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A NEW FORMULATION OF THE STOKES PROBLEM IN A CYLINDER,
AND ITS SPECTRAL DISCRETIZATION

Nehla Abdellatif1 and Christine Bernardi2

Abstract. We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric
geometries, relying on Fourier expansion with respect to the angular variable: the problem for each
Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential
and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly
divergence-free discrete velocity. We prove optimal error estimates.
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1. Introduction

The Stokes equations govern the flow of a viscous incompressible fluid in the case of very small velocities,
indeed their primitive variables are the velocity and the pressure of the fluid. The aim of this paper is to describe
and analyze a new spectral type discretization of these equations in a cylinder, that relies on two ideas:

• Thanks to the axisymmetry of the domain, the use of truncated Fourier series allows for computing a
discrete three-dimensional solution by only solving a few number of discrete problems on the meridian
domain.

• For each problem set in the meridian domain, the vector potential and vorticity can be used as new
unknowns.

Indeed, on one hand, in the special case of three-dimensional axisymmetric geometries, it is proven in ([10],
Chap. I) that, thanks to a Fourier expansion with respect to the angular variable, these equations reduce to an
infinite family of uncoupled problems set in the two-dimensional meridian domain. The corresponding variational
formulation of each two-dimensional problem, which involves weighted Sobolev spaces, and its well-posedness
are also presented in ([10] Sect. IX.1), together with its spectral discretization. Moreover, the Spectral – Fourier
discretization of the three-dimensional problem relies on Fourier truncation and consists in approximating only
a finite number of two-dimensional problems by spectral techniques: its numerical analysis is performed in ([10],
Chap. X) and leads to error estimates of spectral type, i.e. the order of the error only depends on the regularity
of the exact solution. The idea for using spectral techniques rather than finite elements is that they are well
appropriate for being coupled with Fourier truncation since they have the same infinite degree of accuracy.
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On the other hand, a well-known method for the discretization of the Stokes problem in two-dimensional
domains, first analyzed in [14] in the finite element framework and extended in [8] to spectral type discretizations,
relies on the stream function and vorticity formulation: indeed, the incompressibility equation is equivalent to
the fact that the velocity is the curl of this stream function and the curl of the velocity, which is the vorticity,
can be used as a second unknown. This results into a system of two Laplace equations which are coupled by the
boundary conditions on the stream function. This technique presents two main advantages: it is not expensive
since only two scalar unknowns are involved in the resulting formulation and it leads to exactly divergence-free
velocities which is important for instance when convection equations are coupled with the Stokes problem.

So, the idea of this paper consists in extending to the two-dimensional systems resulting from the reduction
of the three-dimensional Stokes problem in a cylinder the stream function and vorticity technique. This has
already been performed by Abdellatif, see [1,2], in the case of axisymmetric data, i.e. for the Fourier coefficient
of order zero: in this case, the Stokes system results into a Laplace equation for the angular component of
the velocity and another problem for the three other unknowns which can be formulated with a scalar stream
function and vorticity as only unknowns. We refer to [2] for a detailed analysis of the corresponding variational
formulation and spectral discretization, we only recall these results. However, for other Fourier coefficients, the
four equations of the Stokes reduced system are coupled: We propose here to choose as unknowns the vector
potential and the vorticity related to the velocity. Note however that, in this case, an additional gauge condition
must be enforced on the vector potential in order to ensure its uniqueness.

In general three-dimensional geometries, the Stokes problem with these new unknowns results into a system
of two coupled second-order vectorial equations. Several variational formulations of these problems exist, we
choose to use one which has been recently proposed and studied by Amara, Barucq and Duloué [4] (see [3] for
a first announcement and [13] for complementary results): a further decomposition of the unknowns is added,
which is linked to the well-known Glowinski and Pironneau algorithm [16] and seems very efficient for solving
the linear system resulting from the discretization.

We first write the formulation proposed in [4] in the case of an axisymmetric domain: it results into a
countable system of uncoupled two-dimensional variational problems, one for each Fourier coefficient. We prove
its well-posedness in the appropriate weighted Sobolev spaces. Next, we describe the spectral discretization of
the problem satisfied by each Fourier coefficient and we perform its numerical analysis, in the case of a model
cylinder. Note however that the discretization can be extended to more general axisymmetric geometries, by
transformation and decomposition of the domain, relying on the spectral element method. We also describe the
Spectral – Fourier discretization in this case, obtained by combining the previous discretization with Fourier
truncature, and give the corresponding three-dimensional error estimates.

The extension of this discretization to the full nonlinear Navier–Stokes equations, is presently under consid-
eration. We also intend to handle more complex axisymmetric geometries by the spectral element method.

An outline of the paper is as follows:

• In Section 2, we briefly recall the variational formulations and the well-posedness results of [4] for general
three-dimensional geometries.

• In Section 3, we present the variational formulations of the two problems satisfied by each Fourier
coefficient of the vector potential and vorticity, and we check that they are well-posed. We also estimate
the error issued from Fourier truncature.

• In Section 4, we describe the corresponding discrete problems, we prove their well-posedness and we
establish optimal error estimates.

• Some results which require technical arguments are proved in Appendices A and B.

2. The three-dimensional vector potential and vorticity formulation

Let Ω̆ be a three-dimensional bounded connected domain with a Lipschitz-continuous boundary ∂Ω̆ and
generic point x̆ = (x, y, z). For simplicity, we assume from now on that this domain has a connected boundary
and is simply-connected (more general geometries can be handled from the analysis given e.g. in [5]). We denote
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by n̆ the unit outward normal to Ω̆ on ∂Ω̆. The Stokes problem in this domain and in Cartesian coordinates
reads: 


−∆ŭ+ grad p̆ = f̆ in Ω̆,

div ŭ = 0 in Ω̆,

ŭ = 0 on ∂Ω̆,

(2.1)

where the unknowns are the velocity ŭ and the pressure p̆. The data are a density of body forces f̆ and, only
for simplicity, we take homogeneous boundary conditions on the velocity. It is well-known that, for any data f̆
in the dual space H−1(Ω̆)3 of H1

0 (Ω̆)3, this problem admits a variational solution (ŭ, p̆) in H1
0 (Ω̆)3 × L2(Ω̆),

which is unique up to an additive constant on the pressure.
We now introduce the new unknowns. The first one is the vorticity ω̆ defined by

ω̆ = curl ŭ in Ω̆. (2.2)

As far as the second one is concerned, we recall ([5], Th. 3.17) that, since ŭ is divergence-free in Ω̆ and has its
normal component equal to zero on ∂Ω̆, there exists a unique vector potential ψ̆ such that



ŭ = curl ψ̆ in Ω̆,

div ψ̆ = 0 in Ω̆,

ψ̆ × n̆ = 0 on ∂Ω̆.

(2.3)

This leads to the modified equivalent formulation of the Stokes problem




curl curl ω̆ = curl f̆ in Ω̆,

curl curl ψ̆ = ω̆ in Ω̆,

div ψ̆ = div ω̆ = 0 in Ω̆,

ψ̆ × n̆ = curl ψ̆ × n̆ = 0 on ∂Ω̆.

(2.4)

However, following [3,4], we consider a further decomposition of the vorticity which is used for the Glowinski and
Pironneau algorithm [16] in the two-dimensional case. We set: ω̆ = ω̆0 + ω̆∗, so that the previous problem (2.4)
can be written as a system of two uncoupled problems:




curl curl ω̆0 = curl f̆ in Ω̆,

div ω̆0 = 0 in Ω̆,

ω̆0 × n̆ = 0 on ∂Ω̆,

(2.5)

and 


curl curl ω̆∗ = 0 in Ω̆,

curl curl ψ̆ = ω̆0 + ω̆∗ in Ω̆,

div ψ̆ = div ω̆∗ = 0 in Ω̆,

ψ̆ × n̆ = curl ψ̆ × n̆ = 0 on ∂Ω̆.

(2.6)

The variational formulation of these problems involves the space H(curl, Ω̆) of vector fields in L2(Ω̆)3 such
that their curl belong to L2(Ω̆)3. Relying on the standard result ([15], Chap. I, Th. 2.11) that the trace
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mapping: v̆ �→ v̆ × n̆ is continuous from H(curl, Ω̆) into H− 1
2 (∂Ω̆)3 (defined as the dual space of H

1
2 (∂Ω̆)3),

we define its closed subspace

X(Ω̆) =
{
v̆ ∈ H(curl, Ω̆); v̆ × n̆ = 0 on ∂Ω̆

}
. (2.7)

Note also ([4], Prop. 2.1) that the mapping: v̆ �→ curl v̆ is continuous from L2(Ω̆)3 into the dual space X(Ω̆)′

of X(Ω̆). We finally introduce the space

Y (Ω̆) =
{
v̆ ∈ L2(Ω̆)3; curl curl v̆ ∈ X(Ω̆)′

}
. (2.8)

From now on, we assume that the data f̆ belong to L2(Ω̆)3. The variational formulation of problem (2.5) is
of saddle-point type, it reads:

Find ω̆0 in X(Ω̆) and λ̆0 in H1
0 (Ω̆) such that

∀ϕ̆ ∈ X(Ω̆),
∫

Ω̆

curl ω̆0 · curl ϕ̆ dx̆+
∫

Ω̆

grad λ̆0 · ϕ̆ dx̆ =
∫

Ω̆

f̆ · curl ϕ̆ dx̆,

∀µ̆ ∈ H1
0 (Ω̆),

∫
Ω̆

grad µ̆ · ω̆0 dx̆ = 0.
(2.9)

The variational formulation of problem (2.6) is still of saddle-point type, however it is slightly more complicated.
It reads:

Find (ω̆∗, λ̆∗) in Y (Ω̆) ×H1
0 (Ω̆) and ψ̆ in X(Ω̆) such that

∀
(
ϑ̆, µ̆

)
∈ Y (Ω̆) ×H1

0 (Ω̆),∫
Ω̆

ω̆∗ · ϑ̆dx̆−
〈
curl curl ϑ̆, ψ̆

〉
+
∫

Ω̆

ψ̆ · grad µ̆ dx̆ = −
∫

Ω̆

ω̆0 · ϑ̆dx̆,

∀ϕ̆ ∈ X(Ω̆), −〈curl curl ω̆∗, ϕ̆〉 +
∫

Ω̆

ϕ̆ · grad λ̆∗ dx̆ = 0,

(2.10)

where 〈·, ·〉 stands for the duality pairing between X(Ω̆)′ and X(Ω̆). It can be observed that problem (2.9) is
completely independent of problem (2.10), so that they can be solved separately.

We conclude this section by recalling the main results concerning these problems, which are proven in ([4],
Thms. 3.1, 3.2 and 4.1):

(i) Problem (2.9) admits a unique solution (ω̆0, λ̆0) in X(Ω̆) × H1
0 (Ω̆), with λ̆0 = 0, and is equivalent to

problem (2.5).
(ii) Problem (2.10) admits a unique solution (ω̆∗, λ̆∗, ψ̆) in Y (Ω̆) × H1

0 (Ω̆) × X(Ω̆), with λ̆∗ = 0, and is
equivalent to problem (2.6).

(iii) If the function ŭ is defined by ŭ = curl ψ̆, where (ω̆∗, λ̆∗, ψ̆) is the solution of problem (2.10), there
exists a function p̆, unique up to an additive constant, such that the pair (ŭ, p̆) belongs toH1

0 (Ω̆)3×L2(Ω̆)
and is the unique solution of problem (2.1).

So, from now on, we are interested with problems (2.9) and (2.10) in the special case of an axisymmetric
geometry, namely of a cylinder.

Remark. Assume that Ω̆ is a cylinder and also that the data f̆ belongs to H2(Ω̆)3. The regularity properties
of the Stokes problem, as stated in ([10], Sect. IX.1.b) yield the properties

curl ψ̆ ∈ H3.739(Ω̆)3, ω̆ ∈ H2.739(Ω̆)3. (2.11)
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However the separate regularity of ω̆0 and ω̆∗ is weaker. By using the arguments in [12] and the fact that the
singularities of the Laplace equation in a cylinder are explicitly known (see [10], Th. II.4.9) we derive that, for
all positive ε,

ω̆0 ∈ H2−ε(Ω̆)3, curl ω̆0 ∈ H2−ε(Ω̆)3. (2.12)

The same argument, combined with (2.11), finally yields

ω̆∗ ∈ H2−ε(Ω̆)3, curl ω̆∗ ∈ H2−ε(Ω̆)3, ψ̆ ∈ H2−ε(Ω̆)3. (2.13)

Another type of regularity results, concerning only the dependence with the angular variable in axisymmetric
domains, is stated later on.

