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CLASSICAL SOLUTIONS FOR THE EQUATIONS MODELLING THE MOTION
OF A BALL IN A BIDIMENSIONAL INCOMPRESSIBLE PERFECT FLUID
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Abstract. In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid
occupying R

2. We prove the global in time existence and the uniqueness of the classical solution for
this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated
with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.
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1. Introduction

We consider a rigid body occupying an open bounded set B(t) ⊂ R
2 and which is surrounded by a perfect

homogeneous fluid. We denote by Ω(t) = R
2 \ B(t) the domain occupied by the fluid. In order to simplify the

problem, we also assume that B(t) is a disc of radius 1 and that the fluid and the solid are homogeneous. The
motion of the fluid is modelled by Euler equations and the equation describing the motion of the rigid body is
obtained by applying the principle of conservation of momentum. More precisely, the equations modelling the
dynamics of the system read

∂u

∂t
+ (u · ∇)u + ∇p = 0, in Ω(t) × [0, T ], (1.1)

div u = 0, in Ω(t) × [0, T ], (1.2)
u · n = h′ · n, on ∂B(t) × [0, T ], (1.3)

mh′′ =
∫

∂B(t)

pndΓ, in [0, T ], (1.4)

u(y, 0) = a(y), ∀y ∈ Ω(0), (1.5)
h(0) = 0 ∈ R

2, h′(0) = b ∈ R
2. (1.6)
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In the above equations, u (resp., p) is the velocity field (resp., the pressure) of the fluid, and h denotes the
position of the centre of the ball. Note that we have assumed that the ball is centred at the origin at t = 0. We
have denoted by n the unit outward normal to ∂Ω. The constant m is the mass of the ball.

Let us point out that the equation for the rotation of the rigid ball has been omitted in the system above;
indeed, thanks to the particular shape of the rigid body, the angular velocity of the rigid body remains constant
as time proceeds.

The main difficulties when studying this problem are that the system (1.1)–(1.5) is nonlinear, strongly coupled
and that the domain of the fluid is variable (and depends on h). These difficulties occur in any fluid-structure
problem. In the last decade, several papers have been devoted to the existence of solutions for such systems
when the fluid motion is governed by Navier-Stokes equations; to quote a few, Desjardins and Esteban [5, 6],
Conca, San Mart́ın and Tucsnak [2], Gunzburger, Lee and Seregin [16], Hoffmann and Starovoitov [18, 19],
Grandmont and Maday [15], San Mart́ın, Starovoitov and Tucsnak [26], Feireisl [7–9], Takahashi [30] (in the
case of a bounded domain) and Serre [27], Judakov [20], Silvestre [28], Takahashi-Tucsnak [31], Galdi and
Silvestre [11] (in the case where the fluid-rigid body system fills the whole space). The stationary problem was
studied in Serre [27] and in Galdi [10]. Zuazua and Vázquez [33] have also tackled, in a simplified 1D model,
the asymptotic behaviour of solutions.

On the other hand, as far as we know, there is no paper devoted to the existence of a (weak or classical)
solution for the fluid-rigid body system in the case where the fluid is assumed to be perfect (no viscosity).
However, a theory providing classical solutions to this kind of problems seems desirable for control purposes, as
most of the control results for Euler flows involve classical solutions. (See e.g. Coron [3, 4], and Glass [14].)

In order to write the equations of the fluid in a fixed domain, we use a change of variables. Denoting by B
the initial subset occupied by the solid and by Ω = R

2 \B the initial domain occupied by the fluid, we set

v(y, t) = u(y + h(t), t), q(y, t) = p(y + h(t), t), l(t) = h′(t). (1.7)

Then, the functions (v, q, l) satisfy the following system:

∂v

∂t
+ (v · ∇)v − (l · ∇)v + ∇q = 0, in Ω × [0, T ], (1.8)

div v = 0, in Ω × [0, T ], (1.9)
v · n = l · n, on ∂B × [0, T ], (1.10)

ml′ =
∫

∂B

qndΓ, in [0, T ], (1.11)

v(y, 0) = a(y), ∀y ∈ Ω, (1.12)
l(0) = b. (1.13)

Let us point out that for a rigid body with an arbitrary form the additional term r(v⊥ − y⊥ · ∇v) has to be
incorporated in the left hand side of (1.8), where r denotes the angular velocity of the rigid body. Clearly, this
term is difficult to handle as |y| → ∞. The existence of a classical solution for this more general problem will
be investigated elsewhere.

Before stating the main result of the paper, we introduce certain notations borrowed from Kikuchi [22]. If V
denotes any scalar-valued function space and u = (u1, u2) is any vector-valued function, we shall say that u ∈ V
if ui ∈ V for all i, for the sake of simplicity. Let T be any positive number, and let QT = Ω × (0, T ). B(Ω)
(resp., B(QT )) is the Banach space of all real-valued, continuous and bounded functions defined on Ω (resp. QT ),
endowed with the L∞ norm. For any θ > 0, L1

θ(Ω) denotes the space of (class of) measurable functions ω on Ω
such that

||ω||L1
θ(Ω) :=

∫
Ω

|ω(y)| |y|θdy <∞.

Finally, for any λ ∈ (0, 1), Cλ(Ω) (resp., Cλ,0(QT )) is the space of all the functions ω ∈ B(Ω) (resp., ω ∈ B(QT ))
which are uniformly Hölder continuous in y with exponent λ on Ω (resp., on QT ). Br(y) will denote the open
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ball in R
2 with centre y and radius r. At any point y ∈ ∂Ω(= ∂B), n = (n1, n2) will denote the unit outer

normal vector to ∂Ω (i.e. n = −y), and τ = (τ1, τ2) will denote the unit tangent vector τ = y⊥ = (−y2, y1). For
any scalar-valued function ω, curlω = (∂ω/∂y2,−∂ω/∂y1) and ∇ω = (∂ω/∂y1, ∂ω/∂y2). For any vector-valued
function v = (v1, v2), curlv = ∂v2/∂y1 − ∂v1/∂y2, divϕ = ∂v1/∂y1 + ∂v2/∂y2 and ∇v = (∂vi/∂yj)1�i,j�2. The
main result in this paper is the following one.

Theorem 1.1. Let θ > 0, 0 < λ < 1, a ∈ B(Ω) ∩H1(Ω) and b ∈ R
2. Assume that diva = 0, (a− b) · n|∂B

= 0,
lim|y|→+∞ a(y) = 0, and curla ∈ L1

θ(Ω) ∩ Cλ(Ω). Then there exists a solution (v, q, l) of (1.8)–(1.13) such

that v,
∂v

∂t
,∇v,∇q ∈ B(QT ), v ∈ C1([0, T ], L2(Ω)) ∩ C([0, T ], H1(Ω)), q ∈ C([0, T ], Ĥ1(Ω)) and l ∈ C1([0, T ]).

Such a solution is unique up to an arbitrary function of t which may be added to q.

Remark 1.2. We may notice that, with the above regularity, the solution v satisfies the following property

lim
|y|→∞

v(y, t) = 0

uniformly with respect to t ∈ [0, T ].

In the above theorem, we have denoted by Ĥ1(Ω) the homogeneous Sobolev space

Ĥ1(Ω) =
{
q ∈ L2

loc(Ω) | ∇q ∈ L2(Ω)
}
,

where q ∈ L2
loc(Ω) means that q ∈ L2(Ω ∩B0) for any open ball B0 ⊂ R

2 with B0 ∩ Ω �= ∅.
The kinetic energy of the system is given by

E(t) =
1
2
m|l(t)|2 +

1
2

∫
Ω

|v(y, t)|2 dy.

A great role will be played in the sequel by the scalar vorticity ω = curlv, which turns out to be bounded in
L1(Ω) ∩ L∞(Ω). (Notice that the initial vorticity ω0 := curla clearly belongs to L1(Ω) ∩ L∞(Ω).) Using the
smoothness of the solution provided by Theorem 1.1, it is very easy to obtain the following result.

Corollary 1.3. Let (v, l) be as in Theorem 1.1. Then the quantities E(t) and ||ω(t)||Lp(Ω) (for any p ∈ [1,+∞])
remain constant.

A large part of the proof of Theorem 1.1 relies on the machinery developed in [22] to prove the existence of
classical solutions to Euler system in an exterior domain. However, unlike [22], a fixed-point argument cannot
be applied directly to Euler system, due to a lack of pressure estimate. On the other hand, when we compare
the assumptions of our main result to those required in [22], we note that

(1) no additional assumption has to be made here in order to insure the uniqueness of the solution;
(2) the initial velocity a has to belong to H1(Ω).

The intrusion of an L2-estimate in a classical theory may look awkward at first sight. It is nevertheless necessary,
as the boundedness of the speed of the rigid ball cannot be obtained without the aid of the energy conservation
for the system solid+fluid. Thus, a feature of the problem investigated here is that we need estimates both
in L∞ and in L2.

To prove Theorem 1.1 we proceed in three steps. In the first step, we construct a strong solution of an
approximated system in which Euler equations has been replaced by Navier-Stokes equations (with suitable
boundary conditions). In the second step, we demonstrate that the vorticity associated with the strong solution
of Navier-Stokes system is bounded in L∞(Ω)∩L1

θ(Ω), uniformly with respect to the viscosity coefficient. These
estimates, combined with a standard energy estimate, provide the velocity estimates needed to pass to the limit.
In the final step, we let the viscosity coefficient tend to 0, and we prove that the solution to (1.8)–(1.13) has
the regularity depicted in Theorem 1.1.
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The paper is outlined as follows. In Section 2 some preliminary results are given together with their proof.
Section 3 is devoted to the construction of strong solutions to Navier-Stokes approximated system. The energy
and vorticity estimates are established in Section 4. Finally, the proof of Theorem 1.1 is given in Section 5.

