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EXISTENCE AND UNIQUENESS FOR DYNAMICAL UNILATERAL CONTACT
WITH COULOMB FRICTION: A MODEL PROBLEM

Patrick Ballard
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and Stéphanie Basseville
1

Abstract. A simple dynamical problem involving unilateral contact and dry friction of Coulomb type
is considered as an archetype. We are concerned with the existence and uniqueness of solutions of the
system with Cauchy data. In the frictionless case, it is known [Schatzman, Nonlinear Anal. Theory,
Methods Appl. 2 (1978) 355–373] that pathologies of non-uniqueness can exist, even if all the data
are of class C∞. However, uniqueness is recovered provided that the data are analytic [Ballard, Arch.
Rational Mech. Anal. 154 (2000) 199–274]. Under this analyticity hypothesis, we prove the existence
and uniqueness of solutions for the dynamical problem with unilateral contact and Coulomb friction,
extending [Ballard, Arch. Rational Mech. Anal. 154 (2000) 199–274] to the case where Coulomb
friction is added to unilateral contact.
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1. Description of the problem

At the time being, dynamics involving unilateral contact and Coulomb friction has been mainly studied in
the framework of systems with finite number of degrees of freedom. In this paper, we are concerned with the
questions of existence and uniqueness of solutions for the associated evolution problem. In order to make clear
the structure of our existence and uniqueness proof, we shall consider only the simple system introduced by
Klarbring [4]. However, the reader should have in mind that the proof presented here can be adapted to a
far more general situation. The most general situation in finite d.o.f. dynamics with unilateral contact and
Coulomb friction, which is covered by our approach, will be described in a next publication.

Klarbring’s system refers to the following situation. Let n ≥ 2 be some integer. A punctual particle of unit
mass in R

n evolves in a quadratic well of potential elastic energy, described by a symmetric positive definite
stiffness matrix K, and is subjected to an external force F (t), depending only on time. Moreover, the particle
is constrained to remain in a half-space, and, at contact, Coulomb friction takes place. For X ∈ R

n, we
denote by XN its first component (“normal component”) and by XT the vector of R

n−1 formed by the n − 1
last components of X (“tangential component”). The symmetric positive definite stiffness matrix K will be
written as:

K =

(
kN

tW

W KT

)
,
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Figure 1. Klarbring’s system.

where kN ∈ R, W ∈ R
n−1 and KT is a symmetric positive definite real matrix of order n− 1. The two following

statements are equivalent.
(i) The matrix K is positive definite.
(ii) The matrix KT is positive definite and kN > tW ·K−1

T ·W .
The term W couples the normal and tangential degrees of freedom and is a source of difficulty in the analysis
of the system.

We denote by MMA([0, T ]; Rn) (motions with measure acceleration) the vector space of those integrable
functions of [0, T ] into R

n whose second derivative in the sense of distributions is a measure. It is nothing but
the space of integrals of functions of bounded variation over [0, T ]. Functions U in MMA are continuous and
admit left and right derivatives (in the classical sense) U̇−, U̇+, at any point, both being functions of bounded
variation. We recall that a function of bounded variation, being uniform limit of a sequence of step functions,
is universally integrable (integrable with respect to any measure). The evolution problem is formulated along
the lines of Moreau [6, 8] and in the sequel, the term “unilateral problem” will refer to the following evolution
problem:

Problem Pu. Find U ∈ MMA([0, T ]; Rn) and R ∈ M([0, T ]; Rn) such that:

• U(0) = U0; U̇+(0) = V0 (initial condition);

• Ü +K · U = F +R, in [0, T ] (motion equation);

• UN ≤ 0, RN ≤ 0, UNRN = 0 (unilateral contact);

•
∫

[0,T ]

[
RT · (V − U̇+

T

)− µRN

(|V | − |U̇+
T |)] ≥ 0, ∀V ∈ C0

(
[0, T ]; Rn−1

)
(Coulomb friction);

• UN(t) = 0 =⇒ U̇+
N (t) = −e U̇−

N (t), in ]0, T ] (impact law),

where F denotes a given integrable function of [0, T ] into R
n (external force), µ a given nonnegative real constant

(friction coefficient), e ∈ [0, 1] a real constant (restitution coefficient) and (U0, V0) some initial condition,
assumed to be compatible with the unilateral constraint:

U0N ≤ 0 and: U0N = 0 =⇒ V0N ≤ 0.

Our goal is to investigate the existence and uniqueness of a solution of problem Pu.

2. Review of existing results and content

Well-posedness of the dynamics of discrete systems with unilateral constraints (without friction) seems to
have been first investigated by Schatzman in [11], where she proved an existence result by a penalization
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technique in the case of the elastic impact law e = 1. She also gave a striking counter-example showing that,
even in the case where the data have regularity C∞, one cannot expect uniqueness of solution, in general. A
major remark was, then, made by Percivale in [10] who noticed that, in the case of the (necessarily frictionless)
one-degree-of-freedom problem with external force depending only on time, uniqueness of solution is recovered
provided the external force is assumed to be an analytic function of time (instead of C∞). Later, Schatzman
[12] provided a generalization of this uniqueness result under analyticity assumption, still for the one-degree-
of-freedom problem, but in the more general case where the external force is allowed to depend not only on
time but also on current position and velocity. However, her proof was specific to the one-degree-of-freedom
problem. A simpler proof was given by Ballard [1] who was, then, able to extend the result to the general case
of an arbitrary number of degrees of freedom and unilateral constraints. But his result was restricted to the
frictionless situation.

The case of dry friction has been considered by Monteiro Marques in [5]. He considered a case with a single
smooth unilateral constraint and inelastic impact law e = 0 which contains Klarbring’s system (provided e = 0).
Using a time-stepping algorithm introduced by Moreau [7, 8] (which is, roughly speaking, an adaptation of the
implicit Euler scheme to the non-smooth situation under consideration) to build a sequence of approximants,
Monteiro Marques was able to pass to the limit by extraction of a subsequence using a compactness argument,
to prove an existence result which applies to Klarbring’s system in the case e = 0 and F ∈ L1. However, note
that Klarbring’s system, in the particular case W = 0 and FT ≡ 0, reduces to a one-degree-of freedom system
in which Coulomb friction plays no role, and, Schatzman’s counter-example [11] can be readily adapted to this
particular case of Klarbring’s system, demonstrating that one cannot expect uniqueness in general, even in the
case where the external force is assumed to have C∞ regularity . Therefore, our purpose, here, is to adapt
the technique of Ballard [1] to the situation where Coulomb friction is involved, to prove the uniqueness of a
solution under the assumption that F is an analytic function of time.