3. The two-dimensional reduced formulation for axisymmetric domains

Let Ω be a bounded open polygon in the (r, z) half-plane ]0,+∞[×R. We denote by Γ0 the interior of the
part of the boundary ∂Ω which is contained in the rotation axis {r = 0} and we set: Γ = ∂Ω \ Γ0. Let also n
stand for the unit outward normal vector to Ω on Γ.

We now work in the three-dimensional domain Ω̆ which is built by rotating Ω ∪ Γ0 around the axis {r = 0}:

Ω̆ =
{
(r, θ, z); (r, z) ∈ Ω ∪ Γ0 and − π ≤ θ < π

}
. (3.1)

We assume that Γ0 is not empty and is a finite union of disjoint segments (i.e. does not contain isolated points)
and also that Ω is connected and simply-connected. We need some further notation.

Notation. With each scalar function µ̆ of the Cartesian variables x, y and z, we associate the corresponding
function µ of the cylindrical variables r, z and θ. For each vector field v̆ of the Cartesian variables x, y and z,
we agree to denote by vr, vθ and vz its radial, angular and axial components, respectively, which are functions
of r, θ and z, and by v the vector with components vr, vθ and vz .

With this notation, we recall that the curl and div operators of a function v in cylindrical variables and
components, denoted by curlr and divr to avoid confusion, are given by

(curlr v)r = r−1 ∂θvz − ∂zvθ, (curlr v)θ = ∂zvr − ∂rvz,

(curlr v)z = ∂rvθ + r−1 vθ − r−1 ∂θvr,

divr v = ∂rvr + r−1 vr + r−1 ∂θvθ + ∂zvz .

(3.2)

Finally, we choose to use the Fourier development of all scalar functions and vector fields with respect to the
angular variable θ. For instance, for a scalar function µ, this development writes

µ(r, θ, z) =
1√
2π

∑
k∈Z

µk(r, z) eikθ , with µk(r, z) =
1√
2π

∫ π

−π

µ(r, θ, z) e−ikθ dθ.

Thanks to this change of variables, problems (2.5) and (2.6) now result into a countable set of two-dimensional
problems, namely, for any k in Z,




curlk curlk ω0k = curlk fk in Ω,
divk ω

0k = 0 in Ω,
γTω

0k = 0 on Γ,

(3.3)
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and 


curlk curlk ω∗k = 0 in Ω,

curlk curlkψk = ω0k + ω∗k in Ω,

divk ψ
k = divk ω

∗k = 0 in Ω,

γTψ
k = γT (curlk ψk) = 0 on Γ,

(3.4)

where the operators curlk and divk are now given by

(curlk v)r = ikr−1 vz − ∂zvθ, (curlk v)θ = ∂zvr − ∂rvz,

(curlk v)z = ∂rvθ + r−1 vθ − ikr−1 vr,

divk v = ∂rvr + r−1 vr + ikr−1 vθ + ∂zvz ,

(3.5)

and the tangential trace operator γT is defined by

(γTv)r = vθ nz, (γTv)θ = vz nr − vr nz, (γTv)z = −vθ nr. (3.6)

For completeness, we also introduce the operator gradk on scalar functions µ by

(gradk µ)r = ∂rµ, (gradk µ)θ = ikr−1 µ, (gradk µ)z = ∂zµ. (3.7)

We now describe the weighted Sobolev spaces which are needed for the variational formulations of these prob-
lems, next we write these formulations and we prove their well-posedness.

3.1. The weighted Sobolev spaces

Note that going from Cartesian variables x, y and z to cylindrical variables r, θ and z transforms the Lebesgue
measure into the weighted one r dr dθ dz. So, this change of variables leads to work with weighted Sobolev spaces
on Ω.

We first introduce the spaces:

L2
±1(Ω) =

{
v : Ω → R measurable;

∫
Ω

|v(r, z)|2 r±1 dr dz < +∞
}
. (3.8)

Next, we define the complete scale of Sobolev spaces Hs
1(Ω):

• when s is an integer, Hs
1(Ω) is the space of functions in L2

1(Ω) such that all their partial derivatives of
order ≤ s belong to L2

1(Ω);
• when s is not an integer, Hs

1(Ω) is defined by Hilbertian interpolation between H [s]+1
1 (Ω) and H [s]

1 (Ω),
where [s] stands for the integral part of s.

We also need the space of “flat” functions

V 1
1 (Ω) = H1

1 (Ω) ∩ L2
−1(Ω). (3.9)

All these spaces are provided with the norms and seminorms that result from their definitions. Due to the
Fourier development, we also use the same spaces for functions from Ω into C, we keep the same notation for
simplicity. We finally define the spaces

H1
1�(Ω) =

{
v ∈ H1

1 (Ω); v = 0 on Γ
}
, V 1

1�(Ω) = V 1
1 (Ω) ∩H1

1�(Ω).

We introduce the spaces, for any k ∈ Z,

H1
(k)(Ω) =

{
H1

1 (Ω) if k = 0,

V 1
1 (Ω) if |k| ≥ 1,

(3.10)
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provided with the norms and seminorms

‖v‖H1
(k)(Ω) =

(
‖v‖2

H1
1(Ω) + |k|2 ‖v‖2

L2
−1(Ω)

) 1
2
, |v|H1

(k)(Ω) =
(
|v|2H1

1 (Ω) + |k|2 ‖v‖2
L2

−1(Ω)

) 1
2
. (3.11)

We also define their subspaces

H1
(k)�(Ω) = H1

(k)(Ω) ∩H1
1�(Ω). (3.12)

Note that the equivalence of the norm ‖ · ‖H1
(k)(Ω) and seminorm | · |H1

(k)(Ω) on H1
(k)�(Ω), which is obvious for

k �= 0, also holds for k = 0 (see [10], Prop. II.4.1).
The interest of these k-dependent spaces is that, as proven in ([10], Thm. II.3.1) the mapping: µ̆ �→ (µk)k∈Z

is an isomorphism from H1(Ω̆) onto
∏

k∈Z
H1

(k)(Ω) and also from H1
0 (Ω̆) onto

∏
k∈Z

H1
(k)�(Ω). In the vectorial

case, we recall from ([10], Thm. II.3.6) that the mapping: v̆ �→ (vk
r , v

k
θ , v

k
z )k∈Z is an isomorphism from H1(Ω̆)3

onto
∏

k∈Z
H1

(k)(Ω), where the spaces H1
(k)(Ω) are defined by

H1
(k)(Ω) =




V 1
1 (Ω) × V 1

1 (Ω) ×H1
1 (Ω) if k = 0,{

(vr , vθ, vz) ∈ H1
1 (Ω) ×H1

1 (Ω) × V 1
1 (Ω); vr + ik vθ ∈ L2

−1(Ω)
}

if |k| = 1,

V 1
1 (Ω) × V 1

1 (Ω) × V 1
1 (Ω) if |k| ≥ 2.

(3.13)

Finally, we are interested with the spaces involving the curlk operator. So, we first define H(curlk,Ω)
as the space of vector fields v in L2

1(Ω)3 such that curlkv also belongs to L2
1(Ω)3. The density of D(Ω)3 in

each H(curlk,Ω) is an easy consequence of the analogous three-dimensional result on Ω̆ (see [15], Chap. I,
Thm. 2.10). When combined this density result with the Stokes formula, valid for smooth enough vector fields
v and ϕ on Ω, ∫

Ω

v · curl−k ϕ r dr dz −
∫

Ω

curlk v · ϕ r dr dz =
∫

Γ

γTv · ϕ r(τ) dτ, (3.14)

(here r(τ) stands for the r-coordinate of the point with tangential abscissa τ), we prove that the trace operator
γT introduced in (3.6) is continuous from H(curlk,Ω) into the dual space of traces on Γ of functions inH1

(k)(Ω).
So we are now in a position to define for each k ∈ Z the space

X(k)(Ω) =
{
v ∈ H(curlk,Ω); γTv = 0 on Γ}, (3.15)

it is provided with the natural norm of H(curlk,Ω):

‖v‖X(k)(Ω) =
(
‖v‖2

L2
1(Ω)3 + ‖curlk v‖2

L2
1(Ω)3

) 1
2
. (3.16)

Next, we observe from formula (3.14) that the mapping: v �→ curlk v is continuous from L2
1(Ω)3 into the dual

space of X(k)(Ω), that we denote by X(k)(Ω)′. This gives the idea for the definition of the space Y(k)(Ω):

Y(k)(Ω) =
{
v ∈ L2

1(Ω)3; curlk curlkv ∈ X(k)(Ω)′
}
. (3.17)

The spaces X(k)(Ω) and Y(k)(Ω) are the basic ones for the variational formulation of problems (3.3) and (3.4).
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3.2. Variational formulation and analysis of the first problem

Since f̆ belongs to L2(Ω̆)3, it is readily checked that each fk, k ∈ Z, belongs to L2
1(Ω)3. So, for each k ∈ Z,

we now propose the following variational formulation of problem (3.3):

Find ω0k in X(k)(Ω) and λ0k in H1
(k)�(Ω) such that

∀ϕ ∈ X(k)(Ω), a1
k(ω0k,ϕ) + b1k(ϕ, λ0k) =

∫
Ω

fk · curl−kϕ r dr dz,

∀µ ∈ H1
(k)�(Ω), b1k(ω0k, µ) = 0,

(3.18)

where the sesquilinear forms a1
k(·, ·) and b1k(·, ·) are defined by

a1
k(ϑ,ϕ) =

∫
Ω

curlk ϑ · curl−k ϕ r dr dz, b1k(ϕ, µ) =
∫

Ω

gradkµ · ϕ r dr dz. (3.19)

These forms are obviously continuous on X(k)(Ω)×X(k)(Ω) and X(k)(Ω)×H1
(k)(Ω), respectively. Note also the

formula
b1k(ϕ, µ) = b1−k(ϕ, µ).

Proposition 3.1. Any solution (ω0k, λ0k) in X(k)(Ω)×H1
(k)�(Ω) of problem (3.18) satisfies: λ0k = 0 a.e. in Ω

and is a solution of problem (3.3) in the distribution sense.

Proof. We first observe that, for any µ in H1
(k)�(Ω), gradk µ belongs to X(k)(Ω) and satisfies curlk gradk µ = 0.

So, taking ϕ equal to gradk λ
0k in (3.18) yields∫

Ω

∣∣gradk λ
0k
∣∣2 r dr dz = 0.

So, λ0k is constant on Ω (which is connected) and, since it vanishes on Γ, it is equal to zero. As a consequence,
taking ϕ in (3.18) in D(Ω)3 yields that the first line of (3.3) is satisfied in the distribution sense. Finally,
letting µ in (3.18) run through D(Ω) yields that the second line of (3.3) is satisfied in the distribution sense.

Note that the analysis of problem (3.18) can be derived from the three-dimensional results recalled in Sec-
tion 2, however we have rather give a direct proof in view of its analogue for the discrete problem. As standard
for saddle-point problems ([15], Chap. I, Thm. 4.1) proving the well-posedness of problem (3.18) relies on the
ellipticity of a1

k(·, ·) and on an inf-sup condition of Babuška and Brezzi type on the form b1k(·, ·). We begin with
this condition.

Lemma 3.2. There exists a constant β1 independent of k such that, for each k ∈ Z, the following inf-sup
condition holds

∀µ ∈ H1
(k)�(Ω), sup

ϕ∈X(k)(Ω)

b1k(ϕ, µ)
‖ϕ‖X(k)(Ω)

≥ β1 |µ|H1
(k)(Ω). (3.20)

Proof. Let µ be any function in H1
(k)�(Ω). As previously, the idea is to choose ϕ equal to gradk µ, so that

b1k(ϕ, µ) =
∫

Ω

|gradk µ|2 r dr dz = |µ|2H1
(k)(Ω),

and
‖ϕ‖X(k)(Ω) = |µ|H1

(k)(Ω).

