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NUMERICAL STUDY OF THE DAVEY-STEWARTSON SYSTEM
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Abstract. We deal with numerical analysis and simulations of the Davey-Stewartson equations which
model, for example, the evolution of water surface waves. This time dependent PDE system is par-
ticularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a
time splitting spectral method where we give a convergence analysis for the semi-discrete version of
the scheme. Numerical results are presented for various blow-up phenomena of the equation, including
blowup of defocusing, elliptic-elliptic Davey-Stewartson systems and simultaneous blowup at multiple
locations in the focusing elliptic-elliptic system. Also the modeling of exact soliton type solutions for
the hyperbolic-elliptic (DS2) system is studied.
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1. Introduction

The Davey-Stewartson (DS) equations model free surface waves subject to the effects of both gravity and
capillarity (“Gravity-Capillary waves”). In dimensionless form, the DS equations read

i∂tu+ λ∂2
xu+ ∂2

yu = ν|u|2u+ u ∂xφ ,

α∂2
xφ+ ∂2

yφ = χ∂x(|u|2) , (x, y) ∈ R
2, t ∈ R. (1.1)

Here u is the (complex) amplitude of the wave and φ the (real) velocity potential of the wave movement. The
parameters α and λ can have both signs, according to which the system can be classified as elliptic-elliptic
(E-E), elliptic-hyperbolic (E-H), hyperbolic-elliptic (H-E) and hyperbolic-hyperbolic (H-H).

The equations can be viewed as a generalization of the cubic Nonlinear Schrödinger equation (NLS)

i∂tu+ ∆u = ν|u|2u. (1.2)

Like the 1-d cubic NLS, the 2-d Davey-Stewartson system is (for specific values of the parameters) integrable
by inverse scattering methods [1, 3]. With respect to finite time blowup, the focusing cubic NLS is the critical
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case in 2 space dimensions, and hence an interesting question is given by the blowup behaviour of (focusing)
DS equations and its relations to the NLS case.

We use a time-splitting spectral scheme that has been recently developed and applied to a large class of
nonlinear Schrödinger type equations [4, 5]. This scheme has proven to be a quite efficient method and a
convenient tool also for the numerical study of “semiclassical limits”. We have developed a parallel version of
the scheme that also allows for 3-d semiclassical simulations of time dependent NLS [4, 5].

In the present work we show numerical results for the blowup of focusing E-E equations and for exact soliton
type solutions of the H-E system. We add a study of multi-focusing of the E-E system and an investigation of
blowup in the H-E system, which are treated for the first time in this work (to our knowledge).

The paper is organized as follows: in the rest of Section 1, we give an instructive short summary of the
physical motivation of equation (1.1) in the context of water waves. In Section 2, we give a convergence proof
for the time splitting method and a discussion of the method we apply here. In the third section we present
numerical results; in Section 3.1 results on the H-E system and in Section 3.2 on the focusing and defocusing
E-E system.

1.1. Derivation of the model

We briefly sketch the derivation of the DS equations in the context of water surface waves as it was done
by Ablowitz and Segur [2] and Djordjević and Redekopp [10]. The goal is to describe a surface wave in a
situation where gravity and the capillarity of the fluid both contribute to the motion on a comparable scale.
One considers a non-viscous, incompressible fluid over a flat ground, and studies the free surface flow of this
fluid. The fluid is subject to gravity and surface tension forces and is assumed to be initially at rest at height h.
For small perturbations of the surface, the equations for the motion of the fluid can be linearized around the
rest state and read:

∂2
xφ+ ∂2

yφ+ ∂2
zφ = 0, −h < z < ζ, (1.3)

∂tζ − ∂zφ = 0, z = ζ, (1.4)
∂tφ+ gζ − T (∂2

xζ + ∂2
yζ) = 0, z = ζ, (1.5)

∂zφ = 0, z = −h. (1.6)

φ(x, y, z; t) is the velocity potential of the fluid, ζ(x, y; t) the height of the free surface and T > 0 the relation
between the surface tension coefficient and the fluid density.

We look for solutions in form of a plane wave, so the following ansatz is made:

(φ, ζ) =
(
f(z)ei<κ,X>−iωt, gei<κ,X>−iωt

)

where in the inner product < ., . > the vectors κ and X stand for κ = (k, l), X = (x, y). Inserting into the
equations (1.3)–(1.6), the dispersion relation for this wave is obtained:

ω =
(
gκ0

(
1 +

κ2
0T

g

)
tanhκ0h

)1/2

(1.7)

with κ0 = ‖κ‖.
The solution of (1.3)–(1.6) is expanded in uniform waves with small amplitudes. Initially the free surface ζ is

perturbed by a uniform wave that has wave number k0 and is directed in x-direction only, with height ε, which
is small compared to h:

ζ(x, y, t = 0) = ε
iω

g(1 + T̃ )

(
A(εx, εy)eik0x −A(εx, εy)e−ik0x

)
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where T̃ = k2
0T/g. The value of the frequency ω is uniquely determined by the value of k0 by the relation (1.7)

(note that in this situation κ0 = k0). The solution (φ, ζ) is then expanded in ε as well as in uniform waves in
x-direction ei(kx−ωt) obeying the above mentioned dispersion relation. To get a closed model the following key
assumptions are made:

• the initial wave amplitude is small: ε � 1, and moreover the dimensionless depth kh is such that the
shallow water limit is excluded, so ε� (kh)2 is assumed;

• slowly varying modulation δk
k0

� 1; and

• the wave is mostly mono-dimensional: |ky|
k0

� 1; and in addition

• these three effects are in balance to each other such that |ky|
k0

= O(ε) and δk
k0

= O(ε).
Then slow variables are introduced

ξ = ε(x− Cgt), η = εy, τ = ε2t,

where Cg is the group velocity defined by

Cg =
∂ω

∂k
= Cp

{
σ + kh(1 − σ2)

2σ
+

T̃

1 + T̃

}

(where κ0 is replaced by k in formula (1.7)), and Cp the phase velocity such that

Cp =
ω

k
and σ = tanh kh.