In the frictionless situation, Ballard’s uniqueness proof relied on the fact that the associated bilateral problem
is governed by an ordinary differential equation, whose solution is analytic provided the data of the problem
are analytic. In the situation under consideration, the associated bilateral problem is governed by a differential
inclusion (multivocal differential equation) because of Coulomb friction. The Cauchy problem associated with
the bilateral problem is studied in Section 3. First, the existence and uniqueness of a solution is proved by use
of standard monotonicity techniques in Section 3.1. Then, it is proved in Section 3.2 that the restriction of
the solution on some right-neighbourhood of the time origin is analytic, provided the external force is analytic.
The analysis of the bilateral problem, as performed in Section 3, is used in Section 4.1 to build a local analytic
solution of the unilateral problem with analytic external force. Then, to obtain well-posedness for the unilateral
problem, there remains only to prove that there cannot exist any other local solution in MMA, different from
the local analytic one. This is performed in Section 4.2 by adapting Ballard’s strategy [1] to the situation under
consideration.

3. The bilateral problem

In the sequel, the “bilateral problem” will refer to the evolution problem we obtain when the unilateral
constraint is replaced by a bilateral constraint. More precisely, this is the following evolution problem.

Problem Pb. Find U ∈ MMA([0, T ]; Rn) and R ∈ M([0, T ]; Rn) such that:

• U(0) = U0; U̇+(0) = V0 (initial condition);

• Ü +K · U = F +R, in [0, T ] (motion equation);

• UN ≡ 0 (bilateral contact);

•
∫

[0,T ]

[
RT · (V − U̇+

T

)
+ µ|RN|

(|V | − |U̇+
T |)] ≥ 0, ∀V ∈ C0

(
[0, T ]; Rn−1

)
(Coulomb friction),
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where F denotes some given integrable function (F ∈ L1([0, T ]; R)) and (U0, V0) some initial condition, assumed
to be compatible with the bilateral constraint:

U0N = 0 and V0N = 0.

Actually, the first component of the motion equation:

RN = W · UT − FN,

shows that the measure RN is necessarily absolutely continuous with respect to the Lebesgue measure. Since
the Coulomb friction law implies the following inequality between measures:

|RT| ≤ µ|RN|,

we infer that the measure RT is also absolutely continuous with respect to the Lebesgue measure. As a result,
any solution (U,R) ∈ MMA×M of problem Pb belongs, actually, to W 2,1 ×L1. For C being a nonempty closed
convex subset of R

n−1, we denote by ∂SC the subdifferential of its support function SC . In the sequel, B will
be the closed unit ball of Euclidean R

n−1. Using these notations, we have the following equivalent formulation
for problem Pb.

Problem Pb. Find UT ∈W 2,1([0, T ]; Rn−1) such that:

• UT(0) = U0T; U̇T(0) = V0T (initial condition);

• ÜT(t) +KT · UT(t) − FT(t) ∈ ∂Sµ|FN(t)−W ·UT(t)|B
[−U̇T(t)

]
, for a.a. t ∈ [0, T ].

3.1. The bilateral problem with integrable force

In this section, we prove the existence and uniqueness of a solution of problem Pb by monotonicity techniques.

Proposition 3.1. Let r ∈ R
+ and FT ∈ L1([0, T ]; Rn−1). Then, there exists a unique UT ∈W 2,1([0, T ]; Rn−1)

such that:
• UT(0) = U0T; U̇T(0) = V0T (initial condition);

• ÜT(t) +KT · UT(t) − FT(t) ∈ ∂SrB
[−U̇T(t)

]
, for a.a. t ∈ [0, T ].

Proof.
Uniqueness. Straightforward by monotonicity of the subdifferential.
Existence. We shall use a Caratheodory type construction, implicit with respect to the subdifferential term.
Let V n

T be the sequence of functions in W 1,1([0, T ]; Rn−1) defined by:

V 0
T ≡ V0T,

and by the following induction. Given the function V n
T ∈W 1,1([0, T ]; Rn−1), the function V n+1

T is defined to be
the unique solution in W 1,1([0, T ]; Rn−1), provided by Proposition 3.4, p. 69 of [2], of the evolution problem:

• V n+1
T (0) = V0T;

• V̇ n+1
T (t) +KT ·

(
U0T +

∫ t

0

V n
T (s) ds

)
− FT(t) ∈ ∂SrB

[−V n+1
T (t)

]
, for a.a. t.
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By monotonicity of the subdifferential, it is easily seen that, for all t ∈ [0, T ]:

1
2

∣∣V n+1
T (t) − V n

T (t)
∣∣2 +

∫ t

0

[
V n+1

T (s) − V n
T (s)

] ·KT ·
∫ s

0

[
V n

T (σ) − V n−1
T (σ)

] ≤ 0,

where | · | denotes the Euclidean norm in R
n−1. Using the same notation for the associated matrix norm, we

get:
1
2

∣∣V n+1
T (t) − V n

T (t)
∣∣2 ≤ |KT|

∫ t

0

∣∣V n+1
T (s) − V n

T (s)
∣∣ ∫ s

0

∣∣V n
T (σ) − V n−1

T (σ)
∣∣,

and, by Lemma A.5, p. 157 of [2]:

∣∣V n+1
T (t) − V n

T (t)
∣∣ ≤ |KT|

∫ t

0

∫ s

0

∣∣V n
T (σ) − V n−1

T (σ)
∣∣,

≤ |KT|T
∫ t

0

∣∣V n
T (s) − V n−1

T (s)
∣∣,

≤ (|KT|T t)n
n!

∥∥V 1
T − V 0

T

∥∥
C0 ,

for all t ∈ [0, T ]. As a consequence, the sequence (V n
T )n∈N converges, uniformly on [0, T ], towards some limit

VT ∈ C0([0, T ]; Rn−1). Now, let WT ∈ W 1,1([0, T ]; Rn−1) be the solution of the evolution problem:

• WT(0) = V0T;

• ẆT(t) +KT ·
(
U0T +

∫ t

0

VT(s) ds
)
− FT(t) ∈ ∂SrB

[−WT(t)
]
, for a.a. t.

