩ L2

(
(0, T );H2(Ω)

)
∩H2

(
(0, T );H−1(Ω)

)]2 satisfying assumption (3.54) below. The
analysis relies on regularity of the strong solution (u, ϕ ) and thus allows to use (3.1)–(3.2) rather than its
lumped version which satisfies a discrete maximum principle.

We establish practically useful error estimates which depend on ε−1 and k−1
ε in some low polynomial order.

Our analysis also carries over to solutions in
[
L2
(
(0, T );H2(Ω)

)
∩H2

(
(0, T );H−1(Ω)

)]2 as well, at the expense
that error constant depends exponentially on ε−1 and k−1

ε (cf. (e) of Rem. 3.4).
We begin with definitions of two projection operators. First, let Qh : L2(Ω) → V h denote the L2 projection

operator (
w −Qhw, vh

)
= 0 ∀ vh ∈ V h. (3.48)

Second, let Ph : H1(Ω) → V h ∩H1
0 (Ω) denote the usual elliptic projection operator

(
∇(w − Phw),∇vh

)
= 0 ∀ vh ∈ V h ∩H1

0 (Ω). (3.49)

It is well-known that the above projection operators have the following approximation properties [11, 15].

Lemma 3.3. There exists a positive constant C such that for h ∈ (0, 1)

‖ v −Qhv ‖L2 + h‖∇(v −Qhv) ‖L2 ≤ C h‖ v ‖H1 ∀ v ∈ H1(Ω), (3.50)
‖ v −Qhv ‖L2 ≤ C h2‖ v ‖H2 ∀ v ∈ H2(Ω), (3.51)
‖ v − Phv ‖L2 + h‖∇(v − Phv) ‖L2 ≤ C h2 ‖ v ‖H2 ∀ v ∈ H2(Ω), (3.52)
‖ v − Phv ‖L∞ ≤ C h | lnh|‖∇v ‖L∞ ∀ v ∈W 1,∞(Ω). (3.53)

Theorem 3.3. Let (u0, ϕ0 ) ∈
[
H2(Ω)

]2. Let Th be a quasi-uniform triangulation of Ω, and (u, ϕ ) ∈[
L∞((0, T );W 1,∞(Ω)

)
∩ L2

(
(0, T );H2(Ω)

)
∩H2

(
(0, T );H−1(Ω)

)]2 satisfies the growth condition

C∗ := ‖∇u ‖L∞(L∞) + ‖∇ϕ ‖L∞(L∞) = O
(
ε−

1
2
)

(for ε� 1). (3.54)

For each of three pairs of (µ, ν):

(i) (µ, ν) = (0, 1),

(ii) (µ, ν) = (1, 0),

(iii) (µ, ν) = (1, 1),
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in (3.1)–(3.2), let Em
u := u(tm) − um

h and Em
ϕ := ϕ(tm) − ϕm

h . Then, under the following starting value and
mesh constraints

‖ u0
h − u0 ‖L2 + ‖ϕ0

h − ϕ0 ‖L2 ≤ C h, (3.55)

h| lnh| < αkε

C∗ = O(ε
1
2 kε), (3.56)

k = o(h
1
2 ), (3.57)

the global errors Em
u and Em

ϕ satisfy

max
0≤m≤M

[
‖Em

u ‖L2 + ‖Em
ϕ ‖L2

]
+
{
k

M∑
m=1

[
k‖ dtE

m
u ‖2

L2 + k‖ dtE
m
ϕ ‖2

L2 + αkε‖∇Em
u ‖2

L2 + α‖ϕ(tm)∇Em
u ‖2

L2

+ ‖√γ Em
u ‖2

L2 + βε‖∇Em
ϕ ‖2

L2 + α‖∇u(tm)Em
ϕ ‖2

L2 +
β

ε
‖Em

ϕ ‖2
L2

]} 1
2

≤ Ĉ
(
h+ k

)
, (3.58)

where Ĉ is some positive constant which depends linearly on 1√
ε

and 1√
kε

, and on C∗, and C0 to C4, which are
defined in Theorem 2.3 and Corollary 2.1, in some low polynomial order.

