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HYBRID CENTRAL-UPWIND SCHEMES FOR NUMERICAL RESOLUTION
OF TWO-PHASE FLOWS
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Abstract. In this paper we present a methodology for constructing accurate and efficient hybrid
central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used
by the nuclear and petroleum industry. Particularly, we propose a method which does not make
use of any information about the eigenstructure of the Jacobian matrix of the model. The two-fluid
model possesses a highly nonlinear pressure law. From the mass conservation equations we develop
an evolution equation which describes how pressure evolves in time. By applying a quasi-staggered
Lax-Friedrichs type discretization for this pressure equation together with a Modified Lax-Friedrich
type discretization of the convective terms, we obtain a central type scheme which allows to cope
with the nonlinearity (nonlinear pressure waves) of the two-fluid model in a robust manner. Then,
in order to obtain an accurate resolution of mass fronts, we employ a modification of the convective
mass fluxes by hybridizing the central type mass flux components with upwind type components. This
hybridization is based on a splitting of the mass fluxes into components corresponding to the pressure
and volume fraction variables, recovering an accurate resolution of a contact discontinuity. In the
numerical simulations, the resulting HCU scheme gives results comparable to an approximate Riemann
solver while being superior in efficiency. Furthermore, the HCU scheme yields better robustness than
other popular Riemann-free upwind schemes.
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1. Introduction

In this paper we investigate a 1-dimensional averaged model for two-phase flow in pipelines, in widespread
use by the nuclear [2,17] and petroleum industry [3,11]. This model is characterized by having eigenvalues that
may take extremely different values; the sonic velocities are typically several orders of magnitude higher than
the wave velocities corresponding to mass transport.

For this reason, simple flux vector splitting (FVS) or central schemes typically give a poor numerical approx-
imation of the slow-moving waves for this model, as the numerical dissipation of such schemes must be adapted
to the fastest waves (see for instance [8]). To achieve a high degree of accuracy for all waves, the numerical
dissipation mechanism must somehow be adapted to each wave phenomenon separately. Although approximate
Riemann solvers like the Roe scheme of Toumi et al. [5,21,22] are robust and give accurate results for all waves,
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they are highly CPU-demanding due to the complexity of the eigenstructure of the model [8]. In particular,
no tractable analytical expressions exist for the eigenvalues, which typically must be calculated numerically
or from power series approximations. From an efficiency point of view, schemes that are independent of the
eigenstructure are desirable.

A hybrid flux-splitting strategy denoted as AUSM (Advection Upstream Splitting Methods) has been popular
in the field of multiphase flow due to its simplicity and accuracy [6, 13, 14]. Here the basic idea is to solve each
conservation equation separately, by splitting the cell interface velocity into left and right components where
the effects of sonic waves are taken into account.

For the current model, such strategies have been investigated by Paillère et al. [15] who considered the
AUSM+ strategy of Liou [12], and Evje and Fl̊atten [8] who considered the AUSMD/V strategy of Wada and
Liou [24]. Not requiring a full eigenstructure decomposition of the system, these schemes were nevertheless
demonstrated to give an accurate description of all wave phenomena for several benchmark problems. However,
some drawbacks are observed:

• As the numerical couplings between the various equations are loose, spurious oscillations are typically
observed in the (slow) volume fraction waves.

• The schemes indirectly rely on the eigenstructure of the model through the use of a numerical sound
velocity, which for two-phase mixtures may vary depending of the form of additional closure terms
(interphasic momentum exchange terms).

In this paper, we construct a Riemann-free numerical scheme which avoids these drawbacks. Our approach
is as follows: the main difficulty with the model we consider is the nonlinearity associated with the pressure
law. In order to obtain information about this part of the flux, particularly how it is related to other variables,
we develop a dynamic equation describing how pressure evolves in time. This pressure evolution equation is
obtained from the mass conservation equations. Then we proceed along the two following steps:

(1) First, we construct a central type scheme based on a splitting of the system into a convective and a
pressure part. A robust numerical flux is obtained for the pressure part by employing a quasi-staggered
Lax-Friedrichs type discretization of the pressure evolution equation at the cell interfaces. Similarly,
a related central type discretization approach is used for the convective terms. More precisely, these
fluxes correspond to those used in the Modified Lax-Friedrich scheme [19]. The resulting central type
scheme ensures a robust treatment of the nonlinear pressure waves.

(2) Second, in order to ensure that accurate resolution of mass fronts is obtained we hybridize the convective
central fluxes with corresponding simple upwind fluxes (which employ only the fluid velocity) so that we
recover the upwind flux for a moving or stationary contact discontinuity. This hybridization is achieved
by splitting the mass fluxes into a pressure and volume fraction part, and automatically enforces a
strong numerical coupling between the gas and liquid mass conservation equation.

On several benchmark cases, this simple procedure gives accuracy and robustness properties comparable to the
much more computationally demanding Roe scheme. In addition, improved stability properties over the AUSM
strategy are clearly observed.