Now, taking the difference of this differential inclusion with the one defining V n
T , multiplying by WT − V n

T and
integrating, we get, thanks to the monotonicity of the subdifferential and to Lemma A.5, p. 157 of [2]:

∣∣WT(t) − V n
T (t)

∣∣ ≤ |KT|T
∫ t

0

∣∣VT(s) − V n−1
T (s)

∣∣,
for all t ∈ [0, T ], which shows that the sequence (V n

T )n∈N converges, uniformly on [0, T ], towards WT. Hence,
VT = WT ∈W 1,1 and we have:

• VT(0) = V0T;

• V̇T(t) +KT ·
(
U0T +

∫ t

0

VT(s) ds
)
− FT(t) ∈ ∂SrB

[−VT(t)
]
, for a.a. t.

Setting:

UT(t) = U0T +
∫ t

0

VT(s) ds,

we see that UT ∈W 2,1([0, T ]; Rn−1) and provides the solution we sought. �
Proposition 3.2. Let r ∈ L1([0, T ]; R) be a nonnegative integrable function and assume FT ∈ L1([0, T ]; Rn−1).
Then, there exists a unique UT ∈W 2,1([0, T ]; Rn−1) such that:

• UT(0) = U0T; U̇T(0) = V0T (initial condition);

• ÜT(t) +KT · UT(t) − FT(t) ∈ ∂Sr(t).B
[−U̇T(t)

]
, for a.a. t ∈ [0, T ].
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Proof.
Uniqueness. Straightforward by monotonicity of the subdifferential.
Existence. Let (rn)n∈N be a sequence of nonnegative step functions on [0, T ], converging towards r in
L1([0, T ]; R). By Proposition 3.1, there exists a unique solution Un

T ∈ W 2,1([0, T ]; Rn−1) of:

• Un
T(0) = U0T; U̇n

T(0) = V0T (initial condition);

• Ün
T(t) +KT · Un

T(t) − FT(t) ∈ ∂Srn(t)B
[−U̇n

T(t)
]
, for a.a. t ∈ [0, T ].

(1)

Step 1. The sequences (Un
T)n∈N and (U̇n

T)n∈N are Cauchy sequences in C0 and, then, converge towards some
limits UT and U̇T in C0.

Indeed:

1
2

∣∣∣U̇n+p
T (t) − U̇n

T(t)
∣∣∣2 +

1
2

[
Un+p

T (t) − Un
T(t)

]
·KT ·

[
Un+p

T (t) − Un
T(t)

]
≤ −

∫ t

0

(
rn+p − rn

)(∣∣∣U̇n+p
T

∣∣∣− ∣∣∣U̇n
T

∣∣∣),
≤
∫ t

0

∣∣∣rn+p − rn
∣∣∣.∣∣∣U̇n+p

T − U̇n
T(t)

∣∣∣.
The conclusion follows by use of Lemma A.5, p. 157 of [2].

Step 2. U̇T ∈ W 1,1.

Pick 0 ≤ t1 ≤ t2 ≤ t. Multiplying differential inclusion (1) by U̇n
T(s) − U̇n

T(t1) and integrating over [t1, t], we
get:

1
2

∣∣∣U̇n
T(t) − U̇n

T(t1)
∣∣∣2 +

1
2

∣∣∣Un
T(t) − Un

T(t1) − (t− t1)U̇n
T(t1)

∣∣∣2
KT

≤
∫ t

t1

∣∣∣FT(s) −KT ·
[
Un

T(t1) + (s− t1)U̇n
T(t1)

]∣∣∣.∣∣∣U̇n
T(s) − U̇n

T(t1)
∣∣∣ ds+

∫ t

t1

rn(s)
∣∣∣U̇n

T(s) − U̇n
T(t1)

∣∣∣ ds,
where | · |KT denotes the norm on R

n−1 which is associated with the scalar product defined by the symmetric
positive definite matrix KT. Using, once more, Lemma A.5, p. 157 of [2], we obtain:

∣∣∣U̇n
T(t2) − U̇n

T(t1)
∣∣∣ ≤ ∫ t2

t1

[
|FT(s)| + rn(s) +M

]
ds, (2)

where M is some real constant, independent on t1, t2 and n. Taking the limit n→ ∞, we get:

∣∣∣U̇T(t2) − U̇T(t1)
∣∣∣ ≤ ∫ t2

t1

[
|FT(s)| + r(s) +M

]
ds,

which shows that U̇T is absolutely continuous.

Step 3. UT is a solution of the evolution problem under consideration.

Inequality (2) gives:
‖Ün

T‖L1 ≤MT + ‖rn‖L1 + ‖FT‖L1 ≤M ′,

where M ′ is a real constant independent of n. Therefore, extracting a subsequence if necessary, the sequence
(Ün

T)n∈N converges in M([0, T ]; Rn−1) weak-∗. Its limit is necessarily ÜT. Now, Un
T being a solution of evolution
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problem (1), we have:

∀V ∈ C0
(
[0, T ]; Rn−1

)
,∫ T

0

rn(s)|V (s)| ds ≥
∫ T

0

rn(s)|U̇n
T(s)| ds+

∫ T

0

[
Ün

T(s) +KT · Un
T(s) − FT(s)

][
V (s) + U̇n

T(s)
]
ds.

Thanks to the convergence properties of all the sequences involved, we can take the limit as n → ∞ in this
inequality. We deduce that UT is a solution of the evolution problem under consideration. �

Proposition 3.3. Let W ∈ R
n−1, FN ∈ L1([0, T ]; R) and FT ∈ L1([0, T ]; Rn−1). Then, there exists a unique

UT ∈ W 2,1([0, T ]; Rn−1) such that:

• UT(0) = U0T; U̇T(0) = V0T (initial condition);

• ÜT(t) +KT · UT(t) − FT(t) ∈ ∂Sµ|FN(t)−W ·UT(t)|.B
[−U̇T(t)

]
, for a.a. t ∈ [0, T ].

Proof.
Uniqueness. If U1

T and U2
T denote two solutions, then we have:

1
2

∣∣∣U̇1
T(t) − U̇2

T(t)
∣∣∣2 +

1
2

∣∣∣U1
T(t) − U2

T(t)
∣∣∣2
KT

≤ µ

∫ t

0

∣∣∣W · U1
T(s) −W · U2

T(s)
∣∣∣.∣∣∣U̇1

T(s) − U̇2
T(s)

∣∣∣ ds,
≤ µ |W |

2

∫ t

0

(∣∣∣U̇1
T(s) − U̇2

T(s)
∣∣∣2 +

∣∣∣U1
T(s) − U2

T(s)
∣∣∣2) ds,

and, therefore, U1
T ≡ U2

T, by Gronwall’s lemma.
Existence. Let Un

T be the sequence of functions in W 2,1([0, T ]; Rn−1) defined by:

U0
T(t) = U0T + V0T t,

and by the following induction: knowing the function Un
T ∈ W 2,1([0, T ]; Rn−1), Un+1

T is the unique solution in
W 2,1([0, T ]; Rn−1), provided by Proposition 3.2, of the evolution problem:

• Un+1
T (0) = U0T; U̇n+1

T (0) = V0T (initial condition);

• Ün+1
T (t) +KT · Un+1

T (t) − FT(t) ∈ ∂Sµ|FN(t)−W ·Un
T(t)|.B

[−U̇n+1
T (t)

]
, for a.a. t.