Proof. We shall prove the above error estimate for the three fully discrete schemes corresponding to (i) (µ, ν) =
(0, 1), (ii) (µ, ν) = (1, 0), and (iii) (µ, ν) = (1, 1) together. For the purpose, we introduce the notation

ϕm,µ := µϕ(tm) + (1 − µ)ϕ(tm−1), um,ν := νu(tm) + (1 − ν)u(tm−1),

Em,ν
u := νEm

u + (1 − ν)Em−1
u , Em,µ

ϕ := µEm
ϕ + (1 − µ)Em−1

ϕ .

Since the proof is long and technical, we divide it into four steps.

Step 1. Test (1.5) by vh ∈ V h and (1.6) by ψh ∈ V h, respectively, and subtract the resulting equations
from (3.1) and (3.2), respectively yield the following error equations:

(
dtE

m
u , vh

)
+ αkε

(
∇Em

u ,∇vh

)
+ α

(
|ϕ(tm)|2∇u(tm) − |ϕm,µ

h |2∇um
h ,∇vh

)
+
(
γ Em

u , vh

)
=
(
Rm

u , vh

)
∀vh ∈ V h, (3.59)(

dtE
m
ϕ , ψh

)
+ 2βε

(
∇Em

ϕ ,∇ψh

)
+ α

(
|∇u(tm)|2ϕ(tm) − |∇um,ν

h |2ϕm
h , ψh

)
+
β

2ε
(
Em

ϕ , ψh

)
=
(
Rm

ϕ , ψh

)
∀ψh ∈ V h, (3.60)

where

Rm
u := ut(tm) − dtu(tm), Rm

ϕ := ϕt(tm) − dtϕ(tm).

Let

Θm
u := u(tm) − Phu(tm), Θm

ϕ := ϕ(tm) − Phϕ(tm).

Taking

vh = Phu(tm) − um
h = Em

u − Θm
u and ψh = Phϕ(tm) − ϕm

h = Em
ϕ − Θm

ϕ
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in (3.59) and (3.60), respectively, we have

1
2
dt‖Em

u ‖2
L2 +

k

2
‖ dtE

m
u ‖2

L2 + αkε‖∇Em
u ‖2

L2 + ‖√γ Em
u ‖2

L2 + α
(
|ϕ(tm)|2∇u(tm) − |ϕm,µ

h |2∇um
h ,∇Em

u

)
=
(
Rm

u ,Θ
m
u − Em

u

)
+
(
dtE

m
u ,Θ

m
u

)
+ αkε

(
∇Em

u ,∇Θm
u

)
+
(
γ Em

u ,Θ
m
u

)
+ α

(
|ϕ(tm)|2∇u(tm) − |ϕm,µ

h |2∇um
h ,∇Θm

u

)
,

(3.61)
1
2
dt‖Em

ϕ ‖2
L2 +

k

2
‖ dtE

m
ϕ ‖2

L2 + 2βε‖∇Em
ϕ ‖2

L2 +
β

2ε
‖Em

ϕ ‖2
h + α

(
|∇u(tm)|2ϕ(tm) − |∇um,ν

h |2ϕm
h , E

m
ϕ

)
=
(
Rm

ϕ ,Θ
m
ϕ − Em

ϕ

)
+
(
dtE

m
ϕ ,Θ

m
ϕ

)
+ 2βε

(
∇Em

ϕ ,∇Θm
ϕ

)
+
β

2ε
(
Em

ϕ ,Θ
m
ϕ

)
+ α

(
|∇u(tm)|2ϕ(tm) − |∇um,ν

h |2ϕm
h ,Θ

m
ϕ

)
. (3.62)

Step 2. It remains to bound all inner product terms in (3.61) and (3.62). Clearly, each linear term can be
easily bounded from above using standard techniques. On the other hand, bounding four nonlinear terms is
more complicated, they need to be handled carefully in order to obtain the desired error estimate.

