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SOLUTIONS OF A NONHYPERBOLIC PAIR OF BALANCE LAWS

Michael Sever1

Abstract. We describe a constructive algorithm for obtaining smooth solutions of a nonlinear, non-
hyperbolic pair of balance laws modeling incompressible two-phase flow in one space dimension and
time. Solutions are found as stationary solutions of a related hyperbolic system, based on the intro-
duction of an artificial time variable. As may be expected for such nonhyperbolic systems, in general
the solutions obtained do not satisfy both components of the given initial data. This deficiency may be
overcome, however, by introducing an alternative “solution” satisfying both components of the initial
data and an approximate form of a corresponding linearized system.
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1. Introduction

We consider smooth solutions of a pair of balance laws of the form

βt + (Kβ − vb(β))x = 0, (1.1)

vt + (Kv − 1
2
v2bβ(β))x = F (x, v, β), 0 < x < L, t > 0, (1.2)

with
b(β) = (β − 1)(1 + λ− β)/β, (1.3)

with dependent variables assuming values

1 ≤ β(x, t) ≤ 1 + λ, v(x, t) ∈ R. (1.4)

In (1.1)–(1.3), λ > 0, K ∈ R, F : (0, L) × R × {1, 1 + λ] → R are given.
This system arises as a model of incompressible two-phase flow in one space dimension and time, making

the single-pressure approximation [5, 8]. The variable β is a linear measure of the local volume fraction, with
β = 1 corresponding to the heavier fluid, of density 1 + λ, and β = 1 + λ corresponding to the lighter fluid of
unit density. Indeed, equation (1.1) even in weak form is an expression of conservation of mass of each separate
phase. As against this, the variable v is a weighted velocity variable, not necessarily a conserved (or balanced)
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quantity in the context of discontinuous solutions. The function F describes the applied forces; for example,
for x increasing vertically and F including gravity and drag terms, a possible form for F is

F = −g − σv|v|, (1.5)

with g > 0 the gravitational constant and σ > 0 a drag coefficient [8].
Lack of hyperbolicity is an endemic problem in such models of two-phase flow, particularly in the single

pressure approximation [5, 7, 12, 15]. For the system (1.1), (1.2), the characteristic speeds are real only in the
relatively uninteresting special cases β = 1, β = 1 + λ, and v = 0.

A careful discussion of the mathematical and numerical implications of lack of hyperbolicity in systems of
conservation laws has recently been given in [10]. In particular, solutions of the classical initial value problem
for (1.1), (1.2), however smooth, must be expected to be absolutely unstable under perturbation. Finding
nontrivial solutions as limits of solutions of a regularized problem as the dissipation vanishes is not a realistic
approach for this system. A useful discussion of lack of hyperbolicity of systems including (1.1), (1.2) in the
context of specific applications is given in [4].

One alternative to regularization of the system (1.1), (1.2) is application of a wave front tracking algorithm [2].
Such an approach in general requires knowledge of the admissible discontinuities for a given system. In the case
of the system (1.1), (1.2). discontinuous solutions of this system have been studied [8, 9, 13].

The system (1.1), (1.2) admits few classical weak solutions, of very limited interest, but does admit singular
shocks, solutions valued as measures, obtained as limits of viscous structures. Alternatively, a different derivation
of the model of two-phase flow results in a modified form of equation (1.2)[14], for which discontinuous solutions
are again obtained as the limits of viscous structures.

The two approaches give the same answer with regard to the set of admissible discontinuities. A discontinuity
propagating with speed s, connecting vL, βL on the left to vR, βR on the right is admissible provided that
two conditions are satisfied: the Rankine-Hugoniot condition corresponding to (1.1),

(s−K)(βR − βL) = −vRb(βR) + vLb(βL), (1.6)

and an entropy condition, of the form

−vRbβ(βR) ≤ s−K ≤ −vLbβ(βL). (1.7)

The conditions (1.6), (1.7) supply enough admissible discontinuities to solve the Riemann problem for (1.1),
(1.2) (with F = 0), but not for applying wave front tracking to more general Cauchy problems [8]. In particular,
in general the solution of “small” Riemann problems is not “small”, so continuous but not piecewise constant
initial data cannot be handled. Furthermore, the balance term F is problematical, as methods such as that
described in [1] depend on hyperbolicity.

Here we discuss an algorithm for approximating nontrivial smooth solutions of the system (1.1), (1.2) based on
the well-known technique of introducing an artificial time variable τ and finding solutions as limits of solutions
of a related hyperbolic system as τ → ∞. We discuss sufficient conditions that the limit as τ → ∞ exists,
that the solution so obtained depends continuously on the various problem parameters, and that the solution
so obtained is independent of the artificial, “numerical” parameters.

The analytical results presented below are intended to motivate and perhaps justify the computational
algorithm, not to delineate its range of applicability. In this spirit we readily acknowledge several important
limitations:

First, our present results are “in the small”, essentially sufficient conditions under which stationary solutions
(in t) of (1.1), (1.2) are local attractors. These results depend on some qualitative assumptions on the solutions
of the related hyperbolic system, expedient but possibly difficult to verify.

Second, our results are limited to special ranges of the problem parameters and conditions on the balance
term F . In particular, we have no satisfactory way of allowing the boundary conditions at x = 0 and x = L to
depend explicitly on t.
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Third, this algorithm finds only smooth solutions. At present we have no way of approximating piecewise
smooth solutions, with admissible discontinuities as described above.

Fourth, and perhaps most important, the adopted condition at t = 0 does not correspond to the expected
initial condition for a hyperbolic system of balance laws. Our solutions are uniquely determined by a single
linear combination of v(·, 0) and β(·, 0). We contend that such is to be expected, in view of the results of [10].

A brief outline of the discussion follows. In Section 2, we discuss the stationary solutions of (1.1), (1.2) and
the form of the boundary conditions at x = 0, x = L. The related hyperbolic system, with τ as the “time-
like” independent variable and x, t as “space-like” variables, is introduced in Section 3. This system admits
a uniformly convex entropy density, and so allows for comparison of smooth solutions with weak solutions
satisfying the corresponding entropy inequality [3]. In Section 4, we discuss the particular property of the
system (1.1), (1.2) from which the attractor property of the stationary solutions derives. The principal results
are then obtained in Section 5. Finally in Section 6, we show how both v(·, 0) and β(·, 0) can be specified by
relaxing the requirement of a single-valued solution or by accepting an approximate solution.

2. Stationary solutions and boundary conditions

In the context of the application to two-phase flow as described above, we are primarily concerned here with
dependent variables

z =
(
v

β

)
(2.1)

assuming values in X ,

X =
{
v < 0, 1 < β < (1 + λ)

1
2

}
. (2.2)

For all z ∈ X , from (1.3),
b(β), bβ(β) > 0, bββ(β) < 0. (2.3)

The system (1.1), (1.2) is invariant under scaling in x, t, and under scaling in t, v,K (under which X is also
invariant). Thus in comparing solutions corresponding to different problem parameters, we shall consider K
and L as fixed positive constants.

