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CLASSICAL SOLUTIONS FOR THE EQUATIONS MODELLING THE MOTION
OF A BALL IN A BIDIMENSIONAL INCOMPRESSIBLE PERFECT FLUID

JAIME H. ORTEGA!, LIONEL ROSIER? AND TAKEO TAKAHASHI?

Abstract. In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid
occupying R?. We prove the global in time existence and the uniqueness of the classical solution for
this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated
with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.
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1. INTRODUCTION

We consider a rigid body occupying an open bounded set B(t) C R? and which is surrounded by a perfect
homogeneous fluid. We denote by Q(t) = R? \% the domain occupied by the fluid. In order to simplify the
problem, we also assume that B(t) is a disc of radius 1 and that the fluid and the solid are homogeneous. The
motion of the fluid is modelled by Euler equations and the equation describing the motion of the rigid body is
obtained by applying the principle of conservation of momentum. More precisely, the equations modelling the

dynamics of the system read

%Jr(wV)quVp:O, in Q(t) x [0, 77, (1.1)
divu =0, in Q(t) x 0,7, (1.2)

u-n="h-n, on OB(t) x [0,T], (1.3)

mh'" = /aB(t)pndF, in [0, T7, (1.4)
u(y,0) = a(y), vy € Q(0), (1.5)

h(0) =0 € R%, 1/(0) = b € R% (1.6)

Keywords and phrases. Euler equations, fluid-rigid body interaction, exterior domain, classical solutions.

1 Universidad de Chile, Facultad de Ciencias Fisicas y Mateméticas, Centro de Modelamiento Matemético, UMI 2807
CNRS-UChile, Casilla 170/3, Correo 3, Santiago, Chile and Universidad del Bio-Bio, Facultad de Ciencias, Departamento
de Ciencias Baésicas, Casilla 447, Campus Fernando May, Chilldn, Chile. jortega@dim.uchile.cl

2 Institut Elie Cartan, Université Henri Poincaré Nancy 1, BP 239, 54506 Vandceuvre-les-Nancy Cedex, France.

rosier@iecn.u-nancy.fr; takahash@iecn.u-nancy.fr
© EDP Sciences, SMAI 2005



80 J.H. ORTEGA ET AL.

In the above equations, u (resp., p) is the velocity field (resp., the pressure) of the fluid, and h denotes the
position of the centre of the ball. Note that we have assumed that the ball is centred at the origin at t = 0. We
have denoted by n the unit outward normal to 9€). The constant m is the mass of the ball.

Let us point out that the equation for the rotation of the rigid ball has been omitted in the system above;
indeed, thanks to the particular shape of the rigid body, the angular velocity of the rigid body remains constant
as time proceeds.

The main difficulties when studying this problem are that the system (1.1)—(1.5) is nonlinear, strongly coupled
and that the domain of the fluid is variable (and depends on h). These difficulties occur in any fluid-structure
problem. In the last decade, several papers have been devoted to the existence of solutions for such systems
when the fluid motion is governed by Navier-Stokes equations; to quote a few, Desjardins and Esteban [5, 6],
Conca, San Martin and Tucsnak [2], Gunzburger, Lee and Seregin [16], Hoffmann and Starovoitov [18,19],
Grandmont and Maday [15], San Martin, Starovoitov and Tucsnak [26], Feireisl [7-9], Takahashi [30] (in the
case of a bounded domain) and Serre [27], Judakov [20], Silvestre [28], Takahashi-Tucsnak [31], Galdi and
Silvestre [11] (in the case where the fluid-rigid body system fills the whole space). The stationary problem was
studied in Serre [27] and in Galdi [10]. Zuazua and Vazquez [33] have also tackled, in a simplified 1D model,
the asymptotic behaviour of solutions.

On the other hand, as far as we know, there is no paper devoted to the existence of a (weak or classical)
solution for the fluid-rigid body system in the case where the fluid is assumed to be perfect (no viscosity).
However, a theory providing classical solutions to this kind of problems seems desirable for control purposes, as
most of the control results for Euler flows involve classical solutions. (See e.g. Coron [3,4], and Glass [14].)

In order to write the equations of the fluid in a fized domain, we use a change of variables. Denoting by B
the initial subset occupied by the solid and by € = R? \ B the initial domain occupied by the fluid, we set

v(y,t) = u(y +h(t),t), qy.t) =ply+h(t),t), Ut)="H(). (L.7)
Then, the functions (v, ¢,1) satisfy the following system:
Ov .
EJr(v-V)v—(LV)erVq:O, in Q x [0,T], (1.8)
divo =0, in Qx [0,77, (1.9)
v-n=1-n, ondBx]I0,T], (1.10)
ml’ :/ gndl’;  in [0,7], (1.11)
OB
v(y,0) =aly), Vye, (1.12)
1(0) = b. (1.13)

Let us point out that for a rigid body with an arbitrary form the additional term (vt — y* - Vo) has to be
incorporated in the left hand side of (1.8), where r denotes the angular velocity of the rigid body. Clearly, this
term is difficult to handle as |y| — oo. The existence of a classical solution for this more general problem will
be investigated elsewhere.

Before stating the main result of the paper, we introduce certain notations borrowed from Kikuchi [22]. If V
denotes any scalar-valued function space and u = (u1, uz) is any vector-valued function, we shall say that u € V'
if u; € V for all i, for the sake of simplicity. Let T" be any positive number, and let Q7 = Q x (0,T). B(Q)
(resp., B(Qr)) is the Banach space of all real-valued, continuous and bounded functions defined on Q (resp. Q7),
endowed with the L> norm. For any 6 > 0, L}(£2) denotes the space of (class of) measurable functions w on
such that

el gy = /Q lw(y)] [y1°dy < co.

Finally, for any A € (0,1), C*(Q) (resp., C*°(Q7)) is the space of all the functions w € B(Q) (resp., w € B(Qr))
which are uniformly Holder continuous in y with exponent A on € (resp., on Qr). B, (y) will denote the open
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ball in R? with centre y and radius r. At any point y € 9Q(= dB), n = (n1,n2) will denote the unit outer
normal vector to 92 (i.e. n = —y), and 7 = (71, 72) will denote the unit tangent vector 7 = y*~ = (—y2,1). For
any scalar-valued function w, curlw = (Ow/dy2, —0w/Ay1) and Vw = (Ow/dy1,0w/dys). For any vector-valued
function v = (v, v2), curlv = dua /Ay — Ov1 /Ay2, divp = Jv1 /Iy + Ova/Oys and Vv = (9v;/0y;)1<i,j<2- The
main result in this paper is the following one.

Theorem 1.1. Let § >0, 0< A< 1, a € B(Q)NH'(Q) and b € R%. Assume that diva =0, (a —b)-n|,, =0,
lim|y 400 a(y) = 0, and curla € L§(Q) N CY(Q). Then there ezists a solution (v,q,l) of (1.8)~(1.13) such

that v, %,V%Vq € B(@Qr), ve CH([0,T),L3(Q)) N C([0,T], H'(%)), q € C((0,T], H()) and I € C([0,TY).
Such a solution is unique up to an arbitrary function of t which may be added to q.

Remark 1.2. We may notice that, with the above regularity, the solution v satisfies the following property

lim v(y,t) =0

ly|—o0

uniformly with respect to t € [0,T).

In the above theorem, we have denoted by H L(Q) the homogeneous Sobolev space
(@) = {q€ L2,.@) | Va € @)},

where ¢ € L? (©2) means that ¢ € L?(Q N By) for any open ball By C R? with By N Q # 0.
The kinetic energy of the system is given by

B(t) = gmli(t) /Wv% )2 dy.

A great role will be played in the sequel by the scalar vorticity w = curlv, which turns out to be bounded in
LY(Q) N L>°(Q). (Notice that the initial vorticity wo := curla clearly belongs to L*(2) N L>(2).) Using the
smoothness of the solution provided by Theorem 1.1, it is very easy to obtain the following result.

Corollary 1.3. Let (v,1) be as in Theorem 1.1. Then the quantities E(t) and ||w(t)||prq) (for anyp € [1,40c])
remain constant.