Using the algebraic relations

ϕ(tm) − ϕm,µ
h = (1 − µ)k dtϕ(tm) + Em,µ

ϕ ,

ϕ(tm) + ϕm,µ
h = 2ϕ(tm) − (1 − µ)k dtϕ(tm) − Em,µ

ϕ ,

we have

A1 := |ϕ(tm)|2∇u(tm) − |ϕm,µ
h |2∇um

h

= |ϕ(tm)|2∇Em
u +

[
ϕ(tm) − ϕm,µ

h

] [
ϕ(tm) + ϕm,µ

h

]
∇um

h

= |ϕ(tm)|2∇Em
u +

[
2(1 − µ) kdtϕ(tm)ϕ(tm) − (1 − µ)2 k2|dtϕ(tm)|2

−2(1 − µ) kdtϕ(tm)Em,µ
ϕ + 2ϕ(tm)Em,µ

ϕ − |Em,µ
ϕ |2

] [
∇u(tm) −∇Em

u

]
.

Then, it follows from Schwarz inequality and the fact that 0 ≤ ϕ(tm) ≤ 1

(
A1,∇Em

u

)
≥ ‖ϕ(tm)∇Em

u ‖2
L2 − ‖∇u(tm) ‖L∞

{
2(1 − µ)k‖ dtϕ(tm) ‖L2‖ϕ(tm)∇Em

u ‖L2

+(1 − µ)2k2‖ dtϕ(tm) ‖2
L4‖∇Em

u ‖L2 + 2(1 − µ)k‖ dtϕ(tm) ‖L2‖Em,µ
ϕ ∇Em

u ‖L2

+2‖ϕ(tm)∇Em
u ‖L2‖Em,µ

ϕ ‖L2 + ‖Em,µ
ϕ ∇Em

u ‖L2‖Em,µ
ϕ ‖L2

}
−‖∇Em

u ‖2
L2

{
2(1 − µ)k‖ dtϕ(tm) ‖L∞ + (1 − µ)2k2‖ dtϕ(tm) ‖2

L∞

}
−2(1 − µ)k‖ dtϕ(tm) ‖L∞‖Em,µ

ϕ ∇Em
u ‖L2‖∇Em

u ‖L2

−2‖Em,µ
ϕ ∇Em

u ‖L2‖ϕ(tm)∇Em
u ‖L2 + ‖Em,µ

ϕ ∇Em
u ‖2

L2

≥ 1 + µ

4
‖ϕ(tm)∇Em

u ‖2
L2 −

[
(1 − µ)2kε

4
+ 2(1 − µ)k‖ dtϕ(tm) ‖L∞

+2(1 − µ)2k2‖ dtϕ(tm) ‖2
L∞

]
‖∇Em

u ‖2
L2 − 5‖∇u(tm) ‖2

L∞ ‖Em,µ
ϕ ‖2

L2

−(5 + µ)‖Em,µ
ϕ ∇Em

u ‖2
L2 − k2

[
5(1 − µ)‖ dtϕ(tm) ‖2

L2

+
(1 − µ)2k2

kε
‖ dtϕ(tm) ‖4

L4

]
‖∇u(tm) ‖2

L∞ , (3.63)
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and

∣∣(A1,∇Θm
u

)∣∣ ≤ 1
16

‖ϕ(tm)∇Em
u ‖2

L2 +
[

3 +
1
ε
‖∇u(tm) ‖2

L∞‖∇Θm
u ‖2

L2

]
‖Em,µ

ϕ ‖2
L2

+
ε

16
‖∇Em,µ

ϕ ‖2
L2 + 4(1 − µ)4k4 ‖ dtϕ(tm) ‖4

L∞‖∇Em
u ‖2

L2

+ 2
[

1 + ‖∇Θm
u ‖2

L∞

]
‖Em,µ

ϕ ∇Em
u ‖2

L2 + 12‖∇Θm
u ‖2

L2 + (1 − µ)k2‖ dtϕ(tm) ‖2
L2. (3.64)