This gives the desired inf-sup condition.
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In order to check the ellipticity of the form a1
k(·, ·), we introduce the kernel

V 1
(k) =

{
ϕ ∈ X(k)(Ω); ∀µ ∈ H1

(k)�(Ω), b1k(ϕ, µ) = 0
}
. (3.21)

By the same arguments as in the proof of Proposition 3.1, it is readily checked that

V 1
(k) =

{
ϕ ∈ X(k)(Ω); divk ϕ = 0 in Ω

}
. (3.22)

Lemma 3.3. There exists a constant α1 independent of k such that, for each k ∈ Z, the following ellipticity
property holds

∀ϕ ∈ V 1
(k), a1

k(ϕ,ϕ) ≥ α1 ‖ϕ‖2
X(k)(Ω). (3.23)

Proof. We have
a1

k(ϕ,ϕ) = ‖curlk ϕ‖2
L2

1(Ω)3 .

In order to prove the equivalence of this last seminorm with the norm ‖ · ‖X(k)(Ω), we recall from ([5], Cor. 3.19)
that there exists a constant c1 such that, for all functions ϕ̆ in X(Ω̆) with divergence in L2(Ω̆),

‖ϕ̆‖2
L2(Ω̆)3

+ ‖curl ϕ̆‖2
L2(Ω̆)3

+ ‖div ϕ̆‖2
L2(Ω̆)

≤ c1

(
‖curl ϕ̆‖2

L2(Ω̆)3
+ ‖div ϕ̆‖2

L2(Ω̆)

)
.

Applying this inequality to the function ϕ̆ such that its only non-zero Fourier coefficient is of order k and
belongs to V 1

(k), yields

∀ϕ ∈ V 1
(k), ‖ϕ‖2

L2
1(Ω)3 + ‖curlk ϕ‖2

L2
1(Ω)3 ≤ c1 ‖curlk ϕ‖2

L2
1(Ω)3 , (3.24)

which implies the desired inequality.

Thanks to Lemmas 3.2 and 3.3, we now derive the next theorem from ([15], Chap. I, Thm. 4.1).

Theorem 3.4. For any data fk in L2
1(Ω)3, problem (3.18) has a unique solution (ω0k, λ0k) in X(k)(Ω) ×

H1
(k)�(Ω). Moreover, this solution satisfies: λ0k = 0 a.e. in Ω and

‖ω0k‖X(k)(Ω) ≤ c ‖fk‖L2
1(Ω)3 . (3.25)

Of course, since λ0k is zero, the term b1k(ϕ, λ0k) could be suppressed in problem (3.18). However, it is
important to keep it for the discrete problem that is built via the Galerkin method, in order to obtain a square
linear system.

3.3. Variational formulation and analysis of the second problem

In analogy with Section 2, for each k ∈ Z, we propose the following variational formulation for problem (3.4):

Find (ω∗k, λ∗k) in Y(k)(Ω) ×H1
(k)�(Ω) and ψk in X(k)(Ω) such that

∀(ϑ, µ) ∈ Y(k)(Ω) ×H1
(k)�(Ω), a2

k(ω∗k,ϑ) + b2k
(
(ϑ, µ);ψk

)
= −a2

k(ω0k,ϑ),

∀ϕ ∈ X(k)(Ω), b2k
(
(ω∗k, λ∗k);ϕ

)
= 0, (3.26)

where the sesquilinear forms a2
k(·, ·) and b2k(·, ·) are now defined by

a2
k(ω,ϑ) =

∫
Ω

ω · ϑ r dr dz, b2k
(
(ϑ, µ);ϕ

)
= −〈curl−k curl−k ϑ,ϕ〉 +

∫
Ω

ϕ · grad−k µ r dr dz. (3.27)
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There also, these forms are obviously continuous on L2
1(Ω)3×L2

1(Ω)3 and on the product
(
Y(k)(Ω)×H1

(k)(Ω)
)×

X(k)(Ω). Moreover the form a2
k(·, ·) is independent of k and the form b2k(·, ·) is simpler:

b2k
(
(ϑ, µ);ϕ

)
= −〈curlk curlk ϑ,ϕ〉 +

∫
Ω

gradk µ · ϕ r dr dz.

We now check the analogue of Proposition 3.1 for this problem.

Proposition 3.5. For any solution ω0k of (3.3) in L2
1(Ω)3, any solution (ω∗k, λ∗k,ψk) in Y(k)(Ω)×H1

(k)�(Ω)×
X(k)(Ω) of problem (3.26) satisfies: λ∗k = 0 a.e. in Ω and is a solution of problem (3.4) in the distribution
sense.

Proof. We first take ϕ equal to gradkλ
∗k in the second line of (3.26), which yields that∫

Ω

|gradkλ
∗k|2 r dr dz = 0,

or equivalently that λ∗k is zero. Next, letting ϑ run through D(Ω)3 and taking µ = 0 in the first line of (3.26)
gives the second line of (3.4), while letting ϕ run through D(Ω)3 in the second line of (3.26) (with λ∗k = 0)
yields the first equation of (3.4). Applying the divk operator to the second line of (3.4) and using (3.3) yields
that divkω

∗k is zero, while the fact that divkψ
k = 0 is obtained by taking ϑ = 0 and letting µ run through D(Ω)

in the first line of (3.26). Finally, the boundary condition γT (curlkψk) = 0 is derived from formula (3.14), by
taking ϑ equal to any infinitely differentiable function on Ω and µ = 0 in the first line of (3.26).

In view of the analysis of problem (3.26), we prove the inf-sup condition on the form b2k(·, ·).
Lemma 3.6. There exists a constant β2 independent of k such that, for each k ∈ Z, the following inf-sup
condition holds

∀ϕ ∈ X(k)(Ω), sup
(ϑ,µ)∈Y(k)(Ω)×H1

(k)�(Ω)

b2k
(
(ϑ, µ);ϕ

)
‖ϑ‖Y(k)(Ω) + |µ|H1

(k)(Ω)

≥ β2 ‖ϕ‖X(k)(Ω). (3.28)

Proof. With any ϕ in X(k)(Ω), we associate the solution µ(ϕ) in H1
(k)�(Ω) of the problem

∀µ ∈ H1
(k)�(Ω),

∫
Ω

gradk µ(ϕ) · grad−k µ r dr dz =
∫

Ω

ϕ · grad−k µ r dr dz. (3.29)

Such a problem is well-posed (see [10], Prop. II.4.1 and II.4.2). Next, we take ϑ equal to −ϕ (which belongs to
Y(k)(Ω)) and µ equal to µ(ϕ), so that

b2k
(
(ϑ, µ);ϕ

)
= ‖curlkϕ‖2

L2
1(Ω)3 + |µ(ϕ)|2H1

(k)(Ω), (3.30)

and
‖ϑ‖Y(k)(Ω) + |µ|H1

(k)(Ω) ≤ ‖ϕ‖X(k)(Ω) + |µ(ϕ)|H1
(k)(Ω). (3.31)

Next, we use the triangle inequality

‖ϕ‖X(k)(Ω) ≤ ‖ϕ− gradk µ(ϕ)‖L2
1(Ω)3 + |µ(ϕ)|H1

(k)(Ω) + ‖curlkϕ‖L2
1(Ω)3 ,

and, since the function ϕ− gradk µ(ϕ) belongs to the space V 1
(k) defined in (3.21), applying (3.24) yields

‖ϕ‖X(k)(Ω) ≤ c1 ‖curlkϕ‖L2
1(Ω)3 + |µ(ϕ)|H1

(k)(Ω). (3.32)

Combining (3.30) to (3.32) leads to the desired inf-sup condition.
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Next, we introduce the kernel

V 2
(k) =

{
(ϑ, µ) ∈ Y(k)(Ω) ×H1

(k)�(Ω); ∀ϕ ∈ X(k)(Ω), b2k
(
(ϑ, µ);ϕ

)
= 0
}
. (3.33)

We need a lemma to characterize this kernel.

Lemma 3.7. The space V 2
(k) coincides with the space of pairs (ϑ, µ) in Y(k)(Ω) ×H1

(k)�(Ω) such that

curlk curlk ϑ = 0 and µ = 0 a.e. in Ω. (3.34)

Proof. Let (ϑ, µ) be any pair in V 2
(k). First, we take ϕ equal to gradk µ which belongs to X(k)(Ω). This yields

b2k
(
(ϑ, µ);ϕ

)
=
∫

Ω

|gradk µ|2 r dr dz = 0,

so that µ is equal to zero. Next, we have

∀ϕ ∈ X(k)(Ω), 〈curl−k curl−k ϑ,ϕ〉 = 0,

and since curl−k curl−k ϑ belongs to the dual space of X(k)(Ω), it is zero.

We skip the proof of the ellipticity property of a2
k(·, ·), which is now obvious.

Corollary 3.8. There exists a constant α2 independent of k such that the following ellipticity property holds

∀(ϑ, µ) ∈ V 2
(k), a2

k(ϑ,ϑ) ≥ α2
(
‖ϑ‖2

Y(k)(Ω) + |µ|2H1
(k)(Ω)

)
. (3.35)

The next theorem is now a consequence of ([15], Chap. I, Thm. 4.1) combined with Lemma 3.6 and Corollary 3.8.

Theorem 3.9. For any ω0k in L2
1(Ω)3, problem (3.26) has a unique solution (ω∗k, λ∗k,ψk) in Y(k)(Ω) ×

H1
(k)�(Ω) ×X(k)(Ω). Moreover, this solution satisfies: λ∗k = 0 a.e. in Ω and

∥∥ω∗k
∥∥

L2
1(Ω)3

+
∥∥∥ψk

∥∥∥
X(k)(Ω)

≤ c
∥∥ω0k

∥∥
L2

1(Ω)3
. (3.36)

As previously, the term involving λ∗k is kept in problem (3.26) only in order to obtain a discrete problem
with as many unknowns as test functions. Moreover, on all pairs (ϑ, µ) such that ϑ belongs to the smoother
space X(k)(Ω), the form b2k(·, ·) can equivalently be written

b2k
(
(ϑ, µ);ϕ

)
= −a1

k(ϕ,ϑ) + b1k(ϕ, µ). (3.37)

This simpler form is used in the discretization.

3.4. Fourier truncation of the three-dimensional solution

To conclude, we consider a fixed function f̆ in L2(Ω̆)3 with Fourier coefficients fk, k ∈ Z. With each fk, we
associate the unique solution (ω0k, 0) of problem (3.18) and the corresponding unique solution (ω∗k, 0,ψk) of
problem (3.26). We set: ωk = ω0k + ω∗k, and we define the three-dimensional functions ω and ψ by

ω(r, θ, z) =
1√
2π

∑
k∈Z

ωk(r, z) eikθ, ψ(r, θ, z) =
1√
2π

∑
k∈Z

ψk(r, z) eikθ. (3.38)

It is now readily checked that the corresponding pair (ω̆, ψ̆) is the only solution of problem (2.4), so that the
Stokes problem is fully equivalent to the system of problems (3.18) and (3.26), k ∈ Z.
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Remark. In the case of axisymmetric data f̆ , i.e. such that fr, fθ and fz are independent of θ, all Fourier
coefficients of ω̆ and ψ̆ vanish but those of order zero. We refer to [1, 2] for a slightly different formulation of
the problem in this case.

In the case of general data f̆ , the idea is to solve only a finite number of two-dimensional discrete problems.
So, we fix an integer K ≥ 2 and we introduce the pair (ωK ,ψK) which is obtained from (ω,ψ) by Fourier
truncation:

ωK(r, θ, z) =
1√
2π

K∑
k=−K

ωk(r, z) eikθ, ψK(r, θ, z) =
1√
2π

K∑
k=−K

ψk(r, z) eikθ. (3.39)

We intend to evaluate the distance between (ω,ψ) and (ωK ,ψK) in appropriate norms.
Estimating this distance relies on two arguments:

(i) Let πK be the standard Fourier truncation operator, defined from L2(−π, π) into itself by

ϕ =
1√
2π

∑
k∈Z

ϕk eikθ �→ πKϕ =
1√
2π

K∑
k=−K

ϕk eikθ. (3.40)

Then the following estimate is standard (see e.g. [11], Thm. 1.1): for any real numbers s and t,
0 ≤ t ≤ s, and for any function ϕ in Hs(−π, π),

‖ϕ− πKϕ‖Ht(−π,π) ≤ cKt−s ‖ϕ‖Hs(−π,π). (3.41)

(ii) The partial regularity of the solution of the Stokes problem with respect to θ only depends on the
regularity of the data f̆ , but is independent of the regularity of the domain Ω (see [10], Prop. IX.1.8).