Inserting the expansion and the slow variables into equations (1.3)–(1.6) and sorting by powers of ε finally leads
to the DS equations:

i∂tψ + λ∂2
ξψ + µ∂2

ηψ = ν|ψ|2ψ + ν1ψ∂ξφ, (1.8)

α∂2
ξφ+ ∂2

ηφ = β∂ξ(|ψ|2), (1.9)

where

λ =
1
2
ω′′(k), µ = ω′(k) =

Cg

2k
,

ν =
k4

4ω

[
(1 − σ2)(9 − σ2) + T̃ (2 − σ2)(7 − σ2)

σ2 − T̃ (3 − σ2)
+ 8σ2 − 2(2 − σ2)2(1 + T̃ ) − 3σ2T̃

1 + T̃

]

,

ν1 =
k2

ωCp

[

1 +
1
2
Cg

Cp
(1 − σ2)(1 + T̃ )

]

,

α = 1 − C2
g/gh, β =

k2Cp

gh

[
Cg

Cp
(1 − σ2) +

2T̃
1 + T̃

]

·

By rescaling, this is equivalent to (1.1).
The nature of equations (1.8)–(1.9) changes completely with the sign of α = 1 − M2, where the “Mach

number” M is defined as M = Cg/
√
gh and describes the ratio of the wave packet group velocity (which

increases with the relative importance of the surface tension) to the phase velocity of the mean field. The
motion of the wave packet is said to be “subsonic” when α > 0 and “supersonic” when α < 0. For α > 0,
(1.9) is elliptic and the boundary conditions for φ are φ → 0 for ξ2 + η2 → ∞, and if α < 0, (1.9) becomes
hyperbolic and the boundary conditions for φ consist in prescribing the flow far upstream in the characteristic
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directions of equation (1.9). The necessary boundary conditions for ψ are the same for both signs, ψ(ξ, η, τ) → 0
for ξ2 + η2 → ∞. Depending on the sign of λ (µ is always positive) the main part of the linear operator in (1.8)
is either elliptic of hyperbolic. According to these signs, Ghidaglia and Saut introduced the classification of DS
systems as elliptic-elliptic (E-E), elliptic-hyperbolic (E-H), hyperbolic-elliptic (H-E) and hyperbolic-hyperbolic
(H-H), the latter case not occurring in the context of water surface waves.

In the deep water limit kh→ ∞, the system (1.8)–(1.9) reduces to the cubic NLS:

i∂tψ + λ∞∂2
ξψ + µ∞∂2

ηψ = χ∞|ψ|2ψ.

In the long wavelength limit kh→ 0, the parameters in the system (1.8)–(1.9) (resp. (1.1)) become

µ = ν1 = β = 1, α = ν = σ1, λ = −σ1 whith σ1 = sgn
(

1
3
− T

gh2

)
· (1.10)

In this case, the system has the remarkable property of being integrable by inverse scattering, and is called
“DS1” or “DS2” system according to the value of σ1.

DS equations are also used in plasma physics for describing the propagation of plasma waves in strong
magnetic fields. This derivation is due to Nishinari et al. [19].

1.2. Invariants and existence results of the DS system

For the following invariance properties to hold we need to assume that the solution (u, φ) of (1.1) is sufficiently
smooth and decaying at infinity. This restricts the result to the case α > 0 where the equation for φ is of elliptic
type. If this assumption is satisfied, then the following functionals are independent of time:

N(u) =
∫

R2
|u|2 dxdy (1.11)

Jx(u) =
∫

R2
(u∂xu− u∂xu) dxdy (1.12)

Jy(u) =
∫

R2
(u∂yu− u∂yu) dxdy (1.13)

H(u) =
∫

R2
µ|∂xu|2 + λ|∂yu|2 +

1
2
(ν|u|4 − ν1β(∂xφ

2 + α∂yφ
2)) dxdy. (1.14)

The (straightforward) proof is omitted here and can be found for example in [22].
A lot of work has been done on the initial value problem, we try to give a short overview of the most

important results relevant to our study. For the elliptic-elliptic and hyperbolic-elliptic case, Ghidaglia and Saut
[11] proved local existence and uniqueness, and global existence for small data in L2(R2). They also proved
that if u0 belongs to H2(R2), one has u ∈ C([0, T ∗[;H2(R2)) ∩ C1([0, T ∗[;L2(R2)).