The paper is organized as follows: in Section 2 we present the two-fluid model we will be working with. In
Section 3 we derive an evolution equation for the pressure. In Section 4 we present the central scheme that
forms the foundation for this paper. A key role is played by the pressure evolution equation which provides a
robust numerical flux for the pressure term. In Section 5 we present the hybrid central-upwind (HCU) scheme.
A main point of this paper lies in Section 5.1, where we derive the hybrid mass fluxes (40) and (41).

In Section 6 we verify that the HCU scheme possesses certain desirable properties. In Section 7 we apply it
to a set of test cases found in the literature. Comparisons are made with an approximate Riemann solver (Roe
scheme), as well as the AUSMD scheme considered in [8] and the AUSM+ scheme considered in [15].
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2. The two-fluid model

Throughout this paper we will be concerned with the common two-fluid model formulated by stating sep-
arate conservation equations for mass and momentum for the two fluids, which we will denote as a gas (g)
and a liquid (l) phase. We choose a formulation of the model that has been widely studied in the scientific
literature [4, 5, 8, 15, 22]. We let U be the vector of conserved variables

U =




ρgαg

ρlαl

ρgαgvg

ρlαlvl


 =




mg

ml

Ig

Il


 . (1)

By using the notation ∆p = p − pi, where pi is the interfacial pressure, the model can be written on the form
• Conservation of mass

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0, (2)

∂

∂t
(ρlαl) +

∂

∂x
(ρlαlvl) = 0, (3)

• Conservation of momentum

∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g

)
+ ∆p

∂

∂x
(αg) + αg

∂

∂x
(p) = Qg + MD

g , (4)

∂

∂t
(ρlαlvl) +

∂

∂x

(
ρlαlv

2
l

)
+ ∆p

∂

∂x
(αl) + αl

∂

∂x
(p) = Ql + MD

l . (5)

Here αk is the volume fraction of phase k with

αg + αl = 1, (6)

ρk and vk denote the density and fluid velocity of phase k, and p is the pressure common to both phases. MD
k

represents interfacial drag force with MD
g + MD

l = 0 whereas Qk represent source terms due to gravity, friction,
etc. For reasons of clarity and consistency with previous works, we assume a nondifferential interfacial drag
force MD

k = MD
k (U).

2.1. Submodels

The system is closed by some equation of states (EOS) for the liquid and gas phase. The numerical methods
we study in this work allow general expressions for the EOS. However, for the numerical simulations presented
in this work we follow [8] and assume the simplified thermodynamic relations

ρl = ρl,0 +
p − p0

a2
l

(7)

and
ρg =

p

a2
g

(8)

where

p0 = 1 bar = 105 Pa

ρl,0 = 1000 kg/m3
,

a2
g = 105(m/s)2

al = 103 m/s.
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The models (7) and (8) correspond to a general stiffened gas EOS of the form

p = (γk − 1)a2
kρk − γkπk,

where πk = (a2
kρk,0 − p0)/2 where ρk,0 represents the material density and p0 the ambient pressure. γk and πk

are constants specific for each phase. Particularly, by choosing γl = 2 we recover (7) while (8) is obtained by
choosing γg = 2 and πg = 0.

Moreover, we will treat Qk as a pure source term, assuming that it does not contain any differential operators.
We use the interface pressure correction

∆p = σ
αgαlρgρl

ρgαl + ρlαg
(vg − vl)2. (9)

If the relative velocity between the phases is low, the choice σ > 1 ensures that the model is a hyperbolic system
of conservation laws. For the purposes of this paper, we set σ = 1.2.

For a more detailed analysis of the hyperbolicity condition, see for instance [5, 8].

2.2. Conservative and primitive variables

Having solved for the conservative variable U, we need to obtain the primitive variables (αg, p, vg, vl). For the
pressure variable we see that by writing the volume fraction equation (6) in terms of the conserved variables as

mg

ρg(p)
+

ml

ρl(p)
= 1, (10)

we obtain a relation yielding the pressure p(mg, ml). Using the relatively simple form of EOS given by (7) and
(8) we see that the pressure p is found as a positive root of a second order polynomial. For more general EOS
we must solve a non-linear system of equations, for instance by using a Newton-Rapson algorithm. Moreover,
the fluid velocities vg and vl are obtained directly from the relations

vg =
U3

U1
, vl =

U4

U2
·

Remark 1. It should be noted that the model (2)–(5) assumes that dynamic energy transfers can be neglected;
consequently a static temperature or entropy distribution is implicitly assumed and the EOS can always be
expressed as a one-variable function only, i.e. ρk = ρk(p) for phase k.

We emphasize that the methods we develop do not require simple linear relations as given by (7) and (8).
Nonlinear EOS have been tested in [10]. The only complication added by using a general nonlinear EOS is the
resolution algorithm which determines the pressure from the general relation (10). Note that even with linear
relations like (7) and (8) the pressure law p = p(mg, ml) becomes nonlinear as a function of mg and ml.