2. Preliminaries

2.1. Extension of the velocity field to the plane

Let ρ := m/π denote the (uniform) density of the rigid body. In the system (1.8)–(1.13), we can extend v
to R

2 by taking v(y, t) = l(t) for all y ∈ B and all t � 0. Then divv = 0 in R
2 × [0, T ]. This suggests us to

introduce the following spaces:

H =
{
φ ∈ L2(R2) | div(φ) = 0 in R

2, ∇φ = 0 in B
}
, (2.1)

V =
{
φ ∈ H | φ|Ω ∈ H1(Ω)

}
. (2.2)

We also define a scalar product in L2(R2) which is equivalent to the usual one:

(u, v)ρ :=
∫

Ω

u · vdx+ ρ

∫
B

u · vdx.

The spaces L2(R2) and H are obviously Hilbert spaces for the scalar product (., .)ρ. On the other hand, for any
u ∈ H there exists a unique lu ∈ R

2 such that u = lu in B. It follows that for all u, v ∈ H

(u, v)ρ =
∫

Ω

u · vdx+mlu · lv.

The space V is also a Hilbert space for the scalar product

(u, v)V := (u, v)ρ +
∫

Ω

∇u : ∇v dx.

A first technical result is the following

Lemma 2.1. Let u, v ∈ V, and let k, l ∈ R
2 denote the constants such that v = k and u = l in B. Suppose

that u|Ω ∈ H2(Ω) and that curlu = 0 on ∂B. Then, we have the following identity

∫
∂B

v · ∂u
∂n

dΓ =
∫

∂B

(v − k) · (u− l)dΓ, (2.3)

where u and v on ∂B stand respectively for the traces of the functions u|Ω ∈ H1(Ω) and v|Ω ∈ H1(Ω).

Proof. Since divu = 0 and divv = 0 in D′(R2), we have that

(u− l) · n = (v − k) · n = 0 on ∂B.

By using the above equations, we deduce that

(v − k) · ∇ [(u− l) · n] = 0 on ∂B. (2.4)

On the other hand, since curlu = 0 on ∂B, we easily obtain that

∇ [(u− l) · n] =
∂u

∂n
− (u− l) on ∂B,
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which implies that

(v − k) · ∇ [(u− l) · n] = (v − k) · ∂u
∂n

− (v − k) · (u− l) on ∂B.

The above equation and (2.4) imply that

∫
∂B

v · ∂u
∂n

dΓ = k ·
∫

∂B

∂u

∂n
dΓ +

∫
∂B

(v − k) · (u − l)dΓ. (2.5)

Now, since divu = 0 and curlu = 0 on ∂B, we have that

∫
∂B

∂u

∂n
dΓ =

(∫
∂B

∂u

∂τ
dΓ

)⊥
= 0,

where τ = −n⊥. The above relation and (2.5) yield the result. �

On the other hand, by using Hölder’s inequality and a classical Sobolev embedding theorem, we have the
following result.

Lemma 2.2. For all
v, w ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)),

we have (w · ∇)v ∈ L5/2(0, T ;L2(Ω)) and

‖(w · ∇)v‖L5/2(0,T ;L2(Ω)) � C‖w‖L∞(0,T ;H1(Ω))‖v‖1/5
L∞(0,T ;H1(Ω))‖v‖4/5

L2(0,T ;H2(Ω)), (2.6)

where C is a positive constant depending only on Ω.

2.2. Velocity versus vorticity

As it is well known, any Lp−norm of the vorticity is left unchanged by Euler flows. This is no longer true
for Navier-Stokes flows, but we shall see that such norms remain bounded. Such vorticity estimates will result
in velocity estimates thanks to the following result, which relates the velocity to the vorticity, the speed of the
rigid body and the circulation of the flow along ∂B.

Proposition 2.3. Let l ∈ R
2, C ∈ R and ω ∈ L1(Ω)∩L∞(Ω). Then there exists a unique vector field v ∈ B(Ω)

fulfilling

curlv = ω in Ω (2.7)
divv = 0 in Ω (2.8)

v · n = l · n on ∂B (2.9)∫
∂B

v · τ dΓ = C (2.10)

and lim
|y|→+∞

v(y) = 0. (2.11)

Furthermore, v ∈ Lp(Ω) ∀p ∈ (2,+∞], ∇v ∈ Lp(Ω) ∀p ∈ (1,+∞) and there exist some positive constants
Kp,K

′
p such that

||v||Lp(Ω) � Kp

(|l| + |C| + ||ω||L1(Ω) + ||ω||L∞(Ω)

) ∀p ∈ (2,+∞] (2.12)

||∇v||Lp(Ω) � K ′
p

(|l| + |C| + ||ω||Lp(Ω)

) ∀p ∈ (1,+∞). (2.13)
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Proof.
First Step. Existence of a vector field v ∈ B(Ω) fulfilling (2.7)–(2.11).

We first see that we may restrict ourselves to the situation where l = 0 and C = 0.
(i) Reduction to the case l = 0.

We need the following lemma.

Lemma 2.4. Let l ∈ R
2. Then there exists a vector field d1 ∈ C∞(R2,R2) such that divd1 = 0 on R

2 and

d1(y) =
{
l if |y| � 2,
0 if |y| � 3.

Proof of Lemma 2.4. It is sufficient to pick any function θ ∈ C∞
0 (R2) such that

θ(y) =
{

1 if |y| � 2,
0 if |y| � 3,

and to set d1(y) := curl(θ(y) y · l⊥), where l⊥ := (−l2, l1). �
Setting v1 := v − d1, we see that (2.7)–(2.11) is changed into

curlv1 = ω1 := ω − curld1 in Ω (2.14)
divv1 = 0 in Ω (2.15)
v1 · n = 0 on ∂B (2.16)∫

∂B

v1 · τ dΓ = C (2.17)

and lim
|y|→+∞

v1(y) = 0. (2.18)

Notice that ω1 ∈ L1(Ω) ∩ L∞(Ω), as curl d1 ∈ C∞
0 (R2).

(ii) Reduction to the case C = 0.
We need the following lemma.

Lemma 2.5. There exists a vector field d2 ∈ C∞(Ω,R2) such that divd2 = 0, d2(y) = 0 for |y| � 3, d2 · n = 0
for |y| = 1 and

∫
∂B d2 · τ dΓ = 1.

Proof of Lemma 2.5. It is sufficient to pick any function h ∈ C∞([1,+∞),R), such that

h(r) =
{

(2π)−1 if r � 2,
0 if r � 3,

and to set d2(y) = h(|y|)y⊥. �
The change of unknown function

v2 := v1 − Cd2

transforms (2.14)–(2.18) into

curlv2 = ω2 := ω1 − C curld2 in Ω (2.19)
divv2 = 0 in Ω (2.20)
v2 · n = 0 on ∂B (2.21)∫

∂B

v2 · τ dΓ = 0 (2.22)

and lim
|y|→+∞

v2(y) = 0. (2.23)
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Notice that ω2 ∈ L1(Ω) ∩ L∞(Ω), because d2(y) = 0 for |y| � 3.
Second Step. Construction of a solution to (2.19)–(2.23).

Let G(x, y) denotes the Green function for the exterior zero-Dirichlet problem for −∆, so that a solu-
tion u(y) of {−∆u = f in Ω

u = 0 on ∂B,
is given by

u(y) =
1
2π

∫
Ω

G(y, z)f(z) dz.

According to ([22], Lem. 1.3 and (2.27) p. 80), the vector field

v̄2(y) :=
1
2π

∫
Ω

curlyG(y, z)ω2(z) dz

belongs to B(Ω) and it satisfies (2.19)–(2.23), except possibly (2.22). By ([22], Lem. 1.5), there exists a vector
field ṽ2 ∈ B(Ω) fulfilling

curl ṽ2 = 0 in Ω (2.24)
div ṽ2 = 0 in Ω (2.25)
ṽ2 · n = 0 on ∂B (2.26)∫

∂B

ṽ2 · τ dΓ =
∫

∂B

v̄2 · τ dΓ (2.27)

and lim
|y|→+∞

ṽ2(y) = 0. (2.28)

Then v2 := v̄2 − ṽ2 belongs to B(Ω) and satisfies (2.19)–(2.23). It follows that (2.7)–(2.11) has at least one
solution v ∈ B(Ω). The uniqueness of such a solution follows from ([22], Lem. 2.14). (Notice that the hypothesis
V ∈ C1(Ω) in the statement of this lemma may easily be dropped.)
Third Step. The Lp− estimates (2.12)–(2.13).

The idea is to extend v as a solenoidal vector fluid on R
2 and to use the classical Lp estimates for such vector

fields. We need the following result.

Lemma 2.6. Let E(Ω) = {v ∈ B(Ω); divv = 0 on Ω and v · n = 0 on ∂B}, E(R2) = {v ∈ B(R2); divv = 0},
and D = {y ∈ R

2; 1 < |y| < 2}. Then there exists an extension operator Λ : E(Ω) → E(R2) (i.e., Λ(v)|Ω = v)
fulfilling the following property. For any p ∈ (2,+∞) there exists a constant cp > 0 such that for any v ∈
E(Ω) ∩W 1,p(D), its extension v̄ = Λ(v) belongs to W 1,p(B2(0)) and satisfies

||v̄||W 1,p(B2(0)) � cp||v||W 1,p(D). (2.29)

Proof of Lemma 2.6. Pick any v ∈ E(Ω) and set w(y1, y2) := v(−y2, y1). Then it is easily seen that curlw(y) =
divv(y⊥) = 0 and that

∫
∂B w · τ dΓ = − ∫

∂B v · n dΓ = 0. We infer from ([22], Lem. 2.13), that there
exists a (unique) function ϕ ∈ C1(Ω) such that ϕ(1, 0) = 0 and w = ∇ϕ. Let ψ(y1, y2) := ϕ(y2,−y1) for all
y = (y1, y2) ∈ Ω. An easy calculation yields curlψ = v. The proof of next result is left to the reader.