For the elliptic-elliptic equation we can mention that they proved the existence of solutions which blow up
in final time. Denote Σ = { v | v ∈ H1(R2), (x2 + y2)1/2v ∈ L2(R2)}. Then the following holds true:

(1) an element v ∈ Σ which satisfies H(v) < 0 exists if and only if ν < max(−χ, 0);
(2) if ν ≥ max(−χ, 0), then the solutions of (1.1) are global;
(3) if ν < max(−χ, 0) and the initial data satisfies H(u0) < 0, then the maximal solution exists only for a

finite time.
A result similar to this one with regards to existence but with restrictions on the parameters ν, β, α was found
by Gúzman-Gomez [12].

The elliptic-hyperbolic and hyperbolic-hyperbolic cases present more difficulties. Hayashi and Hirata [15]
obtained local existence for E-H in Hs, s > 5

2 , and global existence with an additional smallness condition
in some higher order Sobolev spaces. An improvement of the local existence result for E-H in H2 was done
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by Hayashi [14] in which he is able to drop the smallness condition. For the H-H case, there is an existence
result by Hayashi and Saut [16] in spaces of analytic functions decreasing exponentially at infinity.

2. Time splitting method for DS systems

We use the time-splitting spectral method, which has recently been applied to Nonlinear Schrödinger equa-
tions [4,5], and proved to be a powerful tool particularly in studies of the semiclassical limit. It goes back to the
’70s [13] and has for the first time been applied to the DS systems by White and Weideman [23] in the E-H and
H-E cases. The semi-discrete version of the splitting method was recently proved convergent for the Nonlinear
Schrödinger equations [8]. In [21], Papanicolaou et al. studied the self-focusing of E-E DS equations by a
numeric resolution of the blowup. Besse and Bruneau [7] have successfully applied a finite difference method to
the general DS equations, this method uses a time relaxation approach.

In this article, we focus on the case of a subsonic wavepacket, that is the E-E or H-E versions of the DS
system. After a rescaling, it is possible to set µ = 1. This system can then be written as a single equation for
u (see [11]). We set φx = E(|u|2), where the singular integral operator E is defined in Fourier variables by

Ê(f)(ξ1, ξ2) =
ξ21

ξ21 + ξ22
f̂(ξ1, ξ2). (2.1)

Therefore, the E-E or H-E DS system reduces to a nonlinear, non-local Schrödinger equation

i∂tu+ Lλu = ν|u|2u+ ν1E(|u|2)u = F (u) (2.2)

where Lλ = λ∂2
ξ + ∂2

η with λ = ±1.

2.1. Convergence of the split-step method

The idea behind the method is to decouple the nonlinear system into a linear PDE with constant coefficients,
which can be discretized in space by a spectral method or by classical finite difference method, and a nonlinear
equation which can be solved exactly. Therefore, the split-step method is based on a decomposition of the flow
of (2.2).

Indeed, let us define the flow Xt of the linear Schrödinger equation
{
i∂tv + Lλv = 0, x ∈ R

2, t > 0,
v(x, 0) = v0(x), x ∈ R

2,
(2.3)

and Y t as the flow of the nonlinear differential equation
{
i∂tw = F (w), x ∈ R

2, t > 0,
w(x, 0) = w0(x), x ∈ R

2.
(2.4)

Then the splitting method consists of combining the two flows Xt and Y t. The best known methods are the
following: the most simple “Lie formula” given by Zt

L1
= XtY t (or Zt

L2
= Y tXt) and the Strang formula

Zt
S = Y t/2XtY t/2 (or Xt/2Y tXt/2).
Using the previously defined flows, we can define a new flow St which gives the solution of (2.2) as

u(x, t) = Stu0(x) = Xtu0(x) − i

∫ t

0

Xt−sF (u(x, s))ds. (2.5)

We use the first Strang formulation Zt
S = Y t/2XtY t/2 and prove that this scheme is convergent for the DS prob-

lem. For a general nonlinear Schrödinger equation, this convergence proof has been done by Besse et al. in [8].
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Note that their convergence result holds only for initial data belonging to H4. For E-E or H-E versions of
DS that method does not apply and the proof must be adapted for initial data belonging to H2, which is a
nontrivial task.

We use extensively the fact that on a time interval [0, T ], before a possible blow-up of the solution, u remains
bounded in H2, and set R = supt∈[0,T ] ‖u‖H2 .

The main result of this part is

Theorem 2.1. For all u0 in H2 and for all 0 < T < T ∗, there exist C and h0 such that for all h ∈ (0, h0] and
for all n with nh ≤ T : ∥

∥
∥
(
Zh

S

)n
u0 − Snhu0

∥
∥
∥ ≤ C(‖u0‖H2)h‖u0‖H2 .

To prove this result for a small h > 0 and all integer n such that nh ≤ T , we have to estimate the quantity∥
∥(
Zh

S

)n
u0 − Snhu0

∥
∥, where ‖ · ‖ denotes the L2 norm. As noticed in [9], the triangle inequality yields

∥
∥
∥
(
Zh

S

)n
u0 − Snhu0

∥
∥
∥ ≤

n−1∑

j=0

∥
∥
∥
(
Zh

S

)n−j−1
Zh

SS
jhu0 −

(
Zh

S

)n−j−1
S(j+1)hu0

∥
∥
∥ .