First, we get:

1
2

∣∣U̇n+1
T (t) − U̇n

T(t)
∣∣2 +

1
2

∣∣Un+1
T (t) − Un

T(t)
∣∣2
KT

≤ µ|W |
∫ t

0

∣∣Un
T(s) − Un−1

T (s)
∣∣.∣∣U̇n+1

T (s) − U̇n
T(s)

∣∣ ds, (3)

and then, by Lemma A.5, p. 157 of [2]:

∣∣Un+1
T (t) − Un

T(t)
∣∣ ≤ C

∫ t

0

∣∣Un
T(s) − Un−1

T (s)
∣∣ ds,

where C is a real constant independent of t and n. Reusing the argument in the proof of Proposition 3.1,
we obtain first the uniform convergence of the sequence (Un

T)n∈N, and then, coming back to inequality (3), the
uniform convergence of the sequence (U̇n

T)n∈N. Then, it can be shown, exactly as in the proof of Proposition 3.1,
that this limit provides the solution we sought. �
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3.2. The bilateral problem with analytic force

The aim of this section is to prove that, if the external force F is not only integrable but analytic, then the
solution of the bilateral problem Pb provided by Proposition 3.3 is analytic on some right-neighbourhood of
t = 0.

Lemma 3.4. Let n be a positive integer, O a neighbourhood of (0, 0) in R
n × R, G : O → R

n an analytic
function and A a real square matrix of order n without any eigenvalue in N \ {0}. Then, there exist η > 0 and
an analytic function X : [0, η[ → R

n which is a solution of the Cauchy problem:

• X(0) = 0;

• Ẋ(t) =
1
t
A ·X(t) +G

(
X(t), t

)
, ∀t ∈ ]0, η[ .

Moreover, any other analytic solution of this Cauchy problem is, either a restriction, or an analytic extension
of X(t).

Proof. For the sake of clarity, the proof is presented only in the particular case n = 1. For |X | < r and |t| < r,
we can write:

G(X, t) =
∞∑

i,j=0

gijX
itj .

Then, for |X | < r and |t| < r, set:

G̃(X, t) =
∞∑

i,j=0

|gij |X itj ,

and consider the Cauchy problem:

• X̃(0) = 0;

• d
dt
X̃(t) = G̃

(
X̃(t), t

)
, ∀t,

that admits a unique local solution X̃ which, moreover, is analytic (Th. 1, p. 214 of [3]). This solution can be
expanded in a power series:

X̃(t) =
∞∑

i=1

x̃it
i,

which converges in a neighbourhood of t = 0. The coefficients x̃i are inductively computed by substituting the
power series expansion into the differential equation. This procedure gives, for all k ∈ N:

(k + 1)x̃k+1 = Pk+1

(
x̃1, x̃2, . . . , x̃k; |gij |

)
, (4)

where Pk+1 is a polynomial with integer coefficients, and arguments x̃1, x̃2,. . . ,x̃k and a finite number of |gij |.
An induction argument based on equation (4) shows that all the x̃i are uniquely determined and satisfy in
addition:

∀k ∈ N, x̃k+1 ≥ 0.

Note that all the polynomials Pk+1 have the property:

∀α ≥ 1, ∀x̃i ∈ R,
∣∣∣Pk+1

(
αx̃1, α

2x̃2, . . . , α
kx̃k; |gij |

)∣∣∣ ≤ αkPk+1

(|x̃1|, |x̃2|, . . . , |x̃k|; |gij |
)
. (5)
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Now, let us come back to the Cauchy problem:

• X(0) = 0;

• Ẋ(t) =
1
t
AX(t) +G

(
X(t), t

)
,

and search a solution as a formal power series:

X(t) =
∞∑

i=1

xit
i.

Substituting this expression into the differential equation, we obtain, for all k ∈ N:

(k + 1 −A)xk+1 = Pk+1

(
x1, x2, . . . , xk; gij

)
. (6)

Set:

α = sup
k∈N

{
k + 1

k + 1 −A

}
(α ≥ 1),

which is finite, since, by hypothesis, A is not a positive integer. By virtue of the induction equation (6), we
have, for all k ∈ N:

|xk+1| ≤ α

k + 1
Pk+1

(|x1|, |x2|, . . . , |xk|; |gij |
)
.

By induction based on property (5), we get:

∀k ∈ N, |xk+1| ≤ αk+1x̃k+1,

which proves that the convergence radius of the power series
∑

i≥1 xit
i is positive and, thus, gives the desired

conclusion.
In the case where n is arbitrary, the argument is similar, using the maximum norm on R

n instead of the
absolute value; the constant α is then defined by:

α = sup
k∈N

{
(k + 1)

∣∣∣[(k + 1)I −A
]−1
∣∣∣
∞

}
(α ≥ 1),

where I is the identity matrix and | · |∞ denotes the matrix norm associated with the maximum norm on R
n. �

Proposition 3.5. Let FN : [0, T ] → R and FT : [0, T ] → R
n−1 be two analytic functions. Then, there exists

η > 0 such that the restriction to [0, η[ of UT ∈W 2,1, provided by Proposition 3.3, is analytic.

Proof. By the assumed analyticity of functions FN(t) and FT(t), there exists η > 0 such that, necessarily, one
of the following three cases occurs.
Case 1. V0T �= 0.
Case 2. V0T = 0 and ∀t ∈ ]0, η[ , |FT(t) −KT · U0T| ≤ µ|FN(t) −W · U0T|.
Case 3. V0T = 0 and ∀t ∈ ]0, η[ , |FT(t) −KT · U0T| > µ|FN(t) −W · U0T|.
Thus, we are going to prove that the conclusion is reached in any of these cases.

Case 1. V0T �= 0.
Let O be an open neighbourhood of V0T in R

n−1 which does not contain 0. Then, the function:


O → R
n−1

V �→ V

|V |
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is analytic. Cauchy-Lipschitz’ theorem provides a solution UT ∈ C2([0, α[; Rn−1) of the Cauchy problem:

• UT(0) = U0T; U̇T(0) = V0T;

• ÜT(t) +KT · UT(t) + µ
∣∣FN(t) −W · UT(t)

∣∣ U̇T(t)
|U̇T(t)| = FT(t);

• U̇T(t) ∈ O.

