
ESAIM: M2AN ESAIM: Mathematical Modelling and Numerical Analysis
Vol. 39, No 2, 2005, pp. 275–318

DOI: 10.1051/m2an:2005014

MATHEMATICAL MODELS FOR LASER-PLASMA INTERACTION

Rémi Sentis
1

Abstract. We address here mathematical models related to the Laser-Plasma Interaction. After a
simplified introduction to the physical background concerning the modelling of the laser propagation
and its interaction with a plasma, we recall some classical results about the geometrical optics in
plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell
equation; we state a coupling model between the plasma hydrodynamics and the laser propagation.
Lastly, we consider the coupling with the ion acoustic waves which has to be taken into account to
model the so called Brillouin instability. Here, besides the macroscopic density and the velocity of the
plasma, one has to handle the space-time envelope of the main laser wave, the space-time envelope of
the stimulated Brillouin backscattered laser wave and the space envelope of the Brillouin ion acoustic
waves. Numerical methods are also described to deal with the paraxial model and the three-wave
coupling system related to the Brillouin instability.
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Introduction

This paper has two goals. First, it is a review for readers involved in applied mathematics in order to describe
some models used in laser-plasma interaction and to show the links between different models; we also try to give
precisely the assumptions which allow to switch from one model to another. Secondly, we give some features
aiming at understanding the mathematical properties of these models, we emphasize specially the boundary
conditions for different models and we give some enlightments on the methods for solving them numerically. Of
course, we only deal with very few models used in laser-plasma interaction which is a very intense research area
in physics. For instance we do not consider any kinetic effects in the plasma and any phenomena related to
ultra-high laser intensity or ultra-short laser pulse (we neither consider any relativity effect); electron population
is always assumed to be at local thermodynamical equilibrium (the distribution function is always a Maxwell
distribution).

In this kind of problems, some typical lengths and some typical speeds occur which are related to different
physical phenomena and which range over several orders of magnitude.

Considering the spatial variable, four scales are relevant:
i) the typical length Lpl of variation of the mean electron density of the plasma;
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ii) the typical length Ll of variation of the amplitude of the laser intensity, 2πLl is in the order of the
width of the speckles (which are hot spots of light in the laser beam); Ll also the length of variation of
the local perturbation of the electron density;

iii) the laser wave length in the vacuum 2π/k0;
iv) the Debye length λD which is a characteristic distance of shielding in the plasma (the plasma electrons

shield out a discrete electric charge at this distance).

Generally one has:
λD � 2π/k0 � 2πLl � Lpl.

For example, for the high power intensity lasers (for National Ignition Facility in the USA and Laser Mega
Joules facility in France) the wave length is equal to a fraction of one micron, Ll is typically of order of one
micron (then k0Ll ≈ 10) and Lpl is larger than 100 microns. For a typical plasma, the ion temperature is in
the order of 107 Kelvin and electron temperature of 4 × 107 Kelvin, and the Debye length in the interesting
region for laser interaction is smaller than 0.04 microns. On the other hand, compared to the speed of light, the
electron thermal speed (proportional to the square root of the temperature) and the ion sound speed are very
small: the electron thermal speed is in the order of 5 or 7 percent of c and the ion sound speed in the order
of 10−3 of c.

Several physical phenomena may occur in these plasmas: since the refraction index of the plasma depends
on its density, there is refraction of light at the macroscopic level (characterized by Lpl); there is also refraction
of light at the scale of the width of the speckles (characterized by Ll) which produces a self-focusing of these
speckles; there is absorption of the laser energy by the plasma; at the scale of the width of the speckles, the
diffraction of the laser light has to be taken into account. Moreover, the coupling of the laser waves and
the plasma waves can produce instabilities: the main ones are called the Raman instability and the Brillouin
instability. They are characterized by the generation of backscattered laser waves and electron or ion plasma
waves.

The first section may be considered as a very quick and simplified introduction to the physical background
concerning the modelling of the laser propagation and its interaction with a plasma. We start from something
like a first principle system which consists in the electron Euler equations, the ion Euler equations (for the
plasma) and the Maxwell equations (for the laser). Since the transverse parts of the electromagnetic fields are
oscillating at very high frequency (the laser pulsation ω0 is fixed in the whole paper), a time envelope of these
electromagnetic quantities and of the transverse electric current is made by a classical way. Then we point out,
at the end of this section, that two broad categories of models may be derived. The first ones correspond to
the case where the plasma behiavor is simulated mainly by a ion fluid model. In the second ones, the coupling
of the laser with the Langmuir electron waves is taken into account (notice that in that case the time scale of
the process is very small compared to the hydrodynamical time scale); we do not deal with these second kind
of models in the present paper.

The sequel of the paper is organized as follows.
In Section 2, we focus on the main classical approximations made in laser-plasma interaction: we first

show how the Laplace force may be reduced to a simple external force called ponderomotive force; we also
make the quasi-neutrality approximation (which is one of the key concept in plasma physics, see [14]). These
approximations lead to the so called basic time envelope model (see (25)–(27)), where the unknown functions
are the time envelope of the transverse laser field, the density and the ion velocity of the plasma. This system
consists in a Schrödinger equation coupled with the ion Euler equation. This model is stated in [1, 23] for
example. From a numerical point of view, since it is necessary to have at least eight cells per wave length to get
accurate results, it is very difficult to use this model for realistic simulations. Nethertheless, for 1D simulations
or 2D simulations on small spatial domain, some numerical simulations based on this model has been performed
(see the previous references and [26]). Notice that with massively parallel computer architectures, it is now
possible to handle this model with larger spatial domain (see [19] for example).

In Section 3, we use the Wenzel-Kramer-Brillouin (W.K.B.) approximation in order to derive the classical
geometrical optics model. Strictly speaking this model does not fit in the framework of laser-plasma interaction
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since there is no interaction of the laser onto the plasma behavior (except the absorption process which heats
the plasma), but it is interesting to bring together this model and the one presented in Section 4 which are
both based on the W.K.B. approximation. The laser modelling is performed by the spatial and temporal
envelope of the transverse laser field. The derivation of this model has been well known for a long time; see
[25,29] for example and [31] for a more recent presentation. For a rigorous presentation of the geometrical optics
approximation in the case of a source located on a manifold, see [5,13]. For a numerical treatment by a classical
ray tracing method, see for example [43]; and by Eulerian methods see [4,6,7,44]. The geometrical optics model
has been also intensively used for a long time in acoustics problems, see for example [30].

In Section 4, a paraxial model is obtained by performing one order further the asymptotic expansion cor-
responding to the W.K.B. approximation. It is done in a general framework where there is an incident angle
between the direction of the incoming laser wave and the gradient of the density of the plasma. If the inci-
dent angle is zero, one recovers the classical paraxial equation. We sketch briefly in Section 4.4 some features
concerning the numerical methods for this model. Numerous paraxial models of this type have been used for
a long time in laser-plasma interaction, see for example [3, 10, 22, 40]. For the introduction of the paraxial
approximation with a non zero incident angle see [20]. This paraxial approximation is also used for modelling
other physical phenomena such as the propagation of submarine acoustic waves –the corresponding equation is
known as parabolic equation– (see [33, 36, 45]); or the propagation of free surface waves subject to gravity and
capillarity (see [11]).

In Section 5, we consider the coupling with the ion acoustic waves in order to take into account the Bril-
louin instability which creates the so called stimulated Brillouin backscattered laser wave. Here, besides the
macroscopic density and the velocity of the plasma, one has to handle the spatial and temporal envelope of the
main and backscattered transverse laser fields and the space envelope of the ion acoustic waves generated by
the Brillouin instability. We explain how to derive the three-wave coupling model which is the most popular for
modelling the Brillouin instability (it is also known as the standard decay model). The coupling of a paraxial
model with a model of Brillouin backscattered laser wave has been performed for a long time but it is quite
tricky, see [9,34,39]. For a physical introduction to phenomenology of the standard three-wave coupling model
see for example [35]. The end of this section is devoted to the numerical treatment of this model.

The four first sections may be considered as a review of previous applied mathematics papers, the last section
is more original in the applied mathematics area.

1. On the laser modelling in a plasma

We first consider the Euler-Maxwell system, where the laser modelling is very accurate and the plasma
behavior is somehow simplified because the ions and electrons are considered in a fluid description and all the
kinetic effects are neglected.

1.1. Statement of the Euler-Maxwell system

Let us denote:
qe, me, the charge and the mass of the electrons;
Z, mI , the ionization level and the mass of the ions;
ω0, the laser pulsation;
c, the speed of light;
k0 = ω0c

−1, the wave number of the laser in the vacuum;
ε0, the vacuum permeability;
Nc, the critical density defined by ω2

0 = Ncq
2
e(ε0me)−1;

νei, the electron-ion collision frequency which is proportional to the ion density and depends on the
electron temperature, it may be assumed generally to be equal to the ion density times a constant (or
a function which is constant in the simulation domain we consider).
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For describing the plasma, we introduce NI and U the ion density and velocity; Ne and Utot
e the electron

density and velocity; PI and Pe denote the ion and electron pressures. On the other hand, the laser beam is
characterized by electromagnetic fields denoted by Etot,Btot. In the sequel, the wave length 2πk−1

0 and the laser
pulsation ω0 are fixed.

The balance equations for mass and momentum for ions read as

∂NI

∂t
+ ∇.(NIU) = 0, (1)

∂

∂t
(NIU) + ∇.(NIUU) +

1
mI

∇PI =
qeZ

mI
(NIEtot + NIU × Btot) − νeiNe

me

mI
(U − Utot

e ), (2)

and, for electrons,
∂Ne

∂t
+ ∇.(NeUtot

e ) = 0, (3)

∂

∂t
(NeUtot

e ) + ∇.(NeUtot
e Utot

e ) +
1

me
∇Pe = − qe

me
(NeEtot + NeUtot

e ×Btot) + νeiNe(U − Utot
e ). (4)

The spatial variable is denoted by x ∈ Rd where d = 3 (for some technical points, we will assume that d = 2).
As usual, for any vector W, we denote by WW the corresponding tensor and by ∇. the divergence of a vector
or a tensor. We denote by 1 the unit tensor in Rd.

For the sake of simplicity, one assumes here that the ion behavior is adiabatic. One assumes also that the
electron temperature is given; as a matter of fact it is governed by a classical energy balance equation where
electron thermal conduction occurs together with a source term coming from the absoprtion of the laser by the
plasma (corresponding to the term νei∂Er/∂t in equation (15) below).

Then, there exist positive constants pcI , γI (where 1 < γI ≤ 3) and a given positive function Te such that

Pe = TeNe, PI = pcIN
γI

I .

If one defines the total electric current Jtot by

Jtot = qeZNIU − qeNeUtot
e ,

the electromagnetic fields Etot,Btot satisfy the full Maxwell system

∂

∂t
Etot − c2curlBtot + ε−1

0 Jtot = 0, (5)

∂

∂t
Btot + curlEtot = 0, (6)

with Poisson equation and Gauss relation which read as

∇.Etot + ε−1
0 qe(ZNI − Ne) = 0, ∇.Btot = 0. (7)

According to the relations (1),(3), one knows that qe
∂
∂t (ZNI − Ne) + ∇.Jtot = 0, then the Maxwell equations

imply that
∂

∂t
(∇.Etot) = −ε−1

0 ∇.Jtot = −ε−1
0 qe

∂

∂t
(ZNI − Ne),

and we see that if the Poisson equation (7) holds at initial time, it always holds.

Remark (conservation of global momentum). According to the Maxwell equations, one checks that the elec-
tromagnetic momentum ε0Etot × Btot satisfies

∂

∂t
(Etot × Btot) − c2(curlBtot) × Btot − (curlEtot) × Etot + ε−1

0 Jtot × Btot = 0.
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Recall that for any vector A, we have

(curlA) × A = (A.∇)A − 1
2
∇(|A|2) = ∇.

(
AA− 1

2
1|A|2

)
− A(∇.A), (8)

thus if we define the tensor

S = −EtotEtot − c2BtotBtot +
1
2
1(|Etot|2 + c2|Btot|2),

we see that
∂

∂t
(Etot × Btot) + ∇S + ε−1

0 qeEtot(ZNI − Ne) + ε−1
0 Jtot × Btot = 0,

therefore, we get a classical result for the conservation of global momentum

∂

∂t

[
ε0(Etot × Btot) + meNeUtot

e + mINIU
]
+ ∇.

(
ε0S + meNeUtot

e Utot
e + mINIUU

)
+ ∇(PI + Pe) = 0

(see for instance [18], Chap. 1, see also [27]).

1.2. Transverse/longitudinal decomposition and time envelope

The previous model describes the phenomena at the time scale of the laser frequency ω0 and usually one uses
time envelope of the transverse part of electromagnetic field which allows to work at a larger time scale than
the one characterized by the laser frequency.

1.2.1. Decomposition of the electromagnetic fields and electric current

Generally, one can assume that the behavior of the ion density corresponds to a two-dimensional flow, that
is to say there is an invariance direction etr which is fixed from now on; as a matter of fact, this direction is
orthogonal to the gradient of the density and the travel direction of the laser at the boundary of the simulation
domain. For the sake of simplicity, we assume that the polarization of the laser wave is linear and that it is the
s-polarization, that is to say the laser wave travels in a direction orthogonal to etr and the oscillating part of
the electric field is parallel to etr.