We prove in Section 2.1.4 that there exists a constant C0 such that for w0 and w′
0 ∈ L2 and all t ∈ [0, 1],

‖Zt
Sw0 − Zt

Sw
′
0‖ ≤ (1 + C0t)‖w0 − w′

0‖. (2.6)

Therefore
∥
∥∥
(
Zh

S

)n
u0 − Snh

S u0

∥
∥∥ ≤

n−1∑

j=0

(1 + C0h)n−j−1 ∥
∥(
Zh

S − Sh
S

)
Sjhu0

∥
∥ . (2.7)

Thus we may restrict our study to the case for which at each time step the initial data is the same for the
continuous model and the splitting scheme and is equal to v0 = Sjhu0.

2.1.1. Estimates on the linear flow

From the definition of the Schrödinger flow, we first have

Ẋt = iLλX
t = iXtLλ. (2.8)

As the flow Xt is a unitary group on H2, we have

‖Xtu0‖H2 = ‖u0‖H2 . (2.9)

2.1.2. Estimates on the nonlinear flow

The nonlinear flow is defined as

Y tw = w − i

∫ t

0

F (Y sw) ds. (2.10)

Note that by a simple calculation, it follows from (2.4) and the explicit form of F that

|Y tw| = |w|,

and with this result, the nonlinear flow can be expressed as

Y tw = e−i(ν|w|2+ν1E(|w|2))tw. (2.11)

Lemma 2.2. For all t ∈ [0, T ],
‖Y tw‖H2 ≤ ‖w‖H2 (2.12)

holds.
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Proof. The application of F is Lipschitz according to Ghidaglia and Saut [11] (p. 485, Lem. 2.1). We denote
by K its Lipschitz constant. Equation (2.10) first yields the following L∞ estimate:

‖Y tw‖∞ ≤ ‖w‖∞ +K

∫ t

0

‖Y sw‖∞ ds.

Then the classical Gronwall lemma gives

‖Y tw‖∞ ≤ eKt‖w‖∞.

On the other hand, (2.10) also leads to an L2 estimate:

‖Y tw‖ ≤ ‖w‖ +K

∫ t

0

‖Y sw‖ ds. (2.13)

For all first order differential operators D, it holds that

DY tw = Dw − i

∫ t

0

F ′(Y sw)D(Y sw) ds,

and, denoting by M ′ the maximum for F ′, we obtain

‖DY tw‖ ≤ ‖Dw‖ +M ′
∫ t

0

‖DY sw‖ ds.

Differentiating once more (here, ∆ denotes the Laplacian operator) leads to

∆Y tw = ∆w − i

∫ t

0

(
F ′′(Y sw)D(Y sw)2 + F ′(Y sw)∆Y sw

)
ds.

So

‖∆Y tw‖ ≤ ‖∆w‖ +
∫ t

0

(
M ′′‖DY sw‖2 +M ′‖∆Y sw‖) ds

≤ ‖∆w‖ +
∫ t

0

(M ′′‖Y sw‖∞ +M ′) ‖Y sw‖H2 ds,

where the Gagliardo-Nirenberg inequality was applied and M ′′ denotes the maximum for F ′′. Therefore, by
using the L∞ estimate above, there exists a constant c̃ such that

‖Y tw‖H2 ≤ ‖w‖H2 + c̃

∫ t

0

(
1 + eKs

) ‖Y sw‖H2 ds

and by the Gronwall lemma,

‖Y tw‖H2 ≤ ‖w‖H2 exp
(
c̃

∫ t

0

(
1 + eKs

)
ds

)
.

For t ≤ 1, there exists a constant C such that exp
(
c̃
∫ t

0

(
1 + eKs

)
ds

)
≤ C, and the assertion follows. �
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Lemma 2.3. Let X = L∞([0, T ];L2(R2)).

(1) Let w ∈ X; then
‖E(w)‖X ≤ ‖w‖X . (2.14)

(2) Let w and w′ ∈ BX(0, R), where BX(0, R) is the ball centered at 0 of X; then

∥∥E
(|w|2)w − E

(|w′|2)w′∥∥
X

≤ LipE(R)‖w − w′‖X , (2.15)

where LipE(R) is the Lipschitz constant of the map E on the ball BX(0, R).
(3) Let w ∈ X; then

∣
∣E

(|w|2)w∣
∣ ≤ |w|2|w|. (2.16)

Proof.

(1) Let F−1 denote the inverse Fourier transform. Then

‖E(w)‖X =
∥∥
∥
∥F−1

(
ξ21

ξ21 + ξ22
ŵ(ξ1, ξ2)

)∥∥
∥
∥

X

=
∥
∥∥
∥

∫
ei<x,ξ> ξ21

ξ21 + ξ22
ŵ(ξ1, ξ2)|dξ

∥
∥∥
∥

X

≤
∥
∥
∥
∥

∫
ei<x,ξ>ŵ(ξ1, ξ2)|dξ

∥
∥
∥
∥

X

≤ ‖w‖X .

(2)

‖E(|w|2)w − E(|w′|2)w′‖X

= ‖E(|w|2)(w − w′) + w′(E(|w|2) − E(|w′|2))‖X

≤ ‖E(|w|2)‖X‖w − w′‖X + ‖w′‖X‖E(|w|2) − E(|w′|2)‖X

≤ ‖E(|w|2)‖X‖w − w′‖X + ‖w′‖‖E(|w|2 − |w′|2)‖.
As H2(R2) is an algebra and thanks to (2.14), we have

‖E(|w|2)w − E(|w′|2)w′‖X ≤ ‖w‖2
X‖w − w′‖X + ‖w′‖X‖|w|2 − |w′|2‖X .