3. Numerical schemes

In the following, we will find it convenient to split the fluxes into convective and pressure parts and deal with
each term separately. We write the system (2)–(5) as follows

∂U
∂t

+
∂Fc

∂x
+ ∆p

∂H
∂x

+ H
∂p

∂x
= Q, (11)

where

Q =




0
0

Qg

Ql


 , H =




0
0
αg

αl


 and Fc =




ρgαgvg

ρlαlvl

ρgαgv
2
g

ρlαlv
2
l


 .
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In this paper we will consider discrete schemes on the form

Un+1
j − Un

j

∆t
+

[Fc]nj+1/2 − [Fc]nj−1/2

∆x
+ ∆pn

j

Hn
j+1/2 − Hn

j−1/2

∆x
+ Hn

j

Pn+1
j+1/2 − Pn+1

j−1/2

∆x
= Qn

j . (12)

In the next section we will specify the numerical fluxes [Fc]nj+1/2, Hn
j+1/2, and Pn+1

j+1/2.

3.1. Some useful differential relations and a pressure evolution equation

For later use we here derive some useful differential relations. By using the relation (10), we can derive the
differentials

dp = κ(ρl dmg + ρg dml) (13)

and

dαl = κ
(
αg

∂ρg

∂p
dml − αl

∂ρl

∂p
dmg

)
(14)

where

κ =
1

∂ρl
∂p αlρg + ∂ρg

∂p αgρl

· (15)

Furthermore, we can write the mass differentials in terms of the pressure and volume fraction differentials as
follows:

dmg = αg
∂ρg

∂p
dp − ρg dαl (16)

and

dml = αl
∂ρl

∂p
dp + ρl dαl. (17)

By using the differential (13) and the mass equations (2) and (3) we obtain the dynamical relation

∂p

∂t
+ κ

(
ρl

∂

∂x
(ρgαgvg) + ρg

∂

∂x
(ρlαlvl)

)
= 0. (18)

This equation gives us an evolution equation for the pressure which provides useful information how the pressure
is related to other variables. A main idea in this paper is to construct a numerical flux for the pressure term
based on this equation.

4. A central scheme

With the above relations in hand we will now describe a central scheme consisting of basically two main
steps; the first step deals with the calculation of the cell interface pressure Pj+1/2 from (18) whereas the second
deals with the calculation of the cell center pressure pj from the masses mk,j via the pressure law p = p(mg, ml)
defined by (10). The essential part of the second step is to develop numerical convective fluxes which are
consistent with the pressure splitting Pj+1/2. In this manner, by making a temporal coupling between the
pressure and velocity fields, we achieve the following two benefits:

• A coherent time development is attained for the cell interface pressure Pj+1/2 and the cell center
pressure pj(mg, ml), ensuring a high degree of robustness.

• The pressure–momentum coupling naturally allows for implicit versions of the scheme.

In this paper we explore properties of an explicit scheme. In [9] the pressure–momentum coupling was exploited
to construct implicit versions of the AUSMD scheme investigated in [8].
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4.1. Step I: specification of the pressure flux pj+1/2

Discretizing the equation (18) by a staggered Lax-Friedrichs type of scheme at the cell interface xj+1/2, we
obtain

pn+1
j+1/2 − 1

2 (pn
j + pn

j+1)

∆t
= −(κρl)n

j+1/2

In
g,j+1 − In

g,j

∆x
− (κρg)n

j+1/2

In
l,j+1 − In

l,j

∆x
(19)

where we use the shorthand
Ik = mkvk.

Note that the cell interface pressure pn+1
j+1/2 can be written on the viscous form

pn+1
j+1/2 = Pj+1/2 = P (Un

j ,Un
j+1)

=
1
2

(
pn

j + pn
j+1

) −
[
Dn

g,j+1/2(I
n
g,j+1 − In

g,j) + Dn
l,j+1/2(I

n
l,j+1 − In

l,j)
]

(20)

where the numerical viscosity coefficients Dn
k,j+1/2 are given by

Dn
g,j+1/2 =

∆t

∆x
κn

j+1/2ρ
n
l,j+1/2, (21)

and
Dn

l,j+1/2 =
∆t

∆x
κn

j+1/2ρ
n
g,j+1/2, (22)

where ρl, ρg, and κ are given by (7), (8), and (15). To calculate interface values (·)n
j+1/2 needed for the

coefficients (21) and (22) we propose using the following averages

αn
j+1/2 =

1
2
(αn

j + αn
j+1), (23)

ρn
j+1/2 =

1
2
(ρn

j + ρn
j+1) (24)

and

(
∂ρ

∂p

)

j+1/2

=





ρj+1 − ρj

pj+1 − pj
if pj �= pj+1

(
∂ρ

∂p

)

j

otherwise.
(25)

Thus, these coefficients do not require a reevaluation of the EOS at the cell interface.

Remark 2. We note that the role of the pressure evolution equation (19) is simply to define an appropriate
numerical pressure Pj+1/2 = P (Uj ,Uj+1) for the discretization of the pressure term in (12). From (20) we
easily see that this numerical pressure is consistent with the physical pressure, i.e. P (U,U) = p for all U.