Lemma 2.7. There exists an extension operator Γ : C1(Ω) → C1(R2) fulfilling the following property. For any
p ∈ (2,+∞) there exists a constant c′p > 0 such that for any ψ ∈ C1(Ω) ∩W 2,p(D), its extension ψ̄ = Γ(ψ)
belongs to W 2,p(B2(0)) and satisfies

||ψ̄||W 2,p(B2(0)) � c′p||ψ||W 2,p(D)· (2.30)
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Let ψ̄ = Γ(ψ) be as given in Lemma 2.7 and set v̄ = curlψ̄. Clearly, v̄|Ω = v, div v̄ = 0 and v̄ ∈ B(R2). Assume
now that v ∈W 1,p(D) for some p > 2. C denoting a constant (depending only on p) which may vary from line
to line, we have

||v̄||W 1,p(B2(0)) � C||ψ̄||W 2,p(B2(0)) (as v̄ = curlψ̄)
� C||ψ||W 2,p(D) (by (2.30))
� C||ϕ||W 2,p(D) (as ψ(y1, y2) = ϕ(y2,−y1))
� C||w||W 1,p(D) (as ||∇ϕ||L∞(D) � C||w||W 1,p(D))
� C||v||W 1,p(D) (as w(y1, y2) = v(−y2, y1)).

This completes the proof of Lemma 2.6. �

Let v̄ = Λ(v) be the extension of the solution v ∈ B(Ω) to (2.7)–(2.11) given by Lemma 2.6. We claim that
v ∈ W 1,p(D) for any p > 2. Indeed, we may write

v(y) = v2(y) + d1(y) + Cd2(y) ∀y ∈ D

where d1, d2 ∈ C∞(D) and v2 ∈ B(Ω) solves (2.19)–(2.23). As in the proof of Lemma 2.6 we infer the existence
of a function ψ2 ∈ C1(Ω) such that v2 = curlψ2 and ψ2 = 0 on ∂B (by (2.21)). As in addition −∆ψ2 =
curlv2 = ω2 ∈ L∞(Ω) ∩ L1(Ω), we obtain (see, for instance, [13]) that ψ2 ∈ W 2,p

loc (Ω) for any p < ∞, and
consequently that ψ2 ∈ W 2,p(D). Therefore, v2 ∈ W 1,p(D), and we infer from Lemma 2.6 that v̄2 ∈ W 1,p

loc (R2).
Let ω̄2 := curl v̄2 ∈ Lp

loc(R
2). As (ω̄2)|Ω = ω2 and ω2 ∈ L1(Ω)∩L∞(Ω), we conclude that ω̄2 ∈ L1(R2)∩Lp(R2)

for all p < +∞. According to ([12], Lem. 2.1), the function

ṽ2(y) =
1
2π

∫
R2

(y − z)⊥

|y − z|2 ω̄2(z) dz

satisfies ṽ2 ∈ Lp(R2) ∀p ∈ (2,+∞] and ∇ṽ2 ∈ Lp(R2) ∀1 < p < +∞ (hence ṽ2 ∈ B(R2) and
lim|y|→+∞ ṽ2(y) = 0.) Furthermore, div ṽ2 = 0, and curl ṽ2 = ω̄2. A slight modification of ([22], Lem. 2.14),
shows that ṽ2 and v̄2 agree. This completes the proof of Proposition 2.3. �

3. Navier-Stokes approximation for the fluid

In order to solve (1.8)–(1.13), we follow the idea of P.L. Lions ([24], pp. 128–136), for the Euler equations.
We first introduce the following system where we have replaced Euler equations by Navier-Stokes equations
(with suitable boundary conditions).

∂v

∂t
+ (v · ∇)v − (l · ∇)v − ν∆v + ∇q = 0, in Ω × [0, T ], (3.1)

div v = 0, in Ω × [0, T ], (3.2)
v · n = l · n, on ∂B × [0, T ], (3.3)

curlv = 0, on ∂B × [0, T ], (3.4)

ml′ =
∫

∂B

qndΓ, in [0, T ], (3.5)

v(y, 0) = a(y), y ∈ Ω, (3.6)
l(0) = b. (3.7)

The system (3.1)–(3.7) will allow us to solve the original problem by passing to the limit when ν → 0. A similar
problem with viscosity, but with Dirichlet boundary conditions, was studied in [31].
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3.1. Study of the linearised problem

The first step to solve (3.1)–(3.7) is to consider the linearised problem:

∂v

∂t
− ν∆v + ∇q = f, in Ω × [0, T ], (3.8)

div v = 0, in Ω × [0, T ], (3.9)
v · n = l · n, on ∂B × [0, T ], (3.10)

curlv = 0, on ∂B × [0, T ], (3.11)

ml′ =
∫

∂B

qndΓ, in [0, T ], (3.12)

v(y, 0) = a(y), y ∈ Ω, (3.13)
l(0) = b. (3.14)

In order to solve (3.8)–(3.14) we use a semigroup approach. Let us define

D(A) = {φ ∈ H | φ|Ω ∈ H2(Ω), curlφ = 0 on ∂B} (3.15)

and the operators

Aφ =
{−ν∆φ in Ω,

0 in B,
∀φ ∈ D(A), (3.16)

and
Aφ = PAφ, ∀φ ∈ D(A), (3.17)

where P denotes the orthogonal projector from L2(R2) (endowed with the (., .)ρ scalar product) onto H (H is
clearly a closed subspace of L2(R2)). In order to solve (3.8)–(3.14), we write the linearised system in the form

v(t) ∈ D(A), v′ +Av = Pf, v(0) = v0. (3.18)

We give in the following proposition some important properties of the operator A:

Proposition 3.1. There exists λ > 0 such that the operator −(λI + A) is self-adjoint and m-dissipative.
Moreover, for any u ∈ D(A), we have that

‖u‖H2(Ω) � C‖(λI +A)u‖ρ. (3.19)

Proof. Let u, v ∈ D(A). We have that

(Au, v)ρ = (Au, v)ρ = −ν
∫

Ω

∆u · vdy = ν

∫
Ω

∇u : ∇vdy − ν

∫
∂B

v · ∂u
∂n

dΓ.

Therefore, by using Lemma 2.1, we obtain that

(Au, v)ρ = ν

∫
Ω

∇u : ∇vdy − ν

∫
∂B

(v − k) · (u− l)dΓ, (3.20)

where k, l ∈ R
2 are such that v = k and u = l in B. It follows that A is symmetric.

Moreover, for all u ∈ D(A), we have

(Au, u)ρ = ν

∫
Ω

|∇u|2dy − ν

∫
∂B

|u− l|2dΓ. (3.21)
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Using the following estimate (see e.g. the proof of [1], Lem. IX.9)

∫
∂B

|v|2 dΓ � C

(∫
Ω

|v|2 dy
)1/2 (∫

Ω

|∇v|2 dy
)1/2

∀v ∈ H1(Ω),

we also have that
∫

∂B

|u− l|2dΓ � 4π|l|2 + 2
∫

∂B

|u|2dΓ

� 4
∫

B

|u|2dy + C1

∫
Ω

|u|2dy +
1
2

∫
Ω

|∇u|2 dy. (3.22)

The above relation, combined with (3.21), implies that for some constant C2 = C2(ν) > 0 and for all u ∈ D(A),

((λI +A)u, u)ρ � λ‖u‖2
ρ +

ν

2

∫
Ω

|∇u|2dy − C2‖u‖2
ρ. (3.23)

Consequently, for λ > C2, the operator λI +A is (strictly) positive.
By using Lax-Milgram’s lemma, we deduce that for all f ∈ H, there exists a unique u ∈ V such that

ν

∫
Ω

∇u : ∇vdy − ν

∫
∂B

(v − k) · (u− l)dΓ + λ(u, v)ρ = (f, v)ρ, ∀v ∈ V . (3.24)

In particular, (3.24) holds if

v =
{
φ in Ω,
0 in B,

where φ is any C∞ function with compact support in Ω and such that div(φ) = 0. Then it follows from ([32],
Prop. 1.1), that there exists p ∈ D′(Ω) such that

λu− ν∆u + ∇p = f in D′(Ω).

Since u ∈ V , we have that div(u) = 0 in Ω and that there exists l ∈ R
2 with

u(y) = l ∀y ∈ B.

The above relations imply that u satisfies the Stokes type system:

λu− ν∆u + ∇p = f in Ω,
divu = 0 in Ω,

u · n = l · n on ∂B,
curlu = 0 on ∂B.

Thus, by a regularity result for elliptic equations, we have that u|Ω ∈ H2(Ω), p ∈ Ĥ1(Ω) and

‖u‖H2(Ω) � C‖f‖L2(Ω). (3.25)

Finally, from (3.15) and (3.24), we have that u ∈ D(A) and (λI + A)u = f . Therefore, −(λI + A) is a
m-dissipative operator, which gives the result. �
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An important consequence of Proposition 3.1 is the following.

Corollary 3.2. Let f ∈ L2(0, T ;L2(Ω)) and a ∈ H1(Ω) be such that

div a = 0, in Ω,
a · n = b · n, on ∂B.

Then the system (3.8)–(3.14) admits a unique solution (v, q, l) with

v ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)),

q ∈ L2(0, T ; Ĥ1(Ω)), l ∈ H1(0, T ; R2).
Moreover, there exists a positive constant K such that

‖v‖L2(0,T ;H2(Ω)) + ‖v‖L∞(0,T ;H1(Ω)) + ‖v‖H1(0,T ;L2(Ω)) + ‖∇q‖L2(0,T ;L2(Ω))

+ ‖l‖H1(0,T ;R2) � K
(‖a‖H1(Ω) + |b| + ‖f‖L2(0,T ;L2(Ω))

)
. (3.26)

The constant K depends only on Ω and T and is non-decreasing with respect to T .