Boundary conditions at x = 0, x = L are conveniently formulated in terms of the normal fluxes, denoted
by q,

q =
(
q1(z)
q2(z)

)
=
(

Kβ − vb(β)
Kv − 1

2v
2bβ(β)

)
. (2.4)

Lemma 2.1. The mapping (2.4) determines an isomorphism of X onto Y , given by

Y = {q1 > K, q2 < 0}. (2.5)

Proof. Given z ∈ X , q is explicitly given in (2.4), and q ∈ Y follows easily from (2.2)–(2.4). Given q ∈ Y , we
solve the second component of (2.4) for negative v, using (1.3) and obtaining

− v

K
=

[
1 − 2 q2

K2

(
1+λ
β2 − 1

)] 1
2 − 1(

1+λ
β2 − 1

) · (2.6)

Using (2.6) in the first component of (2.4), we obtain an equation for β, again using (1.3),

(
β

1 + λ− β

) ( q1
K − 1
β − 1

− 1
)
−
[
1 − 2 q2

K2

(
1+λ
β2 − 1

)] 1
2 − 1(

1+λ
β2 − 1

) = 0. (2.7)
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Using (2.5) it is readily checked that the left side of (2.7) is monotonically decreasing in the interval (1, (1+λ)
1
2 ),

negative for β = (1 + λ)
1
2 − 0, and positive for β − 1 sufficiently small. So (2.7) uniquely determines β as a

function of q1, q2, and (2.6) then explicitly determines the corresponding value of v. �

We use the lemma to parameterize the stationary solutions by the values of q1, q2.

Theorem 2.2. Assume F continuous in x, locally Lipshitz in v, β, and satisfying an estimate of the form

|F (x, v, β)| ≤ c(1 + v2); (2.8)

then for any q ∈ Y , there is a unique function z satisfying

(
Kβ − vb(β)

)
x

= 0, (2.9)

(
Kv − 1

2
v2bβ(β)

)
x

= F (x, v, β), 0 < x < L; (2.10)

z(0) ∈ X ; (2.11)

Kβ(L) − v(L)b
(
β(L)

)
= q1, (2.12)

Kv(0) − 1
2
v(0)2bβ

(
β(0)

)
= q2. (2.13)

Remark. In (2.8) and below, c is a generic positive constant.

Proof. From (2.9) and (2.12)
Kβ(0) − v(0)b

(
β(0)

)
= q1. (2.14)

By appeal to Lemma 2.1, using (2.13), (2.14), we have z(0) satisfying (2.11) uniquely determined as a function
of q1, q2.

Now (2.9), (2.10) are solved for vx, βx
, obtaining

vx =
F

D(z)
(
K − vbβ(β)

)
, (2.15)

β
x

=
F

D(z)
b(β), 0 < x < L, (2.16)

where here and below we use

D(z) = (K − vbβ(β))2 − 1
2
v2b(β)bββ(β). (2.17)

From (1.3), (2.3), there is a positive constant c such that

D(z) ≥ c(1 + v2) (2.18)

for all v ∈ R, 1 ≤ β ≤ 1 + λ.
Thus it suffices to show that the initial value problem determined by (2.15), (2.16), with z(0) ∈ X given, has

a unique solution, with β(x) ∈ (1, 1 + λ) for all 0 ≤ x ≤ L.
Using (2.8) and (2.18), it follows that |F |/D is uniformly bounded. Thus from (2.15), |v| can increase at most

exponentially with respect to x. From (2.16) and (1.3), β− 1 and 1 + λ− β can decrease at most exponentially
with x. Since β(0) ∈ (1, 1+λ), β(x) ∈ (1, 1+λ) for all x ∈ [0, L]. The claimed results now follow by assumption
on the regularity of F . �

We next obtain a result on the continuous dependence of stationary solutions on q1, q2, F .
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Theorem 2.3. Let z be the solution of (2.9)–(2.13) for some given q1, q2 , and F as in Theorem 2.2. Let z′ be
another solution of (2.9)–(2.13), corresponding to values q′1, q′2, and a balance term F’ of the form

F ′(x, v, β) = F (x, v, β) +G(x, v, β), (2.19)

also satisfying the assumptions of Theorem 2.2. Then there is a constant cM depending on

M = sup
0≤x≤L

(|v(x)| + |v′(x)|) , (2.20)

such that

sup
0≤x≤L

|z(x) − z′(x)| + sup
0<x<L

|zx(x) − z′x(x)| ≤ cM

(
|q1 − q′1| + |q2 − q′2| + sup

0<x<L
|G(x, v′(x), β′(x)|

)
. (2.21)

Proof. Computing the matrix qz from (2.4) and (2.1), using (2.18) we readily obtain

|q−1
z (z)| ≤ c (2.22)

with a constant c independent of z. From (2.13), (2.14), using (2.22) we obtain

|z(0) − z′(0)| ≤ c (|q1 − q′1| + |q2 − q′2|) ; (2.23)

the remainder of (2.21) is elementary. �

The stationary solutions of primary interest here correspond to moderate values of q1, q2, and a balance
term F satisfying additional conditions, compatible with the example (1.5).

Theorem 2.4. In addition to the assumptions of Theorem 2.2, assume that F satisfies

F (x, v, β) ≤ −c < 0, 0 ≤ x ≤ L, −c0 ≤ v ≤ 0, 1 ≤ β ≤ 1 + λ (2.24)

for some positive constant c0. Then for all sufficiently small q1 − K and |q2|, the corresponding stationary
solution z satisfies

c|q2|
1 + |q2| 12

≤ −v(x) ≤ c|q2|, (2.25)

β(x) − 1 ≤ c (q1 −K + |q2|) , 0 ≤ x ≤ L; (2.26)

vx(x) ≤ −c < 0, (2.27)

β
x
(x) < 0, 0 < x < L. (2.28)

Proof. From (2.6) and (2.7), β(0) ↓ 1 and v(0) ↑ 0 as q1 ↓ K and q2 ↑ 0. Thus using (2.22), it follows that (2.26)
holds at x = 0, and then from (2.6) that (2.25) holds at x = 0. Since |v| can increase at most exponentially
in x, for |q2| sufficiently small we have (2.25) and

−c0 ≤ v(x) < 0 (2.29)

holding for all 0 ≤ x ≤ L. From (2.24) and (2.29), F < 0 throughout the interval (0, L), and (2.26)–(2.28)
follow from (2.15), (2.16). �
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3. Imbedding in a hyperbolic system

The system (1.1), (1.2) is of a skew-gradient form [8]

βt + ωv,x = 0
vt + ωβ,x = F (3.1)

with
ω(z) = Kvβ − 1

2
v2b(β). (3.2)

This representation facilitates finding solutions of (1,1), (1.2) as solutions of a related hyperbolic system, sta-
tionary with respect to an artificial time variable τ , of the form

φz,τ + ψz,t + ωz,x =
(

0
F

)
. (3.3)

In (3.3),

φ(z) =
1
2
|z|2 =

1
2
(v2 + β2) (3.4)

ψ(z) = vβ; (3.5)
as φ is strictly convex in z, the system (3.3) is hyperbolic [6, 11] with τ as the time-like independent variable.

We consider solutions of (3.3) in the region

(x, t, τ) ∈ Ω = (0, L) × (0,∞) × (0,∞); (3.6)

consideration of the characteristic speeds for the system (3.3) determines that a single boundary condition is
needed on each of the boundary segments x = 0, x = L, t = 0, and a limit condition at t = ∞.

For some parameters ν, η ∈ (0, 1), we take boundary conditions at t = 0 and t = ∞ of the form

νβ(x, 0) + (1 − ν)v(x, 0) = f(x), 0 < x < L (3.7)

η
(
β(x,∞) − β(x)

) − (1 − η) (v(x,∞) − v(x)) = 0, 0 < x < L. (3.8)
Motivation for boundary conditions of this form will be given in Section 4.

