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APPROXIMATION OF THE MARGINAL DISTRIBUTIONS
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Christiane Cocozza-Thivent
1

and Robert Eymard
1

Abstract. In the reliability theory, the availability of a component, characterized by non constant
failure and repair rates, is obtained, at a given time, thanks to the computation of the marginal distri-
butions of a semi-Markov process. These measures are shown to satisfy classical transport equations,
the approximation of which can be done thanks to a finite volume method. Within a uniqueness re-
sult for the continuous solution, the convergence of the numerical scheme is then proven in the weak
measure sense, and some numerical applications, which show the efficiency and the accuracy of the
method, are given.
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Introduction

The reliability theory is devoted to the study of the probability that a system be available at a given time,
when the failure or the repair of each component of this system is modeled using stochastic processes. The
general mathematical framework of such problems is, in the general case, highly complex. In this paper, we
focus on the more simple study of the availability of a single component, the state of which belongs to a finite
set, the transitions of state being determined by probabilistic laws. Let us first consider the simple example of a
component which has been created before the time t = 0, and which can either be working, either be in repair.
Hence the set of the possible states is defined by E = {0, 1}, 1 for the working state, 0 for the repair state.

Let us denote the failure rate (resp. the repair rate) of the component by b(1, ·) (resp. b(0, ·)). This means
that the probability for the component to fail (resp. to be repaired) in the time interval (t, t+ dt), knowing that
the elapsed time in the working (resp. failure) state is t, is equal to b(1, t) dt (resp. b(0, t) dt). We assume that
as soon as the component fails, the repair begins immediately and that, after being repaired, the component is
equivalent to a new one and is immediately working.

Considering this component at a given time t ≥ 0, let us assume that the probability, the component be in
state 1 (resp. 0) and the elapsed time in this working (resp. failure) state be in the time interval (x, x + dx),
is given by the measure ūt(1, ·) dx (resp. ūt(0, ·) dx). The functions ūt(i, ·) ∈ L1(R+), for (i, t) ∈ E × R+, are
then (non strictly) positive, and must verify, for t ∈ R+, that

∑
i∈E

∫
R+
ūt(i, x) dx = 1 (thanks to the law of
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large numbers, these functions could as well be interpreted as providing the distribution of the ages in each of
the two states, 1 and 0, for a population of similar components, all created before the time t = 0).

It can then be shown (see Sect. 1 for a detailed proof) that all the above hypotheses give that the function
(t, i, x) �→ ūt(i, x) is the weak solution of the following equations

∂ūt
∂t

(i, x) +
∂ūt
∂x

(i, x) = −b(i, x)ut(i, x), for (i, t, x) ∈ E × R+ × R+, (1)

with an initial condition
ū0(i, x) = ūini(i, x), for (i, x) ∈ E × R+, (2)

and a boundary condition

ūt(i, 0) =
∫

R+

b(1 − i, x)ūt(1 − i, x) dx, for (i, t) ∈ E × R+. (3)

Equations (1)–(3) constitute a system of linear hyperbolic equations on R+ × R+, only coupled here by the
boundary conditions. Such a model belongs to the class of the Markov renewal models which are generalizations
of the renewal model (see for example [2] or [3]). When the state space E has only one element, we obtain
the class of renewal processes which have been extensively studied from the mathematical point of view (see
for example [10] or [12] and references therein). Note that similar models are widely used in the framework
of population dynamics (the so-called McKendrick-Von Foerster model is a one-state version of (1)–(3), see
for example [14] and references therein). In the particular case where E has two elements (as in the example
considered in this introduction), one says that this model is an alternative renewal model. We consider in this
paper an extension of Model (1)–(3), used for computing the marginal distributions of the stochastic process
constituted by the pair (ηt, Xt), where ηt ∈ E denotes the state at time t ∈ R+ of a given component (we now
consider the case of any finite set E with, in practice, at least two elements) and Xt ∈ R+ is the elapsed time
since this component is in the state ηt. A given initial probability measure for (η0, X0) is then assumed.

We thus show in Section 1 that, under some hypotheses, this stochastic process is a Markov process, the mar-
ginal distributions of which, denoted by ρt(i, dx) for (i, t) ∈ E×R+, are measures, solution of a system of linear
hyperbolic equations coupled by the boundary conditions, generalizing (1)–(3). We provide the mathematical
background showing that this problem is well-posed. In particular, we prove, for the sake of completeness, a
uniqueness theorem under the exact hypotheses used in this paper.

Note that numerical methods are needed to approximate these marginal distributions ρt(i, dx), in order to
evaluate the probability Ai(t) that a component be in state i ∈ E at time t ∈ R+, given by Ai(t) =

∫
R+
ρt(i, dx).

Matrix formula can be used for the computation of the Laplace transform of these marginal distributions [5],
but the inversion of the Laplace transform is known to induce some stability problems. Otherwise, the phase
method [1] can be used in order to boil down to a Markov process, but then the phase approximations cannot
be automated. More recently, in the particular case of an alternative renewal process, computations using the
resolution of Volterra equations have been proposed (see [13]) but some problems arise when the mean durations
in each of the two states are contrasted.

We present in Section 2 the use of a finite volume method to find a direct approximation of these marginal
distributions. Since we approximate measures instead of functions, the convergence of the method is proven
thanks to compactness estimates in measure spaces, using the uniqueness result proven in Section 1.

Finally, we present some numerical results in Section 3. These results show that the finite volume method
considered here is accurate and efficient in many cases.

1. Marginal distributions of a semi-Markov process

Let us assume that the probabilistic model for the state of a component (assuming that the set E of all
the possible states is finite), is given by a Markov renewal process (Yn, Tn)n∈N, where for all n ∈ N, Yn ∈ E



APPROXIMATION OF THE MARGINAL DISTRIBUTIONS 855

denotes the state of the component for any time t such that Tn ≤ t < Tn+1. We assume that T0 ≤ 0 < T1

and that the semi-Markov kernel of this Markov process has a density q with respect to the Lebesgue measure.
These hypotheses mean that, for all n ∈ N, for all i0, i1, · · · , in−1, i, j ∈ E, for all real values such that
s0 ≤ 0 < s1 < · · · < sn and for all bounded measurable function f defined on R+, we have

E

(
1{Yn+1=j} f(Tn+1 − Tn) /

T0 = s0, Y0 = i0, T1 = s1, Y1 = i1, . . . , Tn−1 = sn−1, Yn−1 = in−1, Tn = sn, Yn = i

)

= E(1{Yn+1=j} f(Tn+1 − Tn) / Yn = i)

=
∫

R+

f(t) q(i, j, t) dt.

We consider the semi-Markov process (ηt)t∈R+ , defined by

ηt = Yn for all n ∈ N and for all t ∈ R+ such that Tn ≤ t < Tn+1. (4)

Intuitively speaking, such a process (ηt)t∈R+ forgets its past at times Tn and satisfies

P(ηTn+1 = j, Tn+1 − Tn ∈ [t, t+ dt] / ηTn = i)
= P(ηT1 = j, T1 − T0 ∈ [t, t+ dt] / η0 = i)
= q(i, j, t) dt.

We then define the transition rate a by

a(i, j, t) =




0 if P(T1 − T0 > t / η0 = i) =
∫ +∞

t

∑
k∈E

q(i, k, u) du = 0,

q(i, j, t)
P(T1 − T0 > t / η0 = i)

otherwise.
(5)

The function a intuitively satisfies the following formula

P(ηT1 = j, T1 − T0 ∈ [t, t+ dt] / T1 − T0 > t, η0 = i) = a(i, j, t) dt.