Similarly, using the algebraic relations

∇u(tm) −∇um,ν
h = (1 − ν)k dt∇u(tm) + Em,ν

u ,

∇um,ν
h = ∇u(tm) − (1 − ν)k dt∇u(tm) −∇Em,ν

u ,

ϕm
h = ϕ(tm) − Em

ϕ ,

we have

A2 := |∇u(tm)|2ϕ(tm) − |∇um,ν
h |2ϕm

h

= |∇u(tm)|2Em
ϕ +

(
∇u(tm) −∇um,ν

h ,∇u(tm) + ∇um,ν
h

)
ϕm

h

= |∇u(tm)|2Em
ϕ +

(
(1 − ν)k dt∇u(tm) + Em,ν

u , 2∇u(tm) − (1 − ν)k dt∇u(tm) −∇Em,ν
u

)(
ϕ(tm) − Em

ϕ

)
.

Then

(
A2, E

m
ϕ

)
≥ ‖∇u(tm)Em

ϕ ‖2
L2 − (1 − ν)k ‖ dt∇u(tm) ‖L2

{
2‖∇u(tm)Em

ϕ ‖L2

+ (1 − ν)k‖ dt∇u(tm) ‖L∞ ‖Em
ϕ ‖L2 + 2‖Em

ϕ ∇Em,ν
u ‖L2

}
− ‖Em

ϕ ∇Em,ν
u ‖L2

{
(1 − ν)k‖ dt∇u(tm) ‖L2 + ‖ϕ(tm)∇Em,ν

u ‖L2

}
− 2(1 − ν)k‖ dt∇u(tm) ‖L∞ ‖Em

ϕ ‖L2

{
‖∇u(tm)Em

ϕ ‖L2 + ‖Em
ϕ ∇Em,ν

u ‖L2

}
+ (1 − ν)2k2‖ dt∇u(tm)Em

ϕ ‖2
L2 + ‖Em

ϕ ∇Em,ν
u ‖2

L2

≥ 1
2
‖∇u(tm)Em

ϕ ‖2
L2 −

1
16

‖ϕ(tm)∇Em,ν
u ‖2

L2 − 12‖Em
ϕ ∇Em,ν

u ‖2
L2

− 4
{

(1 − ν)k‖ dt∇u(tm) ‖2
L∞ + ‖∇u(tm) ‖2

L∞

}
‖Em

ϕ ‖2
L2 − 4(1 − ν)2k2‖ dt∇u(tm) ‖2

L2 , (3.65)

and

∣∣(A2,Θm
ϕ

)∣∣ ≤ 1
4
‖∇u(tm)Em

ϕ ‖2
L2 +

1
16

‖ϕ(tm)∇Em,ν
u ‖2

L2 + 8‖Θm
ϕ ‖2

L∞

[
‖Em

ϕ ‖2
L2 + ‖∇Em,ν

u ‖2
L2

]
+ 8
[
1 + ‖∇u(tm) ‖2

L∞

]
‖Θm

ϕ ‖2
L2 + (1 − ν)4k4‖ dt∇u(tm) ‖4

L4

+ 8(1 − ν)2k2
[
1 + ‖Θm

ϕ ‖2
L∞

]
‖ dt∇u(tm) ‖2

L2 . (3.66)
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Next, we need to bound the factor k‖ dtϕ(tm) ‖L∞ which appears in (3.63)–(3.65). Using a Nirenberg-Gagliardo
inequality [1] we have

k ‖ dtϕ(tm) ‖L∞ ≤ k
[
‖ dtϕ(tm) ‖

1
2
L2‖∇dtϕ(tm) ‖

1
2
L∞ + ‖ dtϕ(tm) ‖L2

]
(3.67)

≤ k
1
2 ‖ dtϕ(tm) ‖

1
2
L2‖∇ϕ(tm) −∇ϕ(tm−1) ‖

1
2
L∞ + k ‖ dtϕ(tm) ‖L2 ,

≤ 3k
1
2 ‖∇ϕ ‖

1
2
L∞(ΩT ).