(7)

Now, seeking a solution of (7) as a formal power series:

UT(t) =
∞∑

k=0

λkt
k,

and substituting into (7), we have necessarily:

λ0 = U0T, λ1 = V0T

and then:

λ2 =
1
2

{
FT(0) −KT · U0T − ∣∣FN(0) −W · U0T

∣∣ V0T

|V0T|
}
.

Replacing the term
∣∣FN(t)−W ·UT(t)

∣∣, in (7), by ±[FN(t)−W ·UT(t)
]

according to the sign of the first nonzero
term of the formal power series expansion of

[
FN(t) −W · UT(t)

]
, it is readily seen, by induction, that the

sequence (λn)n∈N is uniquely determined. Only two cases are possible.

Case 1.1. ∀n ∈ N,
F

(n)
N (0)
n!

= W · λn,

in which case the solution of the Cauchy problem:

• UT(0) = U0T; U̇T(0) = V0T;

• ÜT(t) +KT · UT(t) = FT(t);

• U̇T(t) ∈ O,

which is analytic by Theorem 1, p. 214 of [3], has the λn as coefficients of its power series expansion at 0.
Hence, the λn are the coefficients of the power series expansion at 0 of a certain analytic function defined on a
right-neighbourhood of 0 and which solves problem (7) and therefore the Cauchy problem of Proposition 3.3.

Case 1.2. ∀n ∈ {0, 1, . . . , n0 − 1}, F
(n)
N (0)
n!

= W · λn, and
F

(n0)
N (0)
n0!

�= W · λn0 ,

in which case the analytic solution of the Cauchy problem:

• UT(0) = U0T; U̇T(0) = V0T;

• ÜT(t) +KT · UT(t) + µ sgn
[

F
(n0)
N (0)

n0!
−W · λn0

][
FN(t) −W · UT(t)

] U̇T(t)
|U̇T(t)| = FT(t);

• U̇T(t) ∈ O,

is a solution of problem (7) on a right-neighbourhood of t = 0 and therefore solves the Cauchy problem of
Proposition 3.3.

Case 2. V0T = 0 and ∀t ∈ ]0, η[ , |FT(t) −KT · U0T| ≤ µ|FN(t) −W · U0T|.
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In this case, it is readily checked that the constant function UT ≡ U0T on [0, η[ (which is analytic) provides a
solution on [0, η[ of the Cauchy problem of Proposition 3.3.

Case 3. V0T = 0 and ∀t ∈ ]0, η[ , |FT(t) −KT · U0T| > µ|FN(t) −W · U0T|.
This case is the most tricky to examine. Our technique will consist to transform problem (7) into a form on
which Lemma 3.4 applies.

By the assumed analyticity of functions FN(t) and FT(t), together with the hypothesis of case 3, we know
that there exist two integers n0 and n1 ≥ n0 such that:

FT(t) −KT · U0T ∼ αtn0 , α ∈ R
n−1 \ {0},

FN(t) −W · U0T ∼ βtn1 , β ∈ R \ {0},

when t goes to 0 (in case where FN(t) ≡ W · U0T, just set n1 = +∞ in the sequel). Let us look for a formal
power series solution of problem (7). It is readily checked that the first nonzero term of the formal power series
associated to UT − U0T can be written:

γtn0+2,

where γ must satisfy the equation:

(n0 + 2)(n0 + 1)γ + µ δn1
n0

|β| γ|γ| = α. (8)

Here, δn1
n0

denotes the Kronecker index (which equals 1, if n0 = n1, and 0, otherwise). The solution of equa-
tion (8) is:

γ =
|α| − µ δn1

n0
|β|

(n0 + 2)(n0 + 1)
.
α

|α| ·
Then, we define new unknown functions, for t > 0, by:

ŨT =
UT − U0T

tn0+1
,

ṼT =
U̇T

(n0 + 2)tn0+1
− γ.

Hence, for t > 0, the functions ŨT and ṼT are related by the differential equation:

d
dt
ŨT = −n0 + 1

t
ŨT + (n0 + 2)(ṼT + γ).

Now, there remains to write the differential equation in problem (7) in terms of the new unknown functions ŨT

and ṼT. We get:

d
dt
ṼT = −n0 + 1

t
(ṼT + γ) − 1

n0 + 2
KT · ŨT +

FT −KT · U0T

(n0 + 2)tn0+1
− µ

n0 + 2

∣∣∣∣FN −W · U0T

tn0+1
−W · ŨT

∣∣∣∣ γ + ṼT

|γ + ṼT|
,

which is, using definition (8) of γ, nothing but:

d
dt
ṼT = −n0 + 1

t
ṼT − 1

n0 + 2
KT · ŨT +

FT −KT · U0T − αtn0

(n0 + 2)tn0+1

+
µ δn1

n0
|β|

(n0 + 2)t
.
γ

|γ| −
µ

n0 + 2

∣∣∣∣FN −W · U0T

tn0+1
−W · ŨT

∣∣∣∣ γ + ṼT

|γ + ṼT|
·
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Now, it is readily seen that the Cauchy problem:

• ŨT(0) = 0; ṼT(0) = 0;

• d
dt
ŨT = −n0 + 1

t
ŨT + (n0 + 2)(γ + ṼT);

• d
dt
ṼT = −n0 + 1

t
ṼT − 1

n0 + 2
KT · ŨT +

FT −KT · U0T − αtn0

(n0 + 2)tn0+1

+
µ δn1

n0
|β|

(n0 + 2)t
.
γ

|γ| −
µ

n0 + 2

∣∣∣∣FN −W · U0T

tn0+1
−W · ŨT

∣∣∣∣ γ + ṼT

|γ + ṼT|
,

has a unique formal power series solution. Let sign equal −1 or +1 according to the sign of the first nonzero
term in the formal power series expansion of:

FN −W · U0T − tn0+1W · ŨT.