A large part of the proof of Theorem 1.1 relies on the machinery developed in [22] to prove the existence of
classical solutions to Euler system in an exterior domain. However, unlike [22], a fixed-point argument cannot
be applied directly to Euler system, due to a lack of pressure estimate. On the other hand, when we compare
the assumptions of our main result to those required in [22], we note that

(1) no additional assumption has to be made here in order to insure the uniqueness of the solution;
(2) the initial velocity a has to belong to H*(f2).

The intrusion of an L2-estimate in a classical theory may look awkward at first sight. It is nevertheless necessary,
as the boundedness of the speed of the rigid ball cannot be obtained without the aid of the energy conservation
for the system solid+fluid. Thus, a feature of the problem investigated here is that we need estimates both
in L*> and in L2

To prove Theorem 1.1 we proceed in three steps. In the first step, we construct a strong solution of an
approximated system in which Euler equations has been replaced by Navier-Stokes equations (with suitable
boundary conditions). In the second step, we demonstrate that the vorticity associated with the strong solution
of Navier-Stokes system is bounded in L% (£2) N L}(€2), uniformly with respect to the viscosity coefficient. These
estimates, combined with a standard energy estimate, provide the velocity estimates needed to pass to the limit.
In the final step, we let the viscosity coefficient tend to 0, and we prove that the solution to (1.8)—(1.13) has
the regularity depicted in Theorem 1.1.
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The paper is outlined as follows. In Section 2 some preliminary results are given together with their proof.
Section 3 is devoted to the construction of strong solutions to Navier-Stokes approximated system. The energy
and vorticity estimates are established in Section 4. Finally, the proof of Theorem 1.1 is given in Section 5.

2. PRELIMINARIES

2.1. Extension of the velocity field to the plane

Let p := m/m denote the (uniform) density of the rigid body. In the system (1.8)—(1.13), we can extend v
to R? by taking v(y,t) = I(t) for all y € B and all t > 0. Then dive = 0 in R? x [0,7]. This suggests us to
introduce the following spaces:

H=1{¢ e L*(R?)|div() =0inR* V¢ =0in B}, (2.1)

V={secH|doecH (D)} (2.2)

We also define a scalar product in L?(R?) which is equivalent to the usual one:

(u,v), :z/u-vdx—i—p/u-vdx.
Q B

The spaces L?(R?) and H are obviously Hilbert spaces for the scalar product (., .) »- On the other hand, for any
u € H there exists a unique I,, € R? such that v = [, in B. It follows that for all u,v € H

(u,v), = / u-vde +mly, - 1.
Q

The space V is also a Hilbert space for the scalar product
(u,v)y = (u,v), +/ Vu : Vudz.
Q

A first technical result is the following

Lemma 2.1. Let u, v € V, and let k,1 € R? denote the constants such that v = k and v = | in B. Suppose
that ug € H?(Q) and that curlu = 0 on OB. Then, we have the following identity

/8Bv~%df/83(vk)~(ul)df, (2.3)
where w and v on OB stand respectively for the traces of the functions ujq € HY(Q) and v € HY(Q).
Proof. Since divu = 0 and dive = 0 in D'(R?), we have that
(u—1)-n=(@w—k)-n=0o0ndB.
By using the above equations, we deduce that
(v—k)-V[(u—1)-n]=0ondB. (2.4)
On the other hand, since curlu = 0 on 0B, we easily obtain that

o

Vifu=1)-n]=—=

—(u—1)on dB,
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which implies that

(U—kz)-V[(u—l)-n]:(U—kz)-%—(v—k)-(u—l)oné)B.
The above equation and (2.4) imply that
Ju Ju
v-—dl'=k- —dF—l—/ v—=Fk)-(u—1)dI. 2.5
| v [ Grars [ @-k)-w-) (25)

Now, since divu = 0 and curlu = 0 on 0B, we have that

where 7 = —n+. The above relation and (2.5) yield the result. O

On the other hand, by using Holder’s inequality and a classical Sobolev embedding theorem, we have the
following result.

Lemma 2.2. For all
v,w e L*(0,T; H*(Q)) N L=(0,T; H' (),
we have (w - V)v € L¥2(0,T; L*(Q)) and

1/5 4/5
- D)0l ooz < Cllwll o @112 0zt o 101 0 15 e (2.6)
where C' is a positive constant depending only on €.

2.2. Velocity versus vorticity

As it is well known, any LP—norm of the vorticity is left unchanged by Euler flows. This is no longer true
for Navier-Stokes flows, but we shall see that such norms remain bounded. Such vorticity estimates will result
in velocity estimates thanks to the following result, which relates the velocity to the vorticity, the speed of the
rigid body and the circulation of the flow along 0B.

Proposition 2.3. Let | € R?, C € R and w € LY(Q)NL>®(Y). Then there exists a unique vector field v € B(R)
fulfilling

curlv =w  in (2.7)
dive=0 inQ (2.8)
v-m=1l-n ondB (2.9)
/ vordl = C (2.10)
oB
and lim w(y) =0. (2.11)

ly|—+o0

Furthermore, v € LP(Q) ¥p € (2,400], Vv € LP(Q) Vp € (1,400) and there exist some positive constants
K, K,, such that

(11 +1C] + lwl| 1) + [lwl|Le()) VP € (2,+00] (2.12)

[Vl < Kp
< K (Il +1C1 + llwl|r(e)) VP € (1,+00). (2.13)

||V’U||LP(Q)
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Proof.

First Step. Existence of a vector field v € B(Q) fulfilling (2.7)-(2.11).
We first see that we may restrict ourselves to the situation where [ = 0 and C' = 0.

(i) Reduction to the case [ = 0.
We need the following lemma.

Lemma 2.4. Let | € R%. Then there exists a vector field d; € C°°(R? ,R?) such that divd; =0 on R? and

_ U ifpl<e,
dl(y)_{o if |y > 3.

Proof of Lemma 2.4. 1t is sufficient to pick any function 6 € C§°(R?) such that

_ 1 ity <2,
9(‘”)‘{0 if [y] > 3,

and to set d (y) := curl(0(y) y - I+), where I+ := (—lo, ;).
Setting vy := v — dy, we see that (2.7)-(2.11) is changed into

curlv; = wy := w — curld; in
divv; =0 in
vy -n=20 on 0B

/ V1 - dl' =C

OB

and lim w1 (y) =0.
ly|—+o0

Notice that wy € LY(Q) N L>(Q), as curl d; € C§°(R?).

(ii) Reduction to the case C' = 0.
We need the following lemma.

Lemma 2.5. There exists a vector field do € O (2, R?) such that divds = 0, da(y) =0 for |y| > 3, do
for lyl =1 and [,,ds-7dl = 1.

Proof of Lemma 2.5. Tt is sufficient to pick any function h € C*°([1, +00),R), such that

_femTt ifr<e,
h(r){o if > 3,
and to set da(y) = h(|y|)y*.
The change of unknown function
Vg = VU1 — Cdg

transforms (2.14)—(2.18) into
curlvg = wy = w; — Ccurlds in Q
divus =0 in Q
vg-n=>0 on 0B

/ vy -7dl'=0
oB

and lim  wa(y) =0.
lyl—=+o0

=~
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Notice that we € L'(Q2) N L>(Q), because da(y) = 0 for |y| > 3.

Second Step. Construction of a solution to (2.19)—(2.23).
Let G(x,y) denotes the Green function for the exterior zero-Dirichlet problem for —A, so that a solu-
tion u(y) of

—Au=f inQ
u=0 ondB,
is given by

1
u(y) = 5= [ Glfe)
According to ([22], Lem. 1.3 and (2.27) p. 80), the vector field

1
(o) 1= 3= [ el Glo. hn(e) dz

belongs to B(Q2) and it satisfies (2.19)—(2.23), except possibly (2.22). By ([22], Lem. 1.5), there exists a vector
field o, € B(Q) fulfilling

curlog =0 in Q (2.24)

divi, =0 inQ (2.25)

U3-n=0 ondB (2.26)

/ Uy -7dl' = / vy - 7dIl’ (2.27)
oB oB

and lim 2(y) =0. (2.28)

[y|—-+o0

Then vy := ¥ — ¥ belongs to B(f2) and satisfies (2.19)(2.23). It follows that (2.7)-(2.11) has at least one
solution v € B(2). The uniqueness of such a solution follows from ([22], Lem. 2.14). (Notice that the hypothesis
V € CY(9) in the statement of this lemma may easily be dropped.)
Third Step. The LP— estimates (2.12)—(2.13).