The data at t = 0 is limited to the value of ν and the values of the scalar function f , assumed of class C1 in
the interval (0, L).

In (3.8), β(·,∞), v(·,∞) are understood as limiting values as t→ ∞, and we regard the stationary solution z
as uniquely determined from the values of q1 and q2, by appeal to Theorem 2.2.

Throughout we shall apply boundary conditions at x = 0, x = L, of the same form as (2.12), (2.13),

Kβ(L, t, τ) − v(L, t, τ)b(β(L, t, τ)) = q1, t, τ ≥ 0, (3.9)

Kv(0, t, τ) − 1
2
v(0, t, τ)2bβ (β(0, t, τ)) = q2, t, τ ≥ 0. (3.10)

The “initial data” at τ = 0 shall be assumed close to the corresponding stationary solution, smooth and
satisfying (3.7), (3.8), (3.9), and (3.10), and with

∞∫
0

L∫
0

ec1t|z(x, t, 0) − z(x)|2dxdt = c, (3.11)

for some positive constant c1.
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With this initial/boundary data, we assume the existence of an entropy weak solution of (3.3), at least until
such τ as it becomes infinite (in L2). Uniqueness is not needed; an entropy inequality of the form [L]

φτ + ψt + ζx − βF ≤ 0 (3.12)

suffices. In general, (3.12) is understood in the sense of distributions; smooth solutions of (3.3) satisfy
(3.12) strongly and with equality. In (3.12) and hereafter ζ denotes the Lagrange transform of ω, obtained
from (3.2), (1.3),

ζ(z) = zωz(z) − ω(z)

= Kvβ − v2

(
1 +

λ

2
− β

)
. (3.13)

Additional qualitative assumptions are needed on the regularity of entropy weak solutions of (3.3). Specifically,
we assume that for any ε > 0 there exists δ > 0, c2 > 0, c3 such that if

sup
0<x<L

t>0

(|z(x, t, 0) − z(x)| + |zx(x, t, 0) − zx(x)| + |zt(x, t, 0)|) ,

sup
0<τ ′<τ




∞∫
0

L∫
0

|z(x, t, τ ′| − z(x)|2dxdt



1
2

≤ δ, (3.14)

then
sup

0<x<L
t>0

|z(x, t, τ) − z(x)|, sup
0<x<L

t<c2τ−c3

|zx(x, t, τ) − zx(x)| ≤ ε. (3.15)

In (3.14), (3.15), δ may depend on q1, q2 but not on ν, f .
The first condition in (3.15) involves an assumption on the data at τ = 0, namely that this is chosen to avoid

focusing in the sense of the linear wave equation in several space variables. We shall show in Section 5, however,
that our results are otherwise independent of the artificial initial data.

The constants c2, c3 in the second condition in (3.15) may depend on the particular solution z. This condition
is rationalized on the grounds that for the system (3.3), there are no planar shocks connecting two states in X
with speeds close to zero. Thus while shocks are expected to form spontaneously for the system (3.3), they are
expected to leave the bounded subsets of (0, L)× (0,∞) via the boundaries or else by movement to large values
of t as τ increases.

4. A comparison theorem

Our principal results are obtained by comparison of two solutions of (3.3): a smooth solution z, corresponding
to parameters q1, q2, ν, f, η, F ; and an entropy weak solution z′, corresponding to parameters q′1, q′2, ν′, f ′, η′, F ′.
Throughout we use F ′ of the form (2.19), for some function G.

In comparing the solution values, we use notation of the form

[z] = z − z′, (4.1)

Q(ω) = ω(t) − ω(z′) − ωz(z′)[z], (4.2)

Q∗(ωz) = ωz(z′) − ωz(z) + ωzz(z)[z], (4.3)

extended in the obvious manner to other potential functions φ, ψ. Inner products and matrix-vector products
in l2 are understood in (4.2), (4.3) and below.
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The potential functions φ and ψ are homogeneous of degree two in z; their quadratic parts are of simple form

Q(φ) =
1
2
[z]2; Q(ψ) = [v][β]; Q∗(φz) = Q∗(ψz) = 0. (4.4)

We use here a variation of a standard estimate [3] used to prove uniqueness of smooth solutions of systems
of conservation laws equipped with convex entropies. The argument is somewhat simplified in the symmetric
coordinates z.

Lemma 4.1. Given w ∈ C1[y0, y1] → X, w′ ∈ BV [y0, y1] → X, Θ ∈ C1[y0, y1] → R+ and χ ∈ C2 : X → R,
we have

y1∫
y0

Θ(y) [(wχw(w) − χ(w))y − w′χw,y(w) − wχw,y(w′) + (w′χw(w′) − χ(w′))y ] dy

= (Q(χ)Θ)
y1∣∣∣

y=y0

−
y1∫

y0

ΘyQ(χ)dy +

y1∫
y0

ΘwyQ
∗(χw)dy. (4.5)

Proof. Partial integrations give the left side of (4.5) equal to

Θ [wχw(w) − χ(w) + w′χw(w′) − χ(w′) − wχw(w′)]
y1∣∣∣

y=y0

+

y1∫
y0

Θy [−wχw(w) + χ(w) − w′χw(w′) + χ(w′) + wχw(w′)] dy +

y1∫
y0

Θwy [−χww(w)w′ + χw(w′)] dy. (4.6)

Using the identity

Θ(2χ(w) − χw(w)w)
y1∣∣∣
y0

=

y1∫
y=y0

Θy(2χ(w) − wχw(w))dy +

y1∫
y0

Θ[χw(w) − wχww(w)]wydy (4.7)

and (4.2), (4.3), the expression (4.6) is equal to the right side of (4.5). �

Lemma 4.2. Assume z, z′ each an entropy weak solution of (3.3), θ = θ(x) ∈ C1[0, L] → R+ and θ̂ = θ̂(t, τ) ∈
W 1,∞ : R+ × R+ → R+. Assume in addition that |zx| is uniformly bounded on the region x ∈ (0, L), (t, τ) in
the support of θ̂.

Then for all 0 ≤ τ0 < τ1,

1
2

∞∫
0

L∫
0

θθ̂[z]2dxdt
τ1∣∣∣

τ=τ0

+

τ1∫
τ0

L∫
0

θθ̂[v][β]
∞∣∣∣

t=0

+

τ1∫
τ0

∞∫
0

θ̂

(
θQ(ω)

∣∣∣L
x=0

)
dtdτ

−
τ1∫

τ0

∞∫
0

L∫
0

θ

(
1
2
[z]2θ̂τ + [v][β]θ̂t

)
dxdtdτ +

τ1∫
τ0

∞∫
0

L∫
0

θ̂A dxdtdτ ≤ 0, (4.8)

with the abbreviation
A = −Q(ω)θx + θzxQ

∗(ωz) − θ[β][F ]. (4.9)
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Proof. From (3.3) and the entropy inequality (3.12),

0 ≥
τ1∫

τ0

∞∫
0

L∫
0

θθ̂

[
φτ (z) + ψt(z) + ζx(z) − βF − z′

(
φz,τ (z) + ψz,t(z) + ωz,x(z) −

(
0
F

))