Defining the function b by

b(i, x) =
∑
j∈E

a(i, j, x), ∀(i, x) ∈ E × R+, (6)

it can be shown that

P(T1 − T0 > t / η0 = i) = exp
(
−
∫ t

0

b(i, u) du
)
. (7)

The above equation means that b(i, ·) is the hazard rate of T1 − T0 knowing {η0 = i}.
Remark 1.1 (The case of an alternative renewal process). In order to detail the probabilistic framework in
the particular case of the example given in the introduction of this paper, let us consider a component which
can be in two different states: a working state denoted by 1 and a failure state denoted by 0. We suppose
that the successive working periods and the successive failure periods are stochastically independent, that the
working periods have the same probability density function q(1, 0, ·) and that the failure periods have the same
probability density function q(0, 1, ·). Let T0 ≤ 0 < T1 < . . . < Tn < . . . be the successive times at which the
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component changes of state. Then (Tn)n≥0 is an alternative renewal process and the process ηt giving the state
of the component at time t is a semi-Markov process taking its values in E = {0, 1}. We have

b(i, t) = a(i, 1 − i, t) =
q(i, 1 − i, t)∫ +∞

t
q(i, 1 − i, s) ds

, ∀i = 0, 1, ∀t ∈ R+, (8)

or, equivalently,

q(i, 1 − i, t) = b(i, t) exp
(
−
∫ t

0

b(i, s) ds
)
, ∀i = 0, 1, ∀t ∈ R+, (9)

where a(1, 0, ·) and a(0, 1, ·) are respectively the failure rate and the repair rate of the component.

For k ∈ N, let us denote by Ck(E×R+) the space Ck(R+)E . Let Xt be the elapsed time in the current state
at time t, given by

Xt = t− Tn, for all t ∈ [Tn, Tn+1), for all n ∈ N. (10)

Then the process (ηt, Xt)t∈R+ is a Markov process taking its values in E × R+. Let Pt be its semi-group,
defined by

(Ptξ)(i, x) = E (ξ(ηt, Xt) / (η0, X0) = (i, x)) , ∀ξ ∈ C0(E × R+). (11)

We then have the following proposition.

Proposition 1.2. Let (Yn, Tn)n≥0, with T0 ≤ 0 < T1 < . . . < Tn . . ., be a Markov renewal process taking
its values in a finite set E, such that its semi-Markov kernel has a density q with respect to the Lebesgue
measure. Let (ηt)t≥0, a, (Xt)t≥0 and Pt be respectively defined by (4), (5), (10) and (11). We assume that
a ∈ C0(E × E × R+) and that there exists R0 > 0 such that P(X0 ≤ R0) = 1. Then the following properties
hold.

(1) For all ξ ∈ C0(E × R+), Ptξ ∈ C0(E × R+).
(2) Let L : C1(E × R+) → C0(E × R+) be the operator defined, for all ξ ∈ C1(E × R+) by

(i, x) �→ Lξ(i, x) =
∑
j∈E

a(i, j, x)(ξ(j, 0) − ξ(i, x)) +
∂ξ

∂x
(i, x).

Then we get

Ptξ = ξ +
∫ t

0

PsLξ ds, ∀ξ ∈ C1(E × R+),

which leads, for all ξ ∈ C1(E × R+), to

E(ξ(ηt, Xt)) = E(ξ(η0, X0)) +
∫ t

0

E(Lξ(ηs, Xs)) ds.
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(3) Therefore, the probability distribution ρt of (ηt, Xt) satisfies∫
ξ dρt =

∑
i∈E

∫
R+

ξ(i, x) ρt(i, dx)

=
∑
i∈E

∫
R+

ξ(i, x) ρini(i, dx) +
∑
i∈E

ξ(i, 0)
∫ t

0

∑
j∈E

∫
R+

a(j, i, x) ρs(j, dx) ds

−
∑
i∈E

∫ t

0

∫
R+

b(i, x) ξ(i, x) ρs(i, dx) ds

+
∑
i∈E

∫ t

0

∫
R+

∂ξ

∂x
(i, x) ρs(i, dx) ds, ∀ξ ∈ C1(E × R+), (12)

with ρini(·, dx) = ρ0(·, dx).

The proof of Proposition 1.2 is straightforward, following the ideas of [6, 7].
For k ∈ N, let us denote, in the same manner as above, by Ck(E × R+ × R+) the space (Ck(R+ × R+))E .

Let Ckct(E × R+ × R+) be the set of functions ϕ of Ck(E × R+ × R+) with a compact support in time (i.e.
∃T > 0 : ∀ t > T, ∀ i ∈ E, ∀x ∈ R+, ϕ(i, x, t) = 0). The following result holds.

Proposition 1.3. Let E be a finite set, let a ∈ C0(E×E×R+) be given and b be defined by (6), and let ρini be
a probability measure on E×R+, such that there exists R0 > 0 with

∑
i∈E

∫
[0,R0]

ρini(i, dx) = 1. Let us assume
that there exists, for all t ∈ R+, a probability measure ρt on E × R+ such that (12) is satisfied. Then

0 =
∑
i∈E

∫
R+×R+

(
∂ϕ

∂t
(i, x, t) +

∂ϕ

∂x
(i, x, t) − b(i, x)ϕ(i, x, t)

)
ρt(i, dx) dt

+
∑
i∈E

∫
R+

ϕ(i, x, 0) ρini(i, dx) +
∑
i,j∈E

∫
R+×R+

a(j, i, x)ϕ(i, 0, t) ρt(j, dx) dt,

∀ϕ ∈ C1
ct(E × R+ × R+). (13)

Moreover, for all ξ ∈ C0(E × R), the function t �→ ∑
i∈E

∫
R+
ξ(i, x) ρt(i, dx) is continuous, and ρ0(·, dx) =

ρini(·, dx) holds.

Proof. We proceed in the same way as in [7]. We first remark that the continuity of t �→∑
i∈E

∫
R+
ξ(i, x) ρt(i, dx)

and ρ0(·, dx) = ρini(·, dx) are consequence of (12), thanks to regularizations in C1(E × R) of ξ ∈ C0(E × R).
We then apply (12) to the function ξ : (i, x) �→ ∂ϕ

∂t (i, x, t), and we integrate the result on t ∈ R+. We then
get (13) thanks to Fubini’s theorem. �

Then the following uniqueness result holds.

Theorem 1.4. Let E be a finite set, let a ∈ C0(E × E × R+) be given and b be defined by (6), and let ρini

be a probability measure on E × R+, such that there exists R0 > 0 with
∑
i∈E

∫
[0,R0]

ρini(i, dx) = 1. Then
there exists at most one measure µ on E × R+ × R+ such that, for all T > 0, there exists RT > 0 with∑

i∈E
∫ T
0

∫
[0,RT ] µ(i, dx, dt) =

∑
i∈E

∫ T
0

∫
R+
µ(i, dx, dt) < +∞ and which satisfies

0 =
∑
i∈E

∫
R+×R+

(
∂ϕ

∂t
(i, x, t) +

∂ϕ

∂x
(i, x, t) − b(i, x)ϕ(i, x, t)

)
µ(i, dx, dt)

+
∑
i∈E

∫
R+

ϕ(i, x, 0) ρini(i, dx) +
∑
i,j∈E

∫
R+×R+

a(j, i, x)ϕ(i, 0, t)µ(j, dx, dt),

∀ϕ ∈ C1
ct(E × R+ × R+). (14)
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Moreover, if, for all t ∈ R+, there exists a measure ρt on E×R+ such that for all ξ ∈ C0(E×R+), the function
t �→ ∑

i∈E
∫

R+
ξ(i, x)ρt(i, dx) is continuous and µ(i, dx, dt) = ρt(i, dx) dt, then the measure ρt is unique too

and satisfies (13).

Proof. We adapt the methods of [7] to the particular case considered here. Let us suppose that there exist two
Radon measures satisfying the hypotheses of the above theorem. The measure µ, now defined as the difference
between these two solutions, thus verifies

0 =
∑
i∈E

∫∫
R+×R+


∂ϕ
∂t

(i, x, t) +
∂ϕ

∂x
(i, x, t) − b(i, x)ϕ(i, x, t) +

∑
j∈E

a(i, j, x)ϕ(j, 0, t)


µ(i, dx, dt),

∀ϕ ∈ C1
ct(E × R+ × R+). (15)

We have to prove that µ is equal to 0, which is equivalent to the relation

∑
i∈E

∫∫
R+×R+

ψ(i, x, t)µ(i, dx, dt) = 0, ∀ψ ∈ C0
ct(E × R+ × R+). (16)