So we make the following decomposition of the electromagnetic fields into a transverse part (orthogonal to
the plane of propagation) and a longitudinal part; we state

Etot = Er + Es, Btot = Br. (9)

The superscript .r stands for the rapidly oscillating parts. The field Es is also called electrostatic field; the
magnetostatic field Bs is always neglected.

Moreover, we decompose also the electron velocity into two parts

Utot
e = Ur

e + Us
e,

where Ur
e is parallel to etr and Us

e is orthogonal to etr.
We also decompose the electric current into two parts (longitudinal and transverse). Since the mass ratio

between ion and electron is large, the ion velocity may be considered as negligable with respect to the electron
one and there is no ion contribution to the electric transverse current.

Jtot = Jr + Js, Jr = −qeNeUr
e, Js = qeZNIU − qeNeUs

e.
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1.2.2. The transverse fields

According to (3), (4), the electron momentum equation reads

(
∂

∂t
+ Utot

e .∇
)

Utot
e +

1
meNe

∇Pe = − qe

me
(Etot + Utot

e ×Btot) + νei(U − Utot
e ).

Let us perform a projection of this relation onto the vector etr; since Ur
e.∇Ur

e = 0, we get, by assuming that
the electrostatic field is small compared to the transverse electron field:

(
∂

∂t
+ Us

e.∇
)

Ur
e +

1
meNe

∇Pe +
qe

me
(Er + Ur

e×Br) + νeiUr
e = 0.

Then, a crude approximation of the transverse electron velocity is the following:

∂

∂t
Ur

e + νeiUr
e � − qe

me
Er. (10)

It means that the electrons oscillate according to the vector etr at the laser frequency. This leads to the following
closure for Jr :

∂

∂t
Jr + νeiJr =

q2
e

me
NeEr. (11)

The fast oscillating electromagnetic fields satisfy the Maxwell equations

i)
∂

∂t
Er − c2curl Br + ε−1

0 Jr = 0, ii)
∂

∂t
Br + curl Er = 0, (12)

iii) ∇.Er = 0, iv) ∇.Br = 0.

Thus, taking the time derivative of the two first equations, we get the classical wave equation

∂2

∂t2
Er − c2∆Er = −ε−1

0

∂

∂t
Jr . (13)

Strictly speaking, we have to consider this wave equation coupled to (11). If νei was zero, then we would obtain
a simple expression for the right hand side. If it is not zero, we have to find a closure for the term ∂

∂tJ
r. To

do this, we assume that νei � ω0 and that the field Er is a rapidly oscillating function at the pulsation ω0.
According to (11), a crude approximation of Jr is

Jr � − 1
ω2

0

∂2Jr

∂t2
� − 1

ω2
0

q2
e

me
Ne

∂

∂t
Er.

Then,

∂

∂t
Jr � q2

e

me
Ne

(
Er +

νei

ω2
0

∂

∂t
Er

)
, (14)

and the wave equation (13) reads

∂2

∂t2
Er − c2∆Er +

q2
e

ε0me
NeEr +

q2
e

ε0me
Ne

νei

ω2
0

∂

∂t
Er = 0. (15)
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1.2.3. Time envelope of the transverse fields

It is convenient to introduce the potential vector Ar (associated to the Lorentz gauge) satisfying

Br =
1
ω0

curl Ar; Er = − 1
ω0

∂

∂t
Ar.

We now introduce the time envelope of the rapidly oscillating quantities. Denoting by c.c. the complex conjugate
of a quantity, we can state

Ar =
1
2
Ae−iω0t + c.c.,

where A is a slowly time varying quantity. Then we get:

Br =
1

2ω0
curlAe−iω0t + c.c., Er =

i

2
Ae−iω0t + c.c. (16)

According to the previous closure (14), we can state

Jr = −
(

1 − i
νei

ω0

)
q2
e

meω0
NeA

1
2
e−iω0t + c.c. (17)

Now, since A is slowly time varying, one can neglect ∂
∂tA with respect to iω0A and (15) reads as:

2i
1
c

∂

∂t
A +

1
k0

∆A + k0

(
1 − Ne

Nc

)
A + iν0A = 0, with ν0 = νei

Ne

cNc
· (18)

1.3. Comments on the modelling

See for example the books [32] (Chaps. 3–6) and [38] (Chaps. 1 and 5) for a physical presentation of the
above derivation, particularly for a justification of formula (14) of the plasma conductivity. It is also explained
there that in a plasma, electron Langmuir waves may be excited or not. That corresponds to two different ways
for dealing with the longitudinal field Es and two families of models:

i) one takes into account the electron Langmuir waves. Then one has to state wave equations for the electron
density Ne and for the longitudinal field Es. These models are necessary if one wants to handle the Raman
instabilities. See for example [32] (Chaps. 6, 7) or [38]. These models are related to the Zakharov models [46].
For a mathematical approach see for instance [15, 16, 37].

ii) one ignores the electron Langmuir waves. Under this assumption, for the determination of the electrostatic
longitudinal field Es, one uses the Poisson equation and one makes the quasi-neutrality approximation (this
approximation is basic in plasma physics, see [14] for example). In the following section, we derive the basic
model which is crucial for a good understanding of the coupling of the laser waves and the acoustic ion waves.
This model takes into account the diffraction, the refraction and the autofocusing of the laser beam; it is also
relevant for dealing with the filamentation instability phenomena and the Brillouin instability phenomena.

From now on, we focus only on the second way and we neglect the coupling with the electron Langmuir
waves.
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2. A basic model coupling the laser waves and the ion waves

We now start from the model which consists in the above time envelope equation for the potential vec-
tor (18) coupled with the Euler equations for ions and electrons (1)–(4) where the transverse components of
electromagnetic fields are given by (16) and the electrostatic longitudinal field Es satisfy:

∇.Es + ε−1
0 qe(ZNI − Ne) = 0. (19)

This classical Poisson equation is a simple consequence of (7).

2.1. Statement of the basic time envelope model

We make here several approximations in order to keep only the low frequency phenomena in the Euler
equations and we recall the features of the quasi-neutrality approximation which is crucial for a simple modelling
of the plasma.

2.1.1. The electrostatic field and the ponderomotive force

First, one checks that the longitudinal component of the electron momentum equation (4) reads

∂

∂t
(NeUs

e) + ∇.(NeUs
eU

s
e) + Ne(Ur

e.∇)Us
e + Us

e∇.(NeUr
e) +

1
me

∇Pe +
qe

me
NeEs =

− qe

me
NeUtot

e ×Br + ∇.(NeUr
eU

r
e) + νeiNe(U − Us

e).

According to the assumptions on the laser polarization and on the plasma behavior, we have Ur
e.∇Ne = 0 and

∇.Ur
e = 0, thus ∇.(NeUr

e) = 0. In the same way, (Ur
e.∇)Us

e = 0. Moreover, by assuming that |Us
e| is negligible

with respect to Te/me, one keeps only the following relation:

1
meNe

∇Pe +
qe

me
Es =

〈
− qe

me
Ur

e×Br −∇.(Ur
eU

r
e)
〉

, (20)

where we denote the low frequency component by the bracket 〈.〉 that is to say the time integral over a laser
period 2π

ω0
.

We now have to evaluate a closure for the right hand side of (20); this expression corresponds to the so-called
ponderomotive force. To perform this, we use a very crude approximation of the transverse electron velocity

Ur
e � qe

meω0
Ar,

then

− qe

meω0
Ur

e×Br −∇.(Ur
eU

r
e) � −

(
qe

meω0

)2

(Ar × curlAr + ∇.(ArAr).

But, by using ∇.Ar = 0 and the vector identity (8), we can write

〈
− qe

meω0
Ur

e×Br −∇.(Ur
eU

r
e)
〉

�
〈
−1

2

(
qe

meω0

)2

∇|Ar|2
〉

= − q2
e

4m2
eω

2
0

∇|A|2.

Thus, we see that equation (20) can be reduced to

qeEs � −∇(γu|A|2) − N−1
e ∇(NeTe), with γu =

q2
e

4meω2
0

·
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2.1.2. Quasi-neutrality

We assume here and in the sequel that the electron temperature Te may be considered as constant, then we
see that Es is the gradient of a potential ϕ up to a multiplicative constant:

qeEs � −Te∇ϕ, ϕ = γuT−1
e |A|2 + log Ne,

and the Poisson equation (19) reads

−∆ϕ =
q2
e

ε0Te

(
ZNI − eϕ exp(−γu

Te
|A|2)

)
.

Let us introduce a reference value Nref of the electron density and the Debye length:

λD =
√

ε0Te/(Nrefq2
e).

Then the above equation becomes

−∆ϕ =
1

λ2
D

g (f − eϕ) (21)

g =
1

Nref
exp(−γu

Te
|A|2), f = ZNI exp

(
γu

Te
|A|2

)
.

Since λD is very small compared to the characteristic lengths Ll and Lpl, physicists claim in this case that the
plasma is quasi-neutral (for a simple physical introduction see [14]). We now try to bear out this assertion.
Consider equation (21) on a domain D supplemented with Neuman boundary conditions and assume that f
and g are bounded and are strictly positive. It is easy to see that the problem is well posed and that the
maximum principle holds for ϕ:

log min f ≤ ϕ ≤ log max f.

By using a dimensionless space variable (scaled by Ll), a small parameter λ = λD/Ll appears in equation (21)
and we can state the following asymptotic result (for an analogous result with other boundary conditions, see
[12]).

Lemma. Let f and g be strictly positive functions in L∞ ∩ H1(D). Let ϕλ be the solution of

−∆ϕλ = λ−2g (f − eϕλ) ,

supplemented with Neuman boundary conditions. If λ goes to 0, then ϕλ satisfies

ϕλ → log f in L2(D),

∇ϕλ ⇀
∇f

f
in distribution sense.

Proof. Multiplying the Poisson equation by ϕλ and integrating over D, we see that there exists a constant C
such that

λ2‖∇ϕλ‖2
L2 =

∫
gϕλ(f − eϕλ) ≤ C2.

On the other hand, multiplying equation by (f − eϕλ) and integrating over D, we get

λ2

∫
∇f∇ϕλ − λ2

∫
|∇ϕλ|2eϕλ =

∫
g(f − eϕλ)2,
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thus we get

(min g)
∫

(f − eϕλ)2 ≤ λ2|
∫

∇f∇ϕλ| ≤ Cλ‖∇f‖L2.

Then the first part of the result follows. The second one is a classical outcome. �

The physical interpretation of this result is the following approximation:

Ne = Nrefgeϕ � ZNI , (22)

−∇ϕ � − 1
NI

∇NI − γu

Te
∇|A|2,

that is to say

qeEs = −Te∇ϕ � − 1
ZNI

∇Pe − γu∇|A|2. (23)

The relation (22) expresses the quasi-neutrality of the plasma. On the other hand, if we consider the low
frequency part of the ion momentum equation (2), we get, according to (23), (22):

∂

∂t
(NIU) + ∇.(NIUU) +

1
mI

∇(Pe + PI) = −NIγp∇|A|2, (24)

where γp = γum−1
I = Zq2

e

4mImeω2
0

(we have also neglected the friction term me

mI
νei(U − Us

e)).

2.1.3. Statement of the model

We can now summarize the previous model. To do this, let us introduce some classical notations. First,
according to the expression of the ion pressure, we have ∇PI = γIN

γI−1
I ∇NI , and after introducing the

acoustic sound speed cs given by cs =
√

(γIN
γI−1
I + ZTe)/mI , we get

∇(Pe + PI) = mIc
2
s∇NI .

It is also convenient to define the dimensionless electron density:

N =
Z

Nc
NI .

Since the direction of the vector A does not appear in the model, we can denote it by a scalar A in the sequel.
The unknowns of the basic time envelope model are: the laser field A, the density N and the ion velocity U.

They satisfy

2i
1
c

∂

∂t
A +

1
k0

∆A + k0(1 − N)A + iν0A = 0, (25)

∂

∂t
N + ∇(NU) = 0, (26)

∂

∂t
(NU) + ∇(NUU) + c2

s∇N = −Nγp∇|A|2. (27)

The coefficient γp is constant; the sound speed cs is either constant or a smooth function of N.
Of course, one has to state boundary conditions for these three equations; particularly an inflow boundary

condition has to be prescribed for the Schrödinger equation (25), see the following subsection.
This model may be considered as the basis of all the other models of this paper.
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Remark 1. On numerical simulations.
Numerical simulations based on this model are quite challenging, indeed the spatial mesh has to be very fine

(at least 12 cells per wave length in each direction). On the other hand, since the light speed c is very large
compared to the ion sound speed cs, it is necessary to solve (25) with an implicit method; as a matter of fact
the time derivative term 2i

c
∂
∂tA may be considered as a perturbation of the Helmholtz equation

1
k0

∆A + k0(1 − N)A = 0.

Nevertheless, numerical simulations based on this model have been performed for instance in [26] for small
spatial domain, see also [23, 42]; for a 2D large spatial domain where one has to handle some 108 cells and
degrees of freedom, it is an interesting challenge of scientific computating (see [19]).

Remark 2. On the electron temperature.
As a matter of fact, the electron temperature Te is not a constant but it is weakly space varying; namely one

would have to take into account the absorption of laser energy that is to say the specific internal energy 3
2Te

satisfies an equation of the following type:

∂

∂t

(
3
2
NTe

)
+ ∇.