Proof. If we extend the functions a and f to R
2 by

a(y) = b ∀y ∈ B,

f(y) = 0 ∀y ∈ B,

then we have that a ∈ V and f ∈ L2
(
0, T ;L2(R2)

)
. Therefore the Cauchy problem

v′ +Av = Pf, (3.27)
v(0) = a (3.28)

admits a unique solution

v ∈ L2(0, T ;D(A)) ∩ C([0, T ];D((λI + A)1/2)) ∩H1(0, T ;H).

Since v ∈ H1(0, T ;H), there exists l ∈ H1(0, T ; R2), such that v(y, t) = l(t) for all y ∈ B and for all t ∈ [0, T ].
Let φ ∈ H. By taking the inner product of (3.27) by φ, we obtain

(v′(t), φ)ρ + (Av(t), φ)ρ = (f(t), φ)ρ (3.29)

for almost all t ∈ [0, T ]. Thus
∫

Ω

v′(t) · φdy +ml′(t) · lφ +
∫

Ω

(−ν∆v) · φdy =
∫

Ω

f(t) · φdy, (3.30)

for all φ ∈ H and for almost all t ∈ [0, T ]. In particular, (3.30) holds if

φ =
{
ψ in Ω,
0 in B,

where ψ is any C∞ function with compact support in Ω and such that div(ψ) = 0. For such φ, (3.30) gives
∫

Ω

(v′(t) − ν∆v(t) − f(t)) · ψdy = 0,
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for any C∞ function ψ with compact support in Ω and such that div(ψ) = 0. By ([32], Props. 1.1 and 1.2),
there exists q ∈ L2(0, T ; Ĥ1(Ω)), such that

v′(t) − ν∆v(t) + ∇q(t) = f(t), in Ω.

Hence we have proved that v satisfies (3.8). Moreover, the above relation implies that

∫
Ω

(v′(t) − ν∆v(t) + ∇q(t) − f(t)) · φdy = 0, ∀φ ∈ H,

which yields ∫
Ω

(v′(t) − ν∆v(t) − f(t)) · φdy = −
∫

∂B

q(t)n · φdΓ, ∀φ ∈ H.
The above equality and (3.30) imply that

ml′(t) · lφ =
∫

∂B

q(t)n · φdΓ, ∀φ ∈ H,

from which we deduce that

ml′(t) =
∫

∂B

q(t)ndΓ.

Hence (v, q, l) is a solution of the system (3.8)–(3.14).
In order to prove the uniqueness of the solution to (3.8)–(3.14), it is sufficient to notice that the solutions

of (3.8)–(3.14) satisfy the system (3.27)–(3.28), whose solutions are unique. �

3.2. Strong solutions for the nonlinear problem

We go back to the nonlinear problem (3.1)–(3.7). In this subsection, we prove the following proposition:

Proposition 3.3. Suppose that T > 0, a ∈ H1(Ω), and that

div a = 0 in Ω,
a · n = b · n on ∂B.

Then, there exists a unique strong solution (v, q, l) of (3.1)–(3.7) satisfying

v ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)),

q ∈ L2(0, T ; Ĥ1(Ω)), l ∈ H1(0, T ; R2).

Proof.
First Step. Local in time existence.

We consider the application Z defined by

Z : L2(0, T ;L2(Ω)) → L2(0, T ;L2(Ω))
f �→ −(v · ∇)v + (l · ∇)v

where (v, p, l) is the solution of (3.8)–(3.14). Let

B(0, R) = {v ∈ L2(0, T ;L2(Ω)) | ‖v‖L2(0,T ;L2(Ω)) � R}.



ON THE MOTION OF A BALL IN A PERFECT FLUID 91

By using Lemma 2.2 and Corollary 3.2, we have that

‖Z(f)‖L5/2(0,T ;L2(Ω)) � C(‖a‖H1(Ω) + |b| + ‖f‖L2(0,T ;L2(Ω)))2.

Hence, by Hölder’s inequality, Z maps L2(0, T ;L2(Ω)) into itself and

‖Z(f)‖L2(0,T ;L2(Ω)) � T 1/10C(‖a‖H1(Ω) + |b| + ‖f‖L2(0,T ;L2(Ω)))2.

Therefore for R > ‖a‖H1(Ω) + |b| and T �
(

1
4CR

)10, Z maps B(0, R) into B(0, R).
Similarly, we can prove that Z|B(0,R) is a contraction for T small enough. This demonstrates that there

exists a unique (strong) solution v of (3.1)–(3.7) on some interval [0, T ′] with T ′ ≤ T .
Second Step. Global in time existence.

In this part of the proof, C will denote a positive constant (depending only on ‖a‖H1(Ω), |b|, m, T , and ν),
which may vary from line to line.

To see that the solution v obtained above may be extended to [0, T ], it is sufficient to prove that there exists
some positive constant K = K(‖a‖H1(Ω), |b|,m, T, ν) such that ‖v(t)‖H1(Ω) � K for all t ∈ [0, T ′].

By taking the inner product of (3.27) by v(t) ∈ H (where f denotes the function −(v ·∇)v+(l ·∇)v extended
by 0 on B), we obtain that

1
2

d
dt

‖v(t)‖2
ρ + (v(t), Av(t))ρ = (Pf(t), v(t))ρ, a.e. in (0, T ′). (3.31)

Since ∫
Ω

[(v · ∇) v] · vdy =
1
2

∫
∂B

|v|2(v · n)dΓ

and
v(y, t) · n = l(t) · n ∀y ∈ ∂B,

we get that

(f(t), v(t))ρ =
∫

Ω

[−(v(t) · ∇)v(t) + (l(t) · ∇)v(t)] · v(t)dy = 0, a.e. in (0, T ′).

Therefore, by integrating (3.31) with respect to t, we obtain that

‖v(t)‖2
ρ + 2

∫ t

0

(v(s), Av(s))ρ ds � ‖v(0)‖2
ρ, ∀t ∈ [0, T ′], (3.32)

and thus that

‖v(t)‖2
ρ � 2λ

∫ t

0

‖v(s)‖2
ρds+ ‖v(0)‖2

ρ, ∀t ∈ [0, T ′], (3.33)

where λ is defined in Proposition 3.1. The above relation combined with Gronwall’s inequality implies that

‖v(t)‖2
ρ = ‖v(t)‖2

L2(Ω) +m|l(t)|2 � C ∀t ∈ [0, T ′]. (3.34)

The above relation, (3.32) and (3.23) imply that

∫ t

0

‖v(s)‖2
H1(Ω) ds � 2

ν

∫ t

0

(v(s), (λI +A) v(s))ρ ds+
∫ t

0

‖v(s)‖2
L2(Ω) ds

� C ∀t ∈ [0, T ′]. (3.35)

On the other hand, by taking the inner product of (3.27) by Av(t) ∈ H, we obtain that

(v′(t), Av(t))ρ + (Av(t), Av(t))ρ = (Pf(t), Av(t))ρ, a.e. in (0, T ′).
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The above relation yields that

1
2

d
dt

(v(t), Av(t))ρ + ‖Av(t)‖2
ρ =

∫
Ω

f(t) ·Av(t)dy

= −
∫

Ω

[(v(t) · ∇) v(t)] · (Av(t))dy +
∫

Ω

[(l(t) · ∇) v(t)] · (Av(t))dy

� C‖v(t)‖1/2
L2(Ω)‖v(t)‖H1(Ω)‖v(t)‖3/2

H2(Ω)

+‖ (l(t) · ∇) v(t)‖L2(Ω)‖v(t)‖H2(Ω) a.e. in (0, T ′). (3.36)

From Proposition 3.1,

‖v‖H2(Ω) � C‖(λI +A)v‖ρ,

which clearly gives

c′‖v‖2
H2(Ω) � ‖Av‖2

ρ + ‖v‖2
ρ, (3.37)

for some positive constant c′ = c′(ν). Relations (3.36), (3.37) and Young’s inequality imply that

1
2

d
dt

(v(t), Av(t))ρ + c′‖v(t)‖2
H2(Ω) � C‖v(t)‖2

L2(Ω)‖v(t)‖4
H1(Ω) +

c′

4
‖v(t)‖2

H2(Ω) + C‖ (l(t) · ∇) v(t)‖2
L2(Ω)

+
c′

4
‖v(t)‖2

H2(Ω) + ‖v(t)‖2
ρ, a.e. in (0, T ′). (3.38)

By (3.34), we have that

‖ (l(t) · ∇) v(t)‖2
L2(Ω) � C‖v(t)‖2

H1(Ω), ‖v(t)‖2
L2(Ω) � C

thus, (3.38) implies that

d
dt

(v(t), Av(t))ρ + c′‖v(t)‖2
H2(Ω) � C

(
‖v(t)‖4

H1(Ω) + ‖v(t)‖2
H1(Ω) + 1

)
a.e. in (0, T ′).

If we integrate the above relation with respect to t, we get by (3.21) that for all t ∈ [0, T ′],

(v(t), Av(t))ρ + c′
∫ t

0

‖v(s)‖2
H2(Ω) ds � C

(
1 +

∫ t

0

[
‖v(s)‖2

H1(Ω) + 1
]
‖v(s)‖2

H1(Ω) ds
)
.