For a given ψ ∈ C0
ct(E × R+ × R+), let T > 0 be such that ψ(·, ·, t) = 0 for all t ≥ T and let RT > 0 be

such that
∑

i∈E
∫ T
0

∫
[0,RT ] µ(i, dx, dt) =

∑
i∈E

∫ T
0

∫
R
µ(i, dx, dt) < ∞. We prolong by continuity the function

a on E × E × R, we define b as in (6) by b(i, x) =
∑
j∈E a(i, j, x), for all (i, x) ∈ E × R and we prolong ψ by

continuity on E × R × R+. Let us define the function A : [0, T ] × C0(E × [−T,RT ]) → C0(E × [−T,RT ]),
(s, ξ) �→ A(s, ξ) by (i, y) �→ (A(s, ξ))(i, y) = b(i, y+ s) ξ(i, y) −∑j∈E a(i, j, y + s) ξ(j,−s) + ψ(i, y + s, s). Since
the function A is continuous with respect to s and Lipschitz-continuous with respect to ξ, we deduce from the
Cauchy-Lipschitz theorem the existence and the uniqueness of a function ϕ̃ ∈ C0(E × [−T,RT ] × [0, T ]), such
that ∂ϕ̃

∂s ∈ C0(E × [−T,RT ] × [0, T ]) and

ϕ̃(i, y, T ) = 0, ∀(i, y) ∈ E × [−T,RT ],
∂ϕ̃

∂s
(i, y, s) = b(i, y + s) ϕ̃(i, y, s) −

∑
j∈E

a(i, j, y + s) ϕ̃(j,−s, s) + ψ(i, y + s, s), (17)

∀(i, y, s) ∈ E × [−T,RT ] × [0, T ].

Prolonging ϕ̃ in order to get that ϕ̃ ∈ C0
ct(E ×R×R+) and ∂ϕ̃

∂s ∈ C0
ct(E ×R×R+) (by continuity, we can take

ϕ̃(·, ·, s) = 0 for all s ≥ T ), let us prove that

0 =
∑
i∈E

∫∫
R+×[0,T ]


∂ϕ̃
∂s

(i, x− t, t) − b(i, x) ϕ̃(i, x− t, t) +
∑
j∈E

a(i, j, x) ϕ̃(j,−t, t)

µ(i, dx, dt), (18)

which, thanks to the definition (17) of ϕ̃, gives (16).
Let β0 be a real nonnegative indefinitely differentiable function with a compact support in (−1, 1), such

that
∫

R
β0(x) dx = 1. We consider, for all n ∈ N�, the function ϕ̃n ∈ C1

ct(E × R × R+) defined by (i, y, s) �→
ϕ̃n(i, y, s) =

∫
R
ϕ̃(i, x, s)βn(y − x) dx, where βn(x) = nβ0(nx). We then get that ϕ̃n and ∂ϕ̃n

∂s respectively
converge to ϕ̃ and ∂ϕ̃

∂s in C0(E × [−T,RT ] × [0, T ]), using the uniform continuity in a compact set of any
continuous function. We then apply (15) to the element ϕn ∈ C1

ct(E × R+ × R+) such that ϕn(i, x, t) =
ϕ̃n(i, x− t, t) for all (i, x, t) ∈ E ×R+ ×R+. Since we have ∂ϕn

∂t (i, x, t) = −∂ϕ̃n

∂y (i, x− t, t) + ∂ϕ̃n

∂s (i, x− t, t) and
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∂ϕn

∂x (i, x, t) = ∂ϕ̃n

∂y (i, x− t, t), this produces

0 =
∑
i∈E

∫∫
R+×R+


∂ϕ̃n

∂s
(i, x− t, t) − b(i, x) ϕ̃n(i, x− t, t) +

∑
j∈E

a(i, j, x) ϕ̃n(j,−t, t)

µ(i, dx, dt). (19)

Passing to the limit n → ∞ in (19), we thus get that (18) holds, which concludes the first part of the proof of
the theorem.

Let now µ be a measure satisfying the hypotheses of the above theorem. The uniqueness, for all t ∈ R+, of a
measure ρt on E × R+ such that for all ξ ∈ C0(E × R), the function t �→∑

i∈E
∫

R
ξ(i, x)ρt(i, dx) is continuous

and µ(i, dx, dt) = ρt(i, dx) dt, immediately results from this continuity property since we can write

∑
i∈E

∫
R

ξ(i, x)ρt(i, dx) = lim
τ→0

∑
i∈E

1
τ

∫
R×(t,t+τ)

ξ(i, x)µ(i, dx, ds). �

Hence equation (12) appears as a weak formulation of a partial differential equation problem, the solution to
which is a measure. A functional interpretation of this equation holds in the particular case where there exist
some functions ūini and ū such that ρini(i, dx) = ūini(i, x)dx and ρt(i, dx) = ūt(i, x)dx: in such a case, we can
then identify equation (12) with a weak formulation of the system of linear scalar hyperbolic equations

∂ūt
∂t

(i, x) +
∂ūt
∂x

(i, x) = −b(i, x) ūt(i, x), ∀(i, t, x) ∈ E × R+ × R+, (20)

with the initial conditions
ū0(i, x) = ūini(i, x), ∀(i, x) ∈ E × R+, (21)

and the boundary conditions

ūt(i, 0) =
∑
j∈E

∫
R+

a(j, i, x)ūt(j, x)dx, ∀(i, t) ∈ E × R+. (22)

(this system (20)–(22) is the generalization of Model (1)–(3) to the case of any finite set E of all possible states).
Then equation (12) can be obtained by multiplying (20) by any function ξ ∈ C1(E × R+), and integrating by
parts with respect to x. This interpretation is used below in order to define a numerical approximation of the
solution to this equation.

2. The numerical scheme and its convergence

2.1. The numerical scheme

In order to compute an approximation of the probability distribution ρt of (ηt, Xt) for t ∈ R+, we use a
finite volume scheme (see for example [11] for a general introduction on such numerical methods). Let h > 0
be given and let us divide R+ into intervals of length h. The principle of the method is to approximate
the measure ρt(i, dx) by the measure ūht (i, x) dx, where the function ū is constant on each square [mh, (m +
1)h[×[nh, (n+ 1)h[ for all integers n and m, i.e.

ūht (i, x) = uhn(i,m), ∀(x, t) ∈ [mh, (m+ 1)h[×[nh, (n+ 1)h[, ∀(m,n) ∈ N × N.

The finite volume scheme is inspired by the functional interpretation (20)–(22). An explicit upstream weighted
finite volume scheme, in which the time step is taken equal to the maximum value authorized by a CFL condition,
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can be written as

h
uhn+1(i,m) − uhn(i,m)

h
+ uhn(i,m) − uhn(i,m− 1) = −h b(i,mh)uhn+1(i,m) for all m ≥ 1,

or equivalently

uhn+1(i,m) =
uhn(i,m− 1)
1 + h b(i,mh)

for all m ≥ 1, (23)

and
uhn+1(i, 0) =

∑
j∈E

∑
m≥1

h a(j, i,mh)uhn+1(j,m), (24)

where we recall that b(i,mh) =
∑
j∈E a(i, j,mh).

The initial condition is given by the natural discretization of measure ρini:

uh0 (i,m) =
1
h

∫
[mh,(m+1)h[

ρini(i, dx) for all m ≥ 0. (25)

Remark 2.1 (Implicit schemes and CFL). We consider in this paper only explicit schemes under the condition
CFL = 1, mainly because we want to avoid the smearing of Dirac masses during the transport step. Nevertheless,
it can be necessary, for precision purposes, to choose different space steps with respect to the state (see the last
numerical example presented below). In this case, it is all the same possible to generalize Scheme (23)–(25)
while avoiding the smearing of Dirac masses in all the states. Indeed, let us assume that the time step is given
by h > 0 and that, for each state i ∈ E, the space step is given by Ni h with Ni ∈ N

�: consider the scheme
given by the initialization

uh0 (i,m) =
1
Nih

∫
[mNih,(m+1)Nih[

ρini(i, dx) for all m ≥ 0, (26)

and, for all n ∈ N and i ∈ E,

if there exists k ∈ N such that n+ 1 = kNi, then

ũhn+1(i, 0) = 0 and ũhn+1(i,m) =
uhn(i,m− 1)

1 + h b(i,mNih)
for all m ≥ 1,

else

ũhn+1(i,m) =
uhn(i,m)

1 + h b(i,mNih)
for all m ≥ 0.




(27)

Then we set, for all n ∈ N and i ∈ E,

uhn+1(i,m) = ũhn+1(i,m) for all m ≥ 1,

uhn+1(i, 0) = ũhn+1(i, 0) +
1
Ni

∑
j∈E

∑
m≥0

Njh a(j, i,mNjh) ũhn+1(j,m). (28)

Then Scheme (26)–(28) satisfies the mass conservation, i.e.