We prove the next theorem by combining these arguments, thanks to the formula

ω − ωK = ω − πKω, curl ψ − curl ψK = curl ψ − πK(curl ψ).

Theorem 3.10. Assume that the data f̆ belong to Hσ(Ω̆)3, σ ≥ 0. There exists a constant c independent
of K such that the following estimate holds between the solution (ω̆, ψ̆) of problem (2.4) and the pair (ω̆K , ψ̆K)
defined in (3.39):

‖ω̆ − ω̆K‖L2(Ω̆)3 +K ‖curl ψ̆ − curl ψ̆K‖L2(Ω̆)3 ≤ cK−σ−1 ‖f̆‖Hσ(Ω̆)3 . (3.42)

Remark. When the domain Ω̆ is convex, since both ψ̆ and ψ̆K are divergence-free and their tangential traces
on ∂Ω̆ vanish, we deduce from ([5], Th. 2.17) that

‖ψ̆ − ψ̆K‖H1(Ω̆)3 ≤ c ‖curl ψ̆ − curl ψ̆K‖L2(Ω̆)3 . (3.43)

So, for convex domains Ω̆, we have also evaluated the distance between ψ̆ and ψ̆K in H1(Ω̆)3.

4. Spectral discretization

The Fourier coefficients of the data f̆ cannot be computed explicitly in the general case. So we first ex-
plain how to compute them thanks to a quadrature formula. Next we present the polynomial spaces and the
quadrature formulas that are needed for the discrete problems. We then describe the discretizations of prob-
lems (3.18) and (3.26) that are derived by the Galerkin method with numerical integration and we prove their
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well-posedness together with error estimates. In a final step, we construct a three-dimensional discrete solution
from the previous problems.

In all that follows, we assume that Ω̆ is a cylinder. Equivalently, Ω is a rectangle and, without restriction,
we take it equal to Ω =]0, 1[×] − 1, 1[, with the corresponding definition for Γ0 and Γ. More complex domains
can be handled by combining the arguments in this paper with those of ([10], Chap. VIII).

4.1. Fourier interpolation

For the same integer K as in Section 3.4, we introduce the 2K+1 equidistant nodes θm = 2mπ
2K+1 , −K≤ m ≤K.

Next, we assume the data f̆ such that fr, fθ and fz are continuous with respect to θ and we set:

fk
�(r, z) =

√
2π

2K + 1

K∑
m=−K

f(t, θm, z) e−ikθm , −K ≤ k ≤ K. (4.1)

Note that, clearly, these approximate Fourier coefficients depend on K, however we omit the K in the index for
simplicity. This leads to define the function

fK�(r, θ, z) =
1√
2π

K∑
k=−K

fk
�(r, z) eikθ . (4.2)

From the formula

fk
� =

∑
�∈Z

fk+(2K+1)�, (4.3)

it is readily checked that the function f̆K� provides a good approximation of f̆ , as stated in the next proposition.

Proposition 4.1. Assume the function f̆ in Hσ(Ω̆)3, σ > 1
2 . There exists a constant c independent of K such

that the following estimates hold:

∥∥∥f̆ − f̆K�
∥∥∥

L2(Ω̆)3
≤ cK−σ

∥∥∥f̆∥∥∥
Hσ(Ω̆)3

and
∥∥∥f̆K�

∥∥∥
Hσ(Ω̆)3

≤ c
∥∥∥f̆∥∥∥

Hσ(Ω̆)3
. (4.4)

Now, let (ω0k
� , λ

0k
� ) be the solution of problem (3.18) with fk replaced by fk

� , and let (ω∗k
� , λ∗k

� ,ψk
�) be the

solution of problem (3.26) with ω0k replaced by ω0k� . It follows from the previous Proposition 4.1 combined
with (3.25) and (3.36) that, if the function f̆ belongs to Hσ(Ω̆)3, σ > 1

2 ,

(
K∑

k=−K

(∥∥ω0k − ω0k
�
∥∥2

X(k)(Ω)
+
∥∥ω∗k − ω∗k

�
∥∥2

L2
1(Ω)3

+
∥∥∥ψk − ψk

�
∥∥∥2

X(k)(Ω)

)) 1
2

≤ cK−σ
∥∥∥f̆∥∥∥

Hσ(Ω̆)3
. (4.5)

Moreover the uniqueness of the solutions of both problems (3.18) and (3.26), combined with (4.3), yields the
formulas

ω0k
� =

∑
�∈Z

ω0,k+(2K+1)�, ω∗k
� =

∑
�∈Z

ω∗,k+(2K+1)�, ψk
� =

∑
�∈Z

ψk+(2K+1)�, (4.6)

so that the regularity properties of the ω0k
� , ω∗k

� and ψk
� can be derived from those of ω̆0, ω̆∗ and ψ̆ in an

obvious way.
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4.2. Polynomial spaces and quadrature formulas

For each positive integer n, we define the space Pn(Ω) as the space of polynomials on Ω with degree ≤n with
respect to r and z, respectively. We introduce the three subspaces P∗

n(Ω), P�
n(Ω) and P0

n(Ω) of polynomials
in Pn(Ω) which vanish on Γ0, Γ and ∂Ω, respectively. We also use the space Pn(−1, 1) of polynomials with
degree ≤n on ]−1, 1[, its subspace P0

n(−1, 1) made of polynomials vanishing in ±1, and their analogues on ]0, 1[.
Let now N be another fixed integer, N � 2. Our global discretization parameter is the pair (K,N). We first

define the space MN(k) as the intersection of PN(Ω) with H1
(k)�(Ω). It is readily checked that

MN(k) =

{
P�

N (Ω) if k = 0,
P

0
N (Ω) if |k| ≥ 1.

(4.7)

Similarly, we define YN(k) as the intersection of PN(Ω)3 with H(curlk,Ω) or, equivalently,

YN(k) =

{
PN (Ω) × P

∗
N (Ω) × PN (Ω) if k = 0,{

(vrN , vθN , vzN ) ∈ PN (Ω) × PN (Ω) × P∗
N (Ω); vθN − ik vrN ∈ P∗

N(Ω)
}
, if |k| ≥ 1.

(4.8)

Finally, we introduce the space

XN(k) =
{
vN ∈ YN(k); γTvN = 0 on Γ}. (4.9)

Let Ln stand for the Legendre polynomial of degree n. We recall that these polynomials are orthogonal to
each other one in L2(−1, 1) and satisfy Ln(1) = 1. We now introduce the standard Gauss–Lobatto formula on
]−1, 1[: With ξ0 = −1 and ξN = 1, there exist a unique set of nodes ξj , 1 ≤ j ≤ N − 1, and a unique set of
weights ρj, 0 ≤ j ≤ N , such that the following property holds

∀Φ ∈ P2N−1(−1, 1),
∫ 1

−1

Φ(ξ) dξ =
N∑

j=0

Φ(ξj) ρj . (4.10)

The ξj , 1 ≤ j ≤ N − 1, are the zeros of L′
N and the ρj , 0 ≤ j ≤ N , are positive. We finally recall the positivity

property

∀ϕN ∈ PN(−1, 1), ‖ϕN‖2
L2(−1,1) ≤

N∑
j=0

ϕ2
N (ξj) ρj ≤ 3 ‖ϕN‖2

L2(−1,1). (4.11)

Similarly, the polynomials Mn defined by

Mn(ζ) =
Ln(ζ) + Ln+1(ζ)

1 + ζ
, n ≥ 0, (4.12)

are orthogonal to each other one on ]−1, 1[ for the measure (1+ζ) dζ and satisfy Mn(1) = 1. The Gauss–Lobatto
formula on ]−1, 1[ for the weighted measure (1 + ζ) dζ is defined as follows: With ζ0 = −1 and ζN = 1, there
exist a unique set of nodes ζi, 1 ≤ i ≤ N − 1, and a unique set of weights ωi, 0 ≤ i ≤ N , such that the following
property holds

∀Φ ∈ P2N−1(−1, 1),
∫ 1

−1

Φ(ζ) (1 + ζ) dζ =
N∑

i=0

Φ(ζi)ωi. (4.13)

The ζi, 1 ≤ i ≤ N − 1, are the zeros of M ′
N and the ωi, 0 ≤ i ≤ N , are positive. We refer to ([10], Sect. VI.1.b)

for a more detailed study of this formula and also for the positivity property

∀ϕN ∈ PN(−1, 1),
∥∥∥ϕN (1 + ζ)

1
2

∥∥∥2

L2(−1,1)
≤

N∑
i=0

ϕ2
N (ζi)ωi ≤ 4

∥∥∥ϕN (1 + ζ)
1
2

∥∥∥2

L2(−1,1)
. (4.14)
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Of course, we use formula (4.10) in the z-direction. In the r-direction, thanks to the change of variables
r = 1+ζ

2 , we use formula (4.13), so we set: ri = 1+ζi

2 , 0 ≤ i ≤ N . This leads to the definition of the discrete
product, for any continuous functions u and v on Ω,

((u, v))N =
1
4

N∑
i=0

N∑
j=0

u(ri, ξj)v(ri, ξj)ωi ρj ,

and it can be extended to vector-valued functions in a trivial way. Let also IN stands for the Lagrange
interpolation operator at the nodes (ri, ξj), 0 ≤ i, j ≤ N , with values in PN(Ω). We are now in a position to
describe the discrete problems.

4.3. Discretization of the first problem

The discrete problem corresponding to problem (3.18) is obtained by the Galerkin method with numerical
integration, it reads:

Find ω0k
N in XN(k) and λ0k

N in MN(k) such that

∀ϕN ∈ XN(k), a1
kN

(
ω0k

N ,ϕN

)
+ b1kN

(
ϕN , λ

0k
N

)
=
((
fk
� , curlkϕN

))
N
,

∀µN ∈ MN(k), b1kN

(
ω0k

N , µN

)
= 0,

(4.15)

where the bilinear forms a1
kN (·, ·) and b1kN (·, ·) are defined by

a1
kN (ϑN ,ϕN ) = ((curlk ϑN , curlk ϕN ))N , b1kN (ϕN , µN ) = ((gradkµN ,ϕN ))N . (4.16)

There also, even if the function fk
� in the right-hand side depends on K, we omit the index K and the � in ω0k

N

for simplicity.
Thanks to (4.11) and (4.14), the forms a1

kN (·, ·) and b1kN (·, ·) satisfy the following continuity properties, with
constants c and c′ independent of k and N :

∀ϑN ∈ XN(k), ∀ϕN ∈ XN(k), a1
kN (ϑN ,ϕN ) ≤ c ‖ϑN‖X(k)(Ω)‖ϕN‖X(k)(Ω),

∀ϕN ∈ XN(k), ∀µN ∈ MN(k), b1kN (ϕN , µN ) ≤ c′ ‖ϕN‖X(k)(Ω)|µN |H1
(k)(Ω).

(4.17)

The next lemma states a key property of our discrete spaces.

Lemma 4.2. For all k ∈ Z, the gradk operator maps MN(k) into XN(k).

Proof. For all k and any µN in MN(k), the function vN = gradkµN belongs to PN(Ω)3, so it remains to check
that it satisfies the nullity conditions on Γ0 and on Γ.

1) On Γ0, for k = 0, the angular component vθN is equal to zero, hence belongs to P∗
N(Ω). For k �= 0, we

have
vθN − ik vrN = ik r−1 µN − ik ∂rµN = −ik r ∂r

(
r−1 µN

)
.