As |w|2 − |w′|2 = (|w| + |w′|)(|w| − |w′|), we finally have

‖E(|w|2)w − E(|w′|2)w′‖X ≤ 3R2‖w − w′‖X .

(3) The proof is similar to the previous one.

�

2.1.3. Local errors

Lemma 2.4. Let v0 ∈ H2, 0 ≤ t ≤ 1 and k ∈ {1, 2}.
(1) If v0 ∈ BH2(0, R), then ‖ZLk

v0‖ ≤ C(R).
(2) There exist two constants C1 and C2 such that

∥
∥(Zt

Lk
− St)v0

∥
∥ ≤ C1

∫ t

0

∥
∥(Zσ

Lk
− Sσ)v0

∥
∥ dσ + C2‖v0‖H2

t2

2
· (2.17)
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Proof. The proof is similar for the two flows ZL1 and ZL2, so we only treat the first one.
Let v = Zt

L1
v0 the splitting solution and u = Stv0 the exact solution. Thanks to the definitions of the flows,

we get

v = Xtv0 − i

∫ t

0

F (Y σXtv0)dσ,

u = Xtv0 − i

∫ t

0

X(t− σ)F (u(σ))dσ.

We first estimate if v remains bounded if v0 is taken in the ball BH2(0, R). Using the fact that H2(R2) is an
algebra and relations (2.9), (2.12) and (2.16), we have

‖v‖H2 ≤ ‖v0‖H2 +
∫ t

0

|ν + ν1|‖Y σXtv0‖3
H2dσ

≤ R+ tR3.

We now express the difference between the splitting solution and the exact solution.

‖v − u‖ =
∥∥
∥
∥i

∫ t

0

X(t− σ)[F (u(σ)) − F (v(σ))] + i

∫ t

0

X(t− σ)F (Y σXσv0) − F (Y σXtv0)dσ
∥∥
∥
∥ .

Using the fact that v and u remain bounded if v0 ∈ BH2 (0, R), we use the Lipschitz constant of F and get

‖v − u‖ ≤ LipF (R)
∫ t

0

‖(v − u)(σ)‖H2dσ +
∫ t

0

‖X(t− σ)F (Y σXσv0) − F (Y σXtv0)‖dσ.

Let us define
R1(σ) = X(t− σ)F (Y σXσv0) − F (Y σXσv0)︸ ︷︷ ︸

A

+F (Y σXσv0) − F (Y σXtv0)︸ ︷︷ ︸
B

.

We have, thanks to (2.8),

A =
∫ t

σ

Ẋ(τ − σ)F (Y σXσv0)dτ =
∫ t

σ

iXLλF (Y σXσv0)dτ.

Therefore ‖A‖ ≤ (t − σ)‖LλF (Y σXσv0)‖ ≤ (t − σ)‖F (Y σXσv0)‖H2 . Using again the Lipschitz constant of F
and properties of the flows Xt and Y t we get

‖A‖ ≤ LipF (R)‖u0‖H2 . (2.18)

The estimates on the term B follow the same routine

‖B‖ ≤ LipF (R)‖Xt(Xσ−t − I)v0‖ ≤ LipF (R)‖(Xσ−t − I)v0‖.

Thus we have again ‖B‖ ≤ LipF (R)‖u0‖H2 .
The term R1 is therefore bounded ‖R1(σ)‖ ≤ C(σ−t)‖v0‖H2 and the difference between the splitting solution

and the exact solution becomes

∥∥(Zt
L1

− St)v0
∥∥ ≤ C1

∫ t

0

∥∥(Zσ
L1

− Sσ)v0
∥∥ dσ + C2‖v0‖H2

t2

2
· (2.19)

We proceed in a same way for the term
∥
∥(Zt

L2
− St)v0

∥
∥. �
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From an adaption of the Gronwall lemma (cf. [8]) we get

Lemma 2.5. For k ∈ {1, 2} and 0 ≤ t ≤ 1, the relation (2.17) yields

∥
∥(Zt

Lk
− St)v0

∥
∥ ≤ C

t2

2
· (2.20)

2.1.4. Lipschitz properties

Lemma 2.6. Let w0 and w′
0 ∈ BH2 (0, R), 0 ≤ t ≤ 1. Then there exists a constant C depending only on F such

that
‖Zt

Sw0 − Zt
Sw

′
0‖ ≤ (1 + Ct)‖w0 − w′

0‖. (2.21)

Proof. As the flow Zt
S is defined through the relation Zt

S = Y t/2XtY t/2, we have

w = Zt
Sw0 = XtY t/2w0 − i

∫ t/2

0

F (Y sXtY t/2w0)ds.

Therefore

Zt
Sw0 − Zt

Sw
′
0 = XtY t/2w0 −XtY t/2w′

0 − i

∫ t/2

0

F (Y sXtY t/2w0) − F (Y sXtY t/2w′
0)ds.