∑
i∈E

∑
m∈N

Nihu
h
n+1(i,m) =

∑
i∈E

∑
m∈N

Nihu
h
0 (i,m) = 1.

Moreover, it keeps respecting the non-diffusive effect resulting from the condition CFL= 1, even for all the states
i ∈ E such that Ni > 1. The convergence analysis of Scheme (26)–(28) can be done, following the method
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presented in this paper for Scheme (23)–(25). It is applied in [9] to different examples, where keeping the same
space step for all states would either produce inaccurate results, either lead to inadmissible computing times.
In [8], we consider more general cases where the velocity can depend on the state, in multi-dimensional spaces.
Note that in such cases, we cannot avoid the smearing effect of CFL< 1 and the discretization must be refined
at the location where Dirac masses are transported. In such a case, implicit schemes must then be completely
excluded for accuracy, but also for computing time reasons.

Some simplification of the expressions can be drawn from letting m ∈ Z instead of m ∈ N. The numerical
scheme (23)–(25) can then be written in the following way

ah(j, i,m) = a(j, i,mh), ∀i, j ∈ E, ∀m ∈ Z, m ≥ 1,

ah(j, i,m) = 0, ∀i, j ∈ E, ∀m ∈ Z, m < 1,

bh(i,m) =
∑
j∈E

ah(i, j,m), ∀i ∈ E, ∀m ∈ Z,

uh0 (i,m) =
1
h

∫
[mh,(m+1)h[

ρini(i, dx), ∀i ∈ E, ∀m ∈ N,

uh0 (i,m) = 0, ∀i ∈ E, ∀m ∈ Z \ N,

(1 + h bh(i,m))uhn+1(i,m) = uhn(i,m− 1) + Uhn+1(i,m), ∀i ∈ E, ∀(m,n) ∈ Z × N,

Uhn+1(i,m) = 0, ∀i ∈ E, ∀m ∈ Z \ {0}, ∀n ∈ N,

Uhn+1(i, 0) =
∑
j∈E

∑
m∈Z

h ah(j, i,m)uhn+1(j,m), ∀i ∈ E, ∀n ∈ N,

ūht (i, x) = uhn(i,m), ∀(x, t) ∈ [mh, (m+ 1)h) × [nh, (n+ 1)h),
∀i ∈ E, ∀(m,n) ∈ Z × N. (29)

In the following statements, we refer to Scheme (23)–(25) using the label Scheme (29), which gathers all the
notations which are needed. We now state, in the following proposition, the property of mass conservation of
this scheme.

Proposition 2.2. Let E be a finite set, and let a ∈ C0
b(E × E × R+). Let ρini be a probability measure on

the set E × R+, such that there exists R0 > 0 with
∑

i∈E
∫
[0,R0]

ρini(i, dx) = 1. Let h > 0 be given, and let
(uhn(i,m))(i,m,n)∈E×Z×N and ūh : E × R × R+ → R be given by Scheme (29). Then

uhn(i,m) ≥ 0, ∀i ∈ E, ∀n ∈ N, ∀m ∈ Z, (30)

uhn(i,m) = 0, ∀i ∈ E, ∀n ∈ N, ∀m ∈ Z,m < 0, (31)

h
∑
i∈E

∑
m∈Z

uhn(i,m) = 1, ∀n ∈ N, (32)

and ∑
i∈E

∫
R

ūht (i, x) dx = 1, ∀t ∈ R+. (33)

Moreover, denoting, for any positive real x, by [x] the greatest integer lower or equal to x, then

uhn(i,m) = 0, ∀i ∈ E, ∀n ∈ N, ∀m ∈ N, m	 [R0/h] + n. (34)
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Proof. Properties (30)–(32) hold for n = 0 since ρini is a probability measure with support on E × [0, R0].
Assume that these properties hold for a given n ∈ N. We get from Scheme (29) that Properties (30) and (31)
are verified for m+ 1. Moreover

h
∑
i∈E

∑
m∈Z,m≥1

(1 + h bh(i,m))uhn+1(i,m) = h
∑
i∈E

∑
m∈Z,m≥0

uhn(i,m) = 1.

It delivers, since we can write

uhn+1(i, 0) = Uhn+1(i, 0) =
∑
j∈E

∑
m∈Z

h ah(j, i,m)uhn+1(j,m), ∀i ∈ E,

that

h
∑
i∈E

uhn+1(i, 0) = h
∑
i∈E

∑
m∈Z,m≥1

h bh(i,m)uhn+1(i,m),

which gives

h
∑
i∈E

∑
m∈Z

uhn+1(i,m) = h
∑
i∈E

∑
m∈Z,m≥1

(1 + h bh(i,m))uhn+1(i,m) = 1.

This concludes the proof of (32), which immediately produces (33). The proof of (34) then comes from a proof
by induction. �

2.2. Convergence of the numerical scheme

Let us begin with proving a property of continuity with respect to the time of the measures ūht dx.

Lemma 2.3. Let E be a finite set, and let a ∈ C0(E × E × R+). Let ρini be a probability measure on the
set E × R+, such that there exists R0 > 0 with

∑
i∈E

∫
[0,R0]

ρini(i, dx) = 1. Let h ∈ (0, 1) be given, and let
(uhn(i,m))(i,m,n)∈E×Z×N and ūh : E × R × R+ → R be given by Scheme (29). Let ψ ∈ C1(E × R). Then, for
all T ∈ R+, there exists a real C1(ψ, T ), which only depends on ψ, T , a and ρini, such that

∣∣∣∣∣
∑
i∈E

∫
R

ψ(i, x) ūht (i, x) dx−
∑
i∈E

∫
R

ψ(i, x) ūhs (i, x) dx

∣∣∣∣∣ ≤ C1(ψ, T ) (|t− s| + h), ∀s, t ∈ [0, T ]. (35)

Proof. Let us assume the hypotheses of the above lemma. Let RT = R0 + T + 1. Let s, t be given such that
0 ≤ s ≤ t ≤ T . Let us define

∆h(s, t) =
∑
i∈E

∫
R

ψ(i, x) ūht (i, x) dx−
∑
i∈E

∫
R

ψ(i, x) ūhs (i, x) dx.

We then have

∆h(s, t) =
∑
i∈E

∑
m∈Z

h ψ̄(i,m)uh[t/h](i,m) −
∑
i∈E

∑
m∈Z

h ψ̄(i,m)uh[s/h](i,m),

where we set, for all m ∈ Z, ψ̄(i,m) = 1
h

∫ (m+1)h

mh
ψ(i, x) dx. We get

∆h(s, t) =
[t/h]−1∑
n=[s/h]

∑
i∈E

∑
m∈Z

h ψ̄(i,m) [uhn+1(i,m) − uhn(i,m)].
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From Scheme (29), we obtain

∑
i∈E

∑
m∈Z

h ψ̄(i,m)
[
uhn+1(i,m) − uhn(i,m)

]
=
∑
i∈E

∑
m∈Z

h ψ̄(i,m)

(
−uhn(i,m) + uhn(i,m− 1)

−h bh(i,m)uhn+1(i,m) + Uhn+1(i,m)

)

= − h
∑
i∈E

∑
m∈Z

[
ψ̄(i,m+ 1) − ψ̄(i,m)

]
uhn(i,m)

− h2
∑
i∈E

∑
m∈Z

ψ̄(i,m) bh(i,m)uhn+1(i,m)

+ h2
∑
i∈E

ψ̄(i, 0)
∑
j∈E

∑
m∈Z

ah(j, i,m)uhn+1(j,m).

Hence, we deduce

∆h(s, t) = − h
∑
i∈E

∑
m∈Z

[
ψ̄(i,m+ 1) − ψ̄(i,m)

] [t/h]−1∑
n=[s/h]

uhn(i,m)

− h2
∑
i∈E

∑
m∈Z

ψ̄(i,m) bh(i,m)
[t/h]−1∑
n=[s/h]

uhn+1(i,m)

+ h2
∑
i∈E

ψ̄(i, 0)
∑
j∈E

∑
m∈Z

ah(j, i,m)
[t/h]−1∑
n=[s/h]

uhn+1(j,m).