The idea is to extend v as a solenoidal vector fluid on R? and to use the classical L? estimates for such vector
fields. We need the following result.

Lemma 2.6. Let E(Q) = {v € B(Q); divv =0 on Q andv-n =0 on OB}, E(R?) = {v € B(R?); dive = 0},
and D = {y € R* 1 < |y| < 2}. Then there exists an extension operator A : E(Q) — E(R?) (i.e., A(v), =v)
fulfilling the following property. For any p € (2,400) there exists a constant ¢, > 0 such that for any v €
E(Q)NWYP(D), its extension v = A(v) belongs to WP(Bg(0)) and satisfies

Bllwrr (B2(0)) < pllvllwre(p)- (2.29)
Proof of Lemma 2.6. Pick any v € E(Q) and set w(y1,y2) := v(—y2,y1). Then it is easily seen that curlw(y) =
divo(yt) = 0 and that [y, w - mdl = — [opv - ndl = 0. We infer from ([22], Lem. 2.13), that there
exists a (unique) function ¢ € C1(Q) such that ¢(1,0) = 0 and w = V. Let ¥(y1,y2) := ¢(y2, —y1) for all
y = (y1,y2) € Q. An easy calculation yields curly) = v. The proof of next result is left to the reader.

Lemma 2.7. There exists an extension operator I : C1(Q) — CY(R?) fulfilling the following property. For any
p € (2,+00) there exists a constant c, > 0 such that for any ¢ € CHQ) N W?2P(D), its extension ¢p = ['(¢))
belongs to W2P(Bg(0)) and satisfies

Pllw2r(By(0)) < el lwzr(p)- (2.30)
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Let 1) = I'(1)) be as given in Lemma 2.7 and set © = curly. Clearly, U =v, divi=0and v € B(R?). Assume
now that v € W1P(D) for some p > 2. C denoting a constant (depending only on p) which may vary from line
to line, we have

as 0 = curly)
by (2.30))

as Y(y1, y2) = @(y2, —y1))

as ||Vl L~ (py < Cllw|lwr.r(Dy)
as w(y1,y2) = v(—y2, 1))

[0lwir(B,(0)) < CllYllwze(s,(0) (
< Ol[Yllwz»(p) (
< Cllellwzr (D) (
< Cl|lwl||wrr(p) (
< Cl|vllwre(p) (

This completes the proof of Lemma 2.6. O

Let © = A(v) be the extension of the solution v € B(Q) to (2.7)(2.11) given by Lemma 2.6. We claim that
v € WHP(D) for any p > 2. Indeed, we may write

v(y) = va(y) +di(y) + Cda(y) VyeD

where dq,dy € C*°(D) and vy € B(Q) solves (2.19)—(2.23). As in the proof of Lemma 2.6 we infer the existence
of a function ¥y € C'(Q) such that vy = curlyy and 12 = 0 on B (by (2.21)). As in addition —Agy =
curlvg = wy € L=(Q) N LY(Q), we obtain (see, for instance, [13]) that 1y € W2P(Q) for any p < oo, and
consequently that ¢, € W2P(D). Therefore, v € WH?(D), and we infer from Lemma 2.6 that o, € WP (R?).
Let Wy := curlvy € L} (R?). As (W2)), = w2 and wy € LY(2) N L>®(Q), we conclude that wy € L'(R?) N LP(R?)

for all p < +00. According to ([12], Lem. 2.1), the function

a(y) = ! / u@g(z)dz

S om r2 |y — 2

satisfies 7o € LP(R?) Vp € (2,+c0] and Vi, € LP(R?) V1 < p < +oo (hence ¥ € B(R?*) and
limy| 400 U2(y) = 0.) Furthermore, divoy = 0, and curlvy = wp. A slight modification of ([22], Lem. 2.14),
shows that vy and 99 agree. This completes the proof of Proposition 2.3. 0

3. NAVIER-STOKES APPROXIMATION FOR THE FLUID

In order to solve (1.8)—(1.13), we follow the idea of P.L. Lions ([24], pp. 128-136), for the Euler equations.
We first introduce the following system where we have replaced Euler equations by Navier-Stokes equations
(with suitable boundary conditions).

%+(v-V)v—(l~V)v—yAv+Vq:0, in  x [0,7T7], (3.1)
divo =0, inQx[0,T], (3.2)
v.n=1Il-n, ondBx]|[0,T], (3.3)
curlv =0, on dB x [0,T], (3.4)
ml’ :/ gndl,  in [0, T, (3.5)
oB
v(y,0) =aly), yeQ, (3.6)
1(0) = b. (3.7)

The system (3.1)—(3.7) will allow us to solve the original problem by passing to the limit when » — 0. A similar
problem with viscosity, but with Dirichlet boundary conditions, was studied in [31].
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3.1. Study of the linearised problem
The first step to solve (3.1)—(3.7) is to consider the linearised problem:

% —vAv+Vg=f, inQx][0,T], (3.8)
dive =0, in Qx[0,7], (3.9)
v.n=1-n, ondBx]I[0,T], (3.10)
curlv =0, on 9B x [0,T], (3.11)
ml = / gndl',  in [0,77, (3.12)
oB
v(y,0) =aly), ye, (3.13)
1(0) =b. (3.14)
In order to solve (3.8)—(3.14) we use a semigroup approach. Let us define
D(A) ={¢p € H | do € H*(Q), curlg =0 on dB} (3.15)
and the operators
—vA in Q,
Ag = {0 ¢ w5 veeDW), (3.16)
and
Ap =PAg, Vo € D(A), (3.17)

where P denotes the orthogonal projector from L?(R?) (endowed with the (.,.), scalar product) onto H (H is
clearly a closed subspace of L?(IR?)). In order to solve (3.8)—(3.14), we write the linearised system in the form

v(t) € D(A), o +Av=Pf, v(0)=vp. (3.18)

We give in the following proposition some important properties of the operator A:

Proposition 3.1. There exists A > 0 such that the operator —(A + A) is self-adjoint and m-dissipative.
Moreover, for any u € D(A), we have that

[ullr2) < CINAL + A)ull,. (3.19)
Proof. Let u, v € D(A). We have that

(Au,v)pz(Au,v)pz—u/Au-vdy:V/Vu:Vvdy—V/ U-@dl’.
Q Q op  On

Therefore, by using Lemma 2.1, we obtain that
(Au,v)p:V/Vu:V’udyfl// (v—=Fk)-(u—1)dT, (3.20)
Q OB

where k,1 € R? are such that v = k and v = [ in B. It follows that A is symmetric.
Moreover, for all u € D(A), we have

(Au,u), = V/ |Vu|2dy—1// |u —1)?dT. (3.21)
Q oB



88 J.H. ORTEGA ET AL.

Using the following estimate (see e.g. the proof of [1], Lem. IX.9)

1/2 1/2
/ |v]?dl’ < C (/ |v|2dy) (/ |Vv|2dy) Vv € H'(Q),
oB Q Q

we also have that
/ lu— []2dT < dai]? +2/ luf2dD
oB oB
1
< 4/ |u|2dy+01/ lul?dy + —/ |Vul?dy. (3.22)
B 0 2 Ja
The above relation, combined with (3.21), implies that for some constant Cy = Cy(v) > 0 and for all u € D(A),
v

(M + Ay, w), > Al + 2 /Q Vul?dy — Collul]?. (3.23)

Consequently, for A > Cy, the operator AI + A is (strictly) positive.
By using Lax-Milgram’s lemma, we deduce that for all f € H, there exists a unique u € V such that

u/ Vu: Vody — 1// (v—F) (u—10)dl + Au,v), = (f,v),, YveV. (3.24)
Q 0B
In particular, (3.24) holds if
_Jo inQ,
v { 0 in B,

where ¢ is any C'™° function with compact support in © and such that div(¢) = 0. Then it follows from ([32],
Prop. 1.1), that there exists p € D’'(2) such that

Au—vAu+Vp=f inD(Q).
Since u € V, we have that div(u) = 0 in  and that there exists [ € R? with
u(y) =1 Vye€ B.
The above relations imply that u satisfies the Stokes type system:

A —vAu+Vp=f inQ,
divu=0 in €,
u-n=10l-n ondB,
curlu =0 on 0B.