Using again properties (2.9), (2.12) and the Lipschitz constant of F , we have

‖Zt
Sw0 − Zt

Sw
′
0‖ ≤ ‖w0 − w′

0‖ + LipF (R)t‖w0 − w′
0‖. �

2.1.5. Order estimate

We are now able to prove the Theorem 2.1. Thanks to Lemma 2.5, we can compute

∥∥(Zh
S − Sh)v0

∥∥ =
∥
∥∥Zh/2

L1
Z

h/2
L2

v0 − Sh/2Sh/2v0

∥
∥∥

=
∥
∥
∥Zh/2

L1
Z

h/2
L2

v0 − Sh/2Z
h/2
L2

v0 + Sh/2Z
h/2
L2

v0 − Sh/2Sh/2v0

∥
∥
∥

≤
∥
∥
∥
(
Z

h/2
L1

− Sh/2
)
Z

h/2
L2

v0

∥
∥
∥ +

∥
∥
∥Sh/2

(
Z

h/2
L2

− Sh/2
)
v0

∥
∥
∥

≤ C′h
2

4
‖v0‖H2 ,

where the constant C′ depends only on the Lipschitz constant of F . Using now the inequality (2.7), we get

∥∥(Zh
S)nu0 − Shnu0

∥∥ ≤ C′

4
‖u0‖H2

n−1∑

j=0

exp (Ch)n−j−1h2

≤ C′

4
‖u0‖H2 exp (CT )nh2

≤ C′′‖u0‖H2h.

Therefore the split-step scheme is convergent.

2.2. Time-splitting spectral scheme

The crucial advantages of the time-splitting spectral method are that it is fully explicit, unconditionally
stable, time reversible, and time-transverse invariant [4].
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We use the Strang splitting method Zt
S = Y t/2XtY t/2. The linear flow Xt is solved by a spectral Fourier

method and the nonlinear flow Y t by exact integration via formula (2.1).
We choose a square domain [a, b]2 and the same grid size in x- and y-direction, ∆x = ∆y = (b − a)/M

for an even, positive integer M . The time step is ∆t and the grid points are (xj , yk) = (a + j∆x, a + k∆x),
tn = n∆t. The approximation of u(xj , yk, tn) is denoted un

jk, and un is the solution matrix at time tn with
components un

jk. We impose periodic boundary conditions for a sufficiently fast decaying ψ in order to apply
the spectral method.

In detail, the method is:

u∗jk =
1
M2

M/2−1∑

l=−M/2

M/2−1∑

m=−M/2

e−i(αµ2
l +µ2

m)∆t/2 (̂un)lm ei(µl(xj−a)+µm(xk−a)),

E∗
jk =

1
M2

∑

−M/2≤l,m≤M/2−1,(l,m) �=(0,0)

βν1µ
2
l

µ2
l + µ2

m

(̂|u∗|2)lm ei(µl(xj−a)+µm(xk−a)),

u∗∗jk = e−i(E∗
jk+ν|u∗

jk|2) ∆t u∗jk,

un+1
jk =

1
M2

M/2−1∑

l=−M/2

M/2−1∑

m=−M/2

e−i(αµ2
l +µ2

m)∆t/2 (̂u∗∗)lm ei(µl(xj−a)+µm(xk−a)),

j, k = 0, 1, 2, · · · ,M − 1.

Here Ûl,m (l,m = −M/2, · · · ,M/2 − 1) is the 2-D discrete Fourier transform of a (periodic) matrix U :

Ûl,m =
M−1∑

j=0

M−1∑

k=0

Ujk e−i(µl(xj−a)+µm(xk−a)),

µl =
2π
b− a

l, l,m = −M
2
,· · ·, M

2
− 1.

In order to be able to run simulations with a sufficiently fine discretization, we adapted the code for the use
on a distributed memory parallel machine. We used the cluster “Schrödinger 2” of the University of Vienna,
which features 192 Pentium IV processors with 1 GB memory per node, linked by a switched gigabit network.
(For more details on the parallel code, see [5]). We used the parallel version of the scheme in particular for the
study of blow-up in E-E systems.

3. Numerical results

3.1. Hyperbolic-elliptic DS system

3.1.1. Exact solutions

The hyperbolic-elliptic DS system with the parameter set (1.10) and σ1 = 1, called “DS2”, is an integrable
system. Arkadiev et al. [3] proved the existence of a class of exact solutions by inverse scattering methods.
These show localized structures getting displaced without dispersion and for this reason are said to be of “soliton
type”. To formulate these solutions we first rewrite the equation as

iut + ∂2
xu− ∂2

yu = −2χ|u|2u− uφx,

∆φ = −4χ(|u|2)x.
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Figure 1. Exact solution at time t0 = −3.5.

Figure 2. Traveling “soliton” at times t = −3.5, 0, 3.5.