Since ψ̄(i,m+1)− ψ̄(i,m) = 1
h

∫ (m+1)h

mh

∫ h
0
∂ψ
∂x (i, x+y) dy dx and since

∑[t/h]−1
n=[s/h] u

h
n(i,m) 
= 0 implies 0 ≤ mh ≤

(m+ 2)h ≤ RT , we have

|ψ(i,m+ 1) − ψ(i,m)|
[t/h]−1∑
n=[s/h]

uhn(i,m) ≤ max
i∈E

sup
x∈[0,TT ]

∣∣∣∣∂ψ∂x (i, x)
∣∣∣∣

[t/h]−1∑
n=[s/h]

uhn(i,m).

Using similar arguments for the other terms, we deduce that

|∆h(s, t)| ≤ h2 max
i∈E

sup
x∈[0,RT ]

∣∣∣∣∂ψ∂x (i, x)
∣∣∣∣

[t/h]−1∑
n=[s/h]

∑
i∈E

∑
m∈Z

uhn(i,m)

+ h2 max
i∈E

sup
x∈[0,RT ]

|ψ(i, x)| sup
x∈[0,RT ]

|b(i, x)|
[t/h]∑

n=[s/h]+1

∑
i∈E

∑
m∈Z

uhn(i,m)

+ h2 max
i∈E

sup
x∈[0,1]

|ψ(i, x)| max
i∈E

sup
x∈[0,RT ]

|b(i, x)|
[t/h]∑

n=[s/h]+1

∑
i∈E

∑
m∈Z

uhn(i,m).

Using (32), we obtain

|∆h(s, t)| ≤ C1(ψ, T )h ([t/h] − [s/h]) ≤ C1(ψ, T ) (t− s+ h),

where C1(ψ, T ) is a real which only depends on ψ, T , a and ρini. �
We can now prove the following theorem.
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Theorem 2.4. Let E be a finite set, and let a ∈ C0(E ×E × R+). Let ρini be a probability measure on the set
E × R+, such that there exists R0 > 0 with

∑
i∈E

∫
[0,R0]

ρini(i, dx) = 1. Let (hp)p∈N be a sequence of strictly
positive real numbers, which converges to 0 as p→ ∞. Then there exists a subsequence of (hp)p∈N, again denoted
(hp)p∈N, and, for all t ≥ 0, there exists a probability measure νt on E × R+ with a finite support, such that the
sequence of measures ((ūhp

t (i, x) dx, i ∈ E))p∈N converges to νt as p → ∞, where ūhp : E × R × R+ → R is
given by Scheme (29) for h = hp. The measure convergence means that for all ξ ∈ C0(E × R+), we have

lim
p→+∞

∑
i∈E

∫
E×R+

ξ(i, x)ūhp

t (i, x) dx =
∫
E×R+

ξ dνt.

Moreover, for all ξ ∈ C0(E × R+), the function t �→ ∫
E×R+

ξ dνt is continuous.

Proof. Without lack of generality, we assume that hp ∈ (0, 1) for all p ∈ N. Let (tm)m∈N be a sequence of
real numbers, which is dense into R+. For any m ∈ N and p ∈ N, we deduce from (32) and (34) that the
measure ūhp

tm dx is a probability measure on E × R+ with a support included in [0, R0 + tm + 1]. Thus, using
Prohorov’s theorem, we deduce that there exists a subsequence of (hp)p∈N (depending on m) and a probability
measure νtm such that the sequence of measures ((ūhp

tm(i, x) dx, i ∈ E))p∈N converges to νtm as p → ∞ in the
following sense: for all bounded functions ψ ∈ C0(E × R+):

lim
p→+∞

∑
i∈E

∫
E×R+

ψ(i, x)ūhp

tm(i, x) dx =
∫
E×R+

ψ dνtm .

Using the diagonal method, we then can build a subsequence, again denoted (hp)p∈N such that for all m ∈ N,
the sequence (ūhp

tm(i, x) dx)p∈N converges to the measure νtm in the sense given above. Let t ∈ R+ and let
ξ ∈ C0(E × R+) be given. Let us prove that (

∑
i∈E

∫
R
ξ(i, x)ūhp

t (i, x) dx)p∈N converges as p → ∞. To that
purpose, we prove that it is a Cauchy sequence. We set T = t + 1 and RT = R0 + T + 1. Let ε > 0 be given.
We approximate function ξ by a bounded function ψ ∈ C1(E×R+) such that supx∈[0,RT ] |ξ(x)−ψ(x)| ≤ ε. Let
m ∈ N be such that |tm − t| ≤ min(ε/C1(ψ, T ), 1). We then obtain for all p ∈ N, using Lemma 2.3,∣∣∣∣∣

∑
i∈E

∫
R

ψ(i, x) (ūhp

t (i, x) − ū
hp

tm(i, x)) dx

∣∣∣∣∣ ≤ C1(ψ, T ) (|t− tm| + hp).

We now choose n ∈ N such that, for all p, q ≥ n,
∣∣∣∑i∈E

∫
R
ψ(i, x) (ūhp

tm(i, x) − ū
hq

tm(i, x)) dx
∣∣∣ ≤ ε (this is possible

since the sequence (
∑

i∈E
∫

R
ψ(i, x)ūhp

tm(i, x) dx)p∈N converges) and hp and hq less or equal to ε/C1(ψ, T ). We
then get, for p, q ≥ n,∣∣∣∣∣

∑
i∈E

∫
R

ξ(i, x) (ūhp

t (i, x) − ū
hq

t (i, x)) dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∑
i∈E

∫
R

ψ(i, x) (ūhp

t (i, x) − ū
hq

t (i, x)) dx

∣∣∣∣∣+ 2ε

≤
∣∣∣∣∣
∑
i∈E

∫
R

ψ(i, x) (ūhp

t (i, x) − ū
hp

tm(i, x)) dx

∣∣∣∣∣
+

∣∣∣∣∣
∑
i∈E

∫
R

ψ(i, x) (ūhp

tm(i, x) − ū
hq

tm(i, x)) dx

∣∣∣∣∣
+

∣∣∣∣∣
∑
i∈E

∫
R

ψ(i, x) (ūhq

t (i, x) − ū
hq

tm(i, x)) dx

∣∣∣∣∣+ 2ε

≤ 7ε.
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This proves that (
∑

i∈E
∫

R
ξ(i, x)ūhp

t (i, x) dx)p∈N is a Cauchy sequence. Let us define

St(ξ) = lim
p→∞

∑
i∈E

∫
R

ξ(i, x)ūhp

t (i, x) dx.

The operator St is positive linear form on C0(E ×R+) and St(1) = 1. Consequently it is a probability denoted
by νt, i.e. St(ξ) =

∫
ξ dνt =

∑
i∈E

∫
R+
ξ(i, x) νt(i, dx).

Let us prove the continuity of t �→ ∫
ξ dνt, for any ξ ∈ C0(E × R × R+). We again set T = t + 1 and

RT = R0+T+1. Let ε > 0. We again approximate ξ by ψ ∈ C1(E×R+) such that supx∈[0,RT ] |ξ(x)−ψ(x)| ≤ ε.
We let h = hp in (35), and we let p→ ∞. We thus get, for s ∈ [0, T ],

∣∣∣∣∣
∑
i∈E

∫
R

ψ(i, x) ρt(i, dx) −
∑
i∈E

∫
R

ψ(i, x) ρs(i, dx)

∣∣∣∣∣ ≤ C1(ψ, T ) |t− s|.

We then have, for all s ∈ [0, T ] such that |t− s| ≤ ε/C1(ψ, T ),

∣∣∣∣∣
∑
i∈E

∫
R

ξ(i, x) νt(i, dx) −
∑
i∈E

∫
R

ξ(i, x) νs(i, dx)

∣∣∣∣∣ ≤
∣∣∣∣∣
∑
i∈E

∫
R

ψ(i, x) νt(i, dx) −
∑
i∈E

∫
R

ψ(i, x) νs(i, dx)

∣∣∣∣∣+ 2ε

≤ 3ε,

which completes this proof of continuity. �

We now get the following corollary.