4.2. Step II: specification of the convective fluxes (ρkαkvk)j+1/2 and (ρkαkv2
k)j+1/2

4.2.1. Convective mass fluxes

We here aim to obtain a flux yielding a calculation of masses consistent with the pressure calculation described
in the previous section, and by that ensure stable (non-oscillatory) approximations of the pressure variable.
Going back to the pressure equation (19), we see that it naturally defines a conservative scheme for calculating
masses at cell interface j + 1/2 as

mn+1
k,j+1/2 − 1

2

(
mn

k,j + mn
k,j+1

)

∆t
+

In
k,j+1 − In

k,j

∆x
= 0. (26)
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If we now compute the simple average

mn
k,j =

1
2

(
mn

k,j−1/2 + mn
k,j+1/2

)
(27)

and substitute (26), we obtain the following difference equation for mk,j

mn+1
k,j − 1

4

(
2mn

k,j + mn
k,j−1 + mn

k,j+1

)

∆t
+

1
2∆x

(
In
k,j+1 − In

k,j−1

)
= 0, (28)

which can be written on flux-conservative form with the numerical fluxes

(ρkαkvk)n
j+1/2 = FC

k (Un
j ,Un

j+1) =
1
2
(In

k,j + In
k,j+1) +

1
4

∆x

∆t
(mn

k,j − mn
k,j+1). (29)

Here the superscript “C” indicates that FC
k is a central flux.

4.2.2. Convective momentum fluxes

To ensure consistency between the numerical dissipation for convective mass and momentum transport, we
propose discretizing the convective momentum fluxes as

(ρkαkv2
k)n

j+1/2 =
1
2
([ρkαkv2

k]nj + [ρkαkv2
k]nj+1) +

1
4

∆x

∆t
(In

k,j − In
k,j+1), (30)

by the natural extension of (29).

Remark 3. Note that these central fluxes correspond exactly to the modified Lax-Friedrichs scheme studied
by Tadmor [19], who formally demonstrated convergence results to the physically relevant entropy solution.
In particular, he demonstrated that the modified Lax-Friedrichs scheme is TVD for scalar conservation laws
and satisfies a discrete entropy inequality for all entropy-flux pairs associated with an arbitrary system of
conservation laws.

4.3. Remaining terms

What remains to be calculated are the cell interface volume fractions Hn
j+1/2 for discretization of the

term ∆p∂xα. Consistent with the expression (23), we propose the simple central discretization

αn
j+1/2 =

1
2
(αn

j + αn
j+1). (31)

In this respect we follow in the footsteps of Coquel et al. [4] and Paillère et al. [15].

5. Removal of numerical dissipation

As the numerical experiments in this paper show, the proposed central scheme is highly robust, and yields an
adequate resolution of sonic waves. However, it is highly diffusive on the slow-moving volume fraction waves. In
the following, we propose a mechanism for removing numerical dissipation based on studying the simple contact
discontinuity given by

pL = pR = p (32)
αL �= αR

(vg)L = (vl)L = (vg)R = (vl)R = v.
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Now all pressure terms vanish from the model (2)–(5) and it is seen that the solution to this initial value problem
is simply that the discontinuity will propagate with the velocity v. This exact solution then gives the upwind
mass flux

(ραv)j+1/2 =
1
2
ρ(αL + αR)v − 1

2
ρ(αR − αL)|v| (33)

and momentum flux
(ραv2)j+1/2 =

1
2
ρv(αL + αR)v − 1

2
ρv(αR − αL)|v| (34)

where we have used that pL = pR implies ρL = ρR (see Rem. 1).
We now wish to hybridize the central mass flux FC (29) with an upwind flux FU such that we recover the

upwind flux (33) for the contact discontinuity (32). More specifically, we wish to combine FC and FU such that
the central part is used for the flux component associated with pressure (which is constant across the contact)
and the upwind part is used for the flux component associated with volume fraction (which is discontinuous
across the contact). In the following, we will describe how to achieve this.

5.1. Construction of hybrid mass fluxes

We consider a general discretization of the mass equations

mn+1
k,j − mn

k,j

∆t
= − 1

∆x

(
Fn

k,j+1/2 − Fn
k,j−1/2

)
, (35)

where Fk,j+1/2 = Fk(Uj , Uj+1) is the numerical mass flux at cell interface xj+1/2 corresponding to the physical
flux fk(U) = ρkαkvk. From (16) and (17) we see that the mass differentials dmk can be splitted in a pressure
component dp and a volume fraction component dα. We now want to design a numerical flux which is consistent
with this splitting, i.e. we introduce auxiliary flux components Fp and Fα such that the mass fluxes Fl and Fg

are given by

Fl = αl
∂ρl

∂p
Fp + ρlFα (36)

and

Fg = αg
∂ρg

∂p
Fp − ρgFα. (37)

The flux component Fp is associated with the pressure, hence we want to assign the central mass flux FC

for stable approximation of pressure for all waves. By the differential relation (13), Fp naturally acquires the
following form

Fp = κρgF
C
l + κρlF

C
g . (38)

Similarly, the flux component Fα is associated with the volume fraction, hence we want to assign an upwind
mass flux FU. By the differential relation (14), Fα is naturally expressed as

Fα = κ
∂ρg

∂p
αgF

U
l − κ

∂ρl

∂p
αlF

U
g . (39)