− z

(
φz,τ (z′) + ψz,t(z′) + ωz,x(z′) −

(
0
F ′

))
+ φτ (z′) + ψt(z′) + ζx(z′) − β′F ′

]
dxdtdτ

=

∞∫
0

L∫
0

θ

τ1∫
τ0

θ̂ (φτ (t) − z′φz,τ (z) − zφz,τ (z′) + φτ (z′)) dτdxdt

+

τ1∫
τ0

L∫
0

θ

∞∫
0

θ̂ (ψt(z) − z′ψz,t(z) − zψz,t(z′) + ψt(z′)) dtdxdτ

+

τ1∫
τ0

∞∫
0

θ̂

L∫
0

θ (ζx(z) − z′ωz,x(z) − zωz,x(z′) + ζx(z′)) dxdtdτ

−
τ1∫

τ0

∞∫
0

L∫
0

θθ̂[β][F ]dxdtdτ. (4.10)

Lemma 4.1 is applied in each of the first three right-hand terms of (4.10), with y = τ, t, x, χ = φ, ψ, ω, and
Θ = θ̂(t, ·), θ̂(·, τ), θ, respectively. The functions and φ and ψ, being homogeneous of degree two in z, are
their own Lagrange transforms; in the third application of Lemma 4.1 we use (3.13). Collecting the results and
using (4.4) gives (4.8), (4.9). �

Upper bounds for the first term in (4.8) are obtained from lower bounds on the remaining terms. For the
second and third terms, such are obtained from the explicit form of the boundary conditions (3.9), (3.10), (3.7),
and (3.8) satisfied by each of z and z’. The fourth term in (4.8) is exploited by the choice of θ̂.

The present results depend on special properties of the system (1.1), (1.2), as reflected in an estimate for the
last term in (4.8).

Lemma 4.3. Assume a balance term F of class C1 in a region 0 < x < L, −c0 < v < 0, 1 < β < (1 + λ)1/2,
satisfying (2.8), (2.24), and

Fv(x, 0−, 1+), Fβ(x, 0−, 1+) ≤ 0, 0 < x < L. (4.11)

Assume values of K,λ such that

K|Fv(x, 0−, 1+)| < λ|F (x, 0, 1)|, 0 < x < L. (4.12)

Let z be the stationary solution corresponding to q1, q2, F , and determine θ from
(
vbβ(β)
θ

)
x

+
Fv(·, v, β)

θ
= 0, 0 < x < L; θ(0) = 1. (4.13)

Then for q1, q2 ∈ Y (determined from (2.5)) with q1 −K and |q2| nonzero and sufficiently small, there exists a
constant γ > 0 such that

A ≥ θ[z]2(2γ −O(|z − z| + |z′ − z| + |zx − zx|) −
θ

γ
G(·, v′, β′)2. (4.14)
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Remark. The constant γ, and indeed all constants c in this proof, depend on the values of q1, q2, and on F .

Proof. From (3.2), (4.2) and (4.3),

Q(ω) = −1
2
b(β)[v]2 − v′bβ(β′)[v][β] − v′(v − 1

2
v′)(b(β) − b(β′) − bβ(β′)[β])

= −1
2
b(β)[v]2 − vbβ(β)[v][β] − 1

4
v2bββ(β)[β]2 (4.15)

+O([z]2(|z − z| + |z′ − z|),

and

Q∗(ωz) =




− bβ(β)[v][β] − v′(b(β′) − b(β) + bβ(β)[β])

− 1
2
bβ(β′)[v]2 − vbββ(β)[v][β] − v

(
v′ − 1

2
v

)
(bβ(β′) − bβ(β) + bββ(β)[β])




=




− bβ(β)[v][β] − 1
2
v(bββ(β)[β]2

− 1
2
bβ(β)[v]2 − vbββ(β)[v][β] − v2bβββ(β)[β]2




+O
(
[z]2(|z − z| + |z′ − z|) . (4.16)

Using (4.15), (4.16) in (4.9), we obtain

A =
1
2
(
b(β)θx − θβxbβ(β)

)
[v]2

+ [θxvbβ(β) − θvxbβ(β) − θβxvbββ(β) − θFv(·, v, β)][v][β]

+
[
1
4
θxv

2bββ(β) − 1
2
θvxvbββ(β) − 1

4
θβxv

2bβββ(β) − θFβ(·, v, β)
]

[β]2

+ θ[β][F (·, v′, β′) − F (·, v, β) + Fv(·, v, β)[v] + Fβ(·, v, β)[β]]

+ θ[β]G(·, v′, β′) +O
(
[z]2(|z − z| + |z′ − z|)

)

= −1
2
θ2
(
b(β)
θ

)
x

[v]2 − θ

[
θ

(
vbβ(β)
θ

)
x

+ Fv(·, v, β)
]

[v][β]

− θ

[
1
4
θ

(
v2bββ(β)

θ

)

x

+ Fβ(·, v, β)

]
[β]2 + θ[β]G(·, v′, β′)

+O([z]2(|z − z| + |z′ − z| + |zx − zx|)). (4.17)

For q1, q2 satisfying (2.5) with q1 −K and q2 sufficiently small, from (2.25), (2.26) we have β(x) − 1 and |v(x)|
as small as we wish. Then using (4.11) and the regularity assumption on F , we have

Fv(x, v(x), β(x)), Fβ(x, v(x), β(x)) ≤ α, 0 < x < L, (4.18)

where α can be made arbitrarily small by the choice of q1 and q2.
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Rewriting (4.13) in the form

−vbβ(β)θx

θ
= −bβ(β)vx − vbββ(β)β

x
− Fv(·, v, β) (4.19)

using (2.3), (2.27), (2.28), and (4.18) in (4.19), we obtain

θx ≥ c > 0. (4.20)

Then from (2.28), (2.3) and (4.20) (
b(β)
θ

)
x

≤ −c < 0. (4.21)

Using (4.13), (2.15), (2.16), (1.3) and the assumption (4.12), with β − 1 and |v| sufficiently small we have

(
v2bββ(β)

θ

)
x

<
v

θ

[
bββ(β)

F (·, v, β)
D(z)

(
K − vbβ(β)

)

− bββ(β)
bβ(β)

Fv(·, v, β) − vb(β)bβ(β)
D(z)

F (·, v, β)

]
(4.22)

≤ −c < 0.

Using (4.13), (4.18), (4.21) and (4.22) in (4.17) now gives (4.14). �

We continue with two lemmas giving lower bounds for the “boundary terms” in (4.8).

Lemma 4.4. Assume z and z′ each satisfying boundary conditions of the form (3.9), (3.10), θ(0), θ(L) > 0
and θ̂ nonnegative. Then

∞∫
0

θ̂(t, τ)


θQ(ω)

L∣∣∣
x=0


 dt ≥ −c(|q1 − q′1|2 + |q2 − q′2|2)

∞∫
0

θ̂(t, τ)dt. (4.23)

Proof. It will suffice to show that

Q(ω) ≥ −c(|q1 − q′1|2 + |q2 − q′2|2) at x = L;

Q(ω) ≤ c(|q1 − q′1|2 + |q2 − q′2|2) at x = 0. (4.24)

For z′′ ∈ X , let

q(z′′) = ωz(z′′) (4.25)

as given in (2.4). Observing that

det ωzz(z′′) = −D(z′′) < 0 (4.26)

from (2.17), (2.18), it follows that q(z′′) are local coordinates for phase space, and that [11]

z′′ = ζq
(
q(z′′)

)
, (4.27)

with ζ the Lagrange transform of ω as given in (3.11), regarded as a function of q.
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From (4.2), using (3.13), (4.25) and (4.27),

Q(ω) = ω(z) − ω(z′) − ωz(z′)[z]

= ζ(q′) − ζ(q) + ζq(q)[q] (4.28)

=
1
2
[q]†ζqq(q)[q] +O([q]3).