Finally, using the relations

(
dtE

m
u ,Θ

m
u

)
= dt

(
Em

u ,Θ
m
u

)
−
(
Em−1

u , dtΘm
u

)
,(

dtE
m
ϕ ,Θ

m
ϕ

)
= dt

(
Em

ϕ ,Θ
m
ϕ

)
−
(
Em−1

ϕ , dtΘm
ϕ

)
,

we can bound the linear terms in (3.61) and (3.62) follows:

∣∣(Rm
u ,Θ

m
u − Em

u

)
−
(
Em−1

u , dtΘm
u

)
+ αkε

(
∇Em

u ,∇Θm
u

)
+
(
γ Em

u ,Θ
m
u

)∣∣ ≤ αkε

4

[
‖∇Em−1

u ‖2
L2 + ‖∇Em

u ‖2
L2

]

+
1
2
‖√γEm

u ‖2
L2 +

C

αkε

[
‖Rm

u ‖2
H−1 + ‖ dtΘm

u ‖2
H−1

]
+ C

[
αkε‖∇Θm

u ‖2
L2 + ‖√γΘm

u ‖2
L2

]
, (3.68)

∣∣(Rm
ϕ ,Θ

m
ϕ − Em

ϕ

)
−
(
Em−1

ϕ , dtΘm
ϕ

)
+ 2βε

(
∇Em

ϕ ,∇Θm
ϕ

)
+
β

2ε
(
Em

ϕ ,Θ
m
ϕ

)∣∣ ≤ βε
[
‖∇Em−1

ϕ ‖2
L2 + ‖∇Em

ϕ ‖2
L2

]

+
β

4ε
‖Em

ϕ ‖2
L2 +

C

βε

[
‖Rm

ϕ ‖2
H−1 + ‖ dtΘm

ϕ ‖2
H−1

]
+ C

[
βε‖∇Θm

ϕ ‖2
L2 +

β

4ε
‖Θm

ϕ ‖2
L2

]
. (3.69)

Since Rm
u and Rm

ϕ can be written as

Rm
u =

1
k

∫ tm+1

tm

(s− tm)utt(s) ds, Rm
ϕ =

1
k

∫ tm+1

tm

(s− tm)ϕtt(s) ds,

from Lemma 2.1 we have

k

M∑
m=0

‖Rm
u ‖2

H−1 ≤ k

M∑
m=0

[∫ tm+1

tm

(s− tm)2 ds
] [∫ tm+1

tm

‖ utt(s) ‖2
H−1 ds

]
≤ C3 k

2, (3.70)

k

M∑
m=0

‖Rm
ϕ ‖2

H−1 ≤ k

M∑
m=0

[∫ tm+1

tm

(s− tm)2 ds
] [∫ tm+1

tm

‖ϕtt(s) ‖2
H−1 ds

]
≤ C3 k

2. (3.71)
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Step 3. Now, substituting the estimates (3.63)–(3.71) into (3.61) and (3.62), respectively, adding the resulted
inequalities and applying the operator k

∑�
k=1 (� ≤M) we get

‖E�
u ‖2

L2 + ‖E�
ϕ ‖2

L2 + k

�∑
m=1

{
k‖ dtE

m
u ‖2

L2 + k‖ dtE
m
ϕ ‖2

L2

+
[
αkε − c0(1 − µ)k‖∇ϕ ‖L∞(L∞) − c0(1 − ν)‖Θϕ ‖2

L∞(L∞)