(
3
2
NTeU

)
−∇ (F(Te)) =

cν0

mI
|A|2,

where the term F(Te) corresponds to a heat flux which is generally equal to ∇Te times a thermal conductivity
(for instance of Spitzer type, see [18]). But we do not consider this matter in the framework of this paper, and
we assume that Te is at least locally constant.

2.2. Properties of the basic time envelope model

2.2.1. Conservation of momentum

Since the low frequency component of Es × Br is zero, we see, according to (9), that the low frequency
component of the magnetic momentum is: M = i ε0

4ω0
A×curlA + c.c. = i ε0

4ω0
(A∇A − A∇A). Classically,

• denotes the complex conjugate. According to (25), we have

2i

c

∂

∂t
(A∇A − A∇A) =

1
k0

[
A∇(∆A) − (∆ A)∇A + A∇(∆A) − (∆A)∇A

]
+k0

[
A∇((1 − N)A) + A∇((1 − N)A) − (1 − N)(A∇A + A∇A)

]
.

But it is easy to check that the following identity holds:

A∇(∆A) − (∆A)∇A + A∇(∆A) − (∆A)∇A = 2∇.S1,

S1 = 1(
1
2
A(∆A) +

1
2
A(∆A) + |∇A|2) − (∇A)(∇A) − (∇A)(∇A). (28)

Thus we get:
∂

∂t
M =

ε0

4k2
0

∇.S1 − ε0

4
|A|2∇N.

Now, according to (27), we have:

∂

∂t
(M + mINIU) + ∇.(mINIUU) + ∇(Pe + PI) = −NImIγp∇|A|2 +

ε0

4k2
0

∇.S1 − ε0

4
|A|2∇N

=
ε0

4k2
0

∇.S1 −∇(mIγp|A|2NI).
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This last relation expresses a global momentum conservation. On the other hand, mIγp|A|2NI may be inter-
preted as a laser pressure.

2.2.2. Related models

We now describe some models derived from the basic one. We assume here that the ion sound speed cs is
constant.

1. By neglecting the inertial term in the momentum equation and combining with the mass conservation
equation, we get a linear wave equation for the plasma response:

∂2

∂t2
N − c2

s∆N = γp∇(N∇|A|2). (29)

Thus, by setting N = N0 + w, where N0 is constant and w a perturbation, and linearizing the ponderomotive
term, we get the following system:

2i
1
c

∂

∂t
A +

1
k0

∆A + k0(1 − N0)A + iν0A = k0wA, (30)

∂2

∂t2
w − c2

s∆w = γpN0∆|A|2. (31)

2. Another type of model is obtained by dropping the time derivative in (25); then we have to consider

1
k0

∆A + k0(1 − N)A + iν0A = 0, (32)

∂2

∂t2
N − c2

s∆N = γp∇(N∇|A|2). (33)

In some cases, when the transient phenomena have disappeared and the variation of density is very small, one
can replace the last wave equation by a simpler closure c2

s log N + γp|A|2 =Ctot (see for instance [41]); that is
to say

N = N0 exp
(
−γp|A|2

c2
s

)
, with N0 constant,

and we get the following Sine-Gordon equation:

1
k0

∆A + k0

(
1 − N0 exp

(
−γp|A|2

c2
s

))
A + iν0A = 0.

2.2.3. Boundary conditions

Generally, one has to consider the previous models on a bounded simulation domain D and we must focus
on the boundary conditions on one hand for (25) or (32), and on the other hand for (26)–(27) or (33) on
boundary ∂D.

a) For (25) or (32), denoting by eb the unit vector characterizing the propagation direction of the laser, we
first have to consider the lighted part of the boundary Γin defined by

Γin = {x ∈ ∂D, such that eb.n < 0}, n, the outwards normal vector.

By assuming that the density N is a constant N in on this part of the boundary Γin, we set

Kin = eb(1 − N in)1/2,
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and the incident wave is assumed to be of the form αineik0K
inx, knowing that αin = αin(x) is the restriction

to Γin of a smooth function. The incoming boundary condition on Γin reads as

(k−1
0 n.∇ + iKin.n)(A − αineik0K

inx) = 0. (34)

On the other hand, if we set Γout = ∂D − {Γin} ( where eb.n ≥ 0), the boundary condition on Γout reads as:

(k−1
0 n.∇− i

√
1 − N)A = 0. (35)

From a numerical point of view, on Γout, we can also consider perfectly matched layers (PML) of the type
described in [8]. Denote by dΓ the surface measure on Γin and Γout.

Lemma (energy balance). Let A, solution to (32), (34), (35); then we get

∫
Γin

(
|Kin.n| |αin|2 +

1
4|Kin.n| |k

−1
0 n.∇αin|2

)
dΓ =

∫
Γin

1
4|Kin.n| |k

−1
0 n.∇A − iKin.nA|2dΓ

+
∫

Γout

1
4|1 − N |1/2

|k−1
0 n.∇A + i

√
1 − NA|2dΓ +

∫
D

ν0|A|2dx.

For the proof, one multiplies (32) by A and integrates by part.
This relation may be interpreted as energy balance: the energy flux incoming on Γin is equal to the flux

outgoing on Γin and Γout respectively plus the absorbed energy
∫

ν0|A|2dx.

b) The problem of boundary conditions for the barotropic hydrodynamic model (26), (27) is classical at least
in the subsonic case. On each part of the boundary ∂D, one has to give one condition: for instance one can fix
the plasma density N = N in or one can use a transparent boundary condition, for example some PML of the
type described in [8].

If one addresses the wave equation (33), analoguous boundary conditions have to be implemented.

3. The geometrical optics approximation

The geometrical optics approximation is based on a spatial envelope of the solution A of the Helmholtz
equation (32) supplemented with the boundary condition (34), via the W.K.B. expansion. As it was pointed
out, the derivation of this model has been well known for a long time [25, 29]; but even out of the framework
of the scattering theory (where the propagation of the wave is perturbed by an obstacle), one knows that some
difficulties arise due to the fact that a caustic surface may occur in the laser propagation.

Here we only recall some simple features of this problem. The basis assumption is that the wave length 2π/k0

is small compared to the length Ll. So, we introduce a small dimensionless parameter:

ε = (k0Ll)−1.

As mentioned in the introduction, for our applications, ε may be in the order of 0.1 or less.
In the framework of the geometrical optics approximation, we have to assume that:

• the plasma hydrodynamics is not coupled with the laser propagation, that is to say the dimensionless
plasma density N is assumed to be a smooth function N0 of the space variable, independent from the
time variable (then N(x) = N0(x)),

• the incoming laser intensity αin is also independent from the time variable (this last assumption may
be removed; see the remark at the end of this section).
For the sake of simplicity, we assume, up to now, that:

• the simulation domain D is either a strip between the two boundaries Γin and Γout or a parallelepiped
(in that case αin is non zero only on an edge of the domain – which is included in Γin).
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Since there is no coupling with the plasma hydrodynamics, this section is not actually in the scope of the
laser-plasma interaction, but for the sake of completeness, it is interesting to recall the principle of Geometrical
Optics in our framework (indeed the same W.K.B expansion is performed here and in the following section).

With the above assumptions, equation (32) may be recasted in the following way:

εLl∆A +
1

εLl
(1 − N0)A + iν0A = 0. (36)

The principle of the W.K.B. expansion is to write the solution A of this equation in the form

A(x) � (a0(x) + εa1 + ...) exp
(

i
φ(x)
εLl

)
,

where a0 and φ are slowly space varying functions. The quantities φ and a0 are called the phase and the
amplitude of the laser field.

3.1. Eikonal equation and advection equation

Since

exp
(
−i

φ

εLl

)
∆

(
a0 exp(i

φ

εLl
)
)

= ∆a0 +
1

εLl
(2i(∇φ).∇a0 + ia0∆φ) − 1

(εLl)2
a0|∇φ|2,

we get by plugging the previous expansion in (36):

0 = ε−1 a0

Ll

[
1 − N0 − |∇φ|2] ,

+ ε0(iν0a0 + 2i(∇φ).∇a0 + ia0∆φ) + ε...

In order to have a non trivial value of a0, it is necessary that the phase φ satisfies

|∇φ|2 = 1 − N0, (37)

which is called the eikonal equation.
On the incoming part of the boundary Γin, the direction of ∇φ has to be parallel to the fixed vector eb and

to Kin. Then the boundary condition for the eikonal equation is

∇φ|Γin = Kin.

Moreover, if we denote K = ∇φ, we get the following advection or transport equation for the laser amplitude
a0:

ν0a0 + 2K.∇a0 + a0∇.K = 0. (38)

On the incoming part of the boundary Γin, one has to prescribe the value of the intensity of the laser beam:

a0 = αin.

One checks that the laser energy |a0|2 satisfies:

ν0|a0|2 + ∇.
(
K|a0|2

)
= 0.
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Notice that when we integrate this relation over any small subdomain D of D, we get an energy balance equation
(here and in the sequel dΓ(x) denotes the restriction of the Lebesgue measure to a boundary of a subdomain):

∫
D

ν0|a0|2dx +
∫

∂D

n.K|a0|2dΓ(x) = 0.

The vector K|a0|2 is called the laser energy flux. One recovers here the fact that ν0|a0|2 is the density of
absorbed laser energy.

In general cases, the situation is the following: there is a caustic surface C, the solution of the eikonal
equation (37) is bivalued and does not exist in the shadow region which is after the caustic surface. The two
branches correspond to the direct part and return part of the beam. But, if the density N0 is small enough,
it may happen that no caustic appears in the simulation domain, that is to say there is only a mono-valued
solution defined in the whole domain which corresponds to the direct beam.

The classical way to deal numerically with the Geometrical Optics model with variable index of refraction is
the ray tracing method, see for example [43]; for a mathematical interpretation of this method, see [4].
In the following subsections, we briefly give some mathematical enlightments on the system (37), (38).

3.2. Example of solutions of the eikonal equation

Assume here that N0 is a smooth function depending only on a single spatial coordinate x1, which is one of
the symmetry axis of domain D. Moreover, if D is a strip, {x1 = 0} corresponds to the boundary Γin and, if D
is a parallelepiped, the edge of the domain {x1 = 0} is the one where αin is non zero. The angle between the
vector eb and the direction x1 is called the incidence angle.

Let us set x = (x1, xorth) (where xorth ∈ Rd−1), and for any vector we denote by (•1, •orth) its two components
on the x1 coordinate and on the orthogonal hyperplane. At the boundary corresponding to x1 = 0, we have to
set the boundary conditions:

∇φ|1 = Kin
1 and ∇φ|orth = Kin

orth.

Then, the two branches of the solution φ of the eikonal equation (37) may be denoted by φ− and φ+ and the
corresponding fields K− = ∇φ− and K+ = ∇φ+ are given by:

K±
orth(x) = Kin

orth, K±
1 (x) = ∓(1 − N0(x1) − |Kin

orth|2)1/2, (39)

which is defined only for x1 ∈ [0, x∗
1], where x∗

1 is the first value such that

1 − N0(x∗
1) = |Kin

orth|2.

The hyperplane corresponding to x1 = x∗
1 is the caustic surface C. The solution of (37) is bi-valued in the region

before the caustic, its values φ± are defined up an additive constant and satisfy:

φ−(x1, xorth) = Kin
orth.xorth +

∫ x1

0

(1 − N0(s) − |Kin
orth|2)1/2ds,

φ+(x1, xorth) = Kin
orth.xorth +

∫ x∗
1

x1

(1 − N0(s) − |Kin
orth|2)1/2ds + C,

where C is a constant such that on the caustic one has φ−(x1, xorth) = φ+(x1, xorth). The two branches of the
solution correspond to the direct part of the beam for K−

1 (.) and return part of the beam part of the beam
for K+

1 (.).
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3.3. About the advection equation

The previous situation is generic: the eikonal equation admits a solution with two branches corresponding
to two vector fields K− and K+ on a domain bounded by the incoming boundary Γin and a caustic surface
denoted by C, see [6]. Then the advection equation has also two branches: the direct one a−

0 corresponding to
the field Γ− (before reaching the caustic), and the return one a+

0 corresponding to the field Γ+ (after reaching
the caustic), which satisfy:

ν0a
−
0 + 2K−.∇a−

0 + a−
0 ∇.K− = 0,

ν0a
+
0 + 2K+.∇a+

0 + a+
0 ∇.K+ = 0.

For the direct branch laser amplitude a−
0 , a boundary condition has to be specified on the boundary Γin:

a−
0 |Γin= αin.

But it is easy to see that ∇.K−(x) goes to −∞ when x goes to the caustic surface C, therefore the amplitude a−
0

converges also to infinity on C. Moreover, one can state the energy equation for this amplitude a−
0 :

ν0|a−
0 |2 + ∇.(K−|a−

0 |2) = 0.

If now ν0 is zero, one can check that the integral of |a−
0 |2 over a tube of rays, that is to say a domain delimited

by the characteristic curves corresponding to the field K− is constant. A precise definition of the boundary
condition for the amplitude a+

0 is not possible. Indeed it should be defined on the caustic surface C, but on
this surface, the amplitudes a−

0 , a+
0 are infinite. So, to overcome this difficulty, one has to introduce the bi-

characteristic curves of the problem, that is to say the functions x(s), ξ(s) depending of a positive scalar s
satisfying dx/ds = ξ, dξ/ds = − 1

2∇N(x), and whose initial values are parametrized by β (belonging to the
boundary Γin): xβ(0) = β, ξβ(0) = K−(β). One can see that

dxβ

ds
= K−(xβ(s)).