At x = L, from (3.9) we specify q1 = q1(z(L)), q′1 = q1(z′(L)), and (4.28) becomes

Q(ω) ≥ 1
2
[q2]2ζq2q2 − c[q1]2 − c|[q1][q2]| −O([q]3). (4.29)

At x = 0, from (3.10) we specify q2 = q2(z(0)), q′2 = q2(z′(0)), and (4.28) becomes

Q(ω) ≤ 1
2
[q1]2ζq1q1 + c[q2]2 + c|[q1][q2]| +O([q]3). (4.30)

Thus from (4.29), (4.30), to obtain (4.24) it will suffice to show

ζq1q1(q) < 0 < ζq2q2(q). (4.31)

Using (4.27), (2.4), (2.3), (2.17), we have

ζq1q1 = vq1

= 1/
∂q1
∂v

∣∣∣
q2 constant

(4.32)

=
v2

2
bββ(β)/D(z)

< 0,
and ζq2q2 = βq2

= 1/
∂q2
∂β

∣∣∣
q1 constant

= b(β)/D(z) (4.33)
> 0. �

Lemma 4.5. Assume θ positive and bounded, θ̂ nonnegative, z satisfying (3.7), (3.8) and z′ satisfying similar
conditions of the form

ν′β′(x, 0) + (1 − ν′)v′(x, 0) = f ′(x), 0 < x < L (4.34)

η′(β′(x,∞) − β′(x)) − (1 − η′)(v′(x,∞) − v′(x)) = 0, 0 < x < L. (4.35)

Then

L∫
0

θθ̂[v][β]dx
∞∣∣∣

t=0

≥ − cθ̂(0, τ)
ν(1 − ν)


[ν]2 +

L∫
0

(f(x) − f ′(x))2dx




− cθ̂(∞, τ)
η(1 − η)

(
[η]2 + [q1]2 + [q2]2 + sup

0<x<L
G(x, v′(x), β′(x))2

)
. (4.36)
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Proof. At t = 0, from (3.7) and (4.34)

[v][β] ≤ c
[ν]2 + [f ]2

ν(1 − ν)
(4.37)

pointwise in x. At t = ∞ we have similarly from (3.8) and (4.35)

[v][β] ≥ −c [η]
2 + [z]2

η(1 − η)

≥ −c
η(1 − η)

(
[η]2 + [q1]2 + [q2]2 + sup

0<x<L
G(x, v′(x), β′(x))2

)
(4.38)

using theorem 2.3 in the last step. Now (4.36) follows from (4.37), (4.38). �

Finally we collect the estimates obtained in Lemmas 4.2, 4.3, 4.4, and 4.5 in (4.8). A Gronwall inequality
results, from which we obtain the following comparison theorem. The assumptions of this theorem are simply
those of Theorem 2.2 and the above lemmas, restated for clarity; further details of the proof are omitted.

Theorem 4.6. Let z, z′ be two entropy weak solutions of (3.3) in a region (0, L) × (0,∞) × (τ0, τ1), each
satisfying boundary conditions of the form (3.9), (3.10), (3.7), (3.8) (with possibly different parameters).

Assume q1, q2, corresponding to z, satisfying (2.5) with q1 −K and |q2| sufficiently small.
Assume θ determined from (4.13) and the corresponding stationary solution z obtained from Theorem 2.2.
Assume the initial data for each of z and z′ satisfies a condition of the form (3.11) with some positive

constant c1.
Assume F satisfying (2.8), (2.24), (4.11) (4.12) and the regularity assumption of Lemma 4.3.
For a chosen function θ̂, determine a function ρ and a constant c4 such that

θ̂τ (t, τ) + |θ̂t(t, τ)| ≤ c4θ̂(t, τ) + ρ(t, τ), 0 < t <∞; τ0 < τ < τ1. (4.39)

Finally assume |z − z|, |z − z′|, and |zx − zx| sufficiently small for x ∈ (0, L)(t, τ) in the support of and θ̂ and
τ0 ≤ τ < τ1, so that (4.14) holds in the form

A ≥ θγ[z]2 − θ

γ
G(·, v′, β′). (4.40)

Then assuming that all of the indicated integrals below exist, there is a positive constant c5 such that

∞∫
0

L∫
0

θ(x)θ̂(t, τ1)[z(x, t, τ1)]2dxdt ≤ e−(γ−c4)(τ1−τ0)

∞∫
0

L∫
0

θ(x)θ̂(t, τ0)[z(x, t, τ0)]2dxdt

+ c5

τ1∫
τ0

e−(γ−c4)(τ1−τ)


 1
γ

∞∫
0

L∫
0

θ(x)θ̂(t, τ)G(x, v′, β′)2dxdt

+ ([q1]2 + [q2]2)

∞∫
0

θ̂(t, τ)dt +

∞∫
0

L∫
0

ρ(t, τ)[z(x, t, τ)]2dxdt

+
θ̂(0, τ)
ν(1 − ν)


[ν]2 +

L∫
0

[f ]2dx


+

θ̂(∞, τ)
η(1 − η)

([η]2 + [q1]2 + [q2]2 + sup
x
G(x, v′, β′)2)


 dτ.

(4.41)
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5. Existence of solutions

Here we use the results of Theorems 2.2 and 4.6, and the assumption (3.14), (3.15), to construct nonstation-
ary solutions of (1.1), (1.2). We emphasize the constructive feature of the algorithm, distinguishing necessary
conditions on the parameters from sufficient conditions used above to show that such solutions can be con-
structed.

The essential features of the system (1.1), (1.2) as a model of two-phase flow are contained in the balance
term F . Here we shall assume F satisfying only (2.8), (2.24) and the mild regularity assumptions of Theorem 2.2.
Having chosen values

q1 > K, q2 < 0 (5.1)

we have the corresponding stationary solution z uniquely determined by appeal to Theorem 2.2.
Next we determine θ from (4.13). With both z and θ known, we can check directly that (4.21) holds and in

addition that
1
4
θ2

(
v2bββ(β)

θ

)

x

+ θFβ(·, v, β) ≤ −c < 0 (5.2)

holds, with some constant c, throughout the interval (0, L).
If so, then Lemma 4.3 holds, with a constant γ which can be determined from (4.17). In this case the values

of q1 and q2 are acceptable. (Otherwise, q1 −K and/or |q2| must be reduced.)
The restriction to solutions close to a stationary solution derives from the need to control the higher order

terms in (4.14). In particular, there is an ε > 0 such that (4.14) implies the stronger condition (4.40) within
any open subset of Ω where

|z − z|, |zx − zx|, |z′ − z| ≤ ε. (5.3)

We observe that lemmas 4.2, 4.4, 4.5 and (4.40) suffice to establish (4.41). Therefore in order to continue
solutions of (3.3), satisfying (4.41), it will suffice to show that (3.13) remains satisfied.