Corollary 2.5. Let E be a finite set, and let a ∈ C0(E ×E ×R+). Let ρini be a probability measure on the set
E × R+, such that there exists R0 > 0 with

∑
i∈E

∫
[0,R0]

ρini(i, dx) = 1. Let (hp)p∈N be a sequence of strictly
positive real numbers, which converges to 0 as p → ∞. Let us again denote by (hp)p∈N the subsequence of
(hp)p∈N and, for all t ≥ 0, by νt the probability measure with a finite support given by Theorem 2.4. Then the
sequence of measures (ūhp

t (i, x) dxdt)p∈N, where ūhp : E × R × R+ → R is given by Scheme (29) for h = hp,
converges to the measure µ defined by µ(i, dx, dt) = νt(i, dx) dt as p → ∞ in the following sense: for all
ξ ∈ C0ct(E × R × R+) we have

lim
p→∞

∑
i∈E

∫
R+

∫
R+

ξ(i, x, t) ūhp

t (i, x) dxdt =
∑
i∈E

∫
R+

∫
R+

ξ(i, x, t) νt(i, dx) dt =
∫
E×R+×R+

ξ dµ.

Moreover, let ξ ∈ C0ct(E × R × R+) and A be such that ξ(i, x, t) = 0, ∀ t > A, ∀ i ∈ E, ∀x ∈ R, and let
RA = R0 +A+ 1. We then have

lim
p→+∞h2

p

∑
i∈E

∑
m∈Z

[A/hp]−1∑
n=0

ξ(i,mh, nh)uhn(i,m) =
∫
E×R+×R+

ξ dµ. (36)

Proof. Let ξ ∈ C0(E × R × R+). We get that

lim
p→∞

∑
i∈E

∫
R+

∫
R+

ξ(i, x, t) ūhp

t (i, x) dxdt =
∑
i∈E

∫
R+

∫
R+

ξ(i, x, t)ρt(i, dx) dt,

thanks to the Lebesgue’s dominated convergence theorem.
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Let us now prove (36). We can write

∑
i∈E

∫
R+×R+

ξ(i, x, t) ūht (i, x) dx dt =
∑
i∈E

∑
m≥0

∑
n≥0

∫ ∫
[mh,(m+1)h[×[nh,(n+1)h[

ξ(i, x, t)uhn(i,m) dx dt

=
∑
i∈E

∑
m≥0

[A/h]−1∑
n=0

uhn(i,m)
∫ ∫

[mh,(m+1)h[×[nh,(n+1)h[

ξ(i, x, t) dx dt

+
∑
i∈E

∑
m≥0

uhn(i,m)
∫ ∫

[mh,(m+1)h[×[h[A/h],A]

ξ(i, x, t) dx dt.

On the one hand:∣∣∣∣∣∣
∑
i∈E

∑
m≥0

uhn(i,m)
∫ ∫

[mh,(m+1)h[×[h[A/h],A]

ξ(i, x, t) dx dt

∣∣∣∣∣∣ ≤
∑
i∈E

∑
m≥0

uhn(i,m) ‖ξ‖L∞(E×R+×R+) h (A− h[A/h])

= ‖ξ‖L∞(E×R+×R+) (A− h[A/h])

and the right hand side of the above expression tends to 0 when h tends to 0.
On the other hand, we have

δξ(h) =

∣∣∣∣∣h2
∑
i∈E

∑
m∈Z

[A/h]−1∑
n=0

ξ(i,mh, nh)uhn(i,m)

−
∑
i∈E

∑
m≥0

[A/h]−1∑
n=0

uhn(i,m)
∫ ∫

[mh,(m+1)h[×[nh,(n+1)h[

ξ(i, x, t) dx dt

∣∣∣∣∣
≤
∑
i∈E

∑
m≥0

[A/h]−1∑
n=0

uhn(i,m)
∫ ∫

[mh,(m+1)h[×[nh,(n+1)h[

|ξ(i,mh, nh) − ξ(i, x, t)| dx dt.

Using (34) we obtain

δ′ξh) ≤
∑
i∈E

[(R0+A)/h]−1∑
m=0

[A/h]−1∑
n=0

uhn(i,m)
∫ ∫

[mh,(m+1)h[×[nh,(n+1)h[

|ξ(i,mh, nh) − ξ(i, x, t)| dx dt.

Let us define

εA,ξ(h) = sup{|ξ(i, x1, t1) − ξ(i, x2, t2)| : i ∈ E, 0 ≤ x1, x2 ≤ R0 +A, 0 ≤ t1, t2 ≤ T,

|x1 − x2| ≤ h, |t1 − t2| ≤ h}.

Then we have

0 ≤ δξ(h) ≤
∑
i∈E

[(R0+A)/h]−1∑
m=0

[A/h]−1∑
n=0

εA,ξ(h)h2 uhn(i,m) ≤ εA,ξ(h) [A/h] ≤ AεA,ξ(h)

and the right hand side of the above inequalities tends to 0 when h tends to O, which ends the proof. �
Let us now prove that the measure µ(i, dx, dt) = νt(i, dx) dt satisfies (14).
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Proposition 2.6. Let E be a finite set, and let a ∈ C0(E × E × R+). Let ρini be a probability measure on the
set E×R+, such that there exists R0 > 0 with

∑
i∈E

∫
[0,R0]

ρini(i, dx) = 1. Let (hp)p∈N be a sequence of strictly
positive real numbers, which converges to 0 as p→ ∞. Let us again denote by (hp)p∈N the subsequence of (hp)p∈N

and, for all t ≥ 0, by νt the probability measure with a finite support given by Theorem 2.4. Then the measure
µ(i, dx, dt) = ρt(i, dx) dt is such that for all T > 0, there exists RT > 0 with

∑
i∈E

∫ T
0

∫
[0,RT ]

µ(i, dx, dt) =∑
i∈E

∫ T
0

∫
R+
µ(i, dx, dt) <∞ and that (14) is satisfied.

Proof. Let us assume the assumptions of the above proposition, and let ϕ ∈ C1
ct(E ×R×R+). Without lack of

generality, we can assume that hp ∈ (0, 1). We consider a time T > 1 such that

ϕ(i, x, t) = 0 ∀ (i, x, t) ∈ E × R × [T − 1,+∞), (37)

and we set RT = R0 + T + 1. Let us simplify the notation in all the following proof, replacing, in any equation
where p ∈ N is given, hp by h. We also set

µh(i, dx, dt) = ūht (i, x) dxdt, ∀(i, x, t) ∈ E × R × R+. (38)

Let us notice that (33) gives ∫
E×R

×[0, T ] dµ =
∫
E×R+

×[0, T ] dµ = T. (39)

Let ε ∈ (0, 1) and h ∈ (0, 1 − ε). Let us first prove that∫
E×R×[0,T ]

dµh =
∫
E×R+×[0,T ]

dµh =
∫
E×[0,RT −ε]×[0,T ]

dµh, (40)

∫
E×R+×[0,T ]

dµ =
∫
E×[0,RT ]×[0,T ]

dµ.

We have

0 ≤
∫
E×[RT−ε,+∞[×[0,T ]

dµh ≤
∑

m≥
[

RT −ε

h

]
[T/h]∑
n=0

h2 uhn(i,m).

Then Formula (34) gives uhn(i,m) = 0 for 0 ≤ n ≤ [T/h], and m > [R0/h] + [T/h]. It is easy to check that
[(RT − ε)/h] < [R0/h] + [T/h]. Therefore we get∫

E×[RT−ε,+∞[×[0,T ]

dµh = 0,

which proves the result for measure µh.
Now, let ε > 0 and let ϕε ∈ C0(E × R+ × R+) a function which satisfies: 0 ≤ ϕε ≤ 1, ϕε = 1 on

E × [RT ,+∞[×[0, T ] and ϕε = 0 on E × [RT − ε,+∞[×[0, T + ε]. We obtain

0 ≤
∫
E×[RT ,+∞[×[O,T ]

dµ ≤
∫
ϕε dµ = lim

h→0

∫
ϕε dµh.

For h < 1 − ε, we have

0 ≤
∫
ϕε dµh ≤

∫
E×[RT −ε,+∞[×[T,T+ε]

dµh ≤
∫ T+ε

T

(∑
i∈E

∫
R+

ūht (i, x) dx

)
dt ≤ ε.
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Let us now prove that measure µ satisfies (14). We get, from Scheme (29),

0 = uhn+1(i,m) − uhn(i,m) + uhn(i,m) − uhn(i,m− 1)

+ h bh(i,m)uhn+1(i,m) − Uhn+1(i,m).