The above relation, (3.34) and (3.23) yield that for all t ∈ [0, T ′],

ν

2
‖v(t)‖2

H1(Ω) + c′
∫ t

0

‖v(s)‖2
H2(Ω) ds � C

(
1 +

∫ t

0

[
‖v(s)‖2

H1(Ω) + 1
]
‖v(s)‖2

H1(Ω) ds
)

which, combined to Gronwall’s lemma and to (3.35), gives that

‖v(t)‖2
H1(Ω) � C

ν
exp

(
C

ν

)
=: K2 ∀t ∈ [0, T ′]. (3.39)

The proof of Proposition 3.3 is complete. �
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4. Some estimates for the Navier-Stokes problem

From now on we denote by (vν , qν , lν) the solution of (3.1)–(3.7) corresponding to the value ν of the viscosity
coefficient. The goal of this section is to establish some estimates for the strong solutions of the Navier-Stokes
equations

∂vν

∂t
+ (vν · ∇)vν − (lν · ∇)vν − ν∆vν + ∇qν = 0, in Ω × [0, T ], (4.1)

div vν = 0, in Ω × [0, T ], (4.2)
vν · n = lν · n, on ∂B × [0, T ], (4.3)

curlvν = 0, on ∂B × [0, T ], (4.4)

ml′ν =
∫

∂B

qνndΓ, in [0, T ], (4.5)

vν(y, 0) = a(y), y ∈ Ω, (4.6)
lν(0) = b. (4.7)

Recall that the corresponding vorticity ων is defined by

ων = curlvν . (4.8)

From Proposition 3.3, we have that for any b ∈ R
2 and any a ∈ H1(Ω) such that

diva = 0 in Ω and a · n = b · n on ∂B,

there exists a unique strong solution (vν , lν , qν) of (4.1)–(4.7) satisfying:

vν ∈ L2(0, T ;H2(Ω)) ∩C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)),

qν ∈ L2(0, T ; Ĥ1(Ω)), lν ∈ H1(0, T ; R2).

4.1. Energy estimates

Now, we prove an energy estimate for the Navier-Stokes model (4.1)–(4.7).

Proposition 4.1. Let b ∈ R
2 and let a ∈ H1(Ω) be a function satisfying

diva = 0 in Ω and a · n = b · n on ∂B. (4.9)

Then there exists a positive constant C, independent on ν, such that the unique solution (vν , lν , qν) of (4.1)–(4.7)
satisfies ∫

Ω

|vν(y, t)|2 dy +m |lν(t)|2 � eCνT

[∫
Ω

|a(y)|2 dy +m |b(t)|2
]

∀t ∈ [0, T ]. (4.10)

Proof. By multiplying (4.1) by vν and integrating over Ω × (0, t) we obtain

∫ t

0

∫
Ω

∂vν

∂t
· vν dyds+

∫ t

0

∫
Ω

[((vν − lν) · ∇)vν ] · vν dyds− ν

∫ t

0

∫
Ω

∆vν · vν dyds+
∫ t

0

∫
Ω

∇qν · vν dyds = 0.

Performing integrations by parts and using Lemma 2.1, we easily obtain that

∫
Ω

|vν(y, t)|2 dy +m |lν(t)|2 + 2ν
∫ t

0

∫
Ω

|∇vν |2 dyds �
∫

Ω

|a(y)|2 dy +m |b|2 + 2ν
∫ t

0

∫
∂B

|vν − lν |2 dΓds
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and by using (3.22), we have that

∫
Ω

|vν(y, t)|2 dy +m |lν(t)|2 �
[∫

Ω

|a(y)|2 dy +m |b|2
]

+ Cν

∫ t

0

[(∫
Ω

|vν |2 dy
)

+m |lν |2
]

ds.

Therefore, by applying Gronwall’s Lemma, the above equation yields that for every t ∈ [0, T ]

∫
Ω

|vν(y, t)|2 dy +m |lν(t)|2 � eCνt

[∫
Ω

|a(y)|2 dy +m |b|2
]
,

which completes the proof. �

4.2. Vorticity estimates

Now, we aim to establish some estimates for the vorticity

ων = curl vν , (4.11)

which satisfies the following system

∂ων

∂t
+ ((vν − lν) · ∇)ων − ν∆ων = 0, in Ω × [0, T ], (4.12)

ων = 0, on ∂B × [0, T ], (4.13)
ων(y, 0) = ω0(y), y ∈ Ω, (4.14)

where ω0 := curl a. We have the following estimate.

Proposition 4.2. Let ω0 ∈ L1(Ω) ∩ L∞(Ω). Then for all p ∈ [1,+∞] and for all t ∈ [0, T ] we have that

‖ων(t)‖Lp(Ω) � ‖ω0‖Lp(Ω) . (4.15)

Proof. We can note that, since

vν ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω))

we have that
ων ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) ∩H1(0, T ;H−1(Ω))

and therefore
∂ων

∂t
∈ L2(0, T ;H−1(Ω)) and (vν − lν) · ∇ων ∈ L2(0, T ;H−1(Ω)).

Then multiplying (4.12) by ϕ ∈ L2(0, T,H1
0 (Ω)) and integrating with respect to time, we have that

0 =
∫ t

0

〈
∂ων

∂t
, ϕ

〉
H−1×H1

0

ds+
∫ t

0

〈((vν − lν) · ∇)ων , ϕ〉H−1×H1
0

ds− ν

∫ t

0

〈∆ων , ϕ〉H−1×H1
0

ds.

The above equation easily yields that

0 =
∫ t

0

〈
∂ων

∂t
, ϕ

〉
H−1×H1

0

ds+
∫ t

0

〈div((vν − lν)ων), ϕ〉H−1×H1
0

ds+ ν

∫ t

0

∫
Ω

∇ων · ∇ϕdyds. (4.16)
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Now, we analyse each integral term and consider two cases:
Case 1 (p � 2).

As the function |ων |p−2ων cannot be a priori taken as a test function, we are led to truncate it. (This method
often proves to be useful when establishing a priori estimates, see e.g. [25].) Let R > 0 and let TR denote the
function

TR(r) =



R if r > R,
r if −R � r � R,
−R if r < −R.

We consider the following test function

ϕ = |TR(ων)|p−2
TR(ων) ∈ L2(0, T,H1

0 (Ω)) ∩ L∞(QT ).

Simple calculations yield
∇ϕ = (p− 1) |ων |p−2 (∇ων) 1|ων|�R,

and therefore, we have that

∫ t

0

〈div((vν − lν)ων), ϕ〉H−1×H1
0

ds = (1 − p)
∫ t

0

∫
|ων |�R

((vν − lν)ων |ων|p−2) · ∇ων dyds

= −p− 1
p

∫ t

0

∫
Ω

(vν − lν) · ∇ (|TR(ων)|p) dyds = 0, (4.17)

by (4.2) and (4.13). Moreover, we have that

ν

∫ t

0

∫
Ω

∇ων∇ϕdyds = ν(p− 1)
∫ t

0

∫
|ων |�R

|∇ων |2|ων |p−2 dyds. (4.18)

Now, let us define the function

FR(r) =
∫ r

0

|TR(σ)|p−2TR(σ)dσ.

We can use this function to give another expression of the first term in (4.16):

∫ t

0

〈
∂ων

∂t
, ϕ

〉
H−1×H1

0

ds =
∫ t

0

〈
∂ων

∂t
, F ′

R(ων)
〉

H−1×H1
0

ds.

Thus, by using an approximating “regular” sequence for ων , we have that

∫ t

0

〈
∂ων

∂t
, ϕ

〉
H−1×H1

0

ds =
∫

Ω

FR(ων(t))dy −
∫

Ω

FR(ω0)dy. (4.19)

On the other hand, it is easy to see that

FR(r) =
1
p
|TR(r)|p +Rp−1(|r| −R)+.

By using (4.16), (4.17), (4.18) and (4.19), we have that

∫
Ω

FR(ων(t))dy + ν(p− 1)
∫ t

0

∫
|ων |�R

|∇ων |2|ων |p−2dyds =
∫

Ω

FR(ω0)dy, (4.20)
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hence ∫
Ω

FR(ων)(t)dy �
∫

Ω

FR(ω0)dy.

Letting R↗ +∞, we obtain by the monotone convergence theorem

1
p

∫
Ω

|ων |p(t) � 1
p

∫
Ω

|ω0|p,

or equivalently, that for every t ∈ [0, T ]

‖ων(t)‖Lp(Ω) � ‖ω0‖Lp(Ω) (<∞).

Letting p→ +∞, we conclude that
‖ων(t)‖L∞(Ω) � ‖ω0‖L∞(Ω)

for every t ∈ [0, T ].

Case 2 (1 < p < 2).
Now, we consider the case 1 < p < 2. Let hε(r) := (|r| + ε)p−2r for all r ∈ R. Proceeding in an analogous

way to the previous case, we consider the test function

ϕ = hε(ων) = (|ων | + ε)p−2
ων ∈ L2(0, T,H1

0 (Ω)) ∩ L∞(QT ).

We define the function
Hε(r) =

∫ r

0

hε(σ)dσ,

which obviously fulfils
H ′

ε(r) = (|r| + ε)p−2
r.

By multiplying (4.12) by ϕ and integrating in time and space, we obtain that

0 =
∫ t

0

〈
∂ων

∂t
, ϕ

〉
H−1×H1

0

ds+
∫ t

0

〈((vν − lν) · ∇)ων , ϕ〉H−1×H1
0

ds+ ν

∫ t

0

∫
Ω

∇ων · ∇ϕdyds. (4.21)

Firstly, we have that
∫ t

0

〈
∂ων

∂t
, ϕ

〉
H−1×H1

0

ds =
∫ t

0

〈
∂ων

∂t
,H ′

ε(ων)
〉

H−1×H1
0

ds

=
∫

Ω

Hε(ων(y, t))dy −
∫

Ω

Hε(ω0(y))dy. (4.22)

On the other hand, we have that
∫

Ω

∇ων ·∇ϕdy =
∫

Ω

∇ων ·
{
(p− 2)(|ων |+ε)p−3|ων |∇ων +(|ων |+ε)p−2∇ων

}
dy

=
∫

Ω

|∇ων |2(|ων | + ε)p−3 {(p− 1)|ων | + ε} dy � 0. (4.23)

Finally, we have that

〈((vν − lν) · ∇)ων , ϕ〉H−1×H1
0

= −
∫

Ω

((vν − lν)ων) · ∇ϕdy = −
∫

Ω

(vν − lν) · ∇G(ων)dy,



ON THE MOTION OF A BALL IN A PERFECT FLUID 97

where G denotes the function

G(r) =
∫ r

0

σh′ε(σ)dσ. (4.24)

Thus, since divvν = 0 and G(0) = 0, we have that

〈((vν − lν) · ∇)ων , ϕ〉H−1×H1
0

= 0. (4.25)

Gathering (4.21), (4.22), (4.23) and (4.25), we obtain that

∫
Ω

Hε(ων(y, t))dy + ν

∫ t

0

∫
Ω

|∇ων |2(|ων | + ε)p−3 {(p− 1)|ων | + ε} dyds =
∫

Ω

Hε(ω0(y))dy,

and therefore we have that ∫
Ω

Hε(ων(y, t))dy �
∫

Ω

Hε(ω0(y))dy. (4.26)

Taking the limit as ε↘ 0, we obtain by the monotone convergence theorem that for every t ∈ [0, T ]

1
p

∫
Ω

|ων(y, t)|p dy � 1
p

∫
Ω

|ω0(y)|p dy,

and consequently, we have that
‖ων(t)‖Lp(Ω) � ‖ω0‖Lp(Ω) .