Here we note that a subscript j + 1/2 is assumed on the fluxes and coefficients. Substituting (38) and (39)
into (37) and (36) we obtain the final hybrid mass fluxes

Fl = κ

(
ρgαl

∂ρl

∂p
FC

l + ρlαg
∂ρg

∂p
FU

l + ρlαl
∂ρl

∂p
(FC

g − FU
g )

)
(40)

and

Fg = κ

(
ρlαg

∂ρg

∂p
FC

g + ρgαl
∂ρl

∂p
FU

g + ρgαg
∂ρg

∂p
(FC

l − FU
l )

)
. (41)
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The coefficient variables at xj+1/2 remain to be determined. Consistent with the treatment of the coefficients
of the pressure evolution equation (20) we suggest finding these from the relations (23)–(25).

Remark 4. We remark that the consistency criterion

Fk(U, U) = fk(U) = ρkαkvk, (42)

relating the numerical flux Fk to the physical flux fk, is satisfied for the hybrid fluxes (40) and (41) provided
the fluxes FU

k and FC
k are consistent. In particular if FU

k = FC
k the expressions (40) and (41) reduce to the

trivial identity

Fk = FU
k = FC

k . (43)

5.2. The F U
k -component

For the upwind mass flux FU
k , we propose to use an upwind flux investigated in [7] for a simpler two-phase

flow model. That is, we define the cell interface velocity vk,j+1/2 by

vk,j+1/2 =
1
2

(vk,j + vk,j+1) . (44)

Now the mass flux is given by

FU
k =

{
vk,j+1/2(ρkαk)j if vk,j+1/2 ≥ 0,

vk,j+1/2(ρkαk)j+1 otherwise.
(45)

It can easily be shown that this mass flux satisfies (33) for the contact discontinuity (32).

5.3. Convective momentum fluxes

For the convective momentum fluxes, we propose using the corresponding upwind momentum fluxes directly:

(
ρkαkv2

k

)
j+1/2

=

{
vk,j+1/2(ρkαkvk)j if vk,j+1/2 ≥ 0,

vk,j+1/2(ρkαkvk)j+1 otherwise.
(46)

We may easily check that this momentum flux satisfies (34) for the contact discontinuity (32).

Remark 5. In general, one could consider using hybrid central-upwind fluxes also for the momentum terms,
similar to the expressions (40) and (41), to take advantage of the robustness properties of the central scheme.
However, as the numerical experiments of this paper show, using the simple upwind discretization (46) for the
convective momentum fluxes directly gives adequate results.

5.4. The HCU scheme

We now summarize the numerical scheme just derived, referred to as the HCU (Hybrid Central-Upwind)
scheme. In the following, let δx be defined as

δxwj =
wj+1/2 − wj−1/2

∆x
· (47)
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Mass equations

We discretize the mass equations as follows

mn+1
k,j − mn

k,j

∆t
= −δxFn

k,j ,

where the mass fluxes Fk,j+1/2 are given by

Fl = κ

(
ρgαl

∂ρl

∂p
FC

l + ρlαg
∂ρg

∂p
FU

l + ρlαl
∂ρl

∂p
(FC

g − FU
g )

)

and

Fg = κ

(
ρlαg

∂ρg

∂p
FC

g + ρgαl
∂ρl

∂p
FU

g + ρgαg
∂ρg

∂p
(FC

l − FU
l )

)

as described in Section 5.1. Coefficients are determined from (23)–(25). Here

FC,n
k,j+1/2 =

1
2
(In

k,j + In
k,j+1) +

1
4

∆x

∆t
(mn

k,j − mn
k,j+1), mk = ρkαk, Ik = mkvk

and

FU,n
k,j+1/2 = (ρkαkvk)n

j+1/2

as described by (44) and (45).

Momentum equations

We discretize the momentum equations as follows

In+1
k,j − In

k,j

∆t
= −δx

(
ρkαkv2

k

)n

j
− (∆p)n

j δx(αk)n
j − (αk)n

j δx (P )n+1
j + (Qg)n

j ,

where (∆p)n
j = ∆p(Un

j ) is determined from (9). Here

(αk)n
j+1/2 =

1
2

(
αn

k,j + αn
k,j+1

)

and

Pn+1
j+1/2 =

1
2

(
pn

j + pn
j+1

) − ∆t(κρl)n
j+1/2

In
g,j+1 − In

g,j

∆x
− ∆t(κρg)n

j+1/2

In
l,j+1 − In

l,j

∆x

as described in Section 4.1. Finally
(
ρkαkv2

k

)n

j+1/2

is given by (44) and (46).
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6. Properties of the HCU scheme

In this section we verify that the proposed HCU scheme possesses desirable accuracy and stability properties.

6.1. Accurate approximation of steady and moving contact discontinuities

We revisit the contact discontinuity (32):

pL = pR = p

αL �= αR

(vg)L = (vl)L = (vg)R = (vl)R = v.

First, we note that the pressure will remain constant and uniform as the discontinuity is propagating. Con-
sequently a natural requirement on a “good” flux FC

k for stable pressure resolution is that it preserves the
constancy of pressure for the moving or stationary contact discontinuity given by (32).