Since µN belongs to P0
N (Ω), hence vanishes on Γ0, the quantity r−1 µN belongs to PN (Ω). Thus, the

polynomial vθN − ik vrN vanishes on Γ0, and the same property obviously holds for vzN = ∂zµN .
2) On Γ, the quantities (γTv)r = ik r−1 µN nz and (γTv)z = −ik r−1 µN nr also vanish since µN has a

zero trace on Γ. Moreover, we have

(γTv)θ = ∂zµN nr − ∂rµN nz.

According to the edges of Γ, either nr is equal to 1, nz is equal to zero and ∂z represents the tangential
derivative or nr is equal to zero, nz is equal to ±1 and ∂r represents the tangential derivative. So, in
all cases, (γTv)θ vanishes.
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Thanks to the Definition (4.9) of XN(k), this concludes the proof.

We can now prove the inf-sup condition on the form b1kN (·, ·).
Lemma 4.3. There exists a constant β̃1 independent of k and N such that, for each k ∈ Z, the following inf-sup
condition holds

∀µN ∈ MN(k), sup
ϕN∈XN(k)

b1kN (ϕN , µN)
‖ϕN‖X(k)(Ω)

≥ β̃1 |µN |H1
(k)(Ω). (4.18)

Proof. Thanks to Lemma 4.2, the idea is to associate with any µN in MN(k) the function ϕN equal to gradk µN .
With this choice, we have

b1kN (ϕN , µN ) = ((gradk µN ,gradk µN ))N .

It follows from the positivity properties (4.11) and (4.14) that

b1kN (ϕN , µN ) ≥ |µN |2H1
(k)(Ω),

while
‖ϕN‖X(k)(Ω) = |µN |H1

(k)(Ω).

This concludes the proof.

In order to prove the ellipticity of the form a1
kN (·, ·), we introduce the kernel

V
1
N(k) =

{
ϕN ∈ XN(k); ∀µN ∈ MN(k), b

1
kN (ϕN , µN ) = 0

}
. (4.19)

Lemma 4.4. There exists a constant α̃1 independent of k and N such that, for each k ∈ Z, the following
ellipticity property holds

∀ϕN ∈ V
1
N(k), a1

kN (ϕN ,ϕN ) ≥ α̃1 ‖ϕN‖2
X(k)(Ω). (4.20)

To derive property (4.20), we only have to prove that

∀ϕN ∈ V
1
N(k), ‖ϕN‖L2

1(Ω)3 ≤ c ‖curlk ϕN‖L2
1(Ω)3 . (4.21)

Checking this inequality with a constant c possibly depending on N is easy. Indeed, let ϕN be any polynomial
in V1

N(k) such that curlk ϕN is zero. The three-dimensional function such that its only non-zero coefficient is ϕN

is also curl-free, so that it is the gradient of a function χ. Then, it can be observed that the Fourier coefficient of
order k of χ belongs to MN(k), hence is zero thanks to the definition of V1

N(k). So, the right-hand side of (4.21)
is a norm on V1

N(k) and, from the equivalence of norms on finite-dimensional spaces, we derive (4.21) with a
constant c(N), possibly depending on N . Checking that the constant is independent of N is rather technical,
so we prefer to give the arguments in Appendix A.

Remark. As a by-product of the proof given in Appendix A, we note that V1
N(k) is not contained in V 1

(k),
indeed all functions in V1

N(k) are not exactly divergence-free. For instance, the function ϕN given by

ϕrN(r, z) = 0, ϕθN (r, z) = 0, ϕzN = µN (r)LN (z),

for any µN in P0
N (0, 1) belongs to V1

N(k) and is not divergence-free.

Theorem 4.5. For any data fk
� continuous on Ω, problem (4.15) has a unique solution (ω0k

N , λ0k
N ) in XN(k) ×

MN(k). Moreover, this solution satisfies: λ0k
N = 0 in Ω and

∥∥ω0k
N

∥∥
X(k)(Ω)

≤ c
∥∥∥INf

k
�
∥∥∥

L2
1(Ω)3

. (4.22)
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Proof. The existence and uniqueness of a solution are a direct consequence of Lemmas 4.3 and 4.4. Moreover,
using once more Lemma 4.2, we take ϕN equal to gradλ0k

N in the first line of problem (4.15), which implies
that λ0k

N is zero. Finally, estimate (4.22) follows by taking ϕN equal to ω0k
N in (4.15) and using Lemma 4.4

together with (4.11) and (4.14).
In order to prove the error estimate, we first check from Theorem 4.5 that

∀ϕN ∈ XN(k), a1
kN

(
ω0k

N ,ϕN

)
=
((
fk
� , curlkϕN

))
N
. (4.23)

Denoting by ϕN any approximation of ω0k
N in XN−1(k) (this space is defined by replacing the space PN(Ω) by

PN−1(Ω) everywhere in the definition of XN(k)), we derive from (4.11) and (4.14) that

∥∥curlk
(
ω0k

N −ϕN

)∥∥2

L2
1(Ω)3

≤ a1
kN

(
ω0k

N −ϕN ,ω
0k
N −ϕN

)
.

Combining (4.23) with the exactness property of the quadrature formula yields

∥∥curlk (ω0k
N −ϕN )

∥∥2

L2
1(Ω)3

≤
((
fk
� , curlk(ω0k

N −ϕN )
))

N
− a1

k(ϕN ,ω
0k
N −ϕN ).

Thus, it follows by adding (3.18) and using Theorem 3.4 that

∥∥curlk
(
ω0k

N −ϕN

)∥∥2

L2
1(Ω)3

≤ a1
k

(
ω0k

� −ϕN ,ω
0k
N −ϕN

)
−
∫

Ω

fk
� · curl−k

(
ω0k

N −ϕN

)
r dr dz +

((
fk
� , curlk

(
ω0k

N −ϕN

)))
N
.

By a triangle inequality, this leads to the estimate∥∥curlk
(
ω0k

� − ω0k
N

)∥∥
L2

1(Ω)3
≤ 2 inf

ϕN∈XN−1(k)

∥∥curlk
(
ω0k

� −ϕN

)∥∥
L2

1(Ω)3

+ sup
µN∈PN (Ω)3

∫
Ω
fk
� · µN r dr dz − ((fk

� ,µN ))N

‖µN‖L2
1(Ω)3

·
(4.24)

The last term in (4.24) comes from numerical integration and is bounded in a standard way: for any function f
continuous on Ω,

sup
µN∈PN (Ω)3

∫
Ω
f · µN r dr dz − ((f ,µN ))N

‖µN‖L2
1(Ω)3

≤ c (‖f − ΠN−1f‖L2
1(Ω)3 + ‖f − INf‖L2

1(Ω)3),

where ΠN−1 stands for the orthogonal projection operator from L2
1(Ω) onto PN−1(Ω). Using ([10], Sect. V.2

and VI.3) leads to the following estimate: if the function f belongs to Hσ
1 (Ω)3, σ > 3

2 ,

sup
µN∈PN (Ω)3

∫
Ω
f · µN r dr dz − ((f ,µN ))N

‖µN‖L2
1(Ω)3

≤ cN−σ ‖f‖Hσ
1 (Ω)3 . (4.25)

This is combined later with Proposition 4.1 in order to use the regularity properties of fk instead of that of fk
� .

The first term in the right-hand side of (4.24) represents the approximation error, and it is easy to bound it
as a function of ω0k

� . However, we have rather state a slightly improved result which is proved in Appendix B
according to the arguments in [6], Section 4, and only involves the regularity of curlk ω0k� .
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Lemma 4.6. The following estimate holds for any function ϕ in X(k)(Ω) such that curlkϕ belongs to Hs
1(Ω)3,

s ≥ 0,

inf
ϕN∈XN(k)

‖curlk (ϕ−ϕN )‖L2
1(Ω)3 ≤ cN−s ‖curlk ϕ‖Hs

1(Ω)3 . (4.26)

Inserting (4.25) and (4.26) into (4.24) leads to the first error estimate.

Theorem 4.7. Assume that the data fk
� belong to Hσ

1 (Ω)3, σ > 3
2 , and that the vorticity ω0k� of problem (3.18)

is such that curlk ω0k
� belongs to Hs

1(Ω)3, s ≥ 0. Then, the following error estimate holds

∥∥curlk
(
ω0k

� − ω0k
N

)∥∥
L2

1(Ω)3
≤ c

(
N−s

∥∥curlk ω0k
∥∥

Hs
1 (Ω)3

+N−σ ‖fk
�‖Hσ

1 (Ω)3

)
. (4.27)

A better estimate for ω0k
� − ω0k

N in the L2
1(Ω)3-norm can be derived by a duality argument.

Corollary 4.8. If the assumptions of Theorem 4.7 are satisfied, the following error estimate holds

∥∥ω0k
� − ω0k

N

∥∥
L2

1(Ω)3
≤ c

(
N−1−s

∥∥curlk ω0k
�
∥∥

Hs
1 (Ω)3

+N−σ ‖fk
�‖Hσ

1 (Ω)3

)
. (4.28)

Proof. We start from the formula

∥∥ω0k
� − ω0k

N

∥∥
L2

1(Ω)3
= sup

g∈L2
1(Ω)3

∫
Ω
(ω0k

� − ω0k
N ) · g r dr dz

‖g‖L2
1(Ω)3

·

Next, for any g in L2
1(Ω)3, we solve the problem




curlk curlk ϕ = g in Ω,

divk ϕ = 0 in Ω,

γTϕ = 0 on Γ.

(4.29)

Its well-posedness follows from Theorem 3.4. Moreover, by noting that the curlk of curlk ϕ belongs to L2
1(Ω)3,

that its divk is zero and that its normal trace vanishes on Γ (which can easily be derived from the condition
γTϕ = 0), we derive from the convexity of Ω̆ and the three-dimensional regularity results ([5], Thm. 2.17) that
curlk ϕ belongs to H1

1 (Ω)3 and satisfies

‖curlk ϕ‖H1
1 (Ω)3 ≤ c ‖g‖L2

1(Ω)3 . (4.30)

Moreover, we have ∫
Ω

(
ω0k

� − ω0k
N

) · g r dr dz = a1
k(ω0k

� − ω0k
N ,ϕ).

Then, we derive from (4.23) that, for any ϕN in XN−1(k),

∫
Ω

(
ω0k

� − ω0k
N

) · g r dr dz = a1
k

(
ω0k

� − ω0k
N ,ϕ−ϕN

)
+
∫

Ω

fk
� · curl−k ϕN r dr dz − ((fk

� , curlk ϕN ))N .

Finally, combining (4.25), Lemma 4.6 and (4.30) with the estimate of Theorem 4.7 leads to the desired result.
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4.4. Discretization of the second problem

The discrete problem corresponding to problem (3.26) now reads:

Find (ω∗k
N , λ∗k

N ) in YN(k) × MN(k) and ψk
N in XN(k) such that

∀(ϑN , µN ) ∈ YN(k) × MN(k),

a2
kN (ω∗k

N ,ϑN ) + b2kN

(
(ϑN , µN );ψk

N

)
= −a2

kN

(
ω0k

N ,ϑN

)
,

∀ϕN ∈ XN(k), b2kN

((
ω∗k

N , λ∗k
N

)
;ϕN

)
= 0,

(4.31)

where, as hinted in (3.37), the bilinear forms a2
kN (·, ·) and b2kN (·, ·) are now defined by

a2
kN (ωN ,ϑN ) = ((ωN ,ϑN ))N , b2kN

(
(ϑN , µN );ϕN

)
= −a1

kN (ϕN ,ϑN ) + b1kN (ϕN , µN ). (4.32)

Proving that this problem is well-posed there also relies on the inf-sup condition on b2kN (·; ·) and on the ellipticity
of a2

kN (·, ·). We prove the first property by very similar arguments as in the continuous case.

Lemma 4.9. There exists a constant β̃2 independent of k and N such that, for each k ∈ Z, the following inf-sup
condition holds

∀ϕN ∈ XN(k), sup
(ϑN ,µN )∈YN(k)×MN(k)

b2kN

(
(ϑN , µN );ϕN

)
‖ϑN‖Y(k)(Ω) + |µN |H1

(k)(Ω)

≥ β̃2 ‖ϕN‖X(k)(Ω). (4.33)

Proof. With any ϕN in XN(k), we associate the solution µN (ϕN ) in MN(k) of the problem

∀λN ∈ MN(k),

∫
Ω

gradk µN (ϕN ) · grad−k λN r dr dz =
∫

Ω

ϕN · grad−k λN r dr dz.