Taking the limit as p→ 1, we obtain that

‖ων(t)‖L1(Ω) � ‖ω0‖L1(Ω) ,

which completes the proof. �
Proposition 4.3. Let ω0 ∈ L1(Ω) ∩ L∞(Ω) be a function such that

∫
Ω

|ω0(y)| |y|θ dy <∞,

for a positive constant θ > 0.
Then there exists a positive constant C > 0, such that for all t ∈ [0, T ] we have that

∫
Ω

|ων(y, t)| |y|θ dy � eCt

∫
Ω

|ω0(y)| |y|θ dy. (4.27)

Proof. To prove this result we proceed as above by choosing a convenient test function.
Let θ > 0. According to Proposition 4.2 we have that ων ∈ L∞(0, T, Lp(Ω)), for all p ∈ [1,∞]. On the other

hand, ||ω0||pLp
θ(Ω)

:=
∫
Ω |ω0(y)|p|y|θdy <∞ for all p ∈ (1,+∞), as ω0 ∈ L1

θ(Ω) ∩ L∞(Ω).
For every δ > 0, let ψδ ∈ C∞(Ω) be the function defined by

ψδ(y) = exp (−δ|y|).

Thus, we have that
∇ψδ(y) = −δ y|y|ψδ(y), (4.28)

and therefore we obtain that

∇{|y|θψδ(y)
}

=
{
θ
y

|y|2 − δ
y

|y|
}
|y|θψδ(y) (4.29)
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and

∆
{|y|θψδ(y)

}
=

{
θ2

|y|2 − δ (2θ + 1)
|y| + δ2

}
|y|θψδ(y). (4.30)

Pick any p ∈ (1, 2) and any ε > 0, and consider the test function φ defined as

φ(y, t) = ϕ(y, t)|y|θψδ(y) = (|ων(y, t)| + ε)p−2ων(y, t)|y|θψδ(y).

(Recall that ϕ = hε(ων).) We have that

φ ∈ L∞(0, T ;Lp(Ω)) ∩ L2(0, T ;H1
0(Ω))

and

∇φ = (ε+ (p− 1)|ων |) (|ων | + ε)p−3∇ων |y|θψδ(y) + (|ων | + ε)p−2ων∇
{|y|θψδ

}
.

Then, by multiplying the vorticity equation (4.12) by φ we have that

0 =
∫ t

0

〈
∂ων

∂t
, φ

〉
H−1×H1

0

ds+
∫ t

0

〈((vν − lν) · ∇)ων , φ〉H−1×H1
0

ds+ ν

∫ t

0

∫
Ω

∇ων · ∇φdyds. (4.31)

As in the proof of Proposition 4.2, we study each one of the previous integrals. Analogously to the previous
proof, we have that

∫ t

0

〈
∂ων

∂t
, φ

〉
H−1×H1

0

ds =
∫

Ω

Hε(ων(y, t))|y|θψδ(y)dy −
∫

Ω

Hε(ω0(y))|y|θψδ(y)dy. (4.32)

Notice that by (4.26)

∫
Ω

Hε(ων(y, t))|y|θψδ(y)dy � || |y|θψδ(y)||L∞(Ω)

∫
Ω

Hε(ων(y, t))dy <∞.

On the other hand

∫
Ω

∇ων · ∇φdy =
∫

Ω

(ε+ (p− 1)|ων |) (|ων | + ε)p−3|∇ων |2|y|θψδ(y)dy

+
∫

Ω

(|ων | + ε)p−2ων∇ων · ∇{|y|θψδ

}
dy. (4.33)

The first integral term of the right-hand side of the above equation is non-negative and for the second one, since

(|ων | + ε)p−2ων∇ων =
1
p
∇{(|ων | + ε)p} − ε

p− 1
∇{

(|ων | + ε)p−1
}
,

(4.34)
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we have that

∫
Ω

(|ων | + ε)p−2ων∇ων · ∇{|y|θψδ

}
dy =

1
p

∫
Ω

∇{(|ων | + ε)p} · ∇{|y|θψδ

}
dy

− ε

p− 1

∫
Ω

∇{
(|ων | + ε)p−1

} · ∇{|y|θψδ

}
dy

= −1
p

∫
Ω

(|ων | + ε)p∆
{|y|θψδ

}
dy

+
ε

p− 1

∫
Ω

(|ων | + ε)p−1∆
{|y|θψδ

}
dy +

[
2π

p(p− 1)
(θ − δ)e−δ

]
εp

(4.35)

and thus, from (4.30), we have that

∫
Ω

∇ων · ∇φdy =
∫

Ω

(ε+ (p− 1)|ων |) (|ων | + ε)p−3|∇ων |2|y|θψδ(y)dy

− 1
p

∫
Ω

(|ων | + ε)p

{
θ2

|y|2 − δ (2θ + 1)
|y| + δ2

}
|y|θψδ(y)dy

+
ε

p− 1

∫
Ω

(|ων | + ε)p−1

{
θ2

|y|2 − δ (2θ + 1)
|y| + δ2

}
|y|θψδ(y)dy

+
[

2π
p(p− 1)

(θ − δ)e−δ

]
εp. (4.36)

Furthermore, we have that

〈((vν − lν) · ∇)ων , φ〉H−1×H1
0

= −
∫

Ω

(vν − lν) · ων∇(ϕ|y|θψδ)dy

= −
∫

Ω

ωνϕ(vν − lν) · ∇(|y|θψδ)dy −
∫

Ω

|y|θψδ(vν − lν) · ων∇ϕdy. (4.37)

We study the right-hand side of the last equality and from (4.29) we have that

∫
Ω

ωνϕ(vν − lν) · ∇(|y|θψδ)dy =
∫

Ω

ων(|ων | + ε)p−2ων(vν − lν) · ∇(|y|θψδ)dy

=
∫

Ω

{ |ων |2
(|ων | + ε)2

}
(|ων | + ε)p(vν − lν) · ∇(|y|θψδ)dy

=
∫

Ω

{ |ων |2
(|ων | + ε)2

}
(|ων | + ε)p|y|θψδ(y)(vν − lν) ·

{
θ
y

|y|2 − δ
y

|y|
}

dy. (4.38)

The above equality implies that

∣∣∣∣
∫

Ω

ωνϕ(vν − lν) · ∇(|y|θψδ)dy
∣∣∣∣ � ‖vν − lν‖L∞(Ω) {θ + δ}

∫
Ω

(|ων | + ε)p|y|θψδ dy. (4.39)
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For the second integral term, we proceed as in the proof of Proposition 4.2 (case 1 < p < 2). More precisely,
considering the function G given in (4.24) we have that

∫
Ω

|y|θψδ(vν − lν) · ων∇ϕdy =
∫

Ω

|y|θψδ(vν − lν) · ∇ [G(ων)] dy

= −
∫

Ω

div
{|y|θψδ(vν − lν)

}
G(ων)dy

= −
∫

Ω

G(ων)
{
(vν − lν) · ∇{|y|θψδ

}}
dy

and therefore, gathering (4.37) and the above equation, we have that

〈((vν − lν) · ∇)ων , φ〉H−1×H1
0

= −
∫

Ω

ωνϕ(vν − lν) · ∇{|y|θψδ

}
dy

+
∫

Ω

G(ων)|y|θψδ(y)
{

(vν − lν) ·
{
θ
y

|y|2 − δ
y

|y|
}}

dy. (4.40)

Then by replacing (4.32), (4.36) and (4.40) in (4.31), we obtain that

∫
Ω

Hε(ων(y, t))|y|θψδ dy �
∫

Ω

Hε(ω0)|y|θψδ dy +
∣∣∣∣
∫ t

0

∫
Ω

ωνϕ(vν − lν) · ∇(|y|θψδ)dyds
∣∣∣∣

+
∫ t

0

∫
Ω

|G(ων)| |y|θψδ

∣∣∣∣(vν − lν) ·
{
θ
y

|y|2 − δ
y

|y|
}∣∣∣∣ dyds

+
ν

p

∫ t

0

∫
Ω

(|ων | + ε)p|y|θψδ

∣∣∣∣ θ
2

|y|2 − δ (2θ + 1)
|y| + δ2

∣∣∣∣ dyds

+
εν

p− 1

∫ t

0

∫
Ω

(|ων | + ε)p−1|y|θψδ

∣∣∣∣ θ
2

|y|2 − δ (2θ + 1)
|y| + δ2

∣∣∣∣ dyds

+
2πν

p(p− 1)
|θ − δ|e−δεp.

Then from (4.39) we have that

∫
Ω

Hε(ων(y, t))|y|θψδ dy �
∫

Ω

Hε(ω0)|y|θψδ dy +
{
C1 + ν

C2

p

}∫ t

0

∫
Ω

(|ων | + ε)p|y|θψδ dyds

+ C1

∫ t

0

∫
Ω

|G(ων)| |y|θψδ dyds+
εν C2

p− 1

∫ t

0

∫
Ω

(|ων | + ε)p−1|y|θψδ dyds+
2πν

p(p− 1)
|θ − δ|e−δεp, (4.41)

where

C1 = (θ + δ) ‖vν − lν‖L∞(QT ) and C2 = θ2 + δ(2θ + 1) + δ2.