We write (13) as
dp = κdµ (48)

where
dµ = ρgdml + ρldmg. (49)

To maintain a constant pressure we must have dµ = 0. Assuming constant pressure, (49) can be integrated to
yield

µ = ρgml + ρlmg = ρgρl(αl + αg) = ρgρl.

To maintain constancy of µ and hence p we now insist that the flux FC is a consistent numerical flux when
applied to the mix mass µ. That is, we impose

ρgF
C
l + ρlF

C
g = ρgρlv (50)

for the contact discontinuity (32).

Definition 1. A pair of numerical fluxes Fl and Fg that satisfy (50) for the contact discontinuity (32) will in
the following be termed “pressure preserving” fluxes.

In particular, we observe that the upwind fluxes (33) are pressure preserving. We now state the following
lemma relevant for schemes obtained by using the hybrid mass fluxes (40) and (41).

Lemma 1. Let the hybrid fluxes (40) and (41) be constructed from pressure preserving fluxes FC
k , and fluxes FU

k

that reduce to the upwind fluxes (33) on a contact discontinuity of the form (32). Then the hybrid fluxes (40)
and (41) also reduce to the upwind fluxes (33) on the contact discontinuity (32).

Proof. We consider the hybrid liquid mass flux (40) and assume that v ≥ 0. Remembering that a subscript
j + 1/2 is assumed on the variables, we write the flux as

Fl = κ

(
αl

∂ρl

∂p
(ρgF

C
l + ρlF

C
g ) + ρlαg

∂ρg

∂p
FU

l − ρlαl
∂ρl

∂p
FU

g

)
. (51)

Using the required properties of FC
k and FU

k we obtain

Fl = κ

(
αl

∂ρl

∂p
ρgρlv + ρ2

l αg
∂ρg

∂p
(αl)Lv − ρgρlαl

∂ρl

∂p
(1 − (αl)L)v

)
= ρl(αl)Lv, (52)

where we have used that
ρj+1/2 = ρj = ρj+1 (53)

which follows from the assumption of constant, uniform pressure. Spatial and phasic symmetry directly give
the corresponding results for Fg and v ≤ 0, completing the proof. �
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In view of Lemma 1 we obtain the following result for the HCU scheme.

Proposition 1. The mass fluxes of the HCU scheme described in Section 5.4 reduce to the upwind fluxes (33)
on a contact discontinuity of the form (32).

Proof. In view of Section 5.2 we know that the FU
k components in the HCU scheme reduce to the upwind fluxes

(33) on a contact discontinuity of the form (32). Thus, we only need to check that the FC
k components given

by (29) are pressure preserving in the sense of Definition 1 and then appeal to Lemma 1. Substituting constant
pressure and velocities in (29) we get

ρgF
C
l + ρlF

C
g = ρgρl

[
v

2
(αl,j + αl,j+1) +

∆x

4∆t
(αl,j − αl,j+1)

]

+ ρgρl

[
v

2
(αg,j + αg,j+1) +

∆x

4∆t
(αg,j − αg,j+1)

]

= ρgρl

[
v

2
(1 + 1) +

∆x

4∆t
(1 − 1)

]
= ρgρlv. �

6.2. Abgrall’s principle

According to the principle due to Abgrall [1,18] it is desirable that the numerical scheme respects the following
physical principle:
A flow, uniform in pressure and velocity must remain uniform in the same variables during its time evolution.
In other words, if we had constant pressure and velocity everywhere in a flow at the time level tn, then we will
get the same pressure and velocity at the time tn+1.

We now check if the HCU scheme obeys Abgrall’s principle. Consequently, we assume that we have the
contact discontinuity given by (32) and that it remains unchanged during the time interval [tn, tn+1]. In view
of Proposition 1 and the fact that the convective fluxes of the momentum equations are based on an upwind
scheme, we immediately conclude that the mass and momentum equations take the form

(ρα)n+1
j = (ρα)n

j − ∆t

∆x

(
(ραv)n

j+1/2 − (ραv)n
j−1/2

)

v(ρα)n+1
j = v(ρα)n

j − v
∆t

∆x

(
(ραv)n

j+1/2 − (ραv)n
j−1/2

)

− (∆p)n
j

∆t

2∆x
(αn

j+1 − αn
j−1) −

∆t

∆x
(pn+1

j+1/2 − pn+1
j−1/2),

where (ραv)n
j+1/2 is on the form (33). From (9) we conclude that (∆p)n

j = 0. Referring to (20) we also see
that pn+1

j+1/2 reduces to

pn+1
j+1/2 = p − κn

j+1/2

∆t

∆x
[ρlρgv(αg,j+1 − αg,j) + ρlρgv(αl,j+1 − αl,j)] = p.

Consequently, the pressure terms vanish and we can conclude that the HCU scheme satisfies Abgrall’s principle.