With this value of ε in (3.13), let δ be the corresponding value obtained from (3.14). If (3.14) is satisfied
at τ = 0, then solutions z and z′ exist, and satisfy (4.41), for values of τ sufficiently small that (3.14) remains
satisfied by both z and z′. In general, there is also a restriction on the adopted function θ̂, namely that

supp θ̂ ⊆ {t ≤ c2τ − c3}. (5.4)

In (5.4), if z = z′ the constants c2, c3 may correspond either to z or z′, as one may interchange z with z′

in (3.14).
Now in principle (4.41) can be used to show that (3.14) is satisfied for all τ , so that the solutions continue

indefinitely, satisfying (4.41).
For given “data” of the form F, q1, q2, ν, f , our first application of this strategy corresponds to the choice

z′(x, t, τ) = z(x), (5.5)

the corresponding stationary solution. This choice of z′ obviously satisfies (3.14) for all τ and is smooth, so in
this case no restriction of the form (5.4) on θ̂ is needed.

Next we choose “numerical” parameters η, c4, satisfying

0 < η < 1, 0 < c4 < γ, (5.6)

and set
θ̂(t, τ) = ec4t. (5.7)

From (5.5) and (3.7),
f ′(x) = νβ(x) + (1 − ν)v(x), 0 < x < L. (5.8)
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We need initial data of the form z(·, ·, 0) for the system (3.3), which is assumed to satisfy

f(x) = νβ(x, 0, 0) + (1 − ν)v(x, 0, 0), (5.9)

sup
0<x<L

t≥0

(|z(x, t, 0) − z(x)| + |zx(x, t, 0) − zx(x)| + |zt(x, t, 0)|) ≤ δ/3, (5.10)

∞∫
0

L∫
0

θ(x)ec4t|z(x, t, 0) − z(x)|2dxdt ≤ δ/3, (5.11)

c5
ν(1 − ν)(γ − c4)

L∫
0

(f(x) − f ′(x))2dx ≤ δ/3, (5.12)

where c5 is the constant in (4.41).
We have thus specified an initial/boundary value problem for the system (3.3), (2.12), (2.13), (3.7), (3.8).

Denote by z an entropy weak solution thereof, for as long as it exists. In practice, the constant δ is not
knowable; if the conditions of Theorem 4.6 are satisfied, one knows that a sufficiently small positive δ exists so
that a solution will be obtained. In practice, the conditions (5.10)–(5.12) are uncertain. Indeed, if f − f ′ is too
large, then (5.12) cannot be satisfied by any choice of z(·, ·, 0). So one chooses z(·, ·, 0) smooth, satisfying (5.9),
(3.9), (3.10) and such that the integral in (5.11) is finite, and runs the computation. If the solution blows up,
either f − f ′ is too large or else the choice of z(·, ·, 0) needs modification. Hereafter, of course, we assume that
the conditions (5.10)–(5.12) were satisfied.

From (5.10), (5.11), it is clear that the solution z satisfies (3.14) for sufficiently small positive τ . But for any
τ such that (3.14) holds for z, we can apply (4.41) with z′ given in (5.5).

Using (5.11), (5.12) in (4.41) and setting τ0 = 0 gives

∞∫
0

L∫
0

|z(x, t, τ1) − z(x)|2ec4tdxdt ≤ δ

3
, (5.13)

so the solution z can be continued indefinitely in τ , satisfying (3.14) and (5.13).
We employ a similar strategy to show that z(·, ·, τ) converges to a limit as τ → ∞. Let c2, c3, be the constants

obtained in (3.15) corresponding to the solution z; without loss of generality we assume c3 ≥ 0.
We choose θ̂ satisfying (5.4), of the form

θ̂(t, τ) =




1, t ≤ c2τ − c3 − 1
c2τ − c3 − t, c2τ − c3 − 1 < t < c2τ − c3

0, t ≥ c2τ − c3

(5.14)

and for this application

z′(x, t, τ) = z(x, t, τ + T ) (5.15)

for some T > 0.
For θ̂ as given in (5.14), we have (4.39) holding with

ρ(t, τ) =

{
1, c2τ − c3 − 1 < t < c2τ − c3

0, otherwise.
(5.16)
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With τ0 = 0, τ1 large in (4.41), using (5.14), (5.15), (5.16) we have

∞∫
0

L∫
0

θ(x)θ̂(t, τ)|z(x, t, τ1) − z′(x, t, τ1)|2dxdt

≤ c5

c2τ1−c3∫
c2τ1−c3−1

L∫
0

θ(x)|z(x, t, τ1) − z′(x, t, τ)|2dxdt

≤ c5e−c4(c2τ1−c3−1)

c2τ1−c3∫
c2τ1−c3−1

ec4t

L∫
0

θ(x)|z(x, t, τ1) − z′(x, t, τ1)|2dxdt (5.17)

≤ ce−c4c2τ1

∞∫
0

L∫
0

ec4t(|z(x, t, τ1) − z(x)|2 + |z(x, t, τ1 + T ) − z(x)|2)θ(x)dxdt

≤ cδe−c4c2τ1

using (5.13) and (5.15) in the last step.
In (5.17), the constant c4 > 0 is the constant chosen in (5.6), as appearing in (5.13), so the right side of (5.17)

vanishes in the limit τ1 → ∞. As T is arbitrary, (5.17) suffices to establish the existence of z̄ = z̄(x, t) such that

∞∫
0

L∫
0

θ(x)ec4t|z(x, t, τ) − z̄(x, t)|2dxdt → 0 as τ → ∞. (5.18)

As z satisfies (3.3), from (5.18) and (3.10) it follows that z̄ is an entropy weak solution of (3.3). As z̄ is
independent of τ , it also satisfies (1.1), (1.2) weakly. But from (5.18) and (3.13), |z̄x| is bounded; then from (1.1),
(1.2), it follows that |z̄t| is bounded. Now again using (5.18), we have z̄ satisfying (3.9), (3.10), (3.7) and

z̄(x, t) → z(x) as t→ ∞. (5.19)

From (5.19), it follows that z̄ satisfies (3.8) for any choice of η.
For fixed parameters F, q1, q2, ν, f , the solution z̄ is unique, by appeal to (4.41). Thus z̄ is independent of

the “numerical” parameters η, c4, and z(·, ·, 0). We summarize these results as follows:

Theorem 5.1. Let q1, q2, ν, f, F be such that (5.1), (4.21), (5.2), and (5.12) hold, with f ′ obtained from (5.8)
and some c4. Assume f − f ′ sufficiently small that (5.9)–(5.12), (3.9), (3.10) can be satisfied by some z(·, ·, 0)
for which the assumption (3.14), (3.15) is valid. Assume F satisfying the assumptions of Theorem 2.2.

Then there exists a unique solution of (1.1), (1.2), (3.9), (3.10), (3.7), (5.19), in the class of functions with
uniformly bounded first partial x− and t− derivatives.

A semigroup property follows immediately from the uniqueness of the solution functions so constructed.

Corollary 5.2. For a given solution z̄, let z̃ be the solution of (1.1), (1.2), (3.9), (3.10), (5.19), and (3.7) with
a function

f̃(x) = νβ̄(x, T ) + (1 − ν)v̄(x, T ) (5.20)

for some T > 0. Then
z̃(x, t) = z(x, t+ T ) (5.21)

for all x ∈ [0, L], t > 0.
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Finally we use (4.41) to compare a solution z̄ corresponding to parameters q1, q2, ν, f, F with another solu-
tion z̄′ corresponding to q′1, q′2, ν′, f ′, F ′ of the form (2.19). Since |z̄k| (or |z̄′x|) is bounded, no restriction of the
form (5.4) on the choice of θ̂ is needed. However, in general the corresponding stationary solutions are different,
and existence of the integrals in (4.41) depends on the choice of θ̂.