On the other hand, one defines the geometrical spreading G− of the flow K−(.) by the relation G−(xβ(s)) =
det(∂xβ

∂s (s), ∂xβ

∂β (s)) and the analogous quantity G+ for the flow K+. With classical geometric arguments, one
checks:

K−.∇G− = G−∇.K−, K+.∇G+ = G+∇.K+.

Futhermore, with some technical hypothesis, one can prove that the two quantities Z− = |a−
0 |2G− and Z+ =

|a+
0 |2G+ are bounded solutions of the equations

K−.∇Z− + νZ− = 0, Z− |Γin= |αin|2, (40)
K+.∇Z+ + νZ+ = 0, Z+ |C= Z− |C . (41)

Therefore, the absorbed laser energy in a region D0 may be approximated by:

∫
D′

0

ν(x)
(

Z−(x)
G−(x)

+
Z+(x)
G+(x)

)
dx,

where D′
0 is the part of D0 which is contained in the region between the boundary Γin and the caustic surface C.

The reader is referred to [7] for details on this analysis and for a direct numerical method to deal with (38) by
using (40), (41).
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Remark 1. In the case where the electron density N0 is such that for any x ∈ D, we have

Infx∈D(N0(x)) < 1 − |Kin
orth|2,

then, there is no caustic. The solution φ of the eikonal equation is defined smoothly on the whole simulation
domain and there is only one direct propagation vector K corresponding to K−. The laser field a0 is a classical
solution to (38).

Remark 2. The previous approximation may be generalized if one considers the solution of equation (25) with
a boundary condition with an incoming laser intensity αin which depends slowly on the time variable; that is
to say, if it is a smooth function of a reduced time variable εt. In this framework, the eikonal equation is the
same as before and it is feasible to modify the advection equation by introducing the time dependance, that is
to say, a−

0 = a−
0 (t, x) depends now on t and x, and satisfies

2
c

∂

∂t
a−
0 + ν0a

−
0 + 2K.∇a−

0 + a−
0 ∇.K = 0.

Of course, besides the boundary condition, one also has to give an initial condition a−
0 (0, .).

4. Paraxial approximation

In the Geometrical Optics model, the diffraction is not taken into account; to deal with the diffraction
phenomenon, it is necessary to perform a more precise approximation of the time envelope of the Maxwell
equation, which is the so-called paraxial approximation. In this section we show how to switch from the basic
model (25), (26), (27) to another one, where one deals with the spatial envelope of A.

As before, we assume that the direction eb of the incoming laser is fixed and that the simulation domain D
is either an half space whose boundary is the hyperplane Γin or a parallelepiped. In order to study the paraxial
approximation of the solution A of equation (25), we have to make the following hypothesis.

• The density function is a sum of a smooth function at the scale of Ll and a small perturbation; more
precisely N has the following form:

N(t, x) = N0(x) + ε2G(t, x) with N0(x) = N0(εx), (42)

where N0 is a smooth function (independent from ε) whose gradient is uniformly bounded, and G is a
bounded function which may depend on the time and space variables.

• The function N0 is such that there is no caustic in the simulation domain.
• The incoming laser field αin(t) on the boundary Γin (or on one edge of the parallelepiped) is slowly time

varying ; more precisely we can write

αin(t) = α̃in(εt),

with α̃in a smooth function of the reduced time variable T = εt.
• The absorption length ν−1

0 is large enough compared to Ll, i.e., there exists ν1 an absorption coefficient
such that

ν0 = εν1.

According to assumption (42), the eikonal equation now reads as

|∇φ(x)|2 = 1 −N0(εx).

Then, we set
K = ∇φ,
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and it is easy to check that there exists a smooth vector function K whose partial derivatives are bounded, such
that K(x) = K(εx). Then we get

∇.K(x) = ε(∇.K)(εx) = O(ε).

We make the following change of variable T = εt, and define Ã(T ) by

Ã(εt) = A(t).

Then, equation (25) may be recasted in the form

2
iε

c

∂

∂T
Ã + εLl∆Ã +

1
εLl

(1 − N0)Ã − ε

Ll
GÃ + iεν1Ã = 0.

4.1. The advection-Schrödinger equation

We now perform an asymptotic expansion (with respect to ε) of the solution Ã in a similar way as in the
previous section:

Ã(T, .) = (a0(T, .) + εa1(T, .) + ε2...) exp
(

iφ

εLl

)
,

where a0, a1 are now functions depending on the reduced time variable T and on the space variable.
After plugging this asymptotic expansion in the previous equation, we get

0 = ε−1 a0

Ll

[
1 − N0 − |K|2]

+ i(2K.∇a0)

+ i(a0∇.K+) + ε

[
i

(
2
c

∂a0

∂T
+ 2K.∇a1 + ν1a0

)
− G

Ll
a0 + Ll(∆a0)

]
+ ε2...

According to the eikonal equation, the ε−1 terms are zero. The term of order zero has to be also zero, thus a0

satisfies the simple advection equation (where the variable T is a simple parameter):

K.∇a0 = 0, a0(T ) = α̃in(T ) on Γin. (43)

For the terms of order 1, we get

i

(
2
c

∂a0

∂T
+ 2K.∇a1 + a0

∇.K
ε

+ ν1a0

)
+ Ll(∆a0) − G

Ll
a0 = 0.

By combining (43) with this last equation, we get

i

(
ε
2
c

∂a0

∂T
+ 2K∇(a0 + εa1) + a0∇K+εν1a0

)
+ εLl(∆a0)−ε

G

Ll
a0 = 0.

Let us define the transverse gradient ∇K
⊥ (with respect to K) and the transverse Laplace operator by

∇K
⊥• = ∇ • − K

|K|2 K.∇•, ∆K
⊥• = ∇.

[(
1 − KK

|K|2
)
∇•

]
= ∇.(∇K

⊥ •),

where, as usual, KK denotes a tensor.
According to (43), we can easily check that

∇a0 = ∇K
⊥a0, ∆a0 = ∆K

⊥a0.
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If we now set Ẽ = a0 + εa1, a formal calculation leads to:

i

(
ε
2
c

∂Ẽ

∂T
+ 2K.∇Ẽ + Ẽ∇.K + εν1Ẽ

)
+ εLl∆K

⊥ Ẽ − ε
G

Ll
Ẽ = O(ε2). (44)

4.1.1. Statement of the model

Dropping the O(ε2) and coming back to the physical variables, that is to say by defining E(t, .) = Ẽ(εt, .),
we see heuristically that

A(t, x) � E(t, x)eik0φ,

where E is solution to

i

(
2
c

∂E

∂t
+ 2K.∇E + E(∇.K)+ν0E

)
+

1
k0

(∆K
⊥E) − k0(N − N0)E = 0. (45)

It may be noticed that the time derivative term 1
c

∂E
∂t is a perturbation term compared to the advection

one K.∇E. Indeed the previous calculation has shown that this term is only an order ε term.
It is necessary to supplement equation (45) with an initial condition E(0, .). Moreover, according to the

incoming boundary condition (34), we see that the correct boundary condition for this equation on the bound-
ary Γin is

(k−1
0 n.∇⊥ + 2iK.n)(E(t, .) − αin(t, .)) = 0. (46)

Notice that according to the above hypothesis, k−1
0 is small compared to the characteristic length Ll, and this

condition implies that the value of E at the boundary is close to αin.

Summary of the model

The equation (45),(46) has to be coupled with the hydrodynamic system as previously:

∂

∂t
(N) + ∇.(NU) = 0, (47)

∂

∂t
(NU) + ∇.(NUU) + c2

s∇N = −Nγp∇|E|2. (48)

It may also be coupled with the wave equation (29).

4.1.2. Momentum conservation

If K is not constant, it is not possible to prove a rigorous momentum conservation relation as the one
presented in Section 2.2. So we assume here that N0 is constant and thus K is constant. The low frequency
component of the magnetic momentum is: M = ε0

4ω0
(2k0|E|2K + i(E∇E − E∇E)).

According to (25), we have

i

c

∂

∂t
(E∇E − E∇E) =

1
2k0

[
E∇(∆⊥E) − (∆⊥ E)∇E + E∇(∆⊥E) − (∆⊥E)∇E

]

+
1
2
k0

[
E∇((N0 − N)E) + E∇((N0 − N)E) − (N0 − N)(E∇E + E∇E)

]
−iK.∇(E∇E − E∇E).

The second line of the right hand side reads simply −k0|E|2∇N, and with classical identities, one can prove
that the following relation holds:

E∇(∆⊥E) − (∆⊥E)∇E + E∇(∆⊥E) − (∆⊥E)∇E = ∇.S2,
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where

S2 = 1(E(∆⊥E) + E(∆⊥E) + 2(∇E).(∇E)) − (∇E)(∇⊥E) − (∇⊥E)(∇E) − (∇⊥E)(∇E) − (∇E)(∇⊥E).

Thus we get:

4k0

ε0

∂

∂t
M =

1
2k0

∇.S2 − k0|E|2∇N − iK.∇(E∇E − E∇E) + K[i(E∆⊥E − E∆⊥E) − 2k0K.∇|E|2].

But, since we have ∇E.(1 − KK
|K|2 )∇⊥E = ∇E.(1 − KK

|K|2 )∇⊥E, we check that

−iK.∇(E∇E − E∇E) + K[i(E∆⊥E − E∆⊥E) = i∇.
[
EK(∇E + ∇⊥E)

]
+ c.c.

In summary, we get

∂

∂t
M =

ε0

4k2
0

∇.S3 − ε0

4
|E|2∇N, with S3 =

1
2
S2 − 2k2

0KK|E|2 + k0

[
iEK(∇E + ∇⊥E) + c.c.

]
.

As in Section 2.2, by using (27), we get the global momentum balance relation:

∂

∂t
(M + mINIU) + ∇.(mINIUU) + ∇(Pe + PI) =

ε0

4k2
0

∇.S3 −∇(mIγp|A|2NI).

Notice that, according to (44), we have K.∇E = O(ε), and then, one can show that S3 = S1 + O(ε), where S1

is given by (28).

4.2. Properties of the advection-Schrödinger equation

In this subsection, we show, at least in the case where the time derivative is withdrawn, that (46) is a good
boundary condition on Γin for (45), and we give some enlightenments about the well-posedness of the equation.
So, after dropping this time derivative, equation (45) reads

i (2K.∇E + E(∇.K)+ν0E) +
1
k0

(∆K
⊥E) − k0(N − N0)E = 0. (49)

For a given function N, it is a linear equation. In the case where vector K is not parallel to the normal vector
n to the boundary Γin, we call it advection-Schrödinger equation and in the special case where K is parallel
to n, it reduces to a classical Schrödinger equation (where the propagation direction plays the part of the time
variable).

We give here the main results in the particular case where D is a half plane whose boundary is Γin.

Lemma. Assume that (k−1
0 n.∇⊥ + 2in.K)αin ∈ L2(∂D). If E ∈ H1(D) is a solution to (49), (46).

i) The following energy relation holds

∫
D

ν0|E|2dx +
∫

Γin
|n.K| |E|2dΓ(x) ≤ −Im

(∫
Γin

E(k−1
0 n.∇⊥ + 2in.K)αindΓ(x)

)
. (50)

ii) Moreover, there exists a constant C depending only on K such that
∫
D

ν0|E|2dx +
∫

Γin
|n.K| |E|2dΓ(x) ≤ C

∫
Γin

|(k−1
0 n.∇⊥ + 2in.K)αin|2dΓ(x).
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Proof.
i) By multiplying the equation (49) by E, integrating over D and taking the complex conjugate, we see that

2
∫
D

[ν0|E|2 + ∇.(K|E|2)]dx = k−1
0

∫
Γin

[−iE(n.∇⊥E) + iE(n.∇⊥E)]dΓ(x);

but according to (46), we have ik−1
0 n.∇⊥E = 2K.nE + (ik−1

0 n.∇⊥ − 2n.K)(αin), then

2
∫
D

ν0|E|2dx +
∫

Γin
2n.K|E|2dΓ(x) =

∫
Γin

4n.K|E|2dΓ(x) +
∫

Γin
[iE(k−1

0 n.∇⊥ + 2in.K)(αin) + cc]dΓ(x),

and we get the result of point i).
ii) According to the previous point, we have

∫
D

ν0|E|2dx + |n.K|
∫

Γin
|E|2dΓ(x) ≤

(∫
Γin

|(k−1
0 n.∇⊥ + 2in.K)αin|2dΓ(x)

)1/2 (∫
Γin

|E|2dΓ(x)
)1/2

; (51)

therefore, we see that

(∫
Γin

|E|2dΓ(x)
)1/2

≤ 1
inf |n.K|

(∫
Γin

|(k−1
0 n.∇⊥ + 2in.K)αin|2dΓ(x)

)1/2

,

and plugging this upper-bound into (51), we get the desired result. �
If the absorption coefficient ν is a strictly positive function, the previous result shows that there exists at

most one solution E ∈ H1(D) to (49), (46) for any regular function αin, and the solution is stable with respect
to the boundary condition.