It is easily checked that, in the particular case n1 = n0, we have:

sign = sgn (β),

so that the function G̃ defined by:

G̃
(
ŨT, ṼT, t

)
=
FT −KT · U0T − αtn0

(n0 + 2)tn0+1
+

µ δn1
n0

|β|
(n0 + 2)t

.
γ

|γ| −
µ sign
n0 + 2

[
FN −W · U0T

tn0+1
−W · ŨT

]
γ + ṼT

|γ + ṼT|
,

is analytic on some neighbourhood of (0, 0, 0). Then, Lemma 3.4 provides a local analytic solution (ŨT, ṼT) of
the problem:

• ŨT(0) = 0; ṼT(0) = 0;

• d
dt
ŨT = −n0 + 1

t
ŨT + (n0 + 2)(γ + ṼT);

• d
dt
ṼT = −n0 + 1

t
ṼT − 1

n0 + 2
KT · ŨT + G̃

(
ŨT, ṼT, t

)
.

Setting:

UT(t) = U0T + tn0+1ŨT(t),

the function UT is analytic on a right-neighbourhood of 0 and:

U̇T(t) = (n0 + 2)tn0+1(γ + ṼT(t)).

Rewinding the argument, it is readily seen that UT is a solution of problem (7) and therefore, of the evolution
problem of Proposition 3.3. �

4. The unilateral problem with analytic force

4.1. Existence of a local analytic solution

The result announced in the title of this section is the following.
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Theorem 4.1. Let F : [0, T ] → R
n be an analytic function. Then, there exist Ta > 0 and analytic functions

Ua : [0, Ta[ → R
n and RaN : [0, Ta[ → R, solution of the problem:

• Ua(0) = U0; U̇a(0) = V0;

• ÜaN + kNUaN +W · UaT = FN +RaN, in [0, Ta[ ;

• ÜaT +KT · UaT +WUaN − FT ∈ ∂S−µRaN.B
[−U̇aT

]
, in [0, Ta[ ;

• UaN ≤ 0, RaN ≤ 0, UaNRaN ≡ 0.

Moreover, any other analytic solution of this evolution problem is, either a restriction, or an analytic extension
of this solution.

Proof. If we do not have U0N = V0N = 0, Theorem 4.1 is obvious, so we concentrate on the case U0N = V0N = 0.
Denoting by:

F (t) =
∞∑

i=0

fit
i

the power series expansion of F at t = 0, we shall look for a formal power series solution given by:

Ua =
∞∑

i=2

uit
i, RaN =

∞∑
i=0

rit
i.

The first terms of these two formal series must satisfy:

• 2u2N = f0N + r0;

• u2N ≤ 0, r0 ≤ 0, u2Nr0 = 0.

This system determines uniquely the couple (u2N, r0). If this couple does not vanish, we stop. Otherwise, we
continue the induction until, perhaps, a couple (u(i+2)N, ri) becomes distinct from (0, 0). At rank i, the problem
to be solved is:

• i(i+ 1)u(i+1)T +KTu(i−1)T +Wu(i−1)N = f(i−1)T;

• (i+ 1)(i+ 2)u(i+2)N + kNuiN +W · uiT = fi + ri;

• u(i+2)N ≤ 0, ri ≤ 0, u(i+2)Nri = 0.
The two following cases have to be considered.
Case 1. The induction does not stop because all the couples (u(i+2)N, ri) vanish.
Then, Theorem 1, p. 214 of [3] provides an analytic solution ua : [0, Ta[ → R

n of the problem:

• Ua(0) = U0; U̇a(0) = V0;

• Üa +K · Ua = F, in [0, Ta[.

This solution, associated with the choice RaN ≡ 0 provides the sought analytic solution of the evolution problem
under consideration.
Case 2. The induction stops at rank n0 because u(n0+2)N < 0.
Then, Theorem 1, p. 214 of [3] provides an analytic solution Ua : [0, Ta[ → R

n of the problem:

• Ua(0) = U0; U̇a(0) = V0;

• Üa +K · Ua = F, in [0, Ta[ .
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Restricting, if necessary, the time interval on which Ua is defined, we have:

∀t ∈ ]0, Ta[ , UaN(t) < 0,

and this solution, associated with the choice RaN ≡ 0 provides the sought analytic solution of the evolution
problem under consideration.
Case 3. The induction stops at rank n0 because rn0 < 0.
Propositions 3.3 and 3.5 provide an analytic solution UaT : [0, Ta[ → R

n−1 of the problem:

• UaT(0) = 0; U̇aT(0) = 0;

• ÜaT(t) +KT · UaT(t) − FT(t) ∈ ∂Sµ|FN(t)−W ·UaT(t)|.B
[−U̇aT(t)

]
, ∀t ∈ [0, Ta[ .

Restricting, if necessary, the time interval on which UaT is defined, we have:

∀t ∈ ]0, Ta[ , W · UaT(t) − FN(t) < 0,

and this function, associated with the choices:

UaN ≡ 0, RaN ≡W · UaT − FN,

provides the sought analytic solution of the evolution problem under consideration.

The uniqueness part of the theorem comes from the fact that the induction (finite or infinite) determines the
status (active contact or not) of the system on a right-neighbourhood of t = 0, and uniqueness at fixed status
holds either by virtue of Theorem 1, p. 214 of [3], or by virtue of Propositions 3.3 and 3.5. �

4.2. Local uniqueness for the unilateral problem with analytic force

The result announced in the title of this section is the following.

Theorem 4.2. Let F : [0, T ] → R
n be an analytic function, Ua : [0, Ta[ → R

n, the local analytic solution of
problem Pu provided by Theorem 4.1 and U ∈ MMA([0, T ]; Rn), an arbitrary solution of problem Pu. Then, Ua

and U are identically equal on some right-neighbourhood of t = 0:

∃T ′ ≤ Ta, ∀t ∈ [0, T ′[ , Ua(t) = U(t).

Proof.
Step 1. For all t ∈ [0, Ta[, the following estimate holds:

∣∣U̇+
T − U̇aT

∣∣(t) +
∣∣UT − UaT

∣∣(t) ≤ C1

∫
[0,t]

∣∣RN −RaN

∣∣+ C2

∫ t

0

∣∣UN − UaN

∣∣,
for some real constants C1 and C2 depending only on K and µ.

We start with:
ÜT − ÜaT +KT · (UT − UaT) + (UN − UaN)W = RT −RaT.