]
‖∇Em

u ‖2
L2

+ α‖ϕ(tm)∇Em
u ‖2

L2 + ‖√γ Em
u ‖2

L2 + βε‖∇Em
ϕ ‖2

L2 + α‖∇u(tm)Em
ϕ ‖2

L2

+
[
β

ε
− c0‖∇u ‖2

L∞(L∞) −
c0
ε
‖∇u ‖2

L∞(L∞)‖∇Θu ‖2
L∞(L2) − c0‖Θϕ ‖2

L∞(L∞)

]
‖Em

ϕ ‖2
L2

}

≤ C k

�∑
m=1

{
‖Em

u ‖2
L2 + ‖Em,µ

ϕ ‖2
L2 +

(
1 + ‖∇Θm

u ‖2
L∞
)
‖Em,µ

ϕ ∇Em
u ‖2

L2 + ‖Em
ϕ ∇Em,ν

u ‖2
L2

}

+
k

4

�∑
m=1

{
(1 − µ)‖∇u(tm) ‖2

L∞‖Em,µ
ϕ ‖2

L2 + α(1 − ν)‖ϕ(tm)∇Em,ν
u ‖2

L2 + βε(1 − µ)‖∇Em,µ
ϕ ‖2

L2

}

+ C k2(1 − ν)k
�∑

m=1

‖Θm
ϕ ‖2

L∞ ‖ dt∇u(tm) ‖2
L2 + C k2(1 − µ) k

�∑
m=1

‖∇u(tm) ‖2
L∞ ‖ dtϕ(tm) ‖2

L2

+ C k5
�∑

m=1

{
1 − µ

kε
‖∇u(tm) ‖2

L∞‖ dtϕ(tm) ‖4
L4 + (1 − ν)‖ dt∇u(tm) ‖4

L4

}

+ C k

�∑
m=1

[
‖∇Θm

u ‖2
L2 + ‖∇u ‖2

L∞(L∞) ‖Θm
ϕ ‖2

L2

]

+ C k

�∑
m=1

{
1
αkε

‖ dtΘm
u ‖2

H−1 +
1
βε

‖ dtΘm
ϕ ‖2

H−1 + αkε ‖∇Θm
u ‖2

L2

+ βε ‖∇Θm
ϕ ‖2

L2 +
β

4ε
‖Θm

ϕ ‖2
L2

}
+ ‖E0

u ‖2
L2 + ‖E0

ϕ ‖2
L2 (3.72)

for some positive constant c0 which is independent of ε, kε, u and ϕ.
In view of (3.53) and the mesh condition (3.56), we have

c∗ := αkε − c0(1 − µ)k‖∇ϕ ‖L∞(L∞) − c0(1 − ν)‖Θϕ ‖2
L∞(L∞) > 0.

Also, the assumption (3.54) and the mesh condition (3.56) imply that

β

ε
− c0‖∇u ‖2

L∞(L∞) −
c0
ε
‖∇u ‖2

L∞(L∞)‖∇Θu ‖2
L∞(L2) − c0‖Θϕ ‖2

L∞(L∞) > 0.

Hence, all terms (in the sum) on the left-hand side of (3.72) are positive. We also remark that when µ �= 1 and
ν �= 1, the second sum on the right-hand side of (3.72) can be absorbed by the sum on the left-hand side.
Step 4. We now conclude the proof using a fixed point argumentation. Suppose that

max
0≤m≤M

[
‖Em

u ‖2
L∞ + ‖Em

ϕ ‖2
L∞
]
<
c∗

4
, (3.73)

then the third and fourth terms in the first sum on the right-hand side of (3.72) can be absorbed by the fifth
term in the sum on the left-hand side. Applying the discrete Gronwall’s inequality and Lemma 3.3 immediately
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yields the desired estimate (3.58). In particular, we have

max
0≤m≤M

[
‖Em

u ‖L2 + ‖Em
ϕ ‖L2

]
≤ C

(
k + h

)
,

hence,

max
0≤m≤M

[
‖Phu(tm) − um

h ‖L2 + ‖Phϕ(tm) − ϕm
h ‖L2

]
≤ C

(
k + h

)
.