The fact that ‖vν − lν‖L∞(QT ) remains bounded as ν ↘ 0 readily follows from Propositions 2.3, 4.1 and 4.2
(see below Sect. 5.1.) Now, letting ε↘ 0, we obtain that for some constant C3 > 0

1
p

∫
Ω

|ων(y, t)|p |y|θψδ dy � 1
p

∫
Ω

|ω0|p |y|θψδ dy +
{
C1 + ν

C2

p
+ C3

} ∫ t

0

∫
Ω

|ων |p|y|θψδ dyds. (4.42)
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Applying Gronwall’s Lemma and then using the monotone convergence theorem in the limit δ ↘ 0, we obtain
that there exists a positive constant C > 0, such that for all t ∈ [0, T ]

∫
Ω

|ων(y, t)|p |y|θ dy � eCt

∫
Ω

|ω0(y)|p |y|θ dy.

Now, we have in the limit p→ 1+

∫
Ω

|ων(y, t)| |y|θ dy � eCt

∫
Ω

|ω0(y)| |y|θ dy ∀t ∈ [0, T ],

and the proof is complete. �

5. Proof of Theorem 1.1

5.1. Passage to the limit

It follows from (4.10) that lν is bounded in L∞(0, T ). On the other hand, the quantity
∫

∂B
vν · τ dΓ is also

bounded in L∞(0, T ). Indeed, according to Stokes’ theorem
∫

∂B

vν · τ dΓ = −
∫

Ω

curlvν dy = −
∫

Ω

ων dy

hence, by (4.15), ∣∣∣∣
∫

∂B

vν · τ dΓ
∣∣∣∣ � ||ων ||L1(Ω) � ||ω0||L1(Ω)· (5.1)

As ων is bounded in L∞(0, T, L1(Ω) ∩ L∞(Ω)) by (4.15), it follows from Propositions 2.3 and 4.1 that vν is
bounded in L∞(QT ) and in L∞(0, T,W 1,p(Ω)) ∀p ∈ [2,+∞). Therefore, we infer that for some sequence νk ↘ 0
and some functions

v ∈ L∞(0, T ;W 1,p(Ω)) ∀p ∈ [2,+∞),
ω ∈ L∞(0, T ;L1

θ(Ω) ∩ L∞(Ω))
and l ∈ L∞(0, T ),

we have that

vνk
⇀ v in L∞(0, T ;W 1,p(Ω)) − weak ∗, ∀p ∈ [2,+∞)

ωνk
⇀ ω in L∞(QT ) − weak ∗

lνk
⇀ l in L∞(0, T ) − weak ∗

as k → +∞.
Fix a number q ∈ (1, 2) and set ΩR := {y ∈ Ω; 1 < |y| < R} for any R > 1. Let

Vq,R := {ϕ ∈W 1,q
0 (ΩR); divϕ = 0}.

By the Sobolev embedding theorem Vq,R ⊂ L2(ΩR) for any q ∈ (1, 2). We claim that (vν)t is bounded
in L2(0, T, (Vq,R)′). Indeed, taking the inner product of (3.1) by ϕ(t), where ϕ ∈ L2(0, T, Vq,R), and integrating
by parts we obtain for a.e. t ∈ (0, T )

∫
ΩR

(vν)t · ϕdy = −ν
∫

ΩR

∇vν : ∇ϕdy +
∫

ΩR

((lν − vν) · ∇vν) · ϕdy
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hence, by Hölder inequality,
∣∣∣∣
∫

ΩR

(vν)t · ϕdy
∣∣∣∣ ≤ ν||∇vν ||Lq′ (ΩR) · ||∇ϕ||Lq(ΩR) +

(|l| + ||vν ||L∞(ΩR)

) ||∇vν ||Lq′ (ΩR) · ||ϕ||Lq(ΩR)

where q′ > 2 denotes the conjugate exponent of q. We conclude that (vν)t is bounded in L2(0, T, (Vq,R)′). Let
p > 2. Observing that the first embedding in

W 1,p(ΩR) ⊂ C(ΩR) ⊂ L2(ΩR) ⊂ (Vq,R)′

is compact, we deduce from ([29], Cor. 4), that (vν)ν>0 is relatively compact in C(ΩR × [0, T ]) for any R > 0.
Therefore, we obtain that

v ∈ B(QT )
and that vνk

converges to v uniformly on each compact subset of Ω × [0, T ] as k → +∞. On the other hand,
using the identity

vνk
· n = lνk

· n on ∂B × [0, T ]
valid for all k � 0, and the uniform convergence of vνk

to v on ∂B× [0, T ], we infer that lνk
converges uniformly

to l on [0, T ], hence l ∈ C([0, T ]).
For any ϕ ∈ L2(0, T,V) we have by (3.20) and (3.29)

∫ T

0

{
(v′νk

, ϕ)ρ + νk

∫
Ω

∇vνk
: ∇ϕdy − νk

∫
∂B

(vνk
− lνk

) · (ϕ− lϕ) dΓ
}

dt =
∫ T

0

∫
Ω

fνk
· ϕ dydt (5.2)

where fνk
:= (lνk

−vνk
) ·∇vνk

. Noticing that V is dense in H and identifying H with H′, we obtain the diagram

V ⊂ H ≡ H′ ⊂ V ′.

Therefore, we may write
(v′νk

, ϕ)ρ = 〈v′νk
, ϕ〉,

where the symbol 〈·, ·〉 denotes the duality pairing between V ′ and V . As (vνk
) is bounded in L2(0, T,H1(Ω))∩

L∞(QT ) and (lνk
) is bounded in L∞(0, T ), we infer from (5.2) that (v′νk

) is bounded in L2(0, T,V ′). Extracting
a subsequence if necessary, we may assume that v′νk

⇀ v′ in L2(0, T,V ′). As

(lνk
− vνk

)ϕ→ (l − v)ϕ in L2(QT ),

taking the limit in (5.2) we obtain

∫ T

0

{
〈v′, ϕ〉 +

∫
Ω

((v − l) · ∇v) · ϕdy
}

dt = 0 ∀ϕ ∈ L2(0, T,V). (5.3)

Obviously, (3.2), (3.3), (3.6) and (3.7) hold true. On the other hand [V ,V ′] 1
2

= H, hence by a classical result in
[23]

v ∈ C([0, T ],H), (5.4)
and we infer from Hölder inequality that

v ∈ C([0, T ], Lp(Ω)) ∀p ∈ [2,+∞).

In particular, it follows from ([32], Lem. 1.4), that

v ∈ Cw([0, T ],W 1,p(Ω)) ∀p ∈ [2,+∞)
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and that
lim

|y|→+∞
v(y, t) = 0 ∀t ∈ [0, T ].

We now turn to the equation satisfied by ω. Using (4.2), (4.12) may be rewritten as

ω′
νk

+ div((vνk
− lνk

)ωνk
) − νk∆ωνk

= 0. (5.5)

Clearly, (vνk
− lνk

)ωνk
⇀ (v − l)ω in L∞(QT ) - weak ∗, hence, letting k → +∞ in (5.5) we obtain

ω′ + div((v − l)ω) = 0 in D′(QT ). (5.6)

Finally, passing to the limit in (4.11), (5.1) we get

ω = curlv, (5.7)∣∣∣∣
∫

∂B

v · τ dΓ
∣∣∣∣ � ||ω0||L1(Ω). (5.8)

5.2. Existence of a classical solution of (1.8)–(1.13)

In this section we prove that all the equations in (1.8)–(1.13) are satisfied in the classical sense. More
precisely, we prove that v, ∇v, vt and ∇q belong to B(QT ). We begin with the following result.

Lemma 5.1. There exists a constant H > 0 such that for all y, z ∈ Ω and all t ∈ [0, T ]

|v(y, t) − v(z, t)| � H |y − z|χ(|y − z|), (5.9)

where

χ(r) :=
{

1 for r � 1,
1 + ln(1/r) for 0 < r < 1.

Proof. Applying Lemma 2.4 with l = l(t), we may write

v(y, t) = d1(y, t) + v1(y, t),

where d1 ∈ C([0, T ],W 1,∞(Ω)) satisfies d1(y, t) = l(t) for |y| � 2, d1(y, t) = 0 for |y| � 3, and v1 fulfils
curlv1 = ω1 := ω − curld1 and divv1 = 0 in Ω, v1 · n = 0 on ∂B, lim|y|→+∞ v1(y, t) = 0, and

∫
∂B

v1 · τ dΓ =∫
∂B

v · τ dΓ := C(t). (Note that the function C(t) is continuous.) Then, by virtue of ([22], Lem. 2.14),

v1(y, t) = curlG(ω1)(y, t) + λ1(t)u1(y),

where λ1(t) = C(t)− ∫
∂B curlG(ω1) · τ dΓ and u1 ∈W 1,∞(Ω) is some irrotational and solenoidal flow satisfying

u1 · n = 0 on ∂B,
∫

∂B
u1 · τ dΓ = 1 and u1(y) → 0 as |y| → +∞. (See [22], Lem. 1.5, for the existence of the

vector field u1.) Then, by virtue of ([22], Lem. 2.4), v1 and v satisfy (5.9). �

Remark 5.2. In [22] λ1 takes the following form

λ1(t) =
∫

∂B

a · τ dΓ −
∫

∂B

curlG(ω1) · τ dΓ.

Although it is expected that C(t) = C(0) =
∫

∂B a · τ dΓ, this property has not yet been proved. The result in
([22], Lem. 2.4), remains nevertheless valid with this new definition of λ1(t).
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The vector field v being quasi-Lipschitz (see (5.9)), it follows from Osgood’s criterion (see e.g. [17], Cor. 6.2)
that the Cauchy problem 


dy
dt

= v(y, t) − l(t)

y(t0) = y0

has a unique solution y(t). We may therefore define the flow associated to v − l as the solution of the following
system 


d
ds
Us,t(y) = v(Us,t(y), s) − l(s),

Ut,t(y) = y.