We multiply by U̇+
T − U̇aT and integrate over [0, t]. The Coulomb friction law gives:∫

[0,t]

(
RT −RaT

) · (U̇+
T − U̇aT

) ≤ µ

∫
[0,t]

(
RN −RaN

)(∣∣U̇+
T

∣∣− ∣∣U̇aT

∣∣),
≤ µ

∫
[0,t]

∣∣RN −RaN

∣∣∣∣U̇+
T − U̇aT

∣∣.
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Moreover: ∫
[0,t]

ÜT · U̇+
T ≥ 1

2

∣∣U̇+
T

∣∣2(t) − 1
2

∣∣V0T

∣∣2,
(by use of [9], p. 44), which leads to:∫

[0,t]

(
ÜT − ÜaT

) · (U̇+
T − U̇aT

) ≥ 1
2

∣∣U̇+
T − U̇aT

∣∣2(t).
Putting everything together, we get, for all t ∈ [0, Ta[:

1
2

∣∣U̇+
T − U̇aT

∣∣2(t) +
1
2

∣∣UT − UaT

∣∣2
KT

(t) ≤ µ

∫
[0,t]

∣∣RN −RaN

∣∣∣∣U̇+
T − U̇aT

∣∣+ |W |
∫ t

0

∣∣UN − UaN

∣∣∣∣U̇+
T − U̇aT

∣∣.
Then, Lemma A.5, p. 157 of [2] gives the estimate we looked for:

∣∣U̇+
T − U̇aT

∣∣(t) +
∣∣UT − UaT

∣∣
KT

(t) ≤ µ
√

2
∫

[0,t]

∣∣RN −RaN

∣∣+ |W |
√

2
∫ t

0

∣∣UN − UaN

∣∣.
Step 2. For all t ∈ [0, Ta[, the following estimate holds:

∣∣U̇+
N − U̇aN

∣∣(t) +
∣∣UN − UaN

∣∣(t) ≤ C3

∫ t

0

∣∣UT − UaT

∣∣+ C4

∫ t

0

∣∣RaN

∣∣,
for some real constants C3 et C4 depending only on K.

We start with:
ÜN − ÜaN + kN(UN − UaN) +W · (UT − UaT) = RN −RaN.

We multiply by (U̇+
N + U̇−

N )/2 − U̇aN and integrate over [0, t]. We get:

1
2

∣∣U̇+
N −U̇aN

∣∣2(t)+kN

2

∣∣UN−UaN

∣∣2(t) =
∫

[0,t]

(
RN−RaN

)(
(U̇+

N +U̇−
N )/2−U̇aN

)−∫ t

0

(
U̇+

N −U̇aN

)
W ·(UT−UaT

)
. (9)

But, note the two following remarks.
(1) Restricting, if necessary, the time interval we work on:

RNU̇aN ≥ 0,

because, if U0N < 0, then RN must vanish on a right neighbourhood of t = 0, and, if U0N = 0, then the
nonpositive analytic function UaN must be nonincreasing on a right neighbourhood of t = 0.

(2) The measure defined by:
RN(U̇+

N + U̇−
N ) ≤ 0,

is nonpositive. Indeed, let D be the countable subset of [0, T ] of those instants t at which the normal
velocity is discontinuous: U̇+

N (t) �= U̇−
N (t). On [0, T ] \ D, the measure RN(U̇+

N + U̇−
N ) equals RNU̇

−
N

which is nonpositive, thanks to the unilateral contact condition (actually, the measure RNU̇
−
N vanishes

identically on [0, T ] \ D). Moreover, at each instant t ∈ D, the measure RN(U̇+
N + U̇−

N ) has an atom
given by: ∣∣U̇+

N

∣∣2 − ∣∣U̇−
N

∣∣2 =
(
e2 − 1

)∣∣U̇−
N

∣∣2 ≤ 0,
thanks to the equation of motion and the impact law.
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Taking these two remarks into account in (9), we obtain:

∫
[0,t]

(
RN −RaN

)(
(U̇+

N + U̇−
N )/2 − U̇aN

) ≤ −
∫ t

0

RaN

(
U̇+

N − U̇aN

)
,

and then:

1
2

∣∣U̇+
N − U̇aN

∣∣2(t) +
kN

2

∣∣UN − UaN

∣∣2(t) ≤ |W |
∫ t

0

∣∣UT − UaT

∣∣∣∣U̇+
N − U̇aN

∣∣+ ∫ t

0

∣∣RaN

∣∣∣∣U̇+
N − U̇aN

∣∣.
Lemma A.5, p. 157 of [2] allows us to obtain the desired estimate:

∣∣U̇+
N − U̇aN

∣∣(t) +
∣∣UN − UaN

∣∣(t) ≤ kN + 1
kN

|W |√2
∫ t

0

∣∣UT − UaT

∣∣+ kN + 1
kN

√
2
∫ t

0

∣∣RaN

∣∣.
Step 3. For all t ∈ [0, Ta[, the following estimate holds:

∫
[0,t]

∣∣RN − RaN

∣∣ ≤ ∣∣U̇+
N − U̇aN

∣∣(t) + C5

∫ t

0

∣∣UN − UaN

∣∣+ C6

∫ t

0

∣∣UT − UaT

∣∣+ 2
∫ t

0

∣∣RaN

∣∣,
for some real constants C5 and C6 depending only on K.

Since RN is a nonpositive measure:

∫
[0,t]

∣∣RN −RaN

∣∣ ≤ −
∫

[0,t]

RN +
∫ t

0

∣∣RaN

∣∣.
Also, we have:

−
∫

[0,t]

RN = −
∫

[0,t]

(ÜN − ÜaN) −
∫ t

0

kN(UN − UaN) +W · (UT − UaT) +RaN,

≤ ∣∣U̇+
N − U̇aN

∣∣(t) + kN

∫ t

0

∣∣UN − UaN

∣∣+ |W |
∫ t

0

∣∣UT − UaT

∣∣+ ∫ t

0

∣∣RaN

∣∣.
Putting everything together, we get the estimate that we looked for, with C5 = kN and C6 = |W |.
Step 4. For all t ∈ [0, Ta[, the following estimate holds:

∣∣U̇+
T − U̇aT

∣∣(t) +
∣∣UT − UaT

∣∣(t) ≤ C

∫ t

0

∣∣RaN

∣∣,
for some real constant C depending only on K, µ and Ta.

Putting together steps 1, 2 and 3, the function:

φ(t) def=
∣∣U̇+

T − U̇aT

∣∣(t) +
∣∣UT − UaT

∣∣(t)
satisfies the estimate:

φ(t) ≤ C7

∫ t

0

φ+ C8

∫ t

0

∣∣RaN

∣∣,
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for some real constants C7 et C8 depending only on K, µ and Ta. By Gronwall’s lemma, we get:

φ(t) ≤ C8

∫ t

0

∣∣RaN

∣∣+ C7C8

∫ t

0

eC7(t−s)

∫ s

0

∣∣RaN

∣∣,
≤ C8

(
1 + C7Tae

C7Ta
) ∫ t

0

∣∣RaN

∣∣
which is the estimate that we sought.