7. Numerical simulations

In the following, some selected numerical experiments will be presented. To highlight the accuracy, robustness
and convergence properties of the HCU scheme, we will focus on some benchmark shock tube problems as well
as a classical water faucet problem. Comparisons are made with a Roe scheme (see [8] for the implementation)
and the AUSM type schemes considered in [8, 15].
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7.1. Large relative velocity shock

We consider an initial Riemann problem previously investigated in [5, 8]. The initial states are given by

WL =




p
αl

vg

vl


 =




265 000
0.71
65
1


 (54)

and

WR =




p
αl

vg

vl


 =




265 000
0.7
50
1


 . (55)

No source terms are taken into account.

7.1.1. Comparison between central and HCU scheme

We first wish to illustrate the effect of introducing the hybrid mass flux obtained by combining the two
different flux components FC

k and FU
k as described by (40) and (41). We assume a grid of 100 cells and a

timestep of
∆x

∆t
= 103 m/s. (56)

The reference solution was calculated by the Roe scheme on a grid of 10 000 cells.
Results for the central and HCU scheme are given in Figure 1, at the time T = 0.1 s. We note the following:

• The central scheme is robust but highly diffusive for the volume fraction wave.
• The HCU is significantly less dissipative than the central scheme, with no associated loss of stability.

7.1.2. Comparison between HCU and Roe scheme

The HCU scheme is compared to the Roe scheme in Figure 2. The HCU scheme is slightly more dissipative
than the Roe scheme on the leftward (slowest) sonic wave, otherwise they are virtually identical. A comparison
with the results presented in [8] demonstrates a significant advantage in robustness over the AUSMD/V approach
for this problem.

7.2. Modified large relative velocity shock

We consider a modified version of the LRV shock, where we introduce a jump in the liquid velocity as well
as a larger jump in volume fraction. This problem was studied as shock tube problem 2 in [8].

The initial states are given by

WL =




p
αl

vg

vl


 =




265 000 Pa
0.7

65 m/s
10 m/s


 (57)

and

WR =




p
αl

vg

vl


 =




265 000 Pa
0.1

50 m/s
15 m/s


 . (58)
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Figure 1. LRV shock tube problem, T = 0.1 s, 100 grid cells. Central vs. HCU scheme. Top
left: liquid fraction. Top right: pressure. Bottom left: liquid velocity. Bottom right: gas
velocity.
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Figure 2. LRV shock tube problem, T = 0.1 s, 100 grid cells. HCU vs. Roe scheme. Top left:
liquid fraction. Top right: pressure. Bottom left: liquid velocity. Bottom right: gas velocity.
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Figure 3. Modified LRV shock tube problem, T = 0.1 s, 100 grid cells. Central vs. HCU
scheme. Top left: liquid fraction. Top right: pressure. Bottom left: liquid velocity. Bottom
right: gas velocity.

7.2.1. Comparison between central and HCU scheme

Results after T = 0.1 s are given in Figure 3, using a grid of 100 cells and a timestep ∆x/∆t = 750 m/s.
The reference solution was calculated by the Roe scheme on a grid of 20 000 cells.

Similar to what was observed in Section 7.1.1, both schemes yield a nonoscillatory approximation whereas
the HCU scheme is more accurate.

7.2.2. Comparison between HCU and Roe scheme

The HCU scheme is compared to the Roe scheme in Figure 4. As in Section 7.1.2, the only observable
difference between the schemes is that HCU smears the leftward sonic wave slightly more than the Roe scheme.

7.2.3. Convergence properties of the HCU scheme

In Figure 5 we investigate the effect of grid refinement for the HCU scheme. The plot of liquid fraction has
been magnified, the legend refers to the number of visible grid cells.

The HCU scheme converges to the Roe reference solution is a monotone manner. A comparison with the
results of [8] indicates that the HCU scheme is more accurate, and less oscillatory, than the AUSMD/V approach
for this problem.
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Figure 4. Modified LRV shock tube problem, T = 0.1 s, 100 grid cells. HCU vs. Roe scheme.
Top left: gas fraction. Top right: pressure. Bottom left: liquid velocity. Bottom right: gas
velocity.

7.3. Toumi’s water-air shock

We now consider an initial value problem of a kind introduced by Toumi [21] and investigated by Tiselj and
Petelin [20] and Paillère et al. [15]. The initial states are given by

WL =




p
αl

vg

vl


 =




2 × 107 Pa
0.75
0
0


 (59)

and

WR =




p
αl

vg

vl


 =




1 × 107 Pa
0.9
0
0


 . (60)

Again no source terms are taken into account. Following Paillère et al. [15], we modify the interfacial pressure
correction (9) for this problem, setting σ = 2. By this modification, the velocity difference between the volume
fraction waves is magnified and the full wave structure of the model becomes more pronounced.

7.3.1. Comparison between central and HCU scheme

Results after T = 0.08 s are given in Figure 6, using a grid of 200 cells and a timestep ∆x/∆t = 1000 m/s.
The reference solution was calculated by the HCU scheme using a grid of 10 000 cells.

The central scheme is fully nonoscillatory. While being significantly more accurate, the HCU scheme here
introduces a slight overshoot in volume fraction.
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Figure 5. Modified LRV shock tube problem, T = 0.1 s. Grid refinement for the HCU scheme.
Top left: liquid fraction. Top right: pressure. Bottom left: liquid velocity. Bottom right: gas
velocity.