Thus, by a regularity result for elliptic equations, we have that u € H 2Q),pe )i () and
[ull 20y < Cllfllz2@)- (3.25)

Finally, from (3.15) and (3.24), we have that u € D(A) and (Al + A)u = f. Therefore, —(A\] + A) is a
m-dissipative operator, which gives the result. (I
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An important consequence of Proposition 3.1 is the following.

Corollary 3.2. Let f € L?(0,T; L*(Q)) and a € H'(Q) be such that

diva =0, in €,

a-n=">b-n, on 0B.
Then the system (3.8)—(3.14) admits a unique solution (v, q, 1) with
ve L0, T; H*(Q) N C([0, T]; H () N H' (0, T; L*(%2)),

qe L*0,T; H(Q)), 1€ HY(0,T;R?).
Moreover, there exists a positive constant K such that

vl 20,752 () + 1Vl Lo 0,751 () + 0l 2 (0,722 () + IVl L2(0,7522(02))

+ 1l 0,75m2) < K (llallmr oy + 101 + | fll20,mL202))) -

The constant K depends only on Q and T and is non-decreasing with respect to T .

Proof. If we extend the functions @ and f to R? by
a(y)=b Vye B,

fly)=0 Vye B,
then we have that @ € V and f € L? (0,T; L*(R?)). Therefore the Cauchy problem

v + Av = Pf,
v(0) =a

admits a unique solution

v e L*0,T; D(A)) N C([0,T); D(A + A)Y?) N HY (0, T; H).
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(3.26)

Since v € H(0,T;H), there exists [ € H'(0,T;R?), such that v(y,t) = I(t) for all y € B and for all t € [0,T].

Let ¢ € H. By taking the inner product of (3.27) by ¢, we obtain

(V' (1), 8)p + (Av(t), 0), = (f(£), 0),

for almost all ¢ € [0,7]. Thus

/Q S (8) - by + ml'(8) - 1y + / (—vAv) - $dy = / £(t) - oy,

for all ¢ € H and for almost all ¢ € [0,T]. In particular, (3.30) holds if

_JY inQ,
¢_{O in B,

(3.29)

(3.30)

where 9 is any C*° function with compact support in 2 and such that div(¢) = 0. For such ¢, (3.30) gives

/Q (o' () — vAo(t) — F(1)) -y = 0,
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for any C*° function ¢ with compact support in £ and such that div(¢) = 0. By ([32], Props. 1.1 and 1.2),
there exists ¢ € L2(0,T; H*(Q)), such that

V'(t) — vAu(t) + Vq(t) = f(¢), in Q.

Hence we have proved that v satisfies (3.8). Moreover, the above relation implies that

/Q (v/(t) — vAu(t) + Va(t) — F(8)) - ddy =0, Ve ™,

which yields
/ (W (8) — wio(t) — £(8)) - by = — / a(tn - 6dT, Vo e H.
Q OB

The above equality and (3.30) imply that

ml'(t) -1, = /8B q(t)n - ¢dl, V¢ € H,

from which we deduce that
ml'(t) = / q(t)ndr.
oB

Hence (v, ¢, 1) is a solution of the system (3.8)—(3.14).
In order to prove the uniqueness of the solution to (3.8)—(3.14), it is sufficient to notice that the solutions
of (3.8)—(3.14) satisfy the system (3.27)—(3.28), whose solutions are unique. O

3.2. Strong solutions for the nonlinear problem

We go back to the nonlinear problem (3.1)—(3.7). In this subsection, we prove the following proposition:

Proposition 3.3. Suppose that T > 0, a € H'(Q), and that

diva=0 in €,

a-n=b-n on JdB.
Then, there exists a unique strong solution (v, q, 1) of (3.1)—(3.7) satisfying
ve L0, T; H*(Q) N C([0, T]; H () N H' (0, T; L*(%2)),

g€ L*(0,T; H'(Q), e H(0,T;R?).
Proof.

First Step. Local in time existence.
We consider the application Z defined by

Z:L*(0,T; L*(Q)) — L*(0,T; L*(2))
[ = -Vo+( V)

where (v, p, 1) is the solution of (3.8)—(3.14). Let

B(0,R) = {v e L*(0,T; L*(2)) | vl L2(0,1;02()) < R}
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By using Lemma 2.2 and Corollary 3.2, we have that
IZ(N o200, 020)) < Clllallzr @) + 6]+ 11l 20.7:22())*-

Hence, by Holder’s inequality, Z maps L?(0,T; L%(Q)) into itself and
IZ(N) z20m:2200)) < TY0Clall @) + (b1 + £l 220,:22(00)-

Therefore for R > ||al|g1(q) + [b] and T' < (FIR)N, Z maps B(0, R) into B(0, R).
Similarly, we can prove that Z|p(,r) is a contraction for 7" small enough. This demonstrates that there
exists a unique (strong) solution v of (3.1)—(3.7) on some interval [0,7"] with 77 < T.

Second Step. Global in time existence.

In this part of the proof, C' will denote a positive constant (depending only on ||a|| g1 (), [0, m, T, and v),
which may vary from line to line.

To see that the solution v obtained above may be extended to [0, 77, it is sufficient to prove that there exists
some positive constant K = K (||all g1(q), 0], m, T, v) such that |[v(t)| g1 (o) < K for all t € [0,T7].

By taking the inner product of (3.27) by v(t) € H (where f denotes the function —(v-V)v+ (- V)v extended
by 0 on B), we obtain that

5 S + (wl0), Av(), = (BFD), o(0)y,  acc.in (0,T). (3:31)
Since 1
/Q[(’U~V)’U] cvdy = 5/% lv|2(v - n)dT
e v(y,t) n=1(t)-n VyeoB,
we get that
(001, = [ [~(0(t) - V)u(t) + ((2) - Vy(@)] - v(t)dy =0, a.c. in (0,T").

Q
Therefore, by integrating (3.31) with respect to ¢, we obtain that

lv(®)I7 + 2/0 (v(s), Av(s)), ds < [lv(0)][5, ¥t € [0,T7], (3.32)

and thus that .
lo@)II7 < 2)\/0 lo(s)lI5ds + lo(0)]I3, ¥t € [0,17], (3.33)
where A is defined in Proposition 3.1. The above relation combined with Gronwall’s inequality implies that
[o@)I5 = o2z +mll®)? <C vte[o,T7]. (3.34)

The above relation, (3.32) and (3.23) imply that

t ) t t )
| oy as < 2 [ 066, 0+ A)u(s)), ds [ o)l ds
<C vtelo,T]. (3.35)

On the other hand, by taking the inner product of (3.27) by Av(t) € H, we obtain that

(v'(1), Av(t)), + (Av(t), Av(t), = (P£(t), Av(t))p,  a.e.in (0,T").
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The above relation yields that

N | =
&~

(00 A0(®), + [ Ao = [ 1(0)- Avte)ay
== [ 100900 (Av(e)ay + [ [1(0)- V) u(e)] - (Aot dy

Q
1/2 3/2
< Cllo| oy @l @ lo ()31 0,

HIAUE) - V)o@l @ 2y ave. in (0,T7). (3.36)
From Proposition 3.1,
[0l 2 (0) < ClI(AT + Ao,
which clearly gives
colFa) < A0+ vz, (3.37)

for some positive constant ¢’ = ¢/(v). Relations (3.36), (3.37) and Young’s inequality imply that

%%(v(t% Av(1), + ¢ Nlv) 20y < CllvO) T2 0O 7710 + CZ/IIU(t)II?p(Q) + O UE) - V) o)1 20
+%I||U(t)||§{2(m + lo ()12, a.e.in (0,7"). (3.38)
By (3.34), we have that
1) - V) o) 220y < Cllv®)|Fn (g, lo@®)[Z2q) < C

thus, (3.38) implies that
d / 2 4 2 : /
S (0(0), Av(t))p + 020 < C (0Ol + 0@l +1)  a-e. in (0,1,

If we integrate the above relation with respect to ¢, we get by (3.21) that for all ¢ € [0,T"],
t t

(o), Ao+ ¢ [ ooy s < € (14 [ (10660 oy + 1] B9 o s ).
The above relation, (3.34) and (3.23) yield that for all ¢ € [0,7T"],

v 2 ' 2 ' 2 2

IO + ¢ [ 106 eyas <€ (14 [ [0y +1] 106 oy o)
which, combined to Gronwall’s lemma and to (3.35), gives that

¢ 2 !