So, taking ϑN equal to −ϕN and µN equal to µN (ϕN ) and using the positivity properties (4.11) and (4.14)
yield

b2kN

(
(ϑN , µN );ϕN

) ≥ ‖curlkϕN‖2
L2

1(Ω)3 + |µN (ϕN )|2H1
(k)(Ω). (4.34)

On the other hand, we have

‖ϑN‖Y(k)(Ω) + |µN |H1
(k)(Ω) ≤ ‖ϕN‖X(k)(Ω) + |µN (ϕN )|H1

(k)(Ω). (4.35)

Owing to the triangle inequality

‖ϕN‖X(k)(Ω) ≤ ‖ϕN − gradk µN (ϕN )‖L2
1(Ω)3 + |µN (ϕN )|H1

(k)(Ω) + ‖curlkϕN‖L2
1(Ω)3 ,

and using (4.21) (indeed, the function ϕN − gradk µN (ϕN ) belongs to the space V
1
N(k) defined in (4.19)), we

derive
‖ϕN‖X(k)(Ω) ≤ ‖curlkϕN‖L2

1(Ω)3 + |µN (ϕN )|H1
(k)(Ω),

which, combined with (4.34) and (4.35), leads to the desired inf-sup condition.

The discrete kernel is now defined by

V
2
N(k) =

{
(ϑN , µN ) ∈ YN(k) × MN(k); ∀ϕN ∈ XN(k), b

2
kN

(
(ϑN , µN );ϕN

)
= 0
}
. (4.36)

The next property is an easy consequence of Lemma 4.2.
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Lemma 4.10. All pairs (ϑN , µN ) in V2
N(k) are such that µN = 0 in Ω.

Even if this result is not as precise as its analogue in the continuous case, see Lemma 3.7, using the equivalence
of norms on finite-dimensional spaces leads to the following ellipticity property: There exists a constant α2

kN

depending on k and N such that the following inequality holds

∀(ϑN , µN ) ∈ V
2
N(k), a2

kN (ϑN ,ϑN ) ≥ α2
kN ‖ϑN‖2

Y(k)(Ω) + |µN |2H1
(k)(Ω). (4.37)

This result is not optimal, but it is sufficient to derive the well-posedness result.

Theorem 4.11. For any data ω0k
N in PN(Ω)3, problem (4.31) has a unique solution (ω∗k

N , λ∗k
N ,ψk

N ) in YN(k) ×
MN(k) × XN(k). Moreover, this solution satisfies: λ∗k

N = 0 in Ω and

∥∥ω∗k
N

∥∥
L2

1(Ω)3
+
∥∥∥ψk

N

∥∥∥
X(k)(Ω)

≤ c
∥∥ω0k

N

∥∥
L2

1(Ω)3
. (4.38)

Proof. The existence and uniqueness of the solution follow from Lemma 4.9 and (4.37). The fact that λ∗k
N

cancels can then be derived from Lemma 4.10, and the estimate on ω∗k
N is obtained by taking ϑN = ω∗k

N and
µN = 0 in (4.31). The estimate on ψk

N follows from the inf-sup condition in Lemma 4.9.

In order to prove the error estimate, we introduce a fixed pair (ϑN , 0) in V2
N(k). Using the positivity

properties (4.11) and (4.14) together with problem (4.31), we derive

∥∥ω∗k
N − ϑN

∥∥2

L2
1(Ω)3

≤ a2
kN

(
ω∗k

N − ϑN ,ω
∗k
N − ϑN

)
= −a2

kN

(
ω0k

N ,ω∗k
N − ϑN

)− a2
kN

(
ϑN ,ω

∗k
N − ϑN

)
.

Thus, it follows from (3.26) that, for any ϕN in XN−1(k),

‖ω∗k
N − ϑN‖2

L2
1(Ω)3 ≤ a2

k(ω0k
� ,ω

∗k
N − ϑN ) − a2

kN (ω0k
N ,ω∗k

N − ϑN ) + a2
k(ω∗k

� ,ω∗k
N − ϑN )

− a2
kN (ϑN ,ω

∗k
N − ϑN ) + b2k((ω∗k

N − ϑN , 0),ψk
� −ϕN ).

As previously, we use the orthogonal projection operator ΠN−1 from L2
1(Ω) onto PN−1(Ω) and we note for

instance that

a2
k

(
ω0k

� ,ω
∗k
N − ϑN

)− a2
kN

(
ω0k

N ,ω∗k
N − ϑN

)
= a2

k

(
ω0k

� − ΠN−1ω
0k
� ,ω

∗k
N − ϑN

)
− a2

kN

(
ω0k

N − ΠN−1ω
0k
� ,ω

∗k
N − ϑN

)
.

So using a triangle inequality leads to∥∥ω∗k
� − ω∗k

N

∥∥
L2

1(Ω)3
≤∥∥ω0k

� − ω0k
N

∥∥
L2

1(Ω)3
+
∥∥ω0k

� − ΠN−1ω
0k
�
∥∥

L2
1(Ω)3

+
∥∥ω∗k

� − ϑN

∥∥
L2

1(Ω)3
+
∥∥ω∗k

� − ΠN−1ω
∗k
�
∥∥

L2
1(Ω)3

+ sup
ζN∈YN(k)

a1
k(ψk

� −ϕN , ζN )
‖ζN‖L2

1(Ω)3
·

(4.39)

Finally, we recall from ([15], Chap. II, formula (1.16)), combined with Lemmas 4.9 and 4.10 that

inf
(ϑN ,0)∈V2

N(k)

∥∥ω∗k
� − ϑN

∥∥
L2

1(Ω)3
≤ inf

(ϑN ,0)∈V2
N(k)

∥∥ω∗k
� − ϑN

∥∥
Y(k)(Ω)

≤ c inf
ϑN∈YN(k)

‖ω∗k
� − ϑN‖H(curlk,Ω).
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Combining all this yields∥∥ω∗k
� − ω∗k

N

∥∥
L2

1(Ω)3
≤ ∥∥ω0k

� − ω0k
N

∥∥
L2

1(Ω)3
+
∥∥ω0k

� − ΠN−1ω
0k
�
∥∥

L2
1(Ω)3

+ inf
ϑN∈YN(k)

∥∥ω∗k
� − ϑN

∥∥
H(curlk,Ω)

+
∥∥ω∗k

� − ΠN−1ω
∗k
�
∥∥

L2
1(Ω)3

+ inf
ϕN∈XN(k)

sup
ζN∈YN(k)

a1
k(ψk

� −ϕN , ζN )
‖ζN‖L2

1(Ω)3
·

(4.40)

The approximation result of functions inH(curlk,Ω) is stated in the next lemma which is proven in Appendix B.

Lemma 4.12. The following estimate holds for any function ϕ in Y(k)(Ω) ∩Hs
1(Ω)3, s > 1,

inf
ϕN∈YN(k)

‖ϕ−ϕN‖H(curlk,Ω) ≤ cN1−s ‖ϕ‖Hs
1 (Ω)3 . (4.41)

The following estimate holds for any function ϕ in Y(k)(Ω) ∩ Hs
1(Ω)3, such that curlk ϕ belongs to Hs

1(Ω)3,
s > 3,

inf
ϕN∈YN(k)

‖ϕ−ϕN‖H(curlk,Ω) ≤ cN−s
(‖ϕ‖Hs

1 (Ω)3 + ‖curlk ϕ‖Hs
1 (Ω)3

)
. (4.42)

The last term in (4.40) is evaluated in the next lemma, according to the idea in [8].

Lemma 4.13. Assume the function ψk
� such that curlk ψk

� belongs to Ht
1(Ω)3, t ≥ 1. The following estimate

holds

inf
ϕN∈XN(k)

sup
ζN∈YN(k)

a1
k(ψk

� −ϕN , ζN )
‖ζN‖L2

1(Ω)3
≤ cN

3
2−t

∥∥∥curlkψk
�
∥∥∥

Ht
1(Ω)3

. (4.43)

Proof. For any ϕN in XN(k) such that γT (curlk ϕN ) vanishes, we have thanks to an integration by parts

a1
k(ψk

� −ϕN , ζN ) =
∫

Ω

ζN · curlkcurlk(ψk
� −ϕN ) r dr dz,

whence

inf
ϕN∈XN(k)

sup
ζN∈YN(k)

a1
k(ψk

� −ϕN , ζN )
‖ζN‖L2

1(Ω)3
≤ c ‖curlkcurlk(ψk

� −ϕN)‖L2
1(Ω)3 .

The desired result then follows from Appendix B, see Lemma B.5.

By combining the results of Lemmas 4.12 and 4.13 with (4.40) and also using Corollary 4.8, we derive the
first error estimate.

Theorem 4.14. Assume that the data fk
� belong to Hσ

1 (Ω)3, σ > 3
2 , and that the vorticity ω0k� of problem (3.18)

belongs to Hs−1
1 (Ω)3, s ≥ 1, and is such that curlk ω0k� belongs to Hs−1

1 (Ω)3. Assume also that the solution
(ω∗k� , ψk� ) of problem (3.26) is such that ω∗k� belongs to Hs

1(Ω)3, s ≥ 1, and that curlkψk
� belongs to Ht

1(Ω)3,
t ≥ 1. Then, the following error estimate holds

∥∥ω∗k
� − ω∗k

N

∥∥
L2

1(Ω)3
≤ c

(
N1−s

(‖ω0k
� ‖Hs−1

1 (Ω)3+‖curlk ω0k
� ‖Hs−1

1 (Ω)3 + ‖ω∗k
� ‖Hs

1 (Ω)3
)

+N
3
2−t ‖curlkψk

�‖Ht
1(Ω)3 +N−σ ‖fk

�‖Hσ
1 (Ω)3

)
.

(4.44)

This estimate and the following one are rather technical, but this is only due to the fact that we try to
minimize the regularity properties of the solution which are required for them. Estimating the error between
ψk

� and ψk
N relies on the inf-sup condition (4.33). From now on, we set for simplicity:

ωk
� = ω0k

� + ω∗k
� , ωk

N = ω0k
N + ω∗k

N . (4.45)
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Indeed, we derive from (4.33) that, for any ϕN in XN−1(k),

‖ψk
N −ϕN‖X(k)(Ω) ≤ β̃−1

2 sup
(ϑN ,µN )∈YN(k)×MN(k)

b2kN

(
(ϑN , µN);ψk

N −ϕN

)
‖ϑN‖Y(k)(Ω) + |µN |H1

(k)(Ω)

·

By using problems (3.26) and (4.31) together with the exactness properties of the quadrature formulas, we note
that, for all (ϑN , µN ) in YN(k) × MN(k),

b2kN

(
(ϑN , µN );ψk

N −ϕN

)
= a2

k

(
ωk

� − ΠN−1ω
k
� ,ϑN

)
+ a2

kN

(
ΠN−1ω

k
� − ωk

N ,ϑN

)
+ b2k

(
(ϑN , µN );ψk

� −ϕN

)
.

Combining all this and using triangle inequalities leads to the estimate

∥∥∥ψk
� −ψk

N

∥∥∥
X(k)(Ω)

≤ c

(∥∥ωk
� − ωk

N

∥∥
L2

1(Ω)3
+
∥∥ωk

� − ΠN−1ω
k
�
∥∥

L2
1(Ω)3

+ inf
ϕN∈XN−1(k)

‖ψ� −ϕN‖X(k)(Ω)

)
.

(4.46)
So using a further triangle inequality relying on (4.45) for the terms involving ω� together with Corollary 4.8
and Theorem 4.14, and also Lemma 4.6, we obtain the second error estimate.

Corollary 4.15. If the assumptions of Theorem 4.14 are satisfied, the following error estimate holds

∥∥∥ψk
� −ψk

N

∥∥∥
X(k)(Ω)

≤ c
(
N1−s

(∥∥ω0k
�
∥∥

Hs−1
1 (Ω)3

+
∥∥curlk ω0k

�
∥∥

Hs−1
1 (Ω)3

+
∥∥ω∗k

�
∥∥

Hs
1 (Ω)3

)

+N
3
2−t

∥∥∥curlkψk
�
∥∥∥

Ht
1(Ω)3

+N−σ
∥∥∥fk

�
∥∥∥

Hσ
1 (Ω)3

)
.