Thus we take
θ̂(t, τ) = e−c4t, c4 ∈ (0, γ) (5.22)

satisfying (4.39) with ρ = 0, and τ1 − τ0 = 1. In (5.22) and below, γ may correspond to either z̄ or z̄′. The
following results from (4.41).

Theorem 5.3. Let z̄, z̄′ be two solutions obtained in theorem 5.1, corresponding to different parameters. Then
for any c4 ∈ (0, γ),

∞∫
0

L∫
0

θ(x)e−c4t|z̄(x, t) − z̄′(x, t)|2dxdt ≤ c

γ − c4


 1
γ

∞∫
0

L∫
0

θ(x)e−c4tG(x, v̄′, β̄′)2dxdt

+
(q1 − q′1)

2 + (q2 − q′2)
2

c4
+

1
ν(ν − 1)


(ν − ν′)2 +

L∫
0

(f(x) − f ′(x))2dx




 . (5.23)

In the special case G = 0, q1 = q′1, q2 = q′2 , it follows that the stationary solutions coincide, and one may pass
to the limit c4 = 0 in (5.23).

6. “Average” solutions and multiple-valued solutions

Appraisal of the system (1.1), (1.2) as a model of incompressible two-phase flow obviously requires the
identification of a sufficiently rich set of solutions for comparison of computed solutions with experiment. Thus
it is important to maximize the degree of freedom in the choice of problem parameters-restrictions in the choices
of these parameters undermine the value of the system as such a model. Restrictions on the form of the obtained
solutions, of course, imply corresponding restrictions on the associated problem parameters.

The set of solutions constructed above suffers from several such restrictions. Perhaps the most obvious is the
analysis in the small, limited to solutions achieving values close to stationary solutions. This is unavoidable in
the above, because of the need to control the higher order terms in (4.14), so as to obtain (4.40). In practice,
this restriction may be more apparent than real, depending on the balance term.

As against this, two features of the solutions obtained above are perhaps unacceptable in this context. One
is the condition at t = 0 satisfied by a solution z̄. Presumably one wishes to specify a vector quantity

z(x, 0) =
(
v(x, 0)
β(x, 0)

)
, 0 < x < L. (6.1)

In the above construction, we choose ν ∈ (0, 1) and compute

fν(x) = νβ(x, 0) + (1 − ν)v(x, 0), 0 < x < L. (6.2)

We compute a solution z̄ satisfying (3.7) with f = fν , which thus satisfies

fν(x) = νβ̄(x, 0+) + (1 − ν)v̄(x, 0+). (6.3)

From (6.2), (6.3), we have

ν(β(·, 0) − β̄(·, 0+)) + (1 − ν)(v(·, 0) − v̄(·, 0 + 1) = 0, (6.4)
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but in general
z(·, 0) 	= z̄(·, 0+). (6.5)

A second, related problem arises in the permitted values of q1, q2. In a realistic model, these should be permitted
to depend on time. The algorithm described above can easily be extended to permit this, say by assuming that
q1, q2 approach limits as t→ ∞ and computing the stationary solution z with these limiting values. However a
causality problem results; changes in q1, q2 at a given time in general will be reflected in the solution z at earlier
times.

Assuming q1, q2 piecewise constant functions of time, the causality problem can be avoided by computing the
solution recursively in each interval (tj , tj+1), j = 0, 1, .., within which q1 and q2 are constant. For each such
interval, we use (3.7) with f given by (6.2) at t = 0 and given by

f(x) = νβ̄(x, tj − 0) + (1 − ν)v̄(x, tj − 0), 0 < x < L, (6.6)

at each tj > 0. For each such time interval we use (3.8) with the stationary solution computed using the values
of q1, q2 at t = tj + 0.

Denoting by z̄j , j = 0, 1, . . . , the solutions thus obtained, we identify the corresponding solution by

z̄(·, t) = z̄j(·, t− tj), tj ≤ t < tj+1. (6.7)

From (6.5), however, the function z̄ obtained from (6.7) will have jump discontinuities at each tj , j = 1, 2, . . . ,
and in general will not be even a weak solution of (1.1), (1.2).

These problems derive from the lack of hyperbolicity of the system (1.1), (1.2) [10]. As an alternative to
adding dissipation terms, thus making the system parabolic, we propose weakening the form of an admissible
solution to allow multiple-valued solutions and certain related “average” solutions.

Given data of the form (6.1) at t = 0, we compute fν from (6.2) and a corresponding solution z(·, ·, ν)
satisfying (1.1), (1.2), (3.8), (6.3), (3.9), (3.10) for each ν ∈ (0, 1). Thus we obtain a multiple-valued “solution”
achieving a set of values

{z̄(x, t; ν)|0 < ν < 1}
at a given point (x, t).

Collective properties of these sets are described by introducing “average” solutions of the form

Z(x, t) =
(
V (x, t)
B(x, t)

)

=

1∫
0

(
µ(1 − ν)
µ(ν)

)
h(x, t; ν)dν, 0 ≤ x ≤ L, t > 0, (6.8)

with
h(x, t; ν) = νβ̄(x, t; ν) + (1 − ν)v̄(x, t; ν) (6.9)

and µ a measure on the interval (0, 1).
Substituting (6.9) in (6.8) we obtain

V (x, t) =

1∫
0

µ(1 − ν)(νβ̄(x, t; ν) + (1 − ν)v̄(x, t; ν))dν, (6.10)

B(x, t) =

1∫
0

µ(ν)(νβ̄(x, t; ν) + (1 − ν)v̄(x, t; ν))dν. (6.11)
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In general each of the z(·, 0; ν) satisfies (6.5). However, simple conditions on the measure µ assure that the
average Z satisfies the desired conditions at t = 0 and at t = ∞.

Theorem 6.1. Assume that µ satisfies
1∫

0

µ(ν)dν = 1 (6.12)

and
1∫

0

νµ(ν)dν = 1; (6.13)

then
Z(·, 0+) = z(·, 0). (6.14)

Proof. We use (6.4) in each of (6.10) and (6.11), simplifying by use of (6.12), (6.13), thus obtaining

V (x, 0+) =

1∫
0

µ(1 − ν)(νβ(x, 0) + (1 − ν)v(x, 0))dν

= v(x, 0), (6.15)

and

B(x, 0+) =

1∫
0

µ(ν)(νβ(x, 0) + (1 − ν)v(x, 0)dν (6.16)

= β(x, 0). �

Hereafter we assume (6.12), (6.13) hold and in addition that

supp µ ⊆ [a, 1 − a] for some a ∈
(

0,
1
2

)
· (6.17)

Next we show that as z̄(·, ·; ν) becomes independent of ν at some point it becomes equal to the average Z at
that point.

Theorem 6.2. Let (x, t) be a point at which

|z̄(x, t; ν) − z̃(x, t)| ≤ ε, a ≤ ν ≤ 1 − a (6.18)

for some z̃(z, t) and some ε ≥ 0; then
|Z(x, t) − z̃(x, t)| ≤ cε. (6.19)

Proof. This is immediate from (6.10), (6.11), using (6.12), (6.13), and (6.18). The constant c in (6.19) depends

only on
1∫
0

|µ(ν)|dν. �

The assumption (6.17) is needed for a corollary.