As v ∈ B(QT ), l ∈ C([0, T ]) and (v − l) · n = 0 on ∂B × [0, T ], we see that Us,t(y) is defined for all (s, t, y) ∈
[0, T ]2 × Ω. The following result comes from [21].

Lemma 5.3. There exist two constants δ > 0 and L > 0 such that

|Us,t(y) − Us̄,t̄(ȳ)| ≤ L
(|s− s̄|δ + |t− t̄|δ + |y − ȳ|δ) ∀s, s̄, t, t̄ ∈ [0, T ], ∀y, ȳ ∈ Ω.

The following uniqueness result is similar to a result given in ([24], Proof of Thm. 2.5). Its proof is left to the
reader.

Lemma 5.4. Let v ∈ L∞(QT ) be such that divv = 0 on Ω × (0, T ) and v · n = 0 on ∂B × (0, T ), and let
ω ∈ L∞(0, T, L1(Ω) ∩ L∞(Ω)) be a solution of

∂ω

∂t
+ div(v ω) = 0 in D′(Ω × (0, T )) (5.10)

such that ω|t=0 = 0. Then ω ≡ 0.

Let ω̄(y, t) := ω0(U0,t(y)), where ω0 := curla. As div(v− l) = 0, we infer as in ([22], pp. 70–71), that for all
t ∈ [0, T ] ∫

Ω

|ω̄(y, t)| dy =
∫

Ω

|ω0(y)| dy,
hence ω̄ ∈ L∞(0, T, L1(Ω) ∩ L∞(Ω)). It follows from Lemma 5.4 (applied to ω − ω̄ and v − l) that

ω(y, t) = ω̄(y, t) = ω0(U0,t(y)).

Using once again the measure preserving property of Us,t(y), one may show that
∫

Ω

ω(y, t) dy =
∫

Ω

ω0(y) dy,

hence

C(t) =
∫

∂B

v · τ dΓ = Const.

On the other hand, we infer from Lemma 5.3 that

ω ∈ Cγλ,0(QT ) ∩ L∞(0, T, L1
θ(Ω)).

Then we derive the following result.

Lemma 5.5. ∂v
∂yj

∈ B(QT ) for j = 1, 2.
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The proof is virtually the same as the one for ([22], Lem. 2.10). The following result contains the fact that
∇v ∈ C([0, T ], L2(Ω)), which will be used later when proving that v′ = dv/dt ∈ B(QT ).

Lemma 5.6. v ∈ C([0, T ], Lp(Ω)) for any p ∈ (2,+∞], and ∇v ∈ C([0, T ], Lp(Ω)) for any p ∈ (1,+∞).

Proof. We need the following

Claim. ω ∈ C([0, T ], L1(Ω) ∩ L∞(Ω)).
We readily infer from ω ∈ L∞(0, T, L1

θ(Ω)) ∩ C(QT ) that ω ∈ C([0, T ], L1(Ω)). On the other hand, ω0 is
Hölder continuous on Ω by assumption, and we infer from Lemma 5.3 that

|U0,t(y) − U0,t′(y)| � L|t− t′|δ ∀y ∈ Ω, ∀t, t′ ∈ [0, T ].

Thus, the vorticity ω(y, t) = ω0(U0,t(y)) belongs to the space C([0, T ], L∞(Ω)). The claim is proved.
The proof of the lemma is completed by using Proposition 2.3, the claim, and the fact that l ∈ C([0, T ]) and∫

∂B
v · τ dΓ = Const. �

Lemma 5.7. v′ ∈ B(QT ) ∩ C([0, T ], L2(Ω)).

Proof. Let ϕ ∈ L2(0, T ;V). By (5.3) we have that

∫ T

0

{
〈v′, ϕ〉 +

∫
Ω

((v − l) · ∇v) · ϕdy
}

dt = 0.

Let f denote the function ((v−l)·∇)v extended by 0 on B. We infer from Lemma 5.6 that f ∈ C([0, T ];L2(R2)),
hence Pf ∈ C([0, T ];H). It follows that

∫
Ω

((v − l) · ∇v) · ϕ dy = (f, ϕ)ρ = (Pf, ϕ)ρ = 〈Pf, ϕ〉.

Thus ∫ T

0

〈v′ + Pf, ϕ〉dt = 0 ∀ϕ ∈ L2(0, T ;V),

which implies that
v′ + Pf = 0 in L2(0, T ;V ′).

Thus v′ ∈ C([0, T ],H) and l′ = lv′ ∈ C([0, T ]). We now decompose v as

v(y, t) = v2(y, t) + d1(y, t) + Cd2(y), (5.11)

where v2 solves (2.19)–(2.23) (with ω2(y, t) = ω(y, t) − curld1(y, t) − C curld2(y)), d1 (resp. d2) is given by
Lemma 2.4 (resp. Lem. 2.5), and C =

∫
∂B a · τ dΓ. Derivating with respect to time in (5.11), we obtain

v′ = v′2 + d′1.

As l′ ∈ C([0, T ]), d′1 ∈ B(QT ). The fact that v′2 ∈ B(QT ) may be found in ([22], Proof of Lem. 2.11). Therefore,
v′ ∈ B(QT ). �

Corollary 5.8. v ∈ C1([0, T ], L2(Ω)) ∩ C([0, T ], H1(Ω)).

Proof. This is a direct consequence of (5.4), and of Lemmas 5.6 and 5.7. �
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It remains to prove the existence of a pressure q(y, t) satisfying (1.8), (1.11) in a classical sense. As v′ ∈
C([0, T ],H), we infer from (5.3) that for every t ∈ [0, T ]

ml′ · lφ +
∫

Ω

(v′ + (v − l) · ∇v) · φdy = 0 ∀φ ∈ V . (5.12)

In particular, ∫
Ω

(v′ + (v − l) · ∇v) · φdy = 0 ∀φ ∈ C∞
0 (Ω) with divφ = 0.

By ([32], Props. 1.1 and 1.2), there exists a function q ∈ L2(0, T, Ĥ1(Ω)) such that for a.e. t ∈ (0, T )

v′ + (v − l) · ∇v + ∇q = 0. (5.13)

As v′ and (v − l) · ∇v belong to B(QT ) ∩ C([0, T ], L2(Ω)), adding a function of time to q if necessary we see
that q ∈ C([0, T ], C1(Ω))∩C([0, T ], Ĥ1(Ω)). Picking any φ ∈ V , we infer from (5.12)–(5.13) and the divergence
formula that

ml′ · lφ =
∫

Ω

∇q · φdy =
∫

Ω

div(qφ) dy =
∫

∂B

qn · φdΓ.

Therefore (1.11) holds true.

5.3. Uniqueness of the solution

Now, we investigate the uniqueness of the solutions of the problem (1.1)–(1.6). Recall that by using the
change of variables (1.7), we obtain the equivalent model (1.8)–(1.13).

Assume given two classical solutions (v1, q1, l1) and (v2, q2, l2) of (1.8)–(1.13). We then introduce the
functions

v = v1 − v2 q = q1 − q2 l = l1 − l2, (5.14)
which fulfil the following system

∂v

∂t
+ ((v1 − l1) · ∇)v + ((v − l) · ∇)v2 + ∇q = 0, in Ω × [0, T ], (5.15)

div v = 0, in Ω × [0, T ], (5.16)
v · n = l · n, on ∂B × [0, T ], (5.17)

ml′ =
∫

∂B

qndΓ, in [0, T ], (5.18)

v(y, 0) = 0, ∀y ∈ Ω, (5.19)
l(0) = 0. (5.20)

In order to prove that (v, q, l) = (0, 0, 0), we consider some energy estimate for (5.15)–(5.20).
Firstly, by multiplying (5.15) by v and by integrating over Ω × (0, t), we have that

0 =
∫ t

0

∫
Ω

vt · vdyds+
∫ t

0

∫
Ω

((v1 − l1) · ∇)v · vdyds

+
∫ t

0

∫
Ω

((v − l) · ∇)v2 · vdyds+
∫ t

0

∫
Ω

∇q · vdyds = I1 + I2 + I3 + I4.

We now study each integral term. We easily have that

I1 =
1
2

∫
Ω

|v(t)|2 dy.
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Next, some integrations by part give that
I2 = 0. (5.21)

On the other hand, we have that

I3 =
∫ t

0

∫
Ω

((v − l) · ∇)v2 · vdyds

=
∫ t

0

∫
Ω

(v · ∇)v2 · vdyds−
∫ t

0

∫
Ω

(l · ∇)v2 · vdyds

= I31 + I32.

We can estimate each part:

|I31| � ‖∇v2‖L∞(QT )

∫ t

0

∫
Ω

|v|2 dyds,

and

|I32| �
∫ t

0

|l(s)|
(∫

Ω

|∇v2|2 dy
)1/2 (∫

Ω

|v|2dy
)1/2

ds

� 1
2
‖v2‖L∞(0,T,H1(Ω))

[∫ t

0

(∫
Ω

|v|2 dy + |l|2
)

ds
]
.

Finally we have that

I4 =
m

2

∫ t

0

d
ds

(|l|2) ds =
m

2
|l(t)|2.

Thus, we have that ∫
Ω

|v(t)|2 +m|l(t)|2 � C

[∫ t

0

(∫
Ω

|v|2 dy +m|l|2
)

ds
]

and by Gronwall’s Lemma, we obtain that

v = 0 in Ω × (0, T ) and l = 0 in (0, T ).

Using (5.15) we conclude that ∇q = 0 in Ω × (0, T ), which proves that the solution of our problem is unique
(up to an arbitrary function of t for q). The proof of Theorem 1.1 is achieved.
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