(4.47)

4.5. The three-dimensional discrete solution

The final idea is of course to associate with the solutions ω0k
N of problem (4.15) and the solutions (ω∗k

N ,ψk
N )

of problem (4.31), −K ≤ k ≤ K, the three-dimensional pair (ω̆KN , ψ̆KN ) defined by (ωk
N is introduced in

(4.45))

ωKN (r, θ, z) =
1√
2π

K∑
k=−K

ωk
N (r, z) eikθ, ψKN (r, θ, z) =

1√
2π

K∑
k=−K

ψk
N (r, z) eikθ. (4.48)

Indeed, we use the triangle inequality (with obvious definition of ω̆K�)

‖ω̆ − ω̆KN‖L2(Ω̆)3 ≤ ‖ω̆ − ω̆K‖L2(Ω̆)3 + ‖ω̆K − ω̆K�‖L2(Ω̆)3 + ‖ω̆K� − ω̆KN‖L2(Ω̆)3 ,

and a similar one for ‖curl (ψ̆ − ψ̆KN )‖L2(Ω̆)3 . We also recall from Section 4.1 that the regularity properties

of the ω̆0, ω̆∗, ψ̆ and f̆ yield analogous ones for the ω0k� , ω∗k� , ψk
� and fk

�. So, the final estimate follows from
Theorem 3.10, (4.5), Corollary 4.8, Theorem 4.14 and Corollary 4.15.

Theorem 4.16. Assume that

(i) the data f̆ belong to Hσ(Ω̆)3, σ > 3
2 ;

(ii) the solution ω̆0 of problem (2.9) belongs to Hs−1(Ω̆)3, s ≥ 1, and is such that curl ω̆0 belongs to
Hs−1(Ω̆)3;

(iii) the solution (ω̆∗, ψ̆) of problem (2.10) is such that ω̆∗ belongs to Hs
1(Ω)3, s ≥ 1, and that curl ψ̆ belongs

to Ht(Ω̆)3, t ≥ 0.



SPECTRAL DISCRETIZATION OF THE STOKES PROBLEM IN A CYLINDER 803

Then, the following error estimate holds between the solution (ω̆, ψ̆) of problem (2.4) and the pair (ω̆KN , ψ̆KN)
defined in (4.48)

‖ω̆− ω̆KN‖L2(Ω̆)3 + ‖curl
(
ψ̆ − ψ̆KN

)
‖L2(Ω)3 ≤ c

(
N1−s

(∥∥ω̆0
∥∥

Hs−1(Ω̆)3
+
∥∥curl ω̆0

∥∥
Hs−1(Ω̆)3

+ ‖ω̆∗‖Hs(Ω̆)3

)
+N

3
2−t ‖curl ψ̆‖Ht(Ω̆)3 +

(
K−σ +N−σ

) ‖f̆‖Hσ(Ω̆)3

)
. (4.49)

Remark. Assume that the data f̆ belong to Hσ(Ω̆)3, σ > 3
2 . Thus combining (4.49) with the regularity

properties stated in (2.11) to (2.13) leads to the estimate, for any positive ε,

‖ω̆ − ω̆KN‖L2(Ω̆)3 + ‖curl
(
ψ̆ − ψ̆KN

)
‖L2(Ω)3 ≤ c

(
K−σ +Nε−1

) ∥∥∥f̆∥∥∥
Hσ(Ω̆)3

. (4.50)

So the convergence order is ε − 1. However it seems likely that estimate (4.41) can be replaced by (4.42) in
all the previous results, even for low values of s, which leads to a convergence order equal to ε− 2. Moreover,
the singular functions associated with problems (2.9) and (2.10) are explicitly known (see [10], Sect. II.4.c
and IX.1.b) and, as usual, approximating these singular functions in a separate way leads to doubling the
convergence order (see [10], Sect. 10.3).

Estimate (4.49) is not fully optimal in the general case but it proves the convergence of the method for all
data in Hσ(Ω̆)3, σ > 3

2 , and, when σ is large enough, K can be chosen very small. So the previous discretization
is not at all expensive in comparison with a three-dimensional computation and furthermore leads to an exactly
divergence-free velocity ŭKN = curl ψ̆KN .

Appendix A

The aim of this Appendix is to prove that inequality (4.21), i.e.

∀ϕN ∈ V
1
N(k), ‖ϕN‖L2

1(Ω)3 ≤ c ‖curlk ϕN‖L2
1(Ω)3 ,

where the space V1
N(k) is defined in (4.19), holds with a constant c independent of N . We consider successively

the cases k = 0 and k �= 0, since the arguments are rather different.

Proof in the case k = 0

Let ϕN be any polynomial in V1
N(0). We handle separately the component ϕθN , next the components ϕrN

and ϕzN .
Indeed, since ϕθN vanishes in z = −1, we have

ϕ2
θN(r, z) =

(∫ z

−1

(∂zϕθN)(r, ζ) dζ
)2

≤ 2
∫ 1

−1

(∂zϕθN )2(r, ζ) dζ.

Integrating this inequality on Ω with respect to the measure r dr dz and noting that the radial component of
curl0ϕN coincides with −∂zϕθN , we derive

‖ϕθN‖L2
1(Ω) ≤ 2 ‖(curl0ϕN)r‖L2

1(Ω). (A.1)
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Let us consider the expansions of ϕrN and ϕzN with respect to the polynomials Ln and Mn. When taking
into account the boundary conditions γTϕN = 0 on Γ, we have

ϕrN (r, z) =
N∑

m=0

N−1∑
n=1

αmnMm(2r − 1) (Ln+1 − Ln−1)(z),

ϕzN (r, z) =
N−1∑
m=0

N∑
n=0

βmn (Mm+1 −Mm)(2r − 1)Ln(z).

This yields

(div0ϕN )(r, z) =
N∑

m=0

N−1∑
n=1

αmn (2M ′
m + r−1Mm)(2r − 1) (Ln+1 − Ln−1)(z)

+
N−1∑
m=0

N∑
n=0

βmn (Mm+1 −Mm)(2r − 1)L′
n(z). (A.2)

It appears in this expansion that div0ϕN vanishes in the two corners (1,−1) and (1, 1) of Ω that are not on
the axis r = 0.

Next, using an integration by parts that relies on the exactness properties (4.10) and (4.13), we observe that
the condition which defines V1

N(0), see (4.19), can equivalently be written as

∀µN ∈ P
�
N (Ω), ((div0ϕN , µN ))N = 0.

This means that div0ϕN vanishes in all nodes (ri, ξj), 0 ≤ i, j ≤ N , that do not belong to Γ. So, there exist
polynomials κ−N and κ+

N in PN (0, 1) and λN in P0
N (−1, 1) such that

(div0ϕN )(r, z) = κ−N (r) (1 − z)L′
N(z) + κ+

N (r) (1 + z)L′
N(z) + rM ′

N (2r − 1)λN (z). (A.3)

Moreover, since div0ϕN vanishes in (1,±1), both κ−N and κ+
N vanish in 1.

The idea is now to compare (A.2) and (A.3). It appears that the second term of the right-hand side in (A.2)
is orthogonal (for the discrete product) to rM ′

N(2r−1) and that the first term has degree ≤ N −1 with respect
to r, so that λN is equal to zero. Similarly, the first term in (A.2) is orthogonal to (1± z)L′

N(z) and the second
has degree ≤ N − 1 with respect to z, whence the equality

κ−N(r) = κ+
N (r) =

1
2

N−1∑
m=0

βmN (Mm+1 −Mm)(2r − 1).

It follows from the previous lines that the function (ϕrN , 0, ϕzN ) can be written as a sum ϕ1
N + ϕ2

N , where
ϕ1

N is equal to (0, 0, κN(r)LN (z)) for a polynomial κN vanishing at r = 1, while ϕ2
N = (ϕ2

rN , 0, ϕ
2
zN ) is exactly

divergence-free and ϕ2
zN has degree ≤ N − 1 with respect to z. Clearly, we have

‖ϕ1
zN‖L2

1(Ω) = ‖κN‖L2
1(0,1) ‖LN‖L2(−1,1) and ‖∂rϕ

1
zN‖L2

1(Ω) = ‖κ′N‖L2
1(0,1) ‖LN‖L2(−1,1).

So applying the standard Poincaré–Friedrichs inequality to κN (which vanishes at r = 1) yields

‖ϕ1
zN‖L2

1(Ω) ≤ c ‖∂rϕ
1
zN‖L2

1(Ω) = c ‖∂zϕ
1
rN − ∂rϕ

1
zN‖L2

1(Ω). (A.4)
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Next, it follows from the previous lines that (ϕ2
rN , 0, ϕ

2
zN) belongs to the space V 1

(0) introduced in (3.21), so that
applying Lemma 3.3 yields

‖ϕ2
rN‖L2

1(Ω) + ‖ϕ2
zN‖L2

1(Ω) ≤ c ‖curl0ϕ2
N‖L2

1(Ω)3 . (A.5)

By noting that ∂zϕ
1
rN −∂rϕ

1
zN and ∂zϕ

2
rN −∂rϕ

2
zN (which has degree ≤ N−1 with respect to z) are orthogonal

in L2
1(Ω), we thus derive

‖ϕrN‖L2
1(Ω) + ‖ϕzN‖L2

1(Ω) ≤ c ‖curl0ϕN‖L2
1(Ω)3 . (A.6)

So the desired result for k = 0 follows by combining (A.1) and (A.6).

Proof in the case k �= 0

Let ϕN = (ϕrN , ϕθN , ϕzN ) be any polynomial in V1
N(k), k �= 0. Thanks to the definition (4.9) of the space

XN(k), it admits the expansion

ϕrN(r, z) =
N∑

m=0

N−1∑
n=1

αmn Mm(2r − 1) (Ln+1 − Ln−1)(z),

ϕθN(r, z) =
N−1∑
m=0

N−1∑
n=1

βmn (Mm+1 −Mm)(2r − 1) (Ln+1 − Ln−1)(z),

ϕzN (r, z) =
N−2∑
m=0

N∑
n=0

γmn r(Mm+1 −Mm)(2r − 1)Ln(z),

with the further condition

N−1∑
m=0

βmn (Mm+1 −Mm)(−1) − ik
N∑

m=0

αmnMm(−1) = 0.

This of course yields

(divk ϕN )(r, z) =
N∑

m=0

N−1∑
n=1

αmn (2M ′
m + r−1Mm)(2r − 1) (Ln+1 − Ln−1)(z)

+ ik

N−1∑
m=0

N−1∑
n=1

βmn r
−1(Mm+1 −Mm)(2r − 1) (Ln+1 − Ln−1)(z)

+
N−2∑
m=0

N∑
n=0

γmn r(Mm+1 −Mm)(2r − 1)L′
n(z).

(A.7)

From this formula, divk ϕN vanishes at the four corners of Ω. On the other hand, the same arguments as
previously yield that there exist four polynomials κ−N and κ+

N in P0
N (0, 1), λ−N and λ+

N in P0
N (−1, 1) such that

(divk ϕN )(r, z) = κ−N (r) (1 − z)L′
N(z) + κ+

N (r) (1 + z)L′
N(z) + (1 − r)M ′

N (r)λ−N (z) + rM ′
N (r)λ+

N (z). (A.8)

There also the idea is to compare (A.7) and (A.8). As previously, we easily derive that

κ−N (r) = κ+
N(r) =

1
2

N−2∑
m=0

γmN r(Mm+1 −Mm)(2r − 1),
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and also that λ−N and λ+
N are zero.

The end of the proof is nearly the same as in the case k = 0. The function ϕN can be written as a sum
ϕ1

N + ϕ2
N , where ϕ1

N is equal to (0, 0, κN(r)LN (z)) and the polynomial κN vanishes at r = 0 and r = 1,
while ϕ2

N is exactly divergence-free and its axial component ϕ2
zN has degree ≤ N − 1 with respect to z. The

standard Poincaré–Friedrichs inequality applied to κN yields

‖ϕ1
zN‖L2

1(Ω) ≤ c ‖∂rϕ
1
zN‖L2

1(Ω) = c ‖∂zϕ
1
rN − ∂rϕ

1
zN‖L2

1(Ω). (A.9)

Next, it follows from Lemma 3.3 that

‖ϕ2
N‖L2

1(Ω)3 ≤ c ‖curlk ϕ2
N‖L2

1(Ω)3 . (A.10)

We conclude by noting that curlk ϕ1
N and curlk ϕ2

N are orthogonal in L2
1(Ω)3.