Corollary.
Z(·, t) → z as t → ∞. (6.20)

Proof. By appeal to theorem 5.3, the condition (5.19) is uniform in ν within the interval [a, 1 − a]. For t large,
(6.18) holds with z̃(·, t) = z and ε small, and (6.19) follows. �
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Averaged quantities Z obtained from (6.8), (6.9) in general do not satisfy the nonlinear system (1.1), (1.2)
or the nonlinear boundary conditions (3.9), (3.10). However, they do satisfy an approximate weak form of the
corresponding linearized system, with one additional assumption on µ.

Lemma 6.3. Assume µ satisfying

νµ(ν) = (1 − ν)µ(1 − ν), a ≤ ν <
1
2
; (6.21)

then for any p, r ∈ R

pB + rV =

1∫
0

νµ(ν)(pβ̄(·, ·; ν) + rv̄(·, ·; ν))dν +

1∫
0

(1 − ν)µ(ν)(pv̄(·, ·; ν) + rβ̄(·, ·; 1 − ν))dν. (6.22)

Remark. It is not difficult to construct µ(ν) satisfying (6.12), (6.13), (6.17) and (6.21). An example with
support at only three points, and thus attractive for computations, is given by

µ(ν) = −3δ
(
ν − 1

4

)
+ 5δ

(
ν − 1

2

)
− δ

(
ν − 3

4

)
. (6.23)

From (6.12), (6.13), the measure µ cannot be nonnegative valued.
At a point where theorem 6.2 holds with ε small, the second right-hand term in (6.22) is O(ε).

Proof. We simply use (6.10), (6.11) in the left side of (6.22) and simplify using (6.21). �

Theorem 6.4. Let Φ,Ψ be smooth functions of x, t of compact support within [0, L] × (0,∞) and satisfying

supp Φ ∩ {x = 0} = ∅ (6.24)

and

supp Ψ ∩ {x = L} = ∅; (6.25)

then Z satisfies

∞∫
0

L∫
0

[
Φt(x, t)B(x, t) + Φx(x, t)((K − v(x)bβ(β(x)))(B(x, t) − β(x))

− b(β(x))(V (x, t) − v(x)))
]
dxdt

= −
∞∫
0

L∫
0

1∫
0

(1 − ν)µ(ν)
[
(Φt(x, t) + Φx(x, t)(K − v(x)bβ(β(x)))v̄(x, t; ν)

− Φx(x, t)b(β(x))β̄(x, t; 1 − ν)
]
dνdxdt

+O




∞∫
0

L∫
0

1∫
0

|Φx(x, t)| |z̄(x, t; ν) − z(x)|2

 dνdxdt, (6.26)
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and

∞∫
0

L∫
0

[
Ψ̄t(x, t)V (x, t) +

[
Ψ̄x(x, t)(K − v(x)bβ(β(x)) +Ψ̄(x, t)Fv(x, v(x), β(ν))

]
(V (x, t)− v(x))

+
[
− 1

2
Ψ̄x(x, t)v(x)2bββ(β(x)) + Ψ̄(x, t)Fβ(x, v(x), β(x))

]
(B(x, t) − β(x))

]
dxdt

= −
∞∫
0

L∫
0

1∫
0

(1 − ν)µ(ν)
[
(−1

2
Ψ̄x(x, t)v(x)2bββ(β(x)) + Ψ̄(x, t)Fβ(x, v(x), β(x))v̄(x, t; ν)

+ (Ψ̄t(x, t) + Ψ̄x(x, t)(K − v(x)bβ(β(x))) + Ψ̄(x, t)Fv(x, v(x), β(x)))β̄(x, t; 1 − ν)
]
dνdxdt

+O




∞∫
0

L∫
0

1∫
0

(|Ψ̄(x, t)| + |Ψ̄x(x, t)|)|z̄(x, t; ν) − z(x)|2dνdxdt

 . (6.27)

Proof. Throughout we use the abbreviations z̄ = z̄(x, t; ν),Φ = Φ(x, t), Ψ̄ = Ψ̄(x, t), z = z(x).
We introduce a weak form of (1.1), (3.9) satisfied by z̄ for all ν. Since z satisfies (2.9) and (2.12), partial

integrations and (6.24) give

0 = −
∞∫
0

L∫
0

Φ
(
β̄t + (Kβ̄ − v̄b(β̄))x

)
dxdt

= q1

∞∫
0

Φ(L, t)dt+

∞∫
0

L∫
0

[
Φtβ̄ + Φx(Kβ̄ − v̄b(β̄))

]
dxdt

=

∞∫
0

L∫
0

[
Φtβ̄ + Φx(Kβ̄ − v̄b(β̄) −Kβ + vb(β))

]
dxdt

=

∞∫
0

L∫
0

[
Φtβ̄ + Φx(K − vbβ(β))(β̄ − β) − Φxb(β)(v̄ − v) +O(|Φx| |z̄ − z|2)] dxdt. (6.28)

Multiplying (6.28) by νµ(ν) and integrating with respect to ν, using (6.24) with

p = Φt + Φx(K − vbβ(β)), r = −Φxb(β) (6.29)

we obtain (6.26).
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We obtain (6.27) similarly. A weak form of (1.2), (3.10), using (2.10), (2.13) and (6.25), is

0 = −
∞∫
0

L∫
0

Ψ̄
[
v̄t + (Kv̄ − 1

2
v̄2bβ(β̄))x − F (x, v̄, β̄)

]
dxdt

= −q2
∞∫
0

Ψ̄(0, t)dt+

∞∫
0

L∫
0

[
Ψ̄tv̄ + Ψ̄x

(
Kv̄ − 1

2
v̄2bβ(β̄)

)
+ Ψ̄F (x, v̄, β̄)

]
dxdt

=

∞∫
0

L∫
0

[
Ψ̄tv̄ + Ψ̄x

(
Kv̄ − 1

2
v̄2bβ(β̄) −Kv +

1
2
v2bβ(β)

)
+ Ψ̄(F (x, v̄, β̄) − F (x, v, β))

]
dxdt

=

∞∫
0

L∫
0

[
Ψ̄tv̄ + (Ψ̄x(K − vbβ(β)) + Ψ̄Fv(x, v, β))(v̄ − v)

+
(
−1

2
Ψ̄xv

2bββ(β) + Ψ̄Fβ(x, v, β)
)

(β̄ − β) +O((|Ψ̄| + |Ψ̄x|)|z̄ − z|2
]

dxdt. (6.30)

Multiplying (6.30) by νµ(ν) and integrating, using (6.22) with

p = −1
2
Ψ̄xv

2bββ(β) + Ψ̄Fβ(·, v, β), r = Ψ̄t + Ψ̄x(K − vbβ(β)) + Ψ̄Fv(·, v, β), (6.31)

we obtain (6.27). �
In describing incompressible two-phase flow, the average Z is superior to an individual solution z(·, ·; ν) in

some respects and inferior in others. The average Z satisfies both components of the condition (6.1) at t = 0,
and is continuous in t when q1, q2 are given as piecewise constant functions of time and the solution is computed
recursively as described in (6.6), (6.7). As against this, Z satisfies only the approximate equations (6.26), (6.27).

While Z depends on the specific choice of the “numerical parameter” µ(ν), the function z(·, ·; ν) depends on
the numerical parameter ν. In the exceptional case in which the data is such that (6.18) applies for all x, t with
some small ε, the first right-hand terms of (6.26) and (6.27) are O(ε). In this case, Z satisfies (1.1), (1.2), (3.9),
(3.10) to O(ε).
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