The proof of Proposition 3.3 is complete. O
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4. SOME ESTIMATES FOR THE NAVIER-STOKES PROBLEM

93

From now on we denote by (vy, gy, ) the solution of (3.1)—(3.7) corresponding to the value v of the viscosity
coeflicient. The goal of this section is to establish some estimates for the strong solutions of the Navier-Stokes

equations

ov,
ot

+ (vy - VYo, — (I, - V)v, —vAv, +Vq, =0, inQx[0,T],
dive, =0, in Qx[0,T],

v, -n=1,-n, ondBx]0,T],

curlv, =0, on dB x [0,T],

ml,, :/ qndl,  in [0,T],
aB

y €4,

Recall that the corresponding vorticity w, is defined by
w, = curlwv,.
From Proposition 3.3, we have that for any b € R? and any a € H'(Q) such that
diva=0in  and a-n=0b-n ondB,
there exists a unique strong solution (v,,1,,q,) of (4.1)—(4.7) satisfying:
v, € L2(0,T; H3(Q)) N C([0,T]; HY(Q)) n H(0,T; L*(R2)),
@ € L*(0,T; HY(Q)), 1, € H'(0,T;R?).
4.1. Energy estimates

Now, we prove an energy estimate for the Navier-Stokes model (4.1)—(4.7).

Proposition 4.1. Let b € R? and let a € H'(Q) be a function satisfying

diva=0in Q@ and a-n=b-n ondB.

(4.9)

Then there exists a positive constant C, independent on v, such that the unique solution (vy,l,,q,) of (4.1)—(4.7)

satisfies

[ ot O dy +m o) < o7 [ / |a<y>|2dy+m|b<t>|2] vt € [0,7).
Q Q

Proof. By multiplying (4.1) by v, and integrating over Q2 x (0,¢) we obtain

(4.10)

t t t
/ / ov, Uydyds—i—/ / [((vy = 1) - V)] -vl,dyds—u/ / Av,, -Uydyds—i—/ / Vq, -v,dyds = 0.
o Ja 0 JO 0 JO

Performing integrations by parts and using Lemma 2.1, we easily obtain that

t t
v, (y,t y+m|l,(t)| +2v vy yds < aly y+m + 2v v, — s
’d L +2 Vo, |* dyd ’d b2 +2 I,12dr'd

Q 0 JO Q o JoB
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and by using (3.22), we have that

[ o7 g+ m o) < [/Qm(y)ﬁ dy+m|b|2] +cy/0t [(/Q |vy|2dy)+m|ly|2] ds.

Therefore, by applying Gronwall’s Lemma, the above equation yields that for every ¢ € [0, T]

/Q o (g, )% dy + m |1, (8) < ¥ [ /Q |a<y>|2dy+m|b|ﬂ ,

which completes the proof. O

4.2. Vorticity estimates

Now, we aim to establish some estimates for the vorticity

w, = curl v,, (4.11)
which satisfies the following system
Ow,, .
ot + ((vy = ) - VIwy, — vAw, =0, in Q x [0,T7, (4.12)
w, =0, ondBx][0,T], (4.13)
Wu(y, 0) - Wo(y), Yy € Qa (414)

where wg := curl a. We have the following estimate.

Proposition 4.2. Let wg € LY(Q) N L>(Q). Then for all p € [1,+00] and for all t € [0,T] we have that

lwv (Dl 2o () < lwoll Loy - (4.15)

Proof. We can note that, since
vy € L2(0,T5 H*(Q)) N C([0,T); H'()) N H' (0, T; L*(9))

we have that
w, € L2(0,T; HY(Q)) N C([0, T]; L*()) N H*(0,T; H1(Q))
and therefore
wl/
ot
Then multiplying (4.12) by ¢ € L*(0,T, H}()) and integrating with respect to time, we have that

e L*(0,T; H*(Q))  and (v, —1,) - Vw, € L*(0,T; H1(Q)).

ow,,

t t t
0= [(Zrie) st [ 1) Dby 5w [ (B 0
0 H~1xH} 0 0

The above equation easily yields that

t t t
0= / <%, <p> ds +/ (div ((vy = 1)wy), @) g1 g2 ds + V/ /Vw,, -Vedyds. (4.16)
o \ Ot 0 0 0 Jo

H-1xH}
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Now, we analyse each integral term and consider two cases:
Case 1 (p > 2).

As the function |w, [P~2w, cannot be a priori taken as a test function, we are led to truncate it. (This method
often proves to be useful when establishing a priori estimates, see e.g. [25].) Let R > 0 and let Tr denote the
function

R if »> R,
Tr(r)=19r if —R<r<R,
—-R if r<—-R.

We consider the following test function
¢ = [Tr(w,)|" " Tr(w,) € L*(0,T, Hy(2)) N L*(Qr).

Simple calculations yield
VQD = (p - 1) |WV|ZD_2 (ku) 1\wy|<Ra
and therefore, we have that

t t
/ (div((vy = lL)wy), @) g1y 1 ds = (1 fp)/ / (v, — l)w, |w,,|p72) -Vw, dyds
0 0 0 J|w,|<R

p—1 [ , N
77/0 /Q(UV*ZV)'VGTR(WDH )dyd 70, (417>

by (4.2) and (4.13). Moreover, we have that

t t
u/ / Vw,Vedyds = v(p — 1)/ / |Vw, 2w, P72 dyds. (4.18)
0o Jo 0 Jlw,|<R

Now, let us define the function
Fgr(r) = / |Tr(0)|P2TRr(0)do.
0

We can use this function to give another expression of the first term in (4.16):

t t
/ <%,<p> ds:/ <%,F§(wy)> ds.
0 ot H-1xH} o \ Ot H-1xH}

Thus, by using an approximating “regular” sequence for w,, we have that

/ot <%’¢>H1M& ds = /QFR(WV(t))dy*/QFR(wo)dM (4.19)

On the other hand, it is easy to see that
1
Fp(r) = 5ITR(T)IP + R - R)T

By using (4.16), (4.17), (4.18) and (4.19), we have that

t
[ Fr@ds o1 [ [ Ve Plopdyds = [ Falen)d, (4.20)
Q 0 Jlw,|<R Q
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hence
/FR(wl,)(t)dyg/FR(wo)dy.
Q Q

Letting R /" 400, we obtain by the monotone convergence theorem

1 1
—/ |wu|p<t><—/ lwol?,
P Ja P Ja

lwv ()l Loy < llwoll gy (< 00).

or equivalently, that for every ¢t € [0, T

Letting p — +o00, we conclude that
[lwn (D)l oo (@) < llwoll oo @)
for every ¢ € [0,T].

Case 2 (1 <p<2).
Now, we consider the case 1 < p < 2. Let he(r) := (|r| + )P~ 2r for all 7 € R. Proceeding in an analogous
way to the previous case, we consider the test function

¢ = he(wy) = (lwy| + 5)p72 wy € LQ(OaTa H&(Q)) N L= (Qr).