To be sure that problem (49), (46) has a solution and is well posed, we now proceed to the analysis after
making some new assumptions, for the sake of simplicity. Assume first that d = 2 and that D is the half space
D = {x = (x1, x2) ∈ R2 |x1 > 0} whose boundary Γin corresponds to x1 = 0. Assume also that N − N0 = 0,
that K = (K1, K2) is constant and that the coefficient ν0 > 0 is constant. Then relations (49), (46) may read
as

i(K1∂x1 + K2∂x2)E +
1
2
k−1
0 (K2

2∂x1x1 − 2K1K2∂x1x2 + K2
1∂x2x2)E + iν0E = 0, (52)

ik−1
0

2|K|(K1K2∂x2 − K2
2∂x1)E + K1E = K1g on Γin, (53)

where g = (1 + ik−1
0

2K1|K| (K1K2∂x2 − K2
2∂x1))αin.

Let us denote •̂ the Fourier transform associated to x2 (with ξ the Fourier variable) and √
. the principal

determination of the square root. Then, if we set

R−(ξ) = i
K1

K2
ξ − i

K1

K2
2

|K|
(

1 −
√

1 − 2
|K|
k0

K2

K2
1

ξ + 2i
ν0

k0

K2
2

K2
1

)
, (54)

we have the following result ( S ′denotes the space of tempered distributions).

Proposition. Let g ∈ S′(Rx2). Problem (52), (53) has a unique solution E in S′(D); it is given by:

Ê(x1, ξ) = ĝ(ξ)eR−(ξ)x1

(
1 − 1

2k0
+

1
2k0

√
1 − 2

|K|
k0

K2

K2
1

ξ + 2i
ν0

k0

K2
2

K2
1

)−1

· (55)
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Sketch of the proof.

We set ν = ν0|K|−1, η = k−1
0 |K|, kj = Kj|K|−1, and define P (X, Y ) as the polynomial which characterizes

the differential operator of equation (52):

P (∂x1 , ∂x2) = i(k1∂x1 + k2∂x2) +
1
2
η(k2

2∂2
x1

− 2k1k2∂x1∂x2 + k2
1∂

2
x2

) + iν.

If we write E0(x2) = E(0, x2), the Fourier transform of the equation reads:

P (∂x1 , iξ)û(x1, ξ) =
ηk2

2

2

[(
1
η

2ik1

k2
2

ĝ(ξ) − i
k1

k2
ξÊ0(ξ)

)
δx=0 + Ê0(ξ)δ

′
x=0

]
.

But P (∂x1 , iξ) considered as a polynomial with respect to ∂x1 may be recasted as follows:

P (∂x1 , iξ) =
k−1
0 k2

2

2
(∂x1 − R+(ξ)) (∂x1 − R−(ξ)) ,

where

R±(ξ) = i
k1

k2
ξ − i

k1

k2
2

(
1 ±

√
1 − 2

ηk2

k2
1

ξ + 2iν
ηk2

2

k2
1

)
.

Thus, a formal calculus shows that û(x1, ξ) has to be of the following form:

Ê(x1, ξ) = B−(ξ)eR−(ξ)x1 + B+(ξ)eR+(ξ)x1 .

Since ν > 0, one can see that Re(R+(ξ)) > 0, Re(R−(ξ)) < 0. So, in order to have a bounded function when x1

goes to infinity, it is necessary that B+(ξ) = 0. Then we get

Ê(x1, ξ) = Ê(0, ξ)eR−(ξ)x1 .

To get the desired result, it is enough to notice that, according to (53), we must have

Ê(0) +
i

2k0K1|K| (iK1K2ξ − K2
2R−(ξ))Ê(0) = ĝ.

According to this proposition, we see that for x1 > 0, we get

(∂x1 − R−(ξ2))û(x1, ξ2) = 0.

This property may be interpreted as follows: equation (52), which is of second order with respect to the
derivative ∂x1 , may be replaced by an equation of first order with respect to the derivative ∂x1 .

The proposition implies that if g ∈ H
1/2
x2 , then E ∈ H1(D), and there exists a unique solution of (49) in the

space H1(D). Equation (49) is deeply studied in [20] in the case where K is constant and D is a half plane or
a parallelepiped. For a numerical treatment of (49), we refer to [21].

Remark (extension). If there are two laser beams entering in the simulation domain which are characterized
by the propagation vectors e1

b and e2
b , then one can define two solutions of the eikonal equations.

∣∣∇φ1
∣∣2 = 1 − N, ∇φ1|Γin = e1

b(1 − N0)1/2,∣∣∇φ2
∣∣2 = 1 − N, ∇φ2|Γin = e2

b(1 − N0)1/2,
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and we set K1 = ∇φ1, K2 = ∇φ2. Then the laser fields E1, E2 solve

i
(
2Kh.∇Eh + Eh(∇.Kh)+ν0E

h
)

+
1
k0

(∆h
⊥Eh) − k0(N − N0)Eh = 0,

supplemented with the good boundary conditions with the incoming laser fields ain,1 and ain,2.
These equations are coupled with the hydrodynamic ones through the modified momentum equation obtained

by writing in the right hand side of (47) the term ∇(|E1|2 + |E2|2) instead of ∇(|E|2).

4.3. Particular case: the classical paraxial equation

The laser beam is now assumed to enter in the plasma without any incidence angle, i.e., the unit vector eb

is equal to the inwards normal vector −n to the boundary Γin. Denote by z the space variable in the direction
eb: z = eb.x and x⊥ the transverse variable. Moreover, assume that N0 depends only on the z variable; then
the solution of the eikonal equation is trivial:

K = ebK(z), K(z) =
√

1 − N0(z),

and equations (45), (46) read as

i

(
2
c

∂E

∂t
+ 2K

∂E

∂z
+ E

∂K

∂z
+ν0E

)
+

1
k0

(∆⊥E) − k0(N − N0)E = 0, (56)

supplemented with an initial condition and a boundary condition

E(t, .) = αin(t, .), on Γin.

This equation is very close to equation (2) of [9]; in that reference, there is an extra term corresponding to a
time derivative of the phase φ and a corrector to the transverse Laplace operator (which has been introduced
with a poor justification in [24] for “non paraxial propagation”).

Assume for a while that the model is posed in the half space {z ≥ 0}. By multiplying equation (56) by E,
integrating with respect to the transverse directions and taking the complex conjugate, we see that

1
c

∂

∂t

(∫
R2

|E|2dx⊥

)
+

∂

∂z

(∫
R2

K|E|2dx⊥

)
+ 2

∫
R2

ν0|E|2dx⊥ = 0.

Thus, if α does not depend on t and if a stationary solution is reached, then this solution satisfies, for any z
positive,

K(z)
∫
R2

|E(z, x⊥)|2dx⊥ + 2
∫ z

0

∫
R2

ν0|E(z′, x⊥)|2dx⊥dz′ = K(0)
∫
R2

|α(x⊥)|2dx⊥;

that is to say if there is no absorption, then the flux of the laser energy K
∫
R2 |E(., x⊥)|2dx⊥ is conserved when

the laser propagates.

4.4. Numerics for the classical paraxial equation

For the simulation of laser propagation in Inertial Confinement Fusion plasma, one must often deal numer-
ically with the hydrodynamic system (26), (27) coupled with the equation of propagation (56) on a spatial
domain D whose sizes are typically of the order of one millimeter (the vector eb is parallel to an edge of the
box).

In order to have a good discretization of the speckles, the mesh size in the transverse directions has to be of
the order of a fraction of a micron, the mesh size δz in the z direction may be 2 or 3 times larger. Denote by δt
the time step. For the hydrodynamic system, one has to use a time step satisfying the CFL condition of the
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type max(|U|, cs)δt/ min(δx, δy, δz) < 1. Therefore we expect to use a numerical method which is stable with
time step such that csδt/δz be in the order of 1, then cδt/δz will be very large compared to 1.

For numerical purpose, the simulation domain is generally a parallelepiped where one edge is parallel to z,
and one must state boundary conditions on transverse boundaries Γ⊥: it may be seen that Neuman condition
corresponds to a reflection of the light on Γ⊥ which not well suited. When dealing with this problem, one can
withdraw the time derivative and the absorption; the behavior of the solution corresponds to a solution of a
Schrödinger equation ∂E

∂z − i 1
2k0K ∆⊥E. From a theoretical point of view, it is a difficult problem to find good

transparent boundary conditions for this equation (these conditions involve pseudo-differential operators on Γ⊥,
see [2] for instance); see below for a numerical treatement.

4.4.1. Numerical scheme

We consider a Cartesian mesh of finite difference type. At each time step [tn−1, tn−1 + δt], one has to
solve successively the hydrodynamic system (26), (27) and the paraxial equation of propagation (56). For
the hydrodynamics system, an explicit numerical scheme of Lagrange-Euler type may be used for example: in
the Lagrange step, one uses a classical Godunov scheme to evaluate intermediate values of the density and
the velocity, the ponderomotive force γp∇|E|2 is taken into account by a standard centered discretization;
afterwards, a second order projection technique with VanLeer slope limiters is used for the advection part (see
[28] for details).

Let us focus now on the treatment of the paraxial equation (56) in a 2D geometry (for the sake of simplicity).
Let y be the transverse direction and denote by En

j,m the evaluation of E at time tn = n.δt at position zj = j.δz
and ym = m.δy.

If there was only a propagation phenomenon, that is to say if one had to deal with the advection operator
(1

c
∂
∂t + K ∂

∂z + ν0), we would use a time implicit scheme and we would get the values En
j at time tn from

step to step in the direction of propagation from the entrance side z = 0. Here, we perform a splitting of the
equation (56), with respect to the z variable. We move from En

j,· to En
j+1,· through the intermediate state Ẽn

j+1,·.

i) The first step: advection. The values En
j,· are assumed to be known and we have to solve between zj

and zj+1 the advection equation:

1
c

∂E

∂t
+ K

∂E

∂z
+

(
ν0 +

1
2

∂K

∂z

)
E = 0.

Let us denote µj+1/2 = 1
2 (ν0,j + ν0,j+1) + (Kj+1 −Kj)/2δz. One could get Ẽn

j+1,· by a classical upwind scheme
with respect to the z variable:

1
c

En
j,m − En−1

j,m

δt
+ Kj

Ẽn
j+1,m − En

j,m

δz
+

µj+1/2

4
(En

j,m + Ẽn
j+1,m) = 0. (57)

This method is refered below as the naive method. We now propose an improved method to deal with the
advection equation: we do not solve it directly, but the corresponding equation for the square of the modulus
of E, that is to say (1

c
∂
∂t + K ∂

∂z )|E|2 + (2ν0 + ∂K
∂z )|E|2 = 0, which yields

|Ẽn
j+1,m|2 =

(
|En

j,m|2(1 − η − µj+1/2δz

2Kj
) + η|En−1

j,m |2
)(

1 +
µj+1/2δz

2Kj

)−1

, with η =
1

cK

δz

δt
, (58)

and afterwards a simple advection equation for the quantity of En
· /|En

· | that is related to the argument of En
·

ii) The second step: diffraction. Denote now δN = N − N0. Once Ẽn
j+1,∗ is obtained, there are two ways

to find En
j+1,∗ by solving

K
∂E

∂z
=

i

2k0
(∆⊥E) − i

k0

2
(δN)E.
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In the first way, we discretize the Laplace operator ∆⊥ by a Crank-Nicolson technique:

K
En

j+1,m − Ẽn
j+1,m

δz
=

i

2k0

(
(∆⊥Ẽn

j+1)m + (∆⊥En
j+1)m

)
− i

k0

2
(δN)j+1/2

(
Ẽn

j+1,m + En
j+1,m

)
, (59)

where (∆⊥E)m stands here for the discretized form of the transverse Laplace operator (2Em − Em+1 −
Em−1)δy−2. To deal with the transparent boundary conditions on Γ⊥ from a numerical point of view, the
so called Perfectly Matched Layers (PML) approach leads to a very efficient method which has been proposed
for Schrödinger equation in [17]; this method has also been implemented in the numerical code HERA (cf. [3]),
with which the following numerical results are obtained.

In the second way, one uses an analytic formula to deal with the ik0
2 δN term and a spectral method for trans-

verse Laplace operator. More precisely, if F(Ej) denotes the value of the Fourier Transform in the transverse
direction of the function Ej(y) and ξ the corresponding Fourier variable, we simply set

F(Ej+1)(ξ) = exp
(
−i

ξ2

2Kk0
δz)F(Ẽn

j+1

)
(ξ),

and

En
j+1 = exp

(
i

k0

2K
(δN)j+1/2δz

)
F−1(F(Ej+1)).

Of course, from a numerical point of view, the Fast Fourier Transform (FFT) and the inverse FFT are used
for F and F−1. To deal with non reflective boundary conditions on Γ⊥, it is necessary to add some ad hoc
artificial absorbing coefficient in boundary layers.

4.4.2. Properties of the numerical schemes

The natural criterium for such an implicit scheme is

sup
δz

cKjδt
< 1.

If one assumes that K is constant, one can see that (58) yields:

|Ẽn
j+1,m|2 ≤ max

(|En
j,m|2, |En−1

j,m |2) , (60)

and in the general case, one can check that

Kj+1|Ẽn
j+1,m|2 ≤ Kj max

(|En
j,m|2, |En−1

j,m |2) .