By the inverse inequality bounding L∞(Ω) norm in terms of L2(Ω) norm [11,15], we get

max
0≤m≤M

[
‖Phu(tm) − um

h ‖L∞ + ‖Phϕ(tm) − ϕm
h ‖L∞

]
≤

C h−
1
2 max

0≤m≤M

[
‖Phu(tm) − um

h ‖L2 + ‖Phϕ(tm) − ϕm
h ‖L2

]
≤ C

(
kh−

1
2 + h

1
2
)
,

which and (3.53) imply that

max
0≤m≤M

[
‖Em

u ‖L∞ + ‖Em
ϕ ‖L∞

]
≤ C(ε)

(
h| lnh| + kh−

1
2 + h

1
2
)
. (3.74)

Clearly, (3.74) implies the induction assumption (3.73) for sufficient small h, and provided that h, k satisfy the
mesh relation k = o(h

1
2 ). The proof is complete. �

We conclude this section with a few remarks.

Remark 3.4. (a) The error estimates in (3.58) are optimal in L2((0, T );H1(Ω))-norm, and suboptimal in
L∞((0, T );L2(Ω))-norm. It might be possible to obtain optimal order error estimate of the form O(k + h2) in
L∞((0, T );L2(Ω))-norm by replacing the standard elliptic projection operator Ph by some nonlinear projection
operator Rh associated with the underlying differential problem (1.5)–(1.8). If such an optimal order estimate
can be obtained, it is easy to see that the conclusion of Theorem 3.3 also holds for N = 3.

(b) The proof does not use the discrete stability estimates derived in Lemmas 3.1 and 3.2.
(c) As expected, the fully implicit scheme (i.e., (µ, ν) = (1, 1)) produces a smaller error than its semi-implicit

(i.e., (µ, ν) = (0, 1) and (µ, ν) = (1, 0)) counterparts do, although they all have same asymptotic rate of
convergence, since four terms on the right-hand side of (3.72) vanish when (µ, ν) = (1, 1).

(d) Both (u0
h, ϕ

0
h ) = (Qhu0, Qhϕ0 ) and (u0

h, ϕ
0
h ) = ( Ihu0, Ihϕ0 ) are valid choices of starting values for the

schemes in (3.1)–(3.2) (cf. Rem. 3.3).
(e) The growth condition (3.54) is used to ensure positivity of the coefficient for ‖Em

ϕ ‖2
L2 on the left-hand

side of (3.72); as a result, the constant Ĉ in the error estimate (3.58) depends on 1
ε and 1

kε
only in some low

polynomial order. In Section 2, we have proved that this growth condition (3.54) holds at least locally in time.
So a natural question is whether Theorem 3.3 still holds without assuming the growth condition (3.54). The
answer to this question is yes. However, in this case since the coefficient for ‖Em

ϕ ‖2
L2 on the left-hand side

of (3.72) may not be positive, so we have to move this term to the right-hand side and treat it as a ‘bad’ term.
As a result, the constant Ĉ in the error estimate (3.58) now depends on ‖∇u ‖2

L∞(L∞) exponentially, hence, it
also depends on 1

ε and 1
kε

exponentially. In this case, using a different interpolation of nonlinear terms that
arise in the error analysis, it can be shown that the estimate also holds for (u, ϕ) ∈ [L2

(
(0, T );H2(Ω)

)
]2.

4. Numerical experiments

In this section we provide three sets of numerical experiments on the finite element methods developed in
Section 3. Identical parameters α, β, γ, ε, h, k are used in the first two experiments, while the third experiment
uses a larger γ, which is the coefficient in the fidelity term in the model.
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Figure 1. Evolution of {um
h } (top row) and {ϕm

h } (bottom row ) of Test 1.
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Figure 2. Cross sections at x = 60 of the snapshots of Figure 1: {um
h } (top row) and {ϕm

h }
(bottom row).