Appendix B

The aim of this Appendix is to prove Lemmas 4.6 and 4.12, namely to establish the approximation properties
of the space XN(k) for functions in X(k)(Ω) and also of the space YN(k) for functions in Y(k)(Ω). We use two
steps for this.

Approximation of smooth functions

In the z-direction, we consider the orthogonal projection operator πz
N−1 from L2(−1, 1) onto PN−1(−1, 1)

and also the projection operator π1z
N from H1(−1, 1) onto PN (−1, 1) which preserves the values in ±1 and such

that
∀ϕ ∈ H1(−1, 1), (π1z

N ϕ)′ = πz
N−1ϕ

′. (B.1)
In the r-direction, we use the same projection operators as πz

N−1 and π1z
N , now translated onto ]0, 1[, and we

denote them by πr
N−1 and π1r

N , respectively. We also introduce the analogue π1r
N−1 of π1r

N with N replaced by
N − 1 and the projection operator π2r

N from H2(0, 1) onto PN(0, 1) which preserves the values of the function
and of its first derivative in 0 and 1 and such that

∀ϕ ∈ H2(0, 1), (π2r
N ϕ)′ = π1r

N−1ϕ
′. (B.2)

Let now ϕ be any smooth enough vector field on Ω, with components ϕr, ϕθ and ϕz . The idea is to define
the vector field Πc

Nϕ with components (Πc
Nϕ)r, (Πc

Nϕ)θ and (Πc
Nϕ)z by the formula

(Πc
Nϕ)r = π1r

N−1 ◦ π1z
N ϕr, (Πc

Nϕ)θ = r−1 π2r
N ◦ π1z

N (r ϕθ), (Πc
Nϕ)z = π2r

N ◦ πz
N−1ϕz. (B.3)

The idea for the choice of this operator, due to ([6], Sect. 4), in the Cartesian case, is that
1) for any smooth enough function ϕ, it preserves the nullity at r = 0 of ϕθ for k = 0, of ϕz and ϕθ − ik ϕr

for |k| ≥ 1, so that it maps smooth functions in H(curlk,Ω) into YN(k);
2) for any function ϕ such that γTϕ vanishes, so does γT (Πc

Nϕ), so that it maps smooth functions in
X(k)(Ω) into XN(k);

3) the following property can be derived from (B.1) and (B.2)

(curlk Πc
Nϕ)r = π̃2r

N ◦ πz
N−1(curlk ϕ)r, (curlk Πc

Nϕ)θ = π1r
N−1 ◦ πz

N−1(curlk ϕ)θ,

(curlk Πc
Nϕ)z = π̃1r

N−1 ◦ π1z
N (curlk ϕ)z ,

(B.4)

where, for m = 1 and 2, the operator π̃mr
N is defined by

π̃mr
N ϕ = r−1 πmr

N (rϕ).
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Let us recall from ([7], Sect. II.1), that the following estimates hold for all functions ϕ in Hs(−1, 1), s ≥ 0,

‖ϕ− πz
N−1ϕ‖L2(−1,1) ≤ cN−s ‖ϕ‖Hs(−1,1), (B.5)

and for all functions ϕ in Hs(−1, 1), s ≥ 1,

‖ϕ− π1z
N ϕ‖L2(−1,1) ≤ cN−s ‖ϕ‖Hs(−1,1). (B.6)

Similarly the following estimates hold for m = 1, 2 and for all functions ϕ in Hs
1(0, 1), s ≥ m+ 1,

‖ϕ− πmr
N ϕ‖L2(0,1) ≤ cN−s ‖ϕ‖Hs

1 (0,1). (B.7)

Establishing an estimate for the operator π̃mr
N requires a further argument which is analogous to ([7],

Thm. III.1.19, see the proof of this theorem).

Lemma B.1. The following estimate holds for all functions ϕ in Hs
1(0, 1), s > m,

‖ϕ− π̃mr
N ϕ‖L2

1(0,1) ≤ cN−s ‖ϕ‖Hs
1 (0,1). (B.8)

Proof. We only give the proof in the case m = 1 since its analogue in the case m = 2 is rather similar but more
technical. Let us recall from ([7], Déf. II.1.8) that, for any function ψ in H1(0, 1), we have

ψ − π1r
N ψ = ψ0 − π1r

N ψ0, with ψ0 = ψ − (1 − r)ψ(0) − r ψ(1),

and the restriction of π1r
N to H1

0 (0, 1) is nothing but the orthogonal projection from H1
0 (0, 1) onto P0

N (0, 1).
Denoting by L̃n, n ≥ 0, the Legendre polynomials Ln composed with the homotethy that maps [0, 1] onto [−1, 1],
we write for any ψ0 in H1

0 (0, 1)

ψ0 =
∞∑

n=1

αn r(1 − r) L̃′
n, thus π1r

N ψ0 =
N−1∑
n=1

αn r(1 − r) L̃′
n,

so that ∫ 1

0

(ψ0 − π1r
N ψ0)2 r−1 dr ≤

∫ 1

0

(ψ0 − π1r
N ψ0)2 r−1(1 − r)−1 dr ≤ c

∞∑
n=N

α2
n n.

This yields ∫ 1

0

(ψ0 − π1r
N ψ0)2 r−1 dr ≤ cN−2 |ψ0 − π1r

N ψ0|2H1(0,1).

Thus, we derive from (B.1) and (B.7) that, for all s ≥ 2,

‖(ψ0 − π1r
N ψ0) r−1‖L2

1(0,1) ≤ cN−s ‖ψ0‖Hs
1(0,1).

The same estimate holds with ψ0 replaced by ψ (note that Hs
1(0, 1) is embedded in C 0([0, 1]) for s ≥ 1), and

of course with ψ replaced by rϕ, whence the desired result for s ≥ 2. Moreover the previous estimate holds
with ‖ψ0‖Hs

1 (0,1) replaced by ‖ψ0‖Hs(0,1) for s ≥ 1, see (B.6), and, from the previous embedding, ψ0 can be
replaced by ψ for s > 1. Finally, an inequality of Hardy’s type gives

‖rϕ‖Hs(0,1) ≤ ‖ϕ‖Hs
1(0,1),

for s = 1 and s = 2, whence for 1 < s < 2 by an interpolation argument, which concludes the proof.
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Note that, in (B.3), we can write equivalently

(Πc
Nϕ)θ = π̃2r

N ◦ π1z
N ϕθ.

So estimates for the operator Πc
N can be derived from (B.5) to (B.8) thanks to a tensorization argument.

Lemma B.2. The following estimate holds for all functions ϕ in H(curlk,Ω) ∩Hs
1(Ω)3, s > 3,

‖ϕ− Πc
Nϕ‖L2

1(Ω)3 ≤ cN−s ‖ϕ‖Hs
1 (Ω)3 . (B.9)

The following estimate holds for all functions ϕ in H(curlk,Ω) such that curlkϕ belongs to Hs
1(Ω)3, s > 2,

‖curlk (ϕ− Πc
Nϕ)‖L2

1(Ω)3 ≤ cN−s ‖curlk ϕ‖Hs
1(Ω)3 . (B.10)

Proof. For instance, we have the formula

‖ϕr − (Πc
Nϕ)r‖L2

1(Ω) ≤ ‖ϕr − π1r
N−1ϕr‖L2

1(Ω) + ‖ϕr − π1z
N ϕr‖L2

1(Ω) + ‖(id− π1r
N−1)(ϕr − π1z

N ϕr)‖L2
1(Ω),

so that the estimate for ‖ϕr − (Πc
Nϕ)r‖L2

1(Ω) follows from (B.6) and (B.7). Analogous arguments can be used
for the other five terms.

Approximation of any functions

We now wish to extend the results of Lemma B.2 to less smooth functions. We first work with functions
with zero tangential trace.

Lemma B.3. The following estimate holds for any function ϕ in X(k)(Ω) such that curlkϕ belongs to Hs
1(Ω)3,

s ≥ 0,
inf

ϕN∈XN(k)

‖curlk (ϕ−ϕN )‖L2
1(Ω)3 ≤ cN−s ‖curlk ϕ‖Hs

1(Ω)3 . (B.11)

Proof. We first observe from ([5], Thm. 3.17) that the mapping: ϕ �→ curlk ϕ is continuous from X(k)(Ω) onto
the space

Z(k)(Ω) =
{
v ∈ L2

1(Ω)3; divk v = 0 in Ω and γNv = 0 sur Γ
}
,

where the normal trace operator γN is simply defined by γNv = vr nr + vz nz. Let now Π̃N be the orthogonal
projection operator from Z(k)(Ω) onto the range curlk XN(k) of the space XN(k) by the operator curlk associated
with the scalar product of L2

1(Ω)3. Then, the estimate

‖v − Π̃Nv‖L2
1(Ω)3 ≤ cN−s ‖v‖Hs

1(Ω)3 ,

holds for s = 0 by definition and for s > 2 from (B.10). So the desired result follows by an interpolation
argument between the spaces Z(k)(Ω) ∩Hs

1(Ω)3, s = 0 and s > 2, which can be derived from an extension of
([9], Rem. 4.13) to the case of a cylinder.

The same argument can be used for functions in Y(k)(Ω), but this does not lead to estimate of ‖ϕ−ϕN‖L2
1(Ω)3

(the corresponding interpolation property seems presently unknown). So to conclude the proof of Lemma 4.12
we are led to use the orthogonal projection operator from H1

(k)(Ω) onto YN(k). The next result is derived from
([10], Sect. V.3).

Lemma B.4. The following estimate holds for any function ϕ in Y(k)(Ω) ∩Hs
1(Ω)3, s > 1,

inf
ϕN∈YN(k)

(
N ‖ϕ−ϕN‖L2

1(Ω)3 + ‖curlk (ϕ−ϕN )‖L2
1(Ω)3

)
≤ cN1−s ‖ϕ‖Hs

1(Ω)3 . (B.12)
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A further result

In order to prove Lemma 4.13, we introduce the modified operator Π̃c
N , defined as follows on smooth enough

vector fields ϕ:

(Π̃c
Nϕ)r = π2r

N−1 ◦ π2z
N ϕr, (Π̃c

Nϕ)θ = r−1 π2r
N ◦ π2z

N (r ϕθ), (Π̃c
Nϕ)z = π2r

N ◦ π1z
N−1ϕz, (B.13)

where the operator π2z
N is the analogue on ]−1, 1[ of the operator π2r

N . This operator has the same properties as
Πc

N , plus the further one: if γT (curlk ϕ) is equal to zero, so is γT (curlk Π̃c
Nϕ). Let X̃N(k) be the subspace of

vector fields ϕN in XN(k) such that γT (curlk ϕN ) is equal to zero.

Lemma B.5. The following estimate holds for any function ϕ in X(k)(Ω) such that curlkϕ belongs to Ht
1(Ω)3,

t ≥ 1, and γT (curlk ϕ) is equal to zero,

inf
ϕN∈X̃N(k)

‖curlk curlk (ϕ−ϕN )‖L2
1(Ω)3 ≤ cN

3
2−t ‖curlk ϕ‖Ht

1(Ω)3 . (B.14)

Proof. The same arguments as for (B.10) and a further investigation of the property of the operator π̃1r
N in

the H1
1 (0, 1)-seminorm yields that (B.14) holds with ϕN = Π̃c

Nϕ for t > 7
2 . So, we conclude by the same

arguments as for Lemma B.3, by noting that, for any function ϕ satisfying the assumptions of the lemma,
curlk ϕ belongs to

Z̃(k)(Ω) =
{
v ∈ H1

1�(Ω)3; divk v = 0 in Ω
}

and using an interpolation argument between the spaces Z̃(k)(Ω) ∩Ht
1(Ω)3 relying on ([9], Cor. 4.6).
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