Then the exact solution is

u(x, y, t) =
2ν̄ exp(x(λ − λ̄) + iy(λ+ λ̄) + 2it(λ2 + λ̄2))

|x+ iy + µ− 2iλt|2 − χ|ν|2

where ν, µ, λ ∈ CI are parameters. We choose χ = −1 and ν = µ = λ = 1. With this choice, the expression of
the solution is

u(x, y, t) =
4 exp(iy + 2it)

(x+ 1)2 + (y − 2t)2 + 1
·

Figure 1 shows the initial data at t0 = −3.5, it is a hump centered at x = −1, y = −7 = 2 · t0. This solution
has only geometric decay towards infinity, which poses a problem for our scheme which needs to rely on a rapid
decay of solutions to prevent errors from the artificial periodic boundary conditions. To prevent such errors we
need to take a rather large domain, we choose Ω = [−16, 16]2. Figure 2 shows contour plots of |u| at different
times during the evolution. We can see that the “soliton structure” is traveling in y-direction at speed 2 as
required. Also the shape of the solution is preserved accurately. In Figure 3 we show a numeric test of the
conserved quantities mentioned above. The wave energy N(u) is conserved exactly up to machine precision, so
we do not show a picture for that result. The L∞-norm of u, which should be constant due to the exact solution
formula, shows slight oscillations while the current density (x-component) Jx is almost exactly conserved. For
the conservation of the Hamiltonian H(x) we discovered a particular sensitivity to the artificial domain cutoff



NUMERICAL STUDY OF THE DAVEY-STEWARTSON SYSTEM 1047

a) b)

c)

Figure 3. (a): Current density J(x), component in x-direction. (b): Hamiltonian of Hyperb.-
Ell. system. (c): L∞ - norm of |ψ|2; Ω = [−40, 40]2.

when the evolution lasts longer. With a larger domain, in this case [−40, 40]2, the Hamiltonian is conserved up
to 5 digits and time t ≤ 2.

3.1.2. Blowup of H-E system

The next test case for the DS2 equation is the case of a finite time blowup studied by Ozawa [20], where an
exact solution is constructed that blows up at a given time. The initial data are u0(x, y) = exp(i(x2−y2))

1+x2+y2 , which
is a localized lump with algebraic decay (as in the previous case). By the construction we know that the blowup
time is t∗ = 0.25 and ‖u(t)‖L∞ = 1/(1 − 4t) holds for he exact solution.

In this test we found the code to be very sensitive to cutoff errors from the artificial boundary conditions. We
need to calculate on the domain [−40, 40]2 to get reasonable results. Figure 4 shows the blowup for three different
choices of the resolutions (upper line ∆x = 0.01953, ∆t = 10−4, middle line ∆x = 0.039, ∆t = 2.5 × 10−4,
lower line ∆x = 0.0781, ∆t = 5 × 10−4), and the exact rate stated above as a dashed line. We can see that, if
the discretization is chosen fine enough, we can recover the correct blowup rate. Figure 5 shows the position
density close to the blowup time.

3.2. Elliptic-elliptic DS system

3.2.1. Finite time blowup

In this section we treat the elliptic-elliptic DS system

iut + ∆u = χ|u|2u+ uφx

∆φ = −γ(|u|2)x. (3.1)

Finite time blowup of this system was studied by Ghidaglia and Saut [11]. As mentioned in Section 1, (3.1) al-
ways leads to blow-up either if χ = −1, for any γ, or if χ = 1 and γ > χ. We choose the initial data profile

uI(x, y) = 4 exp
(−x2 − y2

4

)
·
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Figure 4. L∞-norm of blowup solution for increasingly refined discretizations. Dashed line is
analytic blowup rate.

Figure 5. Position density close to blowup.

Figure 6. L∞ norm of |Ψ| and analytical blowup rate.

First we investigate the case χ = −1 (focusing nonlinearity) and set χ = −1, γ = 1. This case is analogous to
the focusing NLS, since for γ = 0, (3.1) reduces to the focusing cubic NLS, which in two space dimensions is the
critical case for finite-time blowup. We expect the blowup mechanism to be similar to the one of that equation.
We find that the solution blows up at time t = 0.1311. Figure 6 shows the L∞-norm of u. Papanicolaou et al. [21]
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a) b)

Figure 7. Contour plot of position densities: (a) before blowup, at t = 0.12, t = 0.124,
t = 0.128, (b) close to blowup, at t = 0.1298, t = 0.1304, t = 0.1308.

Figure 8. Position density at different times: (a) t = 0.1298, (b) t = 0.1308, (c) t = 0.131.

analytically found that the solution blows up at the rate

L(t) ≈ (t∗ − t)
1
2

(
ln ln

1
t∗ − t

)− 1
2

·

This rate is the same as the one for the critical NLS (Landman et al. [17], see also [22]). In Figure 6, we added
as a dashed line the analytic blowup by the above formula, with t∗ at the value we found for our computation.
It can be observed that the rate of blowup is recovered quite accurately.

Figure 7 shows contours of |u|2 near the focus, and Figure 8 shows |u|2 as surface plots at various times close
to the blowup time. A distinct anisotropy can be observed.

Next we investigate the case χ = 1 (defocusing nonlinearity) and choose χ = 1, γ = 5. In this case the second
nonlinear term is causing the blowup. The corresponding L∞-norm of u is shown in Figure 9. In this case the
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Figure 9. Blowup of defocusing ell.-ell. system (ν = 1, β = 5). L∞ norm of |Ψ| for different
time discretization steps. Blue: ∆t = 5 × 10−5, red: ∆t = 2.5 × 10−5.

Figure 10. Blowup of defocusing ell.-ell. system. L∞ norm of |Ψ| for various space and
time discretization steps, zoom. dashed line: ∆x = 0.0156,∆t = 5 × 10−5 ; dotted line:
∆x = 0.0156,∆t = 2.5 × 10−5, solid: ∆x = 0.00781,∆t = 2.5 × 10−5.

a) b)

Figure 11. (a) Contour plot of position densities before blowup. t = 0.099, t = 0.1045.
(b) Contour plot of position densities close to blowup. t = 0.1091, t = 0.1101, t = 0.111.

blowup is more complicated, there is a first concentration at t = 0.1 before the blowup at t = 0.1115. A much
finer time and space resolution is needed to capture this blowup correctly. Figure 10 shows the maximum values
of |u|2 around the blowup time for several resolutions.