Step 5. Conclusion.

The function RaN being analytic, only the two following cases are possible.
(1) RaN ≡ 0. In such a case, step 4 gives UT ≡ UaT and step 2, UN ≡ UaN. The sought conclusion holds

true.
(2) ∀t ∈ ]0, Ta] , RaN(t) < 0. Then, the function UaN vanishes identically. Since the uniqueness of solution

has already been proved for the bilateral problem, it is enough to prove UN ≡ 0 to reach the desired
conclusion. So, let us concentrate on this goal. Taking Ta smaller, if necessary, we have:

∀t ∈ ]0, Ta] , −RaN(t) − C|W |
∫ t

0

∣∣RaN

∣∣ > 0.

Multiplying the equation:

ÜN + kNUN = RN −RaN −W · (UT − UaT),

by (U̇+
N + U̇−

N )/2 and integrating over [0, t], we obtain:

1
2

∣∣U̇+
N

∣∣2(t) +
kN

2

∣∣UN

∣∣2(t) =
∫

[0,t]

RN
U̇+

N + U̇−
N

2
−
∫ t

0

(
RaN +W · (UT − UaT)

)
U̇+

N .

Since RN(U̇+
N + U̇−

N ) is a nonpositive measure, we have:

∫ t

0

(
RaN +W · (UT − UaT)

)
U̇+

N ≤ 0.

Applying an integration by parts, we get:

(
RaN +W · (UT − UaT)

)
UN ≤

∫ t

0

(
ṘaN +W · (U̇+

T − U̇aT)
)
UN,

and, therefore, by step 4:

0 ≤
{∣∣RaN

∣∣(t) − C|W |
∫ t

0

∣∣RaN

∣∣}∣∣UN

∣∣(t) ≤ ∫ t

0

{∣∣ṘaN

∣∣(s) + C|W |
∫ s

0

∣∣RaN

∣∣}∣∣UN

∣∣(s).
Denoting by m ∈ N the order of the first nonzero term in the power series expansion at 0 of the analytic
function RaN, we get the estimate:

∀t ∈ ]0, Ta[ ,
∣∣ṘaN

∣∣(t) ≤ m+ D̃t

t

∣∣RaN

∣∣(t),
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for some nonnegative real constant D̃. We deduce that the following estimate holds:

∀t ∈ ]0, Ta[ ,
∣∣∣∣ṘaN(t) + C|W |

∫ t

0

∣∣RaN

∣∣∣∣∣∣ ≤ m+Dt

t

∣∣∣∣∣∣RaN

∣∣(t) − C|W |
∫ t

0

∣∣RaN

∣∣∣∣∣∣,
for some nonnegative real constant D. Substituting this estimate into the previous inequality, we get:

tψ(t) ≤ (m+Dt)
∫ t

0

ψ.

where we have set:

ψ(t) def=
{∣∣RaN

∣∣(t) − C|W |
∫ t

0

∣∣RaN

∣∣}∣∣UN

∣∣(t)
t

,

which is a continuous function, even at t = 0 (more precisely ψ(t) = o(tm) when t → 0). Then, we see
that:

∀t ∈ ]0, Ta[ ,
d
dt

{
e−Dt

tm

∫ t

0

ψ

}
≤ 0,

which implies that this nonnegative function which vanishes at t = 0 is nonincreasing. Therefore:

ψ ≡ 0,

and, then:
UN ≡ 0,

which is nothing but the desired conclusion. �

4.3. Well-posedness of the unilateral problem with analytic force

Corollary 4.3. If F : [0, T ] → R
n is analytic (or piecewise analytic), then, problem Pu admits a unique solution

in MMA([0, T ]; Rn).

Proof. Using the local existence of solution for problem Pu provided by Theorem 4.1, and the local uniqueness
in MMA, provided by Theorem 4.2, we get a maximal solution U which is defined either on a subinterval [0, η[,
for some η ∈ ]0, T ], or on [0, T ]. We have to prove that it is defined on [0, T ]. To reach this conclusion, it is
enough to prove that, if the maximal solution were defined only on a subinterval [0, η[, then, the total variation
of the right-velocity U̇+ over [0, η[ is finite, for, in such a case, it would be possible to extend U beyond [0, η[
and obtain a contradiction. So, suppose that the maximal solution is only defined on [0, η[.

First, we have already noticed that RN(U̇+
N + U̇−

N ) is a nonpositive measure, thanks to the contact condition,
the equation of motion and the impact law. Also, by the Coulomb friction law, RT ·U̇+

T is a nonpositive measure.
Let D be the countable subset of those instants t ∈ [0, η[ at which the tangential velocity is discontinuous:
U̇+

T (t) �= U̇−
T (t). On [0, η[\D, the measure RT · (U̇+

T + U̇−
T ) equals RT · U̇+

T which is nonpositive. At each instant
t ∈ D, making use of the equation of motion together with the Coulomb friction law, it is readily checked
that the measure RT · (U̇+

T + U̇−
T ) has a negative atom. Finally, R · (U̇+ + U̇−) is a nonnegative measure. So,

multiplying the equation of motion:
Ü +K · U = F +R,

by (U̇+ + U̇−)/2, and integrating over ]0, t] (t ∈ ]0, η[), we get the energy inequality:

1
2

∣∣U̇+
∣∣2(t) +

1
2

∣∣U ∣∣2
K

(t) ≤ 1
2

∣∣V0

∣∣2 +
1
2

∣∣U0

∣∣2
K

+
∫ t

0

F · U̇+.
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Applying Lemma A.5, p. 157 of [2]:

∣∣U̇+
∣∣(t) ≤ ∣∣U0

∣∣
K

+
∣∣V0

∣∣+ ∫ T

0

∣∣F ∣∣,
we find that the right-velocity U̇+ is bounded over the interval [0, η[. Next, integrating the first component of
the equation of motion over [0, t] (t ∈ ]0, η[), we get:

∫
[0,t]

RN = U̇+
N (t) − V0N +

∫ t

0

(
kNUN +W · UT

)− ∫ t

0

FN,

which, since the right-velocity U̇+ is bounded over [0, η[ and since RN is a nonpositive measure, shows:∫
[0,η[

∣∣RN

∣∣ <∞.

But, Coulomb friction law implies:
|RT| ≤ µ|RN|,

and therefore: ∫
[0,η[

∣∣R∣∣ <∞.

Coming back to the equation of motion, we obtain:∫
[0,η[

∣∣Ü ∣∣ <∞,

which is the desired conclusion. �
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