Test 1. The grid values of the initial function u0 are chosen as a random perturbation of the grid values of the
given image g by a value between −90 and 90, and the grid values of ϕ0 are set to take the binary numbers 0
or 1 by a (boolean) thresholding criterion according to the corresponding grid values of |∇g|.

Starting with the above initial conditions, we compute the solution of the semi-implicit version of the
scheme (3.1)–(3.2) (i.e., µ = ν = 0), with the physical parameters (α, β, γ ) = ( 10−3, 10−3, 10−4 ), the reg-
ularization parameters ( kε, ε ) = ( 10−7, 10−2 ), and the numerical parameters (h, k ) = ( 4 × 10−3, 10−2 ). We
note that similar physical parameters (α, β, γ ) were used in [28].

Figure 1 displays the computed soft image um
h (top row) and edge function ϕm

h (bottom row) at time steps
t1, t4, t8, and t15. Figure 2 shows the cross section at x = 60 of each um

h and ϕm
h of Figure 1. Top rows of

Figures 1 and 2 clearly show the denoising mechanism and the edge preserving property of the model and the
numerical scheme. Also, the evolution of ϕm

h shows a fast convergence to |ϕm
h | ≈ 1 in the bulk, and to |ϕm

h | ≈ 0



318 X. FENG AND A. PROHL

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 3. Evolution of {um
h } (top row) and {ϕm

h } (bottom row) of Test 2.
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Figure 4. Cross sections at x = 60 of the snapshots of Figure 3: {um
h } (top row) and {ϕm

h }
(bottom row).

in a small region away from the bulk, which indicates the location of the edges. Oscillatory parts of ϕm
h are

quickly damped out when t→ ∞ as observed from the bottom rows of Figures 1 and 2.

Test 2. Let u0 be same as in Test 1, set ϕ0 ≡ 0.5, and let all other parameters be same as in Test 1.
Figure 3 displays the computed soft image um

h (top row) and edge function ϕm
h (bottom row) at time steps

t1, t4, t8, and t15. Figure 4 shows the cross section at x = 60 of each um
h and ϕm

h of Figure 3. The same evolution
as in Test 1 is observed. In addition, we observe ϕm

h quickly and accurately detects edges. This indicates that
the convergence of the gradient flow does not depend on the choice of the initial data ϕ0, in particular, it does
not have to reflect the edge information of the given image g.
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Figure 5. Evolution of {um
h } (top row) and {vm

h } (bottom row) of Test 3.
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Figure 6. Cross sections at x = 60 of the snapshots of Figure 5: {um
h } (top row) and {ϕm

h }
(bottom row).

Test 3. This test studies the evolution of the flow starting with the initial data u0 ≡ 0 and ϕ0 ≡ 0.5. Also, we
use a larger fidelity constant γ = 5 for a better resolution, but keep all other parameters be same as in Tests 1
and 2.

Figure 5 displays the computed soft image um
h (top row) and edge function ϕm

h (bottom row) at time steps
t5, t9, t27, and t49. Figure 6 shows the cross section at x = 60 of each um

h and ϕm
h of Figure 5. The simulation

shows that the edges are detected according to contrast (see the bottom rows of Figs. 5 and 6), since as the
intensity slowly grows in time, the (detected) edges get sharpened while the contrast improves. Again, we obtain
a satisfactorily recovered image in the limit (as t becomes large), but the simulation time is significantly longer
(by a factor of 3) than those of Tests 1 and 2.



320 X. FENG AND A. PROHL

Acknowledgements. The authors would like to thank the Mathematisches Forschungsinstitut Oberwolfach for the kind
hospitality and opportunity of its “Research in Pairs” program. They are also grateful to J. Vogelgesang (ETH Zürich)
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