Figure 11 shows contours of |u|2 close to the blowup, Figure 12 shows surface plots. We can see that there
is more anisotropy in the results for this case than in the previous, NLS-dominated case.
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a) b)

c) d)

Figure 12. Position density at several times close to blowup. (a) t = 0.1109, (b) t = 0.111,
(c) t = 0.1111, (d) t = 0.1112.

3.2.2. Multi-Focusing

For the focusing critical NLS, according to a result of Merle [18] it is possible to construct a solution which
blows up exactly at a prescribed set of points. We state his result. Let, in R

d with a general dimension d,
R0, R1, . . . be the infinite sequence of radial solutions to the equation

∆R−R+R
4
d +1 = 0

such that Rk has exactly k nodes as a function of r and decreases exponentially at infinity.

Theorem 3.1 [18]. Let x1, . . . ,xk be given in R
d. There is a constant ω0 such that for any constants ω1, . . . , ωk

all strictly larger than ω0, there exists a solution ψ of the critical (focusing) NLS that blows up in a finite time t∗
such that:

(1) the set of blowup points in L2+4/d and H1 is {x1, . . . ,xk};
(2) for i = 1, . . . , k and all A such that the balls Bi = B(xi, A) are disjoint, limt→t∗ ‖ψ(t)‖L2(Bi) = ‖Ri‖L2;
(3) limt→t∗ ‖ψ(t)‖L2(B) = 0, where B = R

d \ ∪i=1,...,kBi.

In addition, there is a constant γ > 0 such that on [0, t∗),

∥
∥
∥∥
∥
ψ(t) −

k∑

i=1

1
|(t∗ − t)ωi|d/2

e
−i

(t∗−t)ω2
i

+ i|x|2
4(t∗−t)Ri

(
x − xi

ωi(t∗ − t)

)∥
∥
∥∥
∥

L2+4/d

≤ e−
γ

t∗−t .
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a) b)

c) d)

Figure 13. Multi-focusing solution. (a) Initial data, (b) result at intermediate time,
(c) shortly after blowup time, (d) contour plot of result of (c), lowest contour level at 0.1.

Papanicolaou et al. [21] proved that there is a ground state solution to the focusing E-E DS system (3.1). Since
there is only one ground state, we decide instead of calculating with the exact ground-state profile to choose a
test profile Q(x) = exp(−|x|2), which is radial and decaying sufficiently fast. In order to realize the asymptotics
described by the above result, we take the initial data as

uI =
k∑

j=1

1
t̃ω

e−
i

t̃ω2 +i
|x|2
4t̃ Q

(
x − xj

t̃ω

)

where t̃ is an estimate of the blowup time and ω a constant (and x = (x, y) ∈ R
2). We solve the equation on the

domain [−10, 10]2, and choose the focus points x1 = (4, 4), x2 = (−4, 4), x3 = (−4,−4), x4 = (4,−4) and the
constants t̃ = 0.03, ω = 13.3. We find that blowup occurs at t∗ = 0.032. Figure 13 shows the position densities
at initial time, at an intermediate time and at the blowup. We can see that the solution blows up exactly at
the four chosen points.

4. Conclusion

Our numerical study of the Davey-Stewartson (DS) model is based on a “time-splitting spectral method”,
also called “Fourier split step method” by previous authors. Introduced by Tappert et al. in [13], this method
has first been used for the hyperbolic-elliptic (H-E) DS equations by White, Weideman [23] ten years ago.

The new code we use has been developed independently of this previous work and takes advantage of today’s
computing power, in particular parallelization.



NUMERICAL STUDY OF THE DAVEY-STEWARTSON SYSTEM 1053

The time-splitting spectral scheme has a number of advantages which make it suitable for Schrödinger type
equations such as (cubic) NLS and DS. The basis of our code, developed by Bao and Jin, has already been
successfully applied for “semiclassical” Nonlinear Schrödinger equations [4, 5].

We not only study H-E DS systems, like White/Weidemann, but also E-E DS systems. Exact soliton type
solutions of H-E DS can be recovered accurately, eliminating numerical dispersion effects which appear in earlier
results of [7, 23]. For the finite time blowup solution of H-E DS, the blowup rate can be recovered.

For the E-E DS systems, we study finite time blowup of the focusing and defocusing equations. In the focusing
case the analytic blowup rate is recovered accurately and blowup profiles are presented, in full agreement to
the results in [7]. The blowup mechanism in this case is very similar to the one of critical focusing NLS. In the
defocusing case, however, a resolution fine enough to approximate the blowup is new. High numerical resolution
in the results admits a detailed representation of blowup profiles in both cases.

For the first time, we investigate the phenomenon of simultaneous blowup at a predefined, exact number of
points. This is known for focusing NLS; we find that focusing E-E DS can show the same behaviour.

Continuation of the solution after the blowup time is an interesting challenge for numerical simulations that
seems to be in reach with our new code. Further work in this direction will be performed.
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