We define the function i,
H.(r)= / he(o)do,
0

which obviously fulfils
HL(r) = (|r| +¢)" "
By multiplying (4.12) by ¢ and integrating in time and space, we obtain that

t t .
0= / <awy R (p> ds +/ <((UV - ll/) . V)wu, 90>H—1 x H1 ds + l// / ku . vcpdyds (421)
o \ Ot H=1xH} 0 0 o Ja

Firstly, we have that
t t
/ <%,gp> ds:/ <%,H2(wy)> ds
0 ot H—1x H} ot H-1xH}

H.(w(y, 1) dy — / H. (wo(y))dy. (4.22)

0
Ja
On the other hand, we have that

/le,~Vg0dy = /lef{(pf2)(|wy|+5)p*3|wy|Vw,,+(|wy|+5)p*2Vw,,} dy
Q Q

= /Q IV, [2(Jwu | +€)P 3 {(p — 1)|w,| + e} dy > 0. (4.23)

Finally, we have that

(0 =) VI )iy = |

(0 = 1w,) - Vipdy = - / (v, — 1) - VG(w,)dy,

Q
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where GG denotes the function i,
G(r) = / oh(o)do. (4.24)
0
Thus, since divv, = 0 and G(0) = 0, we have that
(((vv = 1) - V)wy, @) xH} = 0. (4.25)

Gathering (4.21), (4.22), (4.23) and (4.25), we obtain that

/Q He (w0, (g 1) dy + v / /Q Vw2 (] + /P~ {(p — D] + €} dyds = /Q H.(wo()) dy,

and therefore we have that
/Q He(w, (1) dy < /Q H. (wo(y)) dy. (4.26)

Taking the limit as € \, 0, we obtain by the monotone convergence theorem that for every ¢t € [0, T

1 1
1 / ooy, )P dy < - / wo(y)lP dy,
P Ja P Ja

and consequently, we have that
HWV(t)HLp(Q) < ||W0||LP(Q)'
Taking the limit as p — 1, we obtain that

lwp (Ol 210y < lwollz1qy -

which completes the proof. O
Proposition 4.3. Let wg € L' (2) N L>(2) be a function such that

/Q o)l 1yl dy < oo,

for a positive constant 6 > 0.
Then there exists a positive constant C' > 0, such that for all t € [0,T] we have that

wo (y, )] [y dy < e [ |wo(y)|y|® dy. (4.27)
Q Q

Proof. To prove this result we proceed as above by choosing a convenient test function.

Let # > 0. According to Proposition 4.2 we have that w, € L>(0,T, L?(Q2)), for all p € [1, 00]. On the other
hand, ||w0||’£§(m = [o, lwo(y)|P|y|°dy < oo for all p € (1,+00), as wy € L§(2) N L>®(Q).

For every 6 > 0, let 15 € C°(£2) be the function defined by

Ys(y) = exp (—dlyl).

Thus, we have that

Vis(y) = —%wa(y), (4.28)

and therefore we obtain that

(s ()} = {9& - 6%} s () (4.20)
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and

2
A{lylPs(y)} = {% - % n 52} s (). (4.30)

Pick any p € (1,2) and any € > 0, and consider the test function ¢ defined as
3y, t) = oy, Olyl"vs(y) = (lwu (y, )] + &)P2wu (y, )]y | s (y)-
(Recall that ¢ = he(wy).) We have that
¢ € L%(0,T; LP(2)) N L*(0, T Hy (2))

and
Vo =(e+ (p— Dlwy]) (lwu| + )V lyl®vs(y) + (Jwu| +€)P 2w, V {Jy|%4s } -

Then, by multiplying the vorticity equation (4.12) by ¢ we have that

t t t
0:/ <%,¢> ds+/ (00 = 1) - V) @) yyos ot ds+z// /Vw,,~V¢dyds. (4.31)
o \ Ot H~1x H} 0 0 o Jo

As in the proof of Proposition 4.2, we study each one of the previous integrals. Analogously to the previous
proof, we have that

/0<%7¢> ds =AHa(wy(y,t))ly|9wa(y)dy —/QHE(wO(y))|y|‘9¢5(y)dy. (4.32)

H-1xH}

Notice that by (4.26)

/Q He (wu (y, t)y|"vs (y) dy < |l [yI"%s ()l L= (o) /Q He (wy(y, 1)) dy < oo.
On the other hand
[ oy = [ (et (o= 1konl) G+ 27 9 Plyl o) dy
+ /Q(|w,/| +e)P 2w, Vuw, - V{|y|’vs} dy.  (4.33)
The first integral term of the right-hand side of the above equation is non-negative and for the second one, since

(] + )P0, Vo, = ]—ﬂv (el + ) = == 9 {(lal 47} (4.3)
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we have that

/(lwy|+e)p*2wywy-V{|y|%a}dy: l/ V{(lwy| + )P} -V {]yl®vs} dy
Q pJa

= [l ey v Lyl dy

71—1) / (Il + )P A {Jyl46s ) dy

€ -1 ) 2m 5
+p71/9(|wu|+g)p A{ly|%ps} dy + p(pfl)(e_é)e P
(4.35)
and thus, from (4.30), we have that
[ e ody = [ (4 (o= Dlonl) (el + 2775 Ve Plul ) dy

1 62 0(20+1
) /Qﬂwvl +e)” {W SRR ,yf Ly 62} w145 (y) dy

_c p—1 ﬁ,5(29+1) 52} 0 q
* p—1 /Q(|wy| t+e) { PE Y] + ly|"vs(y)dy

2 s

+ {pi(p (0 - 9 ] e, (436)

Furthermore, we have that

<((UD - lu) ’ V)WV7¢>H*1XH[§ - /Q(UV - lu) 'WVV(<P|y|91P6)dy

_ / wop(vy — 1) - V({ylP05) dy — / W%y — 1) - w, Veody.  (437)
Q Q

We study the right-hand side of the last equality and from (4.29) we have that

/ ooty — 1) - V(Jy|s)dy = / wu (o] + P2, (v, — 1) - V(lyl°s) dy
Q Q

- / {%} (lwv| + )P vy = 1) - V(Jyl*¥s)dy
I S R VORI (N TR ]
_/Q{(MHE)Q}(I v+ )Pyl s (y) (vy — 1) {9|y|2 6|y|}dy. (4.38)

The above equality implies that

/wap(vu —bL)- V(Iylel/f:s)dy' Slow = loll ooy {0+ 5}/Q(Iw,,| +e)lyl’ s dy. (4.39)
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For the second integral term, we proceed as in the proof of Proposition 4.2 (case 1 < p < 2). More precisely,
considering the function G given in (4.24) we have that

/ lyl®¥s(vy — 1) - w, Vdy = / lylPs (v — L) - V [G(wy)] dy
Q Q
,/Q div {|y|"vs(v, — 1)} Gw,)dy
_ 7/QG(wl,) {(wn = 1)V {|yl"¥s}} dy

and therefore, gathering (4.37) and the above equation, we have that

(00 = 1) V)b sy = = [ oo = 1) - {luls} dy

+ [ vt {o, -1 {0t -5 L a4y (wao)

Then by replacing (4.32), (4.36) and (4.40) in (4.31), we obtain that

t
/ H (w (. ) Jyl*s dy < / H. (wo)lyl 05 dy + \ / / ooty — 1) - V(ly|s) dyds
Q Q 0 Q

+/Ot/QIG(wu)| lyl*%s |(vy = 1) - {9— T H dyds

lyl2 lyl

(29 +1)

//Iwu|+€ PlylPus | —5 — ————— + 6| dyds
Iyl |yl
02 20 + 1
5 — 026+ )+52 dyds
lyl2 ]

Then from (4.39) we have that

t
/ He (w0, (5, £) [yl s dy < / Ha<wo>|y|%dy+{cl+u9} / / (] + )P Iyl dyds
Q Q p 0 JQ

t Cy [t 2
+C1/ / Gl [yl dyds + 22 / / (o] + )7 UylPsdyds + —_ |9 — sle~5e?,  (4.41)
o Ja p—1Jy Ja p(p—1)

where
Ci = (0+0) lv. = Lll = om and Oy =60%4+6(204+1) + 62

The fact that [[v, — ly||;« (g, remains bounded as v\, 0 readily follows from Propositions 2.3, 4.1 and 4.2
(see below Sect. 5.1.) Now, letting € \, 0, we obtain that for some constant C5 > 0

1 sy
5/|wy<y, DI [yl s dy < p/|wo|”|y| wﬁdy+{01+l/—+03}/ /|w Plylfusdyds.  (4.42)
Q



ON THE MOTION OF A BALL IN A PERFECT FLUID 101

Applying Gronwall’s Lemma and then using the monotone convergence theorem in the limit § N\, 0, we obtain
that there exists a positive constant C' > 0, such that for all ¢t € [0, T

/Q o (g, )7 1y]° dy < o /Q lwo)I” 191° dy.