For the sake of simplicity, assume that there are reflection boundary conditions (that is to say Neuman condition)
on the boundary in the transverse direction; then for the Crank-Nicolson technique, according to (59), we get:

∑
m

K
En

j+1,m − Ẽn
j+1,m

δz
(En

j+1,m + Ẽn
j+1,m) + c.c. =

∑
m

(
− i

4
(δN)j+1/2,m(Ẽn

j+1,m + En
j+1,m) +

i

2k0
((∆⊥Ẽn

j+1)m + (∆⊥En
j+1)m)

)
(En

j+1,m + Ẽn
j+1,m) + c.c.

By applying the standard relation Σm(2um − um+1 − um−1)um = Σm(um − um+1)(um − um+1) ∈ R to u =
Ẽn

m+1 + En
m+1, we easily check that the right hand side of the above equation is zero (this is the discrete
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Figure 1. Incoming boundary condition. The laser intensity versus the transverse space variable.

counterpart of the relation
∫
R

E(y)∆yE(y)dy ∈ R). Then, if we denote by ‖Ej‖ the l2 norm in the transverse
direction (‖Ej‖2 =

∑
m |Ej,m|2) we have the conservation of energy during the second step:

‖En
j+1‖2 = ‖Ẽn

j+1‖2.

Therefore, (60) yields:
‖En

j+1‖2 ≤ max
(‖En

j ‖2, ‖En−1
j ‖2

)
,

and, by induction, we see that

sup
j

‖En
j ‖2 ≤ max

(
sup
N

(‖αin,N‖2
)
, sup

j
‖E0

j ‖2

)
, ∀n.

This expresses that the proposed splitting scheme is stable for the norm supj Kj‖Ej‖2, see [3] for the details.

4.4.3. Numerical illustration

One considers here a 2D problem in a simulation box whose dimensions are

Lz,max = 560 µm, Ly,max = 240 µm.

The incoming boundary condition in z = 0, corresponds to a model of a laser beam whose width is equal to
200 µm, in which there are a lot of speckles (i.e., hot spots). It may be seen in Figure 1 that it is a highly
randomly oscillating function. The width of the speckles at the incoming boundary is about 3 microns.

In the framework of the model (26), (27), we choose the sound speed in the form

c2
s =

(
Te + 3T ini

I

N2

N ini2

)
kB

mI
,

where kB is the Boltzmann constant, the electron temperature Te is equal to 30. 106 Kelvin, the initial ion
temperature T ini

I is equal to 3 × 106 Kelvin and the initial density is equal to N ini = 0.1.
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Figure 2. Map of the laser intensity (with a greyscale map) with the naive numerical method.
The laser comes from the left hand side. The integral of the outgoing intensity over the
transverse direction is much smaller than the integral of the incoming intensity.

The space step in the transverse directions is δy = 0.24 µm and 3 times larger in the z direction. The sound
speed is about 7× 107 cm/s and the velocity of the matter is 10 times smaller. Then, according to the classical
CFL condition, the time step is about 0.3 ps; so Kcδt/δz is in the order of 125. There are about 800 000 cells.
We always use here the Crank-Nicolson method for dealing with the diffraction. It is necessary to wait at least
10 ps in order to have an adequate response of the plasma. We look at the laser intensity at the time 12 ps.
We compare the results obtained with the naive method of discretization for the advection step (based on (57))
and the one obtained with the improved method (based on (58)). One can see in Figure 2 the map of the laser
intensity with both methods. It is clear that the results are better with the improved method indeed the global
laser energy outgoing from the rear side equals the one incoming in the domain (up to the energy which goes
away through the PML Layers).

5. On the modelling of Brillouin instability

We are looking here at an instability which occurs by the coupling of three waves: an ion acoustic wave
(which is a perturbation of ion density), the main laser wave which travels forwards (called pump wave) and
a backscattered laser wave which travels backwards (called stimulated Brillouin backscattered wave). Let us
assume that the density N is close to a constant Nref (which plays the part of N0) and that the vector eb

characterizing the direction of the pump wave equals to −n, then wave vector K is equal to
√

1 − Nrefeb. After
defining

kp = k0

√
1 − Nref ,

the key point in the sequel is to assume that the fields A may be decomposed into two components:

A = Epeikpz + Eme−ikpz,

where the functions Ep, Em are weakly space varying and correspond to the pump wave and the backscattered
wave respectively. In the sequel, we first explain how to switch from the model where the laser field satisfies (25)
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Figure 3. Map of the laser intensity (with the same greyscale map as in Fig. 2). Simulation
with the improved numerical method with the same numerical conditions. The integral of
the outgoing intensity over the transverse direction is about the same than the integral of the
incoming intensity.

and the plasma hydrodynamics is described by (26), (27), to model which, besides the macroscopic hydrody-
namics system, consists in a paraxial equation for the main laser wave, a paraxial equation for the back-scattered
laser wave and an evolution equation for the ion acoustic wave. Secondly, we focus on simplifications of this
system in order to obtain the so called standard decay system (it corresponds to a three-wave coupling system).
Afterwards, we shall analyse the three-wave coupling system and propose numerical techniques to deal with it.

5.1. First Brillouin model

Let us define β = ck0Nref/2 and cg = c
√

1 − Nref the group velocity. By using these notations, if there was
no back-scattered wave Em, the classical paraxial equation (56) would read

∂Ep

∂t
+ cg

∂Ep

∂z
+ νaEp − i

c

2k0
∆⊥Ep + iβ

(
N

Nref
− 1

)
Ep = 0,

where the absorption coefficient is given by νa = 1
2cν0.

Let us denote
ks = 2kp.

Then, after neglecting ∇Ep,m with respect to ikpEp,m, we get:

∇|A|2 � ∇(|Ep|2 + |Em|2) + eb[iksEpEmeiksz + c.c.].

Thus, we see that a plasma wave with a wave number ks may be excited. So, we decompose the plasma
flow N,U into basic components N0,U0 (which are slowly varying functions on the space variable) and a
perturbation wave characterized by N1,U1 which are highly oscillating functions with respect to z according
to the frequency ks. We set:

N � N0 + N1, U � U0 + U1.
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The perturbation wave is called the ion acoustic wave associated to Brillouin instability. We have to decompose
the initial system into two sub-systems. The first one is the zero order system which is called basic hydrodynamics
system:

∂

∂t
N0 + ∇(N0U0) = 0, (61)

∂

∂t
(N0U0) + ∇(N0U0U0) + c2

s∇N0 = −γpN
0∇(|Ep|2 + |Em|2). (62)

The second one is obtained by combining (26)–(27), (61)–(62) and neglecting the terms like ∇(N1U1),
N1U0.∇U1, N1U1.∇U0, that is to say

∂

∂t

N1

N0
+ U0.∇N1

N0
+ ∇.U1 + U1.∇ log N0 = 0,

N0

(
∂

∂t
U1 + U1.∇U0 + U0.∇U1

)
+ c2

sN
0∇N1

N0
= −γpN

0∇(|A|2 − |Ep|2 − |Em|2).

We now set
N1 = N0[neiksz + c.c.], U1 = veiksz + c.c.

Then we get:
∂tn + U0.∇n + iksU0.ebn + iksv.eb + ∇.v = −v.∇ log(N0), (63)

∂tv + U0.∇v + (iksU0.eb)v + c2
siksebn + c2

s∇n = −v.∇U0 − iγpksebEpEm. (64)

According to the same paraxial approximation as before, if we take the contribution of AN1 corresponding
to eik0z and e−ik0z, we get the following propagation equations for the two laser waves:

∂tEp + cg∂zEp + νaEp − i
c

2k0
∆⊥Ep = iβ(1 − M)Ep − iβMnEm, (65)

∂tEm − cg∂zEm + νaEm − i
c

2k0
∆⊥Em = iβ(1 − M)Em − iβMnEp (66)

with

M =
N0

Nref
·

The system of equations (63)–(66) is a first model for the Brillouin instability, knowing that the main flow
(N0,U0) is given. A strong coupling occurs in the right hand side of the previous equations (which will lead to
numerical difficulties). In the sequel we will change the previous model for a simpler one.

Remark. Since we have neglected the terms like ∇(N1U1), we cannot hope that this last system (63), (64)
coupled with basic hydrodynamics ones yields some momentum balance equation. If we got such a conservation
property, it would be necessary to put in (61), (62) the contributions “at zero order” of the neglected terms
that is to say to add the term −∇(N0(nv + nv)) at the right hand side of (61) and the term −N0iksU0.(nv +
nv) − N0(nv + nv).∇U0 at the right hand side of (62). For details concerning this remark, see [34, 39].

5.2. Reduction to a three-wave coupling model

We do not take into account here the transverse phenomena: all the quantities are assumed to depend on t
and z only. We first show that when Ep is equal to a fixed value, this linear system which consists in (63), (64)
and (66) exhibits an excited mode which may be also produced by a simpler one which consists only in two
equations; we will re-introduce the equation describing the evolution of Ep afterwards (for a physical explanation
of this reduction, see [38]).
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Denote by U = U0.eb the longitudinal component of U0, and

w = c−1
s v.eb,

the dimensionless component of v. Then equations (63), (64) read as

∂tn + U∂zn + iksUn + ikscsw + cs∂zw = −csw∂z(log M),
(67)

∂tw + U∂zw + iksUw + ikscsn + cs∂zn = −iγpksc
−1
s EpEm − w∂zU.

For the sake of simplicity, we also assume for a while that

νa = 0, M = 1, U is constant.

The evolution system for n, w, Em reads as

∂tn + U(iks + ∂z)n + ikscsw + cs∂zw = 0,

∂tw + U(iks + ∂z)w + ikscsn + cs∂zn = −iγpksc
−1
s EpEm, (68)

∂tEm − cg∂zEm + iβnEp = 0.

We perform a simple change of notations which allows to exhibit two simple travelling waves

r = n + w, s = n − w.

Then, by denoting b = −iγpksc
−1
s Em, this system reads

∂tr + U(iks + ∂z)r + cs(iks + ∂z)r − Epb = 0,

∂ts + U(iks + ∂z)s − cs(iks + ∂z)s + Epb = 0, (69)

∂tb − cg∂zb − βγpksc
−1
s Ep

r + s

2
= 0.

On the opposite, we consider the following system obtained by neglecting the s wave:

∂tñ + U(iks + ∂z)ñ + cs(iks + ∂z)ñ − bEp/2 = 0, (70)

∂tb − cg∂zb − βγpksc
−1
s Epñ = 0,

where ñ play the part of r
2 (notice that if s is set to zero, ñ is reduced to n).

We want to prove that from the stability analysis, these two systems are equivalent. More precisely, we
perform the Fourier transform with respect to the z variable (ξ denotes the Fourier variable) for both systems and
we want to prove that, for a given value of the ξ variable the unstable modes of the two systems are very similar.
Thus, we are looking at a solution (r, s, b) of (69) in the form r(t) = e−iωtF−1(R(ξ)), s(t) = e−iωtF−1(S(ξ)),
b(t) = e−iωtF−1(B(ξ)). That corresponds to (R, S, B) satisfying

(−ω + (ks + ξ)U)R + cs(ks + ξ)R + iEpB = 0,

(−ω + (ks + ξ)U)S − cs(ks + ξ)S − iEpB = 0, (71)

−ωB − cgξB + iβγpksc
−1
s Ep

R + S

2
= 0,

and we look for an eigenvalue ω of this system with Im(ω) > 0.
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In the same way, for the reduced system (70), we set ñ(t) = e−iωtF−1(N(ξ)), b(t) = e−iωtF−1(B(ξ)); that
corresponds to the linear system

(−ω + U(ks + ξ) + cs(ks + ξ))N + iB
Ep

2
= 0, (72)

(−ω − cgξ)B + iβγpksc
−1
s EpN = 0.

We now state the following result which is proved in Annex 1.

Proposition. Let us assume that ξ is given by

−cgξ = (U + cs)(ks + ξ).

For the system (71), there exists an eigenvalue ωfull such that Im(ωfull) > 0; moreover, for the system (72),
there exists an eigenvalue ωredu such that Im(ωredu) > 0. Moreover, we have

ωfull = ωredu + O(|Ep|2), when |Ep| is small.

So, with the initial system (69), the time increasing solutions are associated to a value ωfull which is close to
the value ωredu corresponding to the time increasing solutions of the reduced system (70). Therefore we can
claim, by coming back to the notation Em, that for a fixed value of Ep the initial system (68) may be replaced
by the reduced system

∂tEm − cg∂zEm = −iβñEp,

∂tñ + (cs + U)(iks + ∂z)ñ = − iγpks

2cs
EpEm.

We now add to the above system the evolution equation for the wave Ep. We get the following standard decay
system:

∂tEp + cg∂zEp = −iβñEm,

∂tEm − cg∂zEm = −iβñEp, (73)

∂tñ + (cs + U)(iks + ∂z)ñ = − iγpks

2cs
EpEm.

Since Ep, Em, ñ are space-time envelopes of functions which correspond to waves, it is called a three-wave
coupling system.

5.3. Analysis of the three-wave coupling system

Notice that in this system, two very different characteristic speeds cg and (cs+U) occur, which are respectively
in the order of the light speed and the sound speed. Moreover, there are quadratic coupling terms in the right
hand side which correspond to the coupling between the three waves.