7.3.2. Convergence properties of the HCU scheme

In Figure 7 we study the convergence of the HCU scheme as the grid is refined. A small overshoot is observed
in volume fraction and liquid velocity for coarse grids, these overshoots decay rapidly with grid refinement.

For the initial conditions vg = vl, the model becomes non-diagonalizable (see for instance [8]). Hence the
Roe scheme is not applied for this test case. However, our numerical results are comparable with the results
reported by Paillère et al. [15], obtained by an AUSM+ scheme with a pressure diffusion term.

7.4. Water faucet problem

We finally consider a benchmark faucet flow problem proposed by Ransom [16], which has been extensively
studied [4, 8, 14, 15, 22, 23].

We consider a vertical pipe of length 12 m with the initial uniform state

W =




p
αl

vg

vl


 =




105 Pa
0.8
0

10 m/s


 . (61)

Gravity is the only source term taken into account, i.e. in the framework of (4) and (5) we have

Qk = gρkαk, (62)
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Figure 6. Toumi’s shock tube problem, T = 0.08, 200 grid cells. Central vs. HCU scheme.
Top left: gas fraction. Top right: pressure. Bottom left: liquid velocity. Bottom right: gas
velocity.

with g being the acceleration of gravity. At the inlet we have the constant conditions αl = 0.8, vl = 10 m/s
and vg = 0. At the outlet the pipe is open to the ambient pressure p = 105 Pa. The remaining variables at the
boundaries are determined by simple extrapolation.

A “contact” discontinuity in the volume fraction will arise as the liquid falls under the acceleration of gravity.
It is possible to express an approximate solution in analytical form: [8, 15, 23]

vl(x, t) =





√
v2
0 + 2gx for x < v0t +

1
2
gt2

v0 + gt otherwise.
(63)

αl(x, t) =





α0(1 + 2gxv−2
0 )−1/2 for x < v0t +

1
2
gt2

α0 otherwise.
(64)

The parameters α0 = 0.8 and v0 = 10 m/s are the initial states.

7.4.1. Comparison between HCU and Roe scheme

In Figure 8 the HCU scheme is compared to the Roe scheme for T = 0.6 s on a grid of 120 computational
cells. The timestep ∆x/∆t = 103 m/s is used. The pressure and gas velocity references were calculated using
the Roe scheme on a grid of 12 000 cells, for the volume fraction and liquid velocity the approximate analytical
expressions were used. The results of the HCU and Roe scheme are virtually identical.
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Figure 7. Toumi’s shock tube problem. Grid refinement for the HCU scheme. Top left: gas
fraction. Top right: pressure. Bottom left: liquid velocity. Bottom right: gas velocity.
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Figure 8. Water faucet problem, T = 0.6 s, 120 grid cells. HCU vs. Roe scheme. Top left:
gas fraction. Top right: pressure. Bottom left: liquid velocity. Bottom right: gas velocity.
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Figure 9. Water faucet problem, T = 0.6 s. Resolution of volume fraction. Top left: grid
refinement for the HCU scheme. Top right: grid refinement for the Roe scheme. Bottom left:
grid refinement for the AUSMD scheme. Bottom right: grid refinement for the AUSM+ scheme.

7.4.2. Convergence properties of different schemes

In Figure 9 we investigate how different schemes converge to the expected analytical solution as the grid is
refined. The HCU, Roe and AUSM type schemes of [8, 15] are considered.

Both the Roe and HCU schemes seem to monotonely approach the expected analytical solution. However,
oscillations and overshoots are observed for both AUSM type schemes – supporting the belief that the more
sophisticated dissipation mechanism of HCU, expressed through the flux mixing (40) and (41) together with
the use of the pressure evolution equation, is inherently more robust than the AUSM strategy.

8. Summary

We have presented a framework for constructing accurate and robust hybrid central-upwind schemes for an
isothermal two-phase flow model. A main idea has been to develop a pressure evolution equation which provides
us with a numerical pressure flux which yields a highly robust treatment of the nonlinearity associated with the
pressure law p(mg, ml). Then, in order to improve the accuracy of mass fronts we modify the convective fluxes.
More precisely, we have derived the expressions (40) and (41) for hybridizing a central and upwind mass flux,
by enforcing robustness (central scheme) on the pressure variable and accuracy (upwind scheme) on the volume
fraction variable.

The HCU scheme presented in this paper possesses an accuracy and robustness comparable to a Roe scheme.
In particular, the HCU does not involve solving a local Riemann problem by eigenstructure decomposition and
is therefore superior to the Roe scheme when it comes to computational efficiency.

Further extensions that naturally can be explored within the framework developed in this paper are incor-
poration of source terms, variable sections, extension to several components and several phases. An important
step that we should consider in the future is inclusion of full EOS where ρ = ρ(p, e) (e is the energy), and
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corresponding energy equations. This will require a suitable modification of the pressure evolution equation as
well as the differential relations for the construction of hybrid central-upwind mass fluxes.
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