Now, we have in the limit p — 1T

wy ()| [yl° dy < e“* [ |wo(y)|[yl®dy vt e [0,T],
Q Q

and the proof is complete. (I

5. PROOF OF THEOREM 1.1

5.1. Passage to the limit

It follows from (4.10) that [, is bounded in L*°(0,T"). On the other hand, the quantity faB v, - 7dI is also
bounded in L*°(0,7T). Indeed, according to Stokes’ theorem

/ vV~TdI‘:7/curlv,,dy:f/w,,dy
oB Q Q

\/ vadF‘ < lwnllzren < ool 1o (5.1)
OB

As w, is bounded in L*(0,T, L*(Q) N L>=(Q)) by (4.15), it follows from Propositions 2.3 and 4.1 that v, is
bounded in L>®(Qr) and in L>(0,T, WP(Q)) Vp € [2, +00). Therefore, we infer that for some sequence vy \, 0
and some functions

hence, by (4.15),

v e L=, T;WHP(Q)) Vp € [2,+00),
w € L>®(0,T; Ly(Q) N L=(NQ))
and [ € L*(0,T),

we have that

— v in L*(0,T; WHP(Q)) — weak *, Vp € [2, +00)
., — w in L®(Qr) — weak =

l,, =1 in L>0,T) — weak x*

Vy,,

Wy

as k — +oo.
Fix a number ¢ € (1,2) and set Qr :={y € Q; 1 < |y| < R} for any R > 1. Let

Var = { € Wy (Qr); dive = 0}.
By the Sobolev embedding theorem V, p C L%*(Qg) for any ¢ € (1,2). We claim that (v,); is bounded

in L%(0,T, (Vy r)"). Indeed, taking the inner product of (3.1) by ¢(t), where ¢ € L*(0,T, V, r), and integrating
by parts we obtain for a.e. t € (0,7

/ (v)e - pdy = —v Vu, :V(pdy—i—/ (I, —vy) - Vu,) - ody
Qr Qr Qr
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hence, by Hélder inequality,

/Q (00)e - wdy‘ < VIVl per gy - IVellza@n) + (11 + 1ol @) V00l Lo ) - €l Lat@n)
R

where ¢’ > 2 denotes the conjugate exponent of g. We conclude that (v,): is bounded in L?(0, 7, (V, r)’). Let
p > 2. Observing that the first embedding in

W' (Qr) € C(Qr) C L*(Qr) C (Vg,r)'

is compact, we deduce from ([29], Cor. 4), that (v,),¢ is relatively compact in C(Qg x [0,77]) for any R > 0.
Therefore, we obtain that o
v e B(Qr)

and that v,, converges to v uniformly on each compact subset of Q x [0,T] as k — 4o00. On the other hand,
using the identity
Uy, n=1y, -n ondBx[0,T]
valid for all k¥ > 0, and the uniform convergence of v,, to v on 9B x [0, T], we infer that [,, converges uniformly
to L on [0,T], hence [ € C([0,T)).
For any ¢ € L?(0,T,V) we have by (3.20) and (3.29)

T T
/ {(v'uk,w)pﬂLVk/Vvuk :Vsody—wc/ (v, —luk)-(so—lqs)dF}dt=//fuk-wdydt (5.2)
0 Q oB 0JQ

where f,, = (I,, — vy, ) Vv, . Noticing that V is dense in H and identifying H with H’, we obtain the diagram
VCH=H cV.

Therefore, we may write

(’UII/;C ) (p)ﬂ = <U:/k L)
where the symbol (-, ) denotes the duality pairing between V' and V. As (v,, ) is bounded in L%(0,T, H*(Q)) N
L*>*(Qr) and (l,,) is bounded in L>(0,T), we infer from (5.2) that (v}, ) is bounded in L?(0,T,V’). Extracting
a subsequence if necessary, we may assume that v;, — v’ in L2(0,T,V"). As

(b, = v ) — (L=v)p  in L*(Qr),
taking the limit in (5.2) we obtain
T
/ {(U’,ap) + / ((v—=1)-Vo)- @dy} dt =0 Ve e L*0,T,V). (5.3)
0 Q

Obviously, (3.2), (3.3), (3.6) and (3.7) hold true. On the other hand [V, V']
23]

1= 'H, hence by a classical result in

v e C([0,T], H), (5.4)
and we infer from Hoélder inequality that

v e C0,TLING) Vo€ 2,400).
In particular, it follows from ([32], Lem. 1.4), that

v e Cu([0,T], WHP(Q))  Vp € [2,400)
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and that
lim o(y,t)=0  Vtel[0,T].

ly|—+o0

We now turn to the equation satisfied by w. Using (4.2), (4.12) may be rewritten as
wy, + div (v, — L, )wy,) — vkAw,, = 0. (5.5)
Clearly, (vy, — I, )wy, — (v —Dw in L=(Qr) - weak *, hence, letting k — +o0 in (5.5) we obtain
W'+ div((v—1w) =0 in D'(Qr). (5.6)
Finally, passing to the limit in (4.11), (5.1) we get
w = curlv, (5.7)

‘/ ’U'Tdr‘ < ||w0||L1(Q). (58)
OB

5.2. Existence of a classical solution of (1.8)—(1.13)

In this section we prove that all the equations in (1.8)-(1.13) are satisfied in the classical sense. More
precisely, we prove that v, Vv, v; and V¢ belong to B(Qr). We begin with the following result.

Lemma 5.1. There exists a constant H > 0 such that for all y,z € Q and all t € [0,T]

[(y,t) —v(z,t)| < Hly — z|x(ly — z]), (5.9)
where

(r) = 1 for r > 1,

X = 1+In(l/r) for 0<r<1.

Proof. Applying Lemma 2.4 with [ = [(t), we may write
U(yvt) = dl(y7t) + Ul(ya t)7

where di € C([0,T], Wh>(Q)) satisfies di(y,t) = I(t) for |y| < 2, di(y,t) = 0 for |y| > 3, and v; fulfils

curlv; = wy = w — curld; and dive; =0 in Q, v; - n = 0 on 9B, limy| ;o vi(y,t) =0, and [;zv1 - 7dl =
Jop v Tdl := C(t). (Note that the function C(t) is continuous.) Then, by virtue of ([22], Lem. 2.14),

vi(y,t) = curlG(wi)(y, t) + M1 (t)ui(y),
where A1 (t) = C(t) — [, curlG(wy) - 7dT and uy € WH°(Q) is some irrotational and solenoidal flow satisfying

uy-n=0ondB, [jpu-7dl =1 and u(y) — 0 as |y| — +oo. (See [22], Lem. 1.5, for the existence of the
vector field u;.) Then, by virtue of ([22], Lem. 2.4), v; and v satisfy (5.9). O

Remark 5.2. In [22] A\; takes the following form

Al(t)z/ a-TdF—/ curlG(wq) - 7dT.
OB OB

Although it is expected that C(t) = C(0) = faB a - 7dl, this property has not yet been proved. The result in
([22], Lem. 2.4), remains nevertheless valid with this new definition of Aq ().
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The vector field v being quasi-Lipschitz (see (5.9)), it follows from Osgood’s criterion (see e.g. [17], Cor. 6.2)
that the Cauchy problem
dy
- = t) — It
Y w1y

y(to) = yo
has a unique solution y(t). We may therefore define the flow associated to v — [ as the solution of the following

system

%Us,t(y) = 0(Uss(y), s) — 1(s),

Ui t(y) = y-

Asv € B(Qr), 1 € C([0,T)) and (v —1)-n =0 on dB x [0,T], we see that U, ;(y) is defined for all (s,t,y) €
[0,T)% x Q. The following result comes from [21].