From now on, we restrict ourselves to the case where (cs + U) is positive (that is to say we do not deal with
a supersonic flow in the backward direction). The simulation domain is assumed to be the half real axis or the
interval (z ∈ [0, zmax]). Since we are looking at a local phenomenon in time, the incoming boundary condition
for the pump wave may be assumed to be independent from the time. Then, the natural boundary conditions
are the following:

Ep(t, 0) = αin, Em(t, zmax) = 0, ñ(t, 0) = 0.

If the initial values of ñ and Em are zero, then Ep(t) = αin, Em(t) = ñ(t) = 0 is a trivial solution. For getting
a non trivial solution for (73), it is sufficient to set ñ(0, .) equal to a small random noise and Ep(0) = αin,
Em(0) = 0. One can also replace the previous boundary condition on ñ by ñ(t, 0) equal to a small random noise.
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The previous model may be easily extended for addressing the general case with U and N0 smooth functions
which depend on z. Instead of (65)-(67), one considers the following system:

∂tEp + cg∂zEp + νaEp = −iβMñEm + iβ(1 − M)Ep, (74)

∂tEm − cg∂zEm + νaEm = −iβMñEp + iβ(1 − M)Em, (75)

∂tñ + (cs + U)(iks + ∂z)ñ = − iγpks

2cs
EpEm − cs

ñ

2
∂z

(
log N0 +

U

cs

)
· (76)

Notice that in the velocity equation of system (67), a friction term may be introduced which corresponds to
the so called Landau damping effect: in its simplest form it reads as 2νLw (see for instance [41]). Therefore,
arguing as before, with this correction term, the last equation reads

∂tñ + (cs + U)(iks + ∂z)ñ + νLñ = − iγpks

2cs
EpEm − cs

ñ

2
∂z

(
log N0 +

U

cs

)
· (77)

In order to deal with this system, let us set

γ0 = |αin|
√

βγpks

2cs
,

and define the dimensionless functions Êp, Êm, n̂ by

Ep = Êpα
in, Em = −iÊmαin

√
β, ñ = n̂γ0

1√
β
·

Then, the previous system reads

(∂t + cg∂z)Êp + νaÊp = −γ0MÊmn̂ + iγ0(1 − M)Êp,

(∂t − cg∂z)Êm + νaÊm = γ0MÊpn̂ + iγ0(1 − M)Êm,

(∂t + iks(cs + U) + (cs + U)∂z)n̂ + νLn̂ = γ0ÊpÊm − cs

2
n̂∂z

(
log M +

U

cs

)
·

One can check that the good characteristic length is given by √
cscg/γ0, then we define the dimensionless time

and space variables

T = γ0t, Z = zγ0/
√

cscg.

Let us introduce the small parameter ε (different from the ε introduced previously):

ε =
√

cs/cg,

and perform the change of notations:

Êp(t, z) = f(T, Z), Êm(t, z) = g(T, Z), n̂(t, z) =
1
ε
q(T, Z).
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The factor ε−1 is introduced for normalization purpose. Then we get the following dimensionless system:
(

∂T +
1
ε
∂Z

)
f = −1

ε
Mgq +

i

ε
(1 − M)f, (78)

(
∂T − 1

ε
∂Z

)
g =

1
ε
Mf q +

i

ε
(1 − M)g, (79)

(
∂T + iεR + ε

(
1 +

U

cs

)
∂Z

)
q + ενlq = εf g − ε

2
q∂Z

(
log M +

U

cs

)
, (80)

where we set
νl = νLγ−1

0

√
cg/cs, R = ks

√
cgcs(1 + Uc−1

s )/γ0.

The damping term νl corresponds to the inverse of a distance and it is small with respect to 1; the coefficient R
is the ratio of the characteristic length to the laser wave length (up to the multiplicative constant 4π(1+Uc−1

s )).
This system is supplemented with the boundary conditions

f(T, 0) = f in = 1, g(T, Zmax) = gb, q(T, 0) = 0,

where gb may be zero or a function of T which is small compared to 1; of course initial conditions have also to
be prescribed, for instance

f(0, .) = f in = 1, g(0, .) = 0,

and q(0, .) a function whose L∞ norm is small compared to 1. Notice that if gb = 0 and q(0, .) = 0, we get a
trivial stationary solution: f = exp(i(1 − M)Z), g = 0 and q = 0.

Remark 1. Conservation properties.
If gb = 0, it is easy to check that the solution of system (78)-(80) satisfies:

∂T

(∫ Zmax

0

|f |2dZ +
∫ Zmax

0

|g|2dZ

)
+ |fZmax |2 + |g0|2 = |f in|2,

On the other hand, one can check that

∂T

(
ε2|f |2) + M∂T (|q|2) + ε∂Z |f |2 + εM∂Z

(
|q|2

(
1 +

U

cs

))
+ 2νl|q|2 = −ε|q|2∂ZM,

then, if νl = 0 and if M is constant, there is another conservation relation:

∂T

(
ε2

∫ Zmax

0

|f |2dZ +
∫ Zmax

0

M |q|2dZ

)
+ ε2|fZmax |2 + M

(
1 +

UZmax

cs

)
|qZmax |2 = ε2|f in|2.

Remark 2. If we set M = 1, νl = 0 and U constant, this system may read in a more esthetic formulation after
a new change of variables:

(∂T +
1
ε
∂Z)a0 = −1

ε
a1a2 ,

(∂T − 1
ε
∂Z)a1 =

1
ε
a0a2 ,

(∂T + ε∂Z)a2 = εa1a0 .

This system has been studied for a long time by the physicists (its derivation and properties are explained in
[38]). But up to our knowledge, the mathematical analysis of this system (either on a half real axis or on a finite
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interval) is still an open problem. Annex 1 is devoted to some preliminary remarks and conjectures related to
this problem.

5.4. On the numerical techniques

From the numerical point of view, there are two main difficulties for solving the system (78)–(80): first, it
involves two different characteristic speeds (the sound speed and the light speed); second, two waves travel one
way and the third one travel in the opposite direction. It looks like that in physicist’s papers, the numerical
schemes for dealing with the advection terms in the three equations are explicit in time. So it leads to time steps
in the order of δx/cg (which are very small compared to the time scale of the phenomena) and to a prohibitive
CPU time. The aim of this subsection is to give some features on the numerical techniques of the implicit type
(at least for the two laser wave equations) and to enlighten the reader on the related numerical difficulties.

Let us define

χ(Z) = 1 + U(z)/cs, H = −1
2
∂z(log M) − 1

2
∂z

(
U

cs

)
+ νl.

The function χ is in the order of 1 and may change sign. As it was pointed out, the damping term νl is small
with respect to 1. According to the normalization of the spatial variable, the term ∂z(log M) + ∂z( U

cs
) is always

small with respect to R, so the modulus of H is negligible with respect to R.
Then, the system to be solved reads

(
∂T +

1
ε
∂Z

)
f = −1

ε
Mgq +

i

ε
(1 − M)f, (81)

(
∂T − 1

ε
∂Z

)
g =

1
ε
Mf q +

i

ε
(1 − M)g, (82)

(∂T + εχ∂Z) q + ε(H + iR)q = εf g, (83)

with the initial conditions

f(0, .) = 1, g(0, .) = 0, q(0, .) given and small (with respect to 1),

and the boundary conditions

f(T, 0) = 1, ∀T,

g(T, Zmax) = gb(T ), ∀T,

q(T, 0) = 0, ∀T, if χ(0) > 0.

Notice that if χ(0) < 0, there is no boundary condition for q(T, 0). For the sake of simplicity, we assume that
χ(Zmax) > 0, χ(0) > 0.

Numerical characteristic sizes

Usually, for hot plasmas (whose temperature are in the order of some 107 Kelvin), the parameter ε ranges
in the interval [0.03, 0.04]. Moreover, the characteristic length √

cscg/γ0 = cs/(εγ0) depends on the incoming
laser intensity, the non dimensional density Nref and physical characteristic of the plasma; typically, it ranges
from 8 wave lengths (2πk−1

0 ) to 30 wave lengths (or more if the incoming laser intensity is small). One checks
that typically, R ∈ [100, 400].

In order to study the numerical properties of the scheme we will consider the previous problem in the case
where the density M and the velocity U are constant (even if it is not very realistic from a physical point of
view), then H = νl. We address simulations on a spatial domain with Zmax much larger than some units and
for T in the order of 100 at least.



MATHEMATICAL MODELS FOR LASER-PLASMA INTERACTION 309

For an efficient numerical treatment, we wish to use for this model a spatial step which is not too small
compared to the one used in the paraxial code (indeed one solves the hydrodynamic system coupled to this
model through the ponderomotive force), that is to say δZ ranges in the intervall [0.03, 0.3].

As usual, we expect to get a numerical method which is stable with time steps δT as large as possible. Then
the time discretization of equations (81), (82) has to be implicit with respect to the time variable in the same
way as in Section 3.4 for avoiding time steps smaller than εδZ.

Denote by fn
j , gn

j , qn
j the values of f, g, q evaluated at time T n = nδT and position Zj = jδZ. We now

describe a numerical method in the particular case, where M = 1 (it is easy to generalize to the case where M
is variable).

We assume that all the values are known at time T n−1 and we look for the values at time T n. We address
first the laser field equations (81), (82). To obtain the quantities fn

j , we use a classical space marching technique
from the boundary condition corresponding to j = 0. To deal with the source term in the right hand side of
equation (81), we write gn−1

j qex
j where qex

j is an extrapolated value of qj over a time step obtained according
to (83), that is to say

qex
j = qn−1

j + εδTfn
j gn−1

j .

Thus, the space marching equation reads

ε

δT
(fn

j−1 − fn−1
j−1 ) +

1
δZ

(fn
j − fn

j−1) = −gn−1
j qn−1

j − εδT |gn−1
j |2fn

j ,

which solution is straightforward by travelling from the incoming boundary (j = 1). By the same way, we use
a space marching technique in the backward direction to get the value gn

j . Using the updated value fn
∗ , we

deal here with the source term by writting qex
j = qn−1

j + εδTfn
j gn

j ; so, by travelling from the rear boundary
(j = jmax), we have to solve:

ε

δT
(gn

j+1 − gn−1
j+1 ) +

1
δZ

(gn
j − gn

j+1) = fn
j qn−1

j + εδT |fn
j |2gn

j .

Afterwards, the third equation (83) is solved in a classical explicit way with the source term evaluated with the
help of the updated values fn and gn. It reads as

(qn
j − qn−1

j ) + ε
δT

2
(iR + Hj)(qn

j + qn−1
j ) = −ε

δT

δZ
χj(qn−1

j+1/2 − qn−1
j−1/2) + δT εfn

j gn
j , qn−1

j+1/2 = qn−1
j

if χj > 0;

qn−1
j+1/2 = qn−1

j+1 , else.

Notice that for a accurate time discretization of the phase term (iεR) for q, one must have

δT � (εR)−1. (84)

We will see in numerical examples that this condition on δT is not very restrictive.

Remark (modified method). As a matter of fact, in order to have a numerical method wich is compatible with
the method described in Section 4.4.1 and which has good energy balance properties, we split each step of the
space marching algorithmus in two sub-steps.

Let us focus on the main laser wave f. To switch from fn
j−1 to fn

j , the first sub-step consists in solving

ε

δT
(fn

j−1 − fn−1
j−1 ) +

1
δZ

(f̃n
j − fn

j−1) = 0,
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which is done by computing separately the square of the modulus and the argument as in Section 4.4.1. The
second sub-step consists in stating

1
δZ

(fn
j − f̃n

j ) = −gn−1
j qn

j − εδT |gn−1
j |2fn

j .

Concerning the backscattered wave g, to switch from gn
j+1 to gn

j , the first sub-step consists in solving

ε

δT
(gn

j+1 − gn−1
j+1 ) +

1
δZ

(g̃n
j − gn

j+1) = 0,

which is solved by computing separately the square of the modulus and the argument. The second sub-step
consists in stating

1
δZ

(gn
j − g̃n

j ) = fn
j qn−1

j + εδT |fn
j |2gn

j .

5.5. Numerical results

We have made some computations for checking the stability of the numerical schemes, for different values
of δZ and δT.

In all the numerical tests, we have set ε = 0.04. The characteristic length cs/(εγ0) is equal to 8 wave lengths
so we have R = 100. The size of the domain is equal to Zmax = 10 (which corresponds to 28 microns for a
standard wave length of 0.35 microns).

As it has been noticed the initial and boundary values for q and g are somehow random. Two series of
computations have been performed. The first ones with a zero initial value for q, but with a small boundary
condition gb on the right hand side of computational domain; in that case this data is given by the following
function which is supposed to play the part of a small random function and to excite numerous time modes:

gb(T ) = β
[
0.3e12iT + 0.3ei(2T+1.5) − 0.5ei(4T+1) + 0.2ei(7T+2)

]
, β constant.

The second ones with the following initial value for q which is also supposed to play the part of a small random
function

q(0, Z) = cini
Z2

(0.3L + Z)2
[0.6 exp(4iZ) + 0.4 exp(i(Z + 2.5)) + 0.2 exp(15iZ)] ,

with cini = 0.03 and with the initial and boundary values of g which are zero.
All the computations have been performed with a small value of νl, which is νl = 0.05 (if this value is larger,

the stability of the numerical method will be easier to obtain).
In the sequel the reflectivity R(T ) is defined by

R(T ) = |g(T, 0)|.