Multiplying the above equation by −hϕ(i,mh, nh) and summing on i ∈ E, m ∈ Z and 0 ≤ n ≤ [T/h] − 1, we
obtain

T h1 + T h2 + T h3 + T h4 = 0,

with

T h1 = −
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=0

(uhn+1(i,m) − uhn(i,m))hϕ(i,mh, nh),

T h2 = −
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=0

(uhn(i,m) − uhn(i,m− 1))hϕ(i,mh, nh),

T h3 = −
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=0

h2bh(i,m)uhn+1(i,m)ϕ(i,mh, nh),

T h4 =
∑
i∈E

[T/h]−1∑
n=0

hUhn+1(i, 0)ϕ(i, 0, nh).

Step 1. Study of T h1
We have

T h1 = −h
∑
i∈E

∑
m∈Z

[T/h]∑
n=1

uhn(i,m)ϕ(i,mh, (n− 1)h)

+ h
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=0

uhn(i,m)ϕ(i,mh, nh)

= h
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=1

uhn(i,m) (ϕ(i,mh, nh) − ϕ(i,mh, (n− 1)h))

+ h
∑
i∈E

∑
m∈Z

uh0(i,m)ϕ(i,mh, 0),

since, if h is small enough, i.e. if p is large enough, we have ϕ(i,mh, ([T/h]− 1)h) = 0.
Let us define T

′p
1 and T

′′p
1 by

T
′p
1 = h

∑
i∈E

∑
m∈Z

[T/h]−1∑
n=1

uhn(i,m) (ϕ(i,mh, nh) − ϕ(i,mh, (n− 1)h)),

T
′′p
1 = h

∑
i∈E

∑
m∈Z

uh0(i,m)ϕ(i,mh, 0).
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We also define ψh by

ψh(i,m, n) =
ϕ(i,mh, nh) − ϕ(i,mh, (n− 1)h)

h
if n 
= 0,

ψh(i,m, 0) =
∂ϕ

∂t
(i,mh, 0).

and ψ̄h by

ψ̄h(i, x, t) = ψh(i,m, n) if (x, t) ∈ [mh, (m+ 1)h[×[nh, (n+ 1)h[, ∀m ∈ Z, 0 ≤ n ≤ [T/h] − 1.

For n ≥ 1, we notice that there exists thn ∈ [(n− 1)h, nh[ such that

ψh(i,m, n) =
∂ϕ

∂t
(i,mh, thn).

Since the function ∂ϕ
∂t is continuous, it is uniformly continuous on [0, RT ] × [0, T ], and therefore

lim
p→∞

∥∥∥∥∂ϕ∂t − ψ̄hp

∥∥∥∥
L∞(E×[0,RT ]×[0,T ])

= 0. (41)

We have

∫
E×R×R+

ψ̄h dµh =
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=0

h2ψh(i,m, n)uhn(i,m) +
∫
E×R×[h[T/h],T ]

ψ̄h dµh

= T
′p
1 + h2

∑
i∈E

∑
m∈Z

uh0(i,m)ψh(i,m, 0) +
∫
E×R×[h[T/h],T ]

ψ̄h dµh. (42)

On the one hand, using (37), (40) and (39), we get

∣∣∣∣∣
∫
E×R×R+

ψ̄h dµh −
∫
E×R×R+

∂ϕ

∂t
dµ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
E×R×[0,T )

(
ψ̄h − ∂ϕ

∂t

)
dµh

∣∣∣∣∣
+

∣∣∣∣∣
∫
E×R×R+

∂ϕ

∂t
dµh −

∫
E×R×R+

∂ϕ

∂t
dµ

∣∣∣∣∣
≤ T

∥∥∥∥∂ϕ∂t − ψ̄h
∥∥∥∥
L∞(E×[0,RT ]×[0,T ])

+

∣∣∣∣∣
∫
E×R×R+

∂ϕ

∂t
dµh −

∫
E×R×R+

∂ϕ

∂t
dµ

∣∣∣∣∣ .
Since ∂ϕ

∂t ∈ C0(E × R × R+), Corollary 2.5 and (41) imply that

lim
p→∞

∫
E×R×[0,T )

ψ̄hp dµhp =
∫
E×R×[0,T )

∂ϕ

∂t
dµ. (43)
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On the other hand, using (32) and (39) we obtain

∣∣∣∣∣ h2
∑
i∈E

∑
m∈Z

uh0 (i,m)ψh(i,m, 0) +
∫
E×R×[h[T/h],T ]

ψ̄h dµh
∣∣∣∣∣

≤ h ‖ψ̄h‖L∞(E×[0,RT ]×[0,T ])h
∑
i∈E

∑
m∈Z

uh0(i,m) + h ‖ψ̄h‖L∞(E×[0,RT ]×[0,T ])

= 2 h ‖ψ̄h‖L∞(E×[0,RT ]×[0,T ]).

But (41) implies that ‖ψ̄h‖L∞(E×[0,RT ]×[0,T ]) is bounded. Consequently we obtain

lim
p→∞

(
h2
p

∑
i∈E

∑
m∈Z

u
hp

0 (i,m)ψhp(i,m, 0) +
∫
E×R×[hp[T/hp],T ]

ψ̄hp dµhp

)
= 0. (44)

Equations (42)–(44) yield

lim
p→∞ T

′p
1 =

∫
∂ϕ

∂t
dµ =

∫
E×R+×R+

∂ϕ

∂t
dµ . (45)

To study T
′′p
1 , let us notice that if f is a real-valued continuous function, we have

lim
p→∞hp

∑
m∈Z

f(mhp)u
hp

0 (i,m) =
∫

R

f(x) ρini(i, dx).

Indeed, we can write∣∣∣∣∣
∫

R

f(x) ρini(i, dx) − h
∑
m∈Z

f(mh)uh0(i,m)

∣∣∣∣∣ =

∣∣∣∣∣
∫

R

f(x) ρini(i, dx) −
∑
m∈Z

∫
[mh,(m+1)h[

f(mh) ρini(i, dx)

∣∣∣∣∣
≤
∑
m∈Z

∫
[mh,(m+1)h[

|f(x) − f(mh)| ρini(i, dx)

≤ sup
x1, x2 ∈ [0, R0]
|x1 − x2| ≤ h

|f(x1) − f(x2)|
∑
m∈Z

∫
[mh,(m+1)h[

ρini(i, dx)

= sup
x1, x2 ∈ [0, R0]
|x1 − x2| ≤ h

|f(x1) − f(x2)|,

and the uniform continuity of f on [0, R0] implies the convergence to 0 when p tends to ∞. Therefore we get

lim
p→∞T

′′p
1 =

∑
i∈E

∫
R

ϕ(i, x, 0) ρini(i, dx).

Gathering the previous results, we have proven that

lim
p→∞ T h1 =

∫
E×R+×R+

∂ϕ

∂t
dµ+

∑
i∈E

∫
R+

ϕ(i, x, 0) ρini(i, dx). (46)
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Step 2. Study of T h2
We have

T h2 = −h
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=0

uhn(i,m)ϕ(i,mh, nh)

+ h
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=0

uhn(i,m)ϕ(i, (m+ 1)h, nh)

= h
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=0

uhn(i,m) (ϕ(i, (m+ 1)h, nh) − ϕ(i,mh, nh)).

Using the same methods as in step 1, we show that

lim
p→∞T h2 =

∫
E×R+×[0,T )

∂ϕ

∂x
dµ.

Step 3. Study of T h3
We have already seen that, if h is small enough, ϕ(i,mh, ([T/h]− 1)h) = 0, consequently we get

T h3 = −h2
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=1

bh(i,m)uhn(i,m)ϕ(i,mh, (n− 1)h).