Lemma 5.3. There exist two constants 6 > 0 and L > 0 such that

|Us,t(y) - Ug,f(g” S L (|S - ‘§|6 + |t - ﬂé + |y - g|6) VS, §at7£€ [OaT]a Vyag € Q.

The following uniqueness result is similar to a result given in ([24], Proof of Thm. 2.5). Its proof is left to the
reader.

Lemma 5.4. Let v € L™(Qr) be such that divo = 0 on Q x (0,T) and v-n = 0 on 9B x (0,T), and let
w € L*(0,T, L*(Q) N L>(Q)) be a solution of

Ow o
r +divivw) =0 inD'(2x(0,7)) (5.10)

such that w),_, = 0. Then w = 0.
Let @(y,t) :== wo(Uo.¢(y)), where wy := curla. As div(v—1) =0, we infer as in ([22], pp. 70-71), that for all

te[0,T]
/|w Y, |dy7/|w0 |dy7
hence @ € L>(0,T, L*(Q) N L*°(Q)). It follows from Lemma 5.4 (applied to w — @ and v — [) that

w(y,t) = o(y,t) = wo(Uo,t(y))-

Using once again the measure preserving property of Us ;(y), one may show that

/Qw(y,t)dyz/gwo(y)d%

C(t) = / v - 7dl' = Const.
oB

hence

On the other hand, we infer from Lemma 5.3 that
w € C™M@Q7) N L=(0,T, LY(9).
Then we derive the following result.

Lemma 5.5. 88; € B(Qr) forj=1,2.
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The proof is virtually the same as the one for ([22], Lem. 2.10). The following result contains the fact that
Vo € C([0,T], L*(Q2)), which will be used later when proving that v' = dv/dt € B(Qr).

Lemma 5.6. v € C([0,T], LP(Q)) for any p € (2,4+00], and Vv € C([0,T], LP(R)) for any p € (1,+00).
Proof. We need the following

Claim. w € C([0,T], L*(2) N L>()).
We readily infer from w € L>(0,7,L}(Q2)) N C(Qr) that w € C([0,T], L*(2)). On the other hand, wy is
Hélder continuous on Q by assumption, and we infer from Lemma 5.3 that

[Uot(y) — Uow (y)| < LIt —¥'|°  VyeQ, vt,t' €[0,T).
Thus, the vorticity w(y,t) = wo(Uo+(y)) belongs to the space C([0,T], L>(2)). The claim is proved.
The proof of the lemma is completed by using Proposition 2.3, the claim, and the fact that [ € C([0,7T]) and
Jop v Tdl' = Const. O

Lemma 5.7. v’ € B(Qr) N C([0,T], L*(Q)).
Proof. Let p € L*(0,T;V). By (5.3) we have that

/oT {W’ o)+ /Q((” —1)-Vo)- sody} dt = 0.

Let f denote the function ((v—1)-V)v extended by 0 on B. We infer from Lemma 5.6 that f € C([0,T]; L*(R?)),
hence Pf € C([0,T]; H). It follows that

/Q (w—1)-Vo) - dy = (.0), = (B, 0), = (Pf. ).

Thus
T
[ wapraa=o0 ey,
0

which implies that

v+ Pf=0 in L(0,T; V).
Thus v' € C([0,T],H) and I" = 1,, € C([0,T]). We now decompose v as

U(y7t) :’UQ(yvt) +d1(yat)+0d2(y)a (5'11)

where v solves (2.19)—(2.23) (with wa(y,t) = w(y,t) — curldy(y,t) — Ccurlds(y)), di (resp. dg) is given by
Lemma 2.4 (resp. Lem. 2.5), and C' = faB a - 7dl'. Derivating with respect to time in (5.11), we obtain

;o /
v =vy +dj.

Asl' € O([0,T]), d} € B(Qr). The fact that vy € B(Q7) may be found in ([22], Proof of Lem. 2.11). Therefore,
v € B(Qr). O

Corollary 5.8. v e C'([0,T], L2(Q)) N C([0, T], H'(Q)).

Proof. This is a direct consequence of (5.4), and of Lemmas 5.6 and 5.7. g
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It remains to prove the existence of a pressure ¢(y,t) satisfying (1.8), (1.11) in a classical sense. As v’ €
C(]0,T),H), we infer from (5.3) that for every ¢ € [0,T]

ml'-l¢+/(U'—i—(v—l)-VU)-qbdy:O Vo e V. (5.12)
Q

In particular,
/(U/ Fw—1)-Vv)-pdy=0 Voe C(Q) with dive = 0.
Q

By ([32], Props. 1.1 and 1.2), there exists a function ¢ € L2(0, T, H'(€)) such that for a.e. t € (0,T)
v+ (v—=1)-Vu+ Vg =0. (5.13)

As v’ and (v — 1) - Vo belong to B(Qr) N C([0,T], L?(2)), adding a function of time to ¢ if necessary we see
that ¢ € C([0,T],C*(Q)) N C([0,T], H'(Q)). Picking any ¢ € V, we infer from (5.12)—(5.13) and the divergence
formula that

ml' -1y = / Vq-ody = / div(q¢)dy = / gn - ¢dr.
Q Q OB
Therefore (1.11) holds true.

5.3. Uniqueness of the solution

Now, we investigate the uniqueness of the solutions of the problem (1.1)—(1.6). Recall that by using the
change of variables (1.7), we obtain the equivalent model (1.8)—(1.13).
Assume given two classical solutions (v!,q!,l') and (v2,¢2,1%) of (1.8)—(1.13). We then introduce the
functions
v=ov!—0? qg=q¢" — ¢ =1 —12, (5.14)

which fulfil the following system

%—i—((ul N Vo+(v=1)- Vv +Vg=0, inQx]I[0,T], (5.15)
dive=0, inQx][0,T], (5.16)
v-m=1-n, ondBx]|0,T], (5.17)
ml’ :/ gndl,  in [0,T], (5.18)
oB
v(y,0) =0, VyeQ, (5.19)
1(0) =0. (5.20)

In order to prove that (v, ¢q,1) = (0,0,0), we consider some energy estimate for (5.15)—(5.20).
Firstly, by multiplying (5.15) by v and by integrating over £ x (0,t), we have that

¢ ¢
0:/ /vt~vdyds+/ /((vlfll)~V)v~vdyds
0 Jo 0o Ja

t t
+//((v—l)~V)v2-vdyds+//Vq~vdyds:11+12+13+14.
0o Jo o Ja

We now study each integral term. We easily have that

1
= [ ety
Q
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Next, some integrations by part give that
I, =0. (5.21)
On the other hand, we have that

Is = /Ot/Q((’U—l)-V)’U2-Udde

¢ ¢
:/ /(v~V)v2~vdydsf/ /(Z~V)02~vdyds
0 Jo 0o Jo

= I31 + I3.

We can estimate each part:

t
T | < V0|2 / / (o[ dyds,

t 1/2 1/2
el < [l ([1vepan) (o) as
0 Q Q
L 2 ! 2 2
< §||U | o< 0,7, H57 (22)) [/ (/ [v]*dy + || ) ds} .
0 Q

m [t d m
I = — — (|11 = — 2,
=5 [ () ds= o)

/le(t)P +mll) < C [/Ot (/Q |v|2dy—|—m|l|2) ds}

and by Gronwall’s Lemma, we obtain that

and

Finally we have that

Thus, we have that

v=0 in Q2x(0,7) and =0 in (0,7).

Using (5.15) we conclude that Vg = 0 in © x (0,7T), which proves that the solution of our problem is unique
(up to an arbitrary function of ¢ for ¢). The proof of Theorem 1.1 is achieved.
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