It corresponds to the square root of the energy which will be reflected by the plasma due to the Brillouin
instability. Since the plasma is homogeneous without longitudinal velocity and since the damping coefficient νl

is very small, the reflectivity may increase up to 1 when the time T is large enough.

Boundary value for g.

We first choose β = 10−4. The time step is fixed to δT = 0.09 and we compare the solutions for δZ = 0.3
and δZ = 0.1; we show in Figure 4, the profiles of the function |f | and |g| at ten regularly spaced times from
T = 15 up to T = 150 and at the final time T = 200. In Figure 5, we plot the reflectivity versus the time for
both cases.
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Figure 4. (Above) Profiles of |f(T, .)| versus Z, at different times, for two values of the space
step δZ = 0.3 (left side) and δZ = 0.1 (right side)[when time increases, the profiles decrease].
(Bottom) Same curves for |g(T, .)| [when time increases, the profiles increase]. Simulation with
a non zero boundary condition on g.
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Figure 5. Reflectivity of laser intensity versus time, for two values of the space step δZ = 0.3
(plain line) and δZ = 0.1 (dotted line). Simulation with a non zero boundary condition on g.

Notice that the results are identical if we take δT = 0.12 but by choosing a larger value of νl, for instance
νl = 0.2. (If we take a time step δT = 0.12, and νl = 0.05, the numerical scheme may become unstable when T
is large enough, say in the order of 150 or larger).
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Figure 6. Reflectivity of laser intensity versus time for 3 value of the boundary coefficient
cb = 0.0001 (dot-dashed line), = 0.001 (dotted line), = 0.01 (plain line).
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Figure 7. Comparison of the reflectivity with δT = 0.06 (zoom of the previous figure) and
δT = 0.0125.

Of course, the results with δZ = 0.1 are more accurate than those with larger δZ, but the results show
the same phenomenology: the reflectivity grows exponentionaly fast at the begining of the simulation, and
afterwards, a saturation occurs and the reflectivty is stabilized at a level near 1. The maximum level of
reflectivty depends of course on the space step, but the results are quite accurate even with δZ = 0.3. Let us
now modify the value of the coefficient β. In Figure 6, we plot the reflectivity versus time for three computations
corresponding to β = 10−4, β = 10−3, β = 10−2, all with δZ = 0.3, νl = 0.05, δT = 0.09 (except for the case
β = 10−2 where δT has been fixed to 0.06 in order to avoid numerical instabilities for large values of the time
T ).

We check that the three curves has the same general shape, but they are shifted with respect to time.
The oscillations in the curves for the reflectivity corresponding to β = 10−2 are not a numerical artefact, they

are due to the amplification of the oscillation of the boundary condition gb. Indeed we have performed another
computation with a very small time step δT = 0.0125 (which corresponds roughly to the Courant condition for
the light velocity 1/ε) and the results are quite identical as it may be seen in Figure 7. The two curves are very
close up to T = 12 and after that time, only a little time shift between the two curves may be observed.
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Figure 8. (Above) Profiles of |f(T, .)| versus Z, at different times, for two values of the space
step δZ = 0.3 and δZ = 0.1 [when time increases, the profiles decrease]. (Bottom) Same curves
for |g(T, .)| [when time increases, the profiles increase]. Simulation with a non zero initial
condition on q.

Initial value for q.

Let us address the problem with the initial value mentionned above. We choose δT = 0.09 and we compare
the solutions for δZ = 0.3 and δZ = 0.1.

In Figure 8, the profiles of the function |f | and |g| are plotted at regularly spaced times. In Figure 9, we plot
the reflectivity versus time for both cases.

Notice that the shape of the reflectivity curves is the same as in the case of the boundary value problem
(with q(0, .) set to zero). When the time step decreases, the profile of the different curves remains very similar.

But as previously, if one increases the time step the numerical scheme becomes unstable at a level which is
quite the same with the two space steps. The criterium of stability depends mainly on the value of the damping
coefficient νl.

Comments. These numerical simulations with the chosen value of νl, lead to think that the proposed numerical
method is stable if the dimensionless time step δT is less than a maximal value which is in the order of 1/10
(notice that if νl were zero, this constant would be smaller and if νl increased, this constant would be larger).

Let us go back to the physical quantities, recall that √
cscgδt/δz = δT/δZ. Recall that the ratio between

the characteristic length of the three-wave coupling (√cscgγ
−1
0 ) over the laser wave length may range in the

interval [8, 30].
If one wishes to have a good and efficient simulation which takes into account the standard decay system, the

diffraction phenomena as in equations (65), (66) and a basic hydrodynamics system (61), (62), the spatial step
must be as large as possible but smaller than 2 or 3 wave lengths (for the diffraction treatment) and smaller
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Figure 9. Reflectivity of laser intensity versus time, for two values of the space step δZ = 0.3
(plain line) and δZ = 0.1 (dashed line). Simulation with a non zero initial condition on q.

than a fraction of the characteristic length, that is to say δZ has to be in the order of 0.25 or less (when the
coupling is weak). Thus there exists a constant C0 such that the proposed numerical treatment of the three-wave
coupling system prescribes that

√
cscgδt/δz ≤ C0, where C0 ∈ [0.4, 1].

Since
√

cs/cg � 0.04, this leads to a crtierium

csδt/δz ≤ 0.04C0. (85)

Compared to the standard hydrodynamics CFL criterium which may read as csδt/ max(δz, δx, δy) ≤ CH

with CH in the order of 1, criterium (85) is somehow restrictive. But notice that this criterium would have been
replaced by

csδt/δz ≤ (0.04)2

if we had used explicit schemes for solving the three equations of the system (since the stability criterium would
have been related to the light speed).

6. Conclusion

Many length scales and time scales are to be taken into account in the physics of the laser-plasma interaction.
If one wished to perform simulations on a sufficient large domain during a time long enough by solving the full
Maxwell equations and the two-component Euler system for ions and electrons of the plasma, it would lead
to prohibitive CPU time. So physicists generally use approximated models. In this paper, we focused on the
coupling of the laser propagation and the ion acoustic waves. So, from the Euler-Maxwell system, we have first
derived the so called basic time envelope model obtained by a classical average of all the quantities over a laser
period.

In Section 3, by using the W.K.B. approximation, we have recalled the main properties of the geometrical
optics model and the difficulties related to the possible existence of a caustic surface.

In the following section we have emphasized the different assumptions which are necessary to derive the
paraxial approximation. This last model is intensively used by physicists but its validity has to be checked
carefully. We have stated the paraxial equation in a general tilded frame when the incidence angle between the
laser direction and the gradient of the plasma density is not zero. The classical paraxial equation is a particular
case corresponding to a zero incidence angle. With massively parallel computer architectures, it is now possible
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to perform 3D computations based on the paraxial approximation on a reasonable space and time domain if
one deals with implicit time scheme for the laser propagation equation.

In the last section, we have stated the standard decay model for the simulation of the Brillouin instability;
it consists in a three-wave coupling system: the first two waves are the pump laser wave and the backscattered
laser wave which travel at the light speed and the third one is the acoustic wave which travels at the sound
speed. This system has been studied for a long time, but its numerical treatment is very challenging if one wants
to use time steps much larger than the one given by the Courant criterium related to light speed. On the other
hand, a mathematical analysis of this system is lacking and the statement of some mathematical properties
would surely help to devise an efficient numerical scheme for this system.

ANNEX 1. Proof of the proposition of Section 5.1 for the three-wave coupling

system

The characteristic polynomial of the system (71) reads as

(ω + cgξ)((ω − (ks + ξ)U)2 − c2
s(ks + ξ)2) + βγpks|Ep|2(ks + ξ) = 0.

Notice that if Ep = 0, this equation has three real roots

ω1 = (ks + ξ)(U + cs), ω2 = (ks + ξ)(U − cs), ω3 = −cgξ.

Thus, in order to have a non real root ω when Ep is non zero and small, it is necessary that two of these roots
mingle together in the case Ep = 0. We can check that these two roots must be ω1 and ω3, so it is necessary
that

ξ = −ks
cs + U

cs + U + cg
,

which is the value stated in the proposition. By setting κ = kscg(cg + U + cs)−1, the characteristic polynomial
may read as:

(ω − κ(U + cs))2(ω + κcs − κU) + βγks|Ep|2Γ = 0. (86)
We now search a root ω which is close to ω3 = κ(U + cs). Let us make the change of variable:

ω = κ(U + cs) + κcs(ζ + iζ1), with ζ, ζ1 real.

Then, the problem is to find a root (ζ + iζ1) of the following equation whose absolute value is small (when |Ep|
is small):

(ζ + iζ1)2 + ζ + 2 + iζ1 = −βγks|Ep|2κ−2c−3
s ,

that is to say

(2 + ζ)(ζ2 − ζ2
1 ) − 2ζ2

1ζ = −βγks|Ep|2κ−2c−3
s ,

4ζ + 3ζ2 = ζ2
1 .

Then, after some calculus, we get

ζ1 = ±
√

βγp

2ksc3
s

|Ep| + O(|Ep|3) and ζ =
ζ2
1

4
+ O(|Ep|4).

Therefore, there exists a root ω = ωfull of (86) such that Im(ωfull) > 0, for small values of |Ep|, it reads

ωfull =

(
ks(U + cs) + i

√
βγpks

2cs
|Ep| + βγp

8c2
s

|Ep|2
)

cg

cg + U + cs
+ O(|Ep|3),
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and satisfies Im(ω) > 0.
Consider now the linear system (72)

(−ω + U(ks + ξ) + cs(ks + ξ))N + iB
Ep

2
= 0,

(−ω − cgξ)B + iβγpksc
−1
s EpN = 0,

and the corresponding eigenvalues ωredu for ξ = −ks
U+cs

U+cs+cg
are solutions to the characteristic polynomial

(ω − κ(cs + U))2 + βγpks|Ep|2/(2cs) = 0,

thus we get

ωredu =

(
ks(cs + U) + i

√
βγpks

2cs
|Ep|

)
cg

cg + U + cs
+ O(|Ep|2),

Then, the eigenvalues ωfull and ωredu are equal up to a second order term (in |Ep|).

ANNEX 2. Mathematical properties on the three-wave coupling system

We focus here on some elementary mathematical properties on a simplified system without damping term in
order to understand the structure of the coupling phenomena. We assume that the constant velocity U is zero
(if it is not the case the calculus are the same after a slight modification of the definition of ε). By setting

f = exp(−iεR(T − Zε))a0, g = exp(−iεR(T + Zε))a1, h = exp(i2εRT )a2,

we can transform the initial system (78),(79),(80) into the following one:

(∂T +
1
ε
∂Z)a0 = −1

ε
a1a2 , (87)

(∂T − 1
ε
∂Z)a1 =

1
ε
a0a2 , (88)

(∂T + ε∂Z)a2 = εa1a0 . (89)

We address this problem with the following simplified boundary and initial conditions:

a0(T, 0) = 1, a1(T, Zmax) = 0, a2(T, 0) = 0, ∀T, (90)
a0(0, .) = aini

0 , a1(0, .) = 0.

aini
0 is a given continuous function in L2([0, Zmax]) (whose value in Z = 0 is equal to 1) and a2(0, .) a function

whose L∞ norm is small compared to 1. Notice first that if a2(0, .) = 0, we get a trivial solution with
a1(T, .) = a2(T, .) = 0.

By multiplying (87) by a0 and (88) by a1 and combining with the conjugate quantities, we check that

∂T (|a0|2 + |a1|2) +
1
ε
∂Z(|a0|2 − |a1|2) = 0.

Moreover, by multiplying (89) by a2 and (88) by a1, we get

∂T (|a2|2 + ε2|a0|2) + ∂Z(ε|a0|2 + ε|a2|2) = 0.

We now address the previous problem on the domain R+ that is to say Zmax = +∞ and the boundary condition
is limZ=∞ a1(Z) = 0.
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Lemma. There exists a solution ξ ∈ L2(0, +∞,R) of the ordinary differential equation

∂2

∂Z2
(log ξ) = −|ξ|2, ξ(0) = 1, ∂Z(log ξ)|0 = 0, (91)

and as
0 = ξ, as

1 = ξ, as
2 = −∂Z(log ξ) is a stationary solution to the system (87)-(89). We have

0 ≤ as
k ≤ 1, lim

Z=∞
as
0(Z) = lim

Z=∞
as
1(Z) = 0, lim

Z=∞
as
2(Z) = 1.

Proof. By setting w = − log ξ, the system may be written as w′′ − e−2w = 0 with w(0) = w′(0) = 0. Thus,
we get (|w′|2)′ = −(e−2w)′. According to the boundary conditions, that implies dw =

√
1 − e−2wdZ and there

exists an increasing function G such that

Z =
∫ w

0

dλ√
1 − e−2λ

=
∫ exp w

1

dµ√
µ2 − 1

= G(w).

One can easily check that when Z → +∞, w(Z) = G(−1)(Z) tends to +∞ and w′(Z) tends to 1. �
We now conjecture that if the initial data aini

2 is small enough, there exists a solution (a0, a1, a2) such that
* the modulus of a0, a1, a2 are bounded uniformly in time;
* the solution (a0, a1, a2) converges to (as

0, as
1, as

2) when T goes to infinity;
* |a1(T, 0)| < 1, for any T > 0;
* the functions a0(.), a1(.), a2(.) are continuous from R+ into L1

loc,Z.
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