We notice that

lim
h→0

T h3 = lim
h→0

T̃ h3

with

T̃ h3 = −h2
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=1

bh(i,m)uhn(i,m)ϕ(i,mh, nh),

since, using (32) and (34) we obtain

h2
∑
i∈E

∑
m∈Z

[T/h]−1∑
n=1

bh(i,m)uhn(i,m) |ϕ(i,mh, nh)− ϕ(i,mh, (n− 1)h) |

= h2
∑
i∈E

∑
m∈Z,

mh≤RT

[T/h]−1∑
n=1

bh(i,m)uhn(i,m) |ϕ(i,mh, nh) − ϕ(i,mh, (n− 1)h) |

≤ sup
x∈[0,RT ]

sup
|t1−t2|≤h

|ϕ(i, x, t1) − ϕ(i, x, t2| ‖b‖L∞(E×[0,RT ])h
2
∑
i∈E

[T/h]−1∑
n=0

∑
m∈Z

uhn(i,m)

≤ sup
x∈[0,RT ]

sup
|t1−t2|≤h

|ϕ(i, x, t1) − ϕ(i, x, t2)| ‖b‖L∞(E×[0,RT ]) T,

and the uniform continuity of ϕ on [0, RT ] × [0, T ] gives the result.
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In fact, the following relation holds

T̃ h3 = − h2
∑
i∈E

∑
m≥0

[T/h]−1∑
n=0

bh(i,m)uhn(i,m)ϕ(i,mh, nh)

+ h2
∑
i∈E

∑
m∈Z

bh(i,m)uh0(i,m)ϕ(i,mh, 0).

On the one hand, we have, using (36)

lim
p→∞h2

p

∑
i∈E

∑
m≥0

[T/hp]−1∑
n=0

bhp(i,m)ϕ(i,mhp, nhp)uhp
n (i,m) =

∫
E×R+×R+

b ϕ dµ.

On the other hand, thanks to (32) and (34), we have

|h2
∑
i∈E

∑
m∈Z

bh(i,m)uh0(i,m)ϕ(i,mh, 0)|

≤ ‖b‖L∞([0,RT ]) ‖ϕ‖L∞(E×[0,RT ]×[0,T ]) h
2
∑
i∈E

∑
m∈Z

uh0 (i,m)

= ‖b‖L∞([0,RT ]) ‖ϕ‖L∞(E×[0,RT ]×[0,T ]) h,

therefore this term tends to 0 when p tends to ∞.
We have therefore shown that

lim
p→∞T h3 = −

∫
E×R+×R+

b ϕ dµ

Step 4. Study of T h4

We have

T h4 =
∑
i∈E

[T/h]−1∑
n=0

h
∑
j∈E

∑
m∈Z

h ah(j, i,m)uhn+1(j,m)ϕ(i, 0, nh).

and therefore as previously

lim
h→0

T h4 =
∑
i∈E

∑
j∈E

∫∫
R×[0,T )

a(i, j, x)ϕ(j, 0, t)µ(i, dx, dt)

Step 5. Synthesis

Since

0 = T h1 + T h2 + T h3 + T h4 ,
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we have

0 = lim
h→0

(T h1 + T h2 + T h3 + T h4 )

=
∑
i∈E

∫∫
R+×R+

∂ϕ

∂t
(i, x, t)µ(i, dx, dt) +

∑
i∈E

∫
R+

ϕ(i, x, 0) ρini(i, dx)

+
∑
i∈E

∫∫
R+×R+

∂ϕ

∂x
(i, x, t)µ(i, dx, dt)

−
∑
i∈E

∫∫
R+×R+

b(i, x)ϕ(i, x, t)µ(i, dx, dt)

+
∑
i∈E

∑
j∈E

∫∫
R+×R+

a(i, j, x)ϕ(j, 0, t)µ(i, dx, dt),

and this is the requested result. �

Theorem 2.7. Let E be a finite set, and let a ∈ C0(E × E × R+). Let ρini be a probability measure on the
set E × R+, such that there exists R0 > 0 with

∑
i∈E

∫
[0,R0]

ρini(i, dx) = 1. Let h > 0 be a strictly positive real
number. Then, for all t ∈ R+, the probability measure ūht (i, x) dx converges to ρt(i, dx), the unique solution
of (12) as h tends to 0.

Proof. The above proposition is a direct consequence of Theorem 1.4, Proposition 2.6 and Theorem 2.4. �

3. Numerical applications

We now present some classical examples in reliability theory, in the framework of Remark 1.1: we recall
that E = {0, 1} and that q and b are linked by relations (8) and (9). The mean value of the duration in
the state i, for i = 0, 1, is then given by mi =

∫
R+
t q(i, 1 − i, t) dt, the standard deviation is given by σ2

i =∫
R+
t2q(i, 1 − i, t) dt−m2

i and the coefficient of variation Cvi is given by Cvi = σi/mi (see for example [3]). We
thus approximate the marginal distributions ρt(i, dx) using the numerical scheme which is described in this
paper. The availability A1(t) is then defined by A1(t) = P(ηt = 1) =

∫
R+
ρt(1, dx) and the unavailability is

defined by A0(t) =
∫

R+
ρt(0, dx) = 1 − A1(t). It is possible to obtain an indicator of the error committed

on A0(t), using the fact that the asymptotic unavailability is given by

lim
t→∞A0(t) =

m0

m1 +m0
· (47)

We examine three numerical examples of the calculation of the unavailabilityA0(t) = P(ηt = 0) of the component
as a function of t. In the following table, we precise for i = 0, 1 the laws of duration q(i, 1 − i, ·) kept for both
states of the three examples. We also give the mean values mi and the coefficients of variation Cvi .

q(1, 0, ·) m1 Cv1 = σ1/m1 q(0, 1, ·) m0 Cv0 = σ0/m0

Ex.1 gamma 10. 0.32 log-normal 1.65 1.31
Ex.2 log-normal 4.48 1.31 Weibull 0.9 0.28
Ex.3 Weibull 886 0.52 Weibull 0.9 0.28

The Weibull distribution, with parameters α and β, is given by

q(t) = b(t) exp
(
−
∫ t

0

b(s)ds
)
, b(t) =

β

αβ
tβ−1, m = αΓ

(
1 +

1
β

)
, σ2 = α2

(
Γ
(

1 +
2
β

)
− Γ2

(
1 +

1
β

))
,
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Figure 1. Example 1. Left: numerical value of the unavailability A0(t) as a function of the
time, right: approximation of ū80/3(i, x).

Figure 2. Numerical values of the unavailability A0(t) as a function of the time, Example 2.

the log-normal distribution with parameters α and β, is given by

q(t) =
1√

2π β t
exp

(−(log t− α)2

2β2

)
, b(t) =

q(t)∫ +∞
t q(s) ds

, m = eα+β2/2, σ2 = e2α
(
e2β2 − eβ

2
)
,

and the gamma distribution, with parameters α and β, is given by

q(t) =
1

Γ(α)βα
tα−1 e−t/β , b(t) =

q(t)∫ +∞
t

q(s) ds
, m = αβ, σ2 = αβ2.

In Figure 1, the left picture shows, in the case of Example 1, the unavailability as a function of the time, the
horizontal dashed line representing the asymptotic value. The right picture represents the curves ū80/3(i, x) for
i = 0 and i = 1, as a function of x, where ū80/3(i, x) dx is an approximation of ρ80/3(i, dx) for t = 80/3. The
peak, precisely obtained for x = 80/3, corresponds to the integration in the control volume of a Dirac mass at
this point, whose weight is the probability that the component is working during the time interval [0, t]. In this
case, we have taken h = 0.01.

Figure 2 represents the unavailability as a function of the time for Example 2, and the horizontal dashed
line again represents the asymptotic value. The precision of the calculation can be evaluated by the distance
between the numerical results and the asymptotic value. The results are accurate enough, with h = 0.01, which
leads to 4000 control volumes.

In the case of Example 3, the results are not precise enough, using Scheme (23)–(25) with h = 1. and 2000
control volumes (left picture of Fig. 3). Note that other results of the literature show much less accuracy in this
case: this lack of accuracy is due to the high ratio between the mean durations of a working period and of a
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Figure 3. Numerical values of the unavailability A0(t) as a function of the time (left: Exam-
ple 3 with Scheme (23)–(25) and h = 1; right: Example 3 with Scheme (26)–(28) and h = 0.01,
N1 = 100, N0 = 1.)

repair period, although these values are usual for reliable materials. Using Scheme (26)–(28), we are then able
to obtain much more accurate results (right picture of Fig. 3) with h = 0.01 and again 2000 control volumes,
using the values N1 = 100 and N0 = 1 (a number of 200 000 control volumes would have been needed for the
same calculation with Scheme (23)–(25) and h = 0.01).

Other numerical experiments can be found in [4, 9].
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