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A NUMERICAL STUDY OF NON-CAVITATING AND CAVITATING LIQUID
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Abstract. The results of a workshop concerning the numerical simulation of the liquid flow around
a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the
conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed
to investigate the capabilities of different compressible flow solvers for the low Mach number regime
and for flows in which incompressible and supersonic regions are simultaneously present. Different
physical models of cavitating phenomena are also compared. The numerical results are validated
against experimental data.
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INTRODUCTION

The present benchmark problems concern the numerical simulation of the liquid flow around a NACA0015
hydrofoil in non-cavitating and cavitating conditions and were proposed at the conference “Mathematical and
Numerical aspects of Low Mach Number Flows”, Porquerolles, France, June 21-25 2004 (web site: http://
www-sop.inria.fr/smash/LOMA).

The first proposed test case, i.e. the liquid flow around the hydrofoil in non-cavitating conditions, is a classical
benchmark flow of clear interest for aerospace, naval and industrial applications, which is characterized by a very
low Mach number. Although there are in the literature numerous examples of numerical simulations of similar
problems through incompressible flow solvers, since one of the objectives of the conference was to provide an
up-to-date view of the behavior of numerical solvers for compressible flows in the low Mach number regime, the
contributors were asked to use a compressible flow numerical solver. A low angle of attack is considered; thus, the
possibility of neglecting viscous effects was left to contributors. Finally, the hydrofoil is part of a rectangular
wing which is placed in a water tunnel spanning the entire width of the test-section; hence, 3D effects are
expected not to be important in the central part of the wing. Thus, contributors were allowed either to simulate
the entire tunnel width (3D computation) or to carry out a 2D simulation of the tunnel central section.
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For validation, a reference numerical solution is provided, obtained by means of incompressible potential flow
solvers [1]; pressure experimental data over the hydrofoil are also available [11].

A second test-case was also proposed; it consists in the simulation of the same geometry as previously, but
such that a cavitating bubble forms on the leeward side of the hydrofoil. The investigation and prediction of
cavitation phenomena is of crucial importance, for instance, in liquid propellant rocket engines and in biomedical,
environmental and material processing fields.

From a numerical viewpoint, this test-case is particularly challenging because both incompressible zones (pure
liquid) and regions where the flow may easily become highly supersonic (liquid-vapor mixtures) are present in
the flow and need to be solved simultaneously. The numerical stiffness of the problem is further increased both
by the high liquid-to-vapor density ratio (which, for instance, is of the order of 10° for water-vapor mixture
at 20°C) and by the strong shock-like discontinuities occurring in the recondensation at the cavity closure. This
singular behavior reflects the large variations of the sound speed with the pressure as the flow transitions from
a fully-wetted liquid to a two-phase cavitating mixture. Thus, this second test-case is aimed to investigate
the capabilities of numerical solvers to simulate flows characterized by the simultaneous presence of nearly
incompressible regions together with highly supersonic ones. Although the effects of viscosity and turbulence
are not clear, also for this case, possibility was left to the contributors of neglecting viscosity or turbulence.
Freedom was also left for the choice of the physical modeling of the cavitation. As previously, either 3D or
2D simulations could be carried out.

For this test-case, experimental data [11] are available for validation, namely pressure measurements over the
hydrofoil and the mean length of the cavitation bubble.

Three contributions to the first problem were received and are presented in the following, and namely con-
tributions by Beux, Salvetti and Sinibaldi (University of Pisa and Scuola Normale Superiore di Pisa, Italy),
denoted as SBS in the following, by Li and Merkle, from Purdue University, USA (acronym LM) and by Ig-
natiev (Ig) from the St. Petersburg State Polytechnical University, Russia. Only SBS and LM contributed to
the second benchmark problem.

The paper is organized as follows: the physical modeling adopted in the different contributions is briefly
presented in Section 1, while Section 2 describes the main features of the numerical approaches followed by
the contributors; for more details we refer to [7-9] for LM, [13,14] for SBS and [6, 10] for Ig. In Section 3 the
test-case geometry and the flow conditions are described; the results of the different numerical simulations are
then presented and analyzed in Section 4 and concluding remarks are finally drawn in Section 5.

1. PHYSICAL MODELS

1.1. Non-cavitating flow

As stated in the introduction, the physical model should be able to consider the fluid compressibility. Con-
versely, the viscous effects could be neglected and this assumption has been made by all the contributors (SBS,
LM and Ig). More specifically, the Euler equations of gas dynamics are used by LM and Ig, while a reduced
set of governing equations involving only the mass and momentum balances of the classical Euler equations is
considered by SBS. Indeed, in this last case, the flow is assumed to be barotropic, and, thus, the energy equation
is decoupled from the rest of the system.

As for constitutive equations, Ig uses the classical equations of state for a perfect gas with v = 1.4, while the
following state law for a weakly compressible barotropic liquid is adopted by SBS:

1 P
P=0pPsat + — In ( ) 1
sat BSL P Lsat ( )

in which p is the pressure, p the density, 85z, the isentropic compressibility assumed to be constant, depending on
the specific liquid under consideration, and psay and prsat are the saturation pressure and density respectively;
Psat and prsat are also determined by the liquid temperature 77, which is assumed to be constant and equal to the
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far stream temperature. The following values have been used for the present test cases: Bs; =5 x 107 10Pa™!,
Peat = 2339.953 Pa and paay = 997.949 kg /m”.
On the other hand, LM consider the following state equations:

p=po+ ZpRT

(2)
H = Hy + Cp(T — Tret)

where H is the flow enthalpy, R the perfect gas constant for water vapor, pg = 1000 kg/mS, Z = 0.0624,
Hy =112.75kJ, C, = 4180 J /K and T,ef = 300 K.

1.2. Cavitating flow

For the test-case involving cavitation phenomena, SBS still consider an inviscid barotropic flow, and thus,
the reduced Euler equations, whereas LM also take into account viscous and turbulent effects. More precisely,
LM consider the Reynolds-averaged Navier-Stokes equations with the k — w two-equation closure model [18].

The approaches of LM and SBS also differ for the choice of the cavitation model.

The cavitation model adopted by SBS is a homogeneous-flow model explicitly accounting for thermal cavita-
tion effects and for the concentration of the active cavitation nuclei in the liquid [2]. According to this model,
the flow behaves isentropically, so that it is possible to use the energy balance of the mixture in order to eval-
uate the mass interaction term accounting for evaporation/condensation phenomena between the two phases
and ultimately derive a constitutive relation linking the density and the pressure of the cavitating mixture.
As a result, it can be assumed that the entire flow is barotropic [2]. In non cavitating regions, i.e. for pure
liquid (p > psat), the state law defined in equation (1) is adopted, whereas for the cavitating regions, i.e. for
(p < psat), the following equation holds:

1dp 1-«
pdp P

n
Bsp(1—er)p+erg” (%) } + % (3)

where g*, 1, p. and 7y are given constants depending only on the working liquid. The volume fraction of the
liquid which is in thermal equilibrium with the bubbles is determined by e, (0 < ep < 1). It is a given function
of the approximated void fraction & = 1 — p/prsat and of 7/ R, which is a free parameter accounting for thermal
effects and the concentration of the active cavitation nuclei [2]. In the present test-case the following values of
the different parameters corresponding to water at T' = 25 °C have been used, and, namely, g* = 1.67, n = 0.73,
~v=1.28 and p, = 2.2089 x 107 Pa.

The cavitation model chosen by LM is a two-phase flow model in which transport equations are solved for
liquid and vapor mass fractions (Y; and Y, respectively). The state and caloric equations have the same form for
both liquid and vapor, i.e. equations (2) are also used for vapor but with the following values of the parameters:
po = Okg/mB, Z =1, Hy = 2796.0kJ, C, = 2050.8J/K and Tyt = 400K. A source term is included in
the transport equations to allow for transformation between liquid and vapor phases [3]. The source term
Sy = m™ +m~ is directly obtained from the vapor generation/condensation rates, which are described using
the following finite-rate relations:

Y; max (0, p, — . Y, min(0, p, —
er = Cprodp l ( Do p) and m = Cdestp 1}1 ( Py p). (4)
§PinU12ntref §pinU§1tref
Coroa and Cyest are empirical constants, and t.er is a mean flow time scale. Chroq = 10°, Caest = 1 and

tref = Uin/c, Uin being the inlet velocity and ¢ the length of the hydrofoil chord; p,, the phase-change threshold
pressure value, is not set equal to the saturation vapor pressure, but to an ad-hoc fixed value (p, = 5372 Pa),
in order to approximately take into account turbulence effects on cavitating phenomena.
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TABLE 1. Summary of the different adopted physical models.

Ig LM SBS

Non-cavitating flows

governing equations 2D Euler 2D Euler reduced 3D Euler

constitutive equations || perfect gas state equations (2) barotropic law (1)

Cavitating flows

governing equations 2D RANS with k — w model reduced 3D Euler
+ transport equations for liquid and vapor

two-phase flow model: homogeneous-flow model:
constitutive equations state egs. (2) for liquid and vapor egs. (1) and (3)

The main features of the different physical models are summarized in Table 1.

2. NUMERICAL APPROACHES

2.1. Spatial discretization and preconditioning

In all the contributions, the spatial discretization is based on an upwind finite-volume formulation with
approximate Riemann solvers. Let us consider, for simplicity, a 1D flow with uniform space and time discretiza-
tions, then the semi-discrete formulation can be expressed as follows:

ow; 1
5 + s (®iiv1 — Dim14) =0 (5)

in which W; is the vector of the unknown variables in the cell 7 and the numerical fluxes at the cell interfaces
may be expressed as:

EFW,)+ F(W, 1 -
@, = o(wi,w,) = TEIEEI) b d s jow, - w)

in which F(W) is the exact convective flux and A(W;, W,.) is a flux Jacobian with respect to W. SBS and Ig
use the Roe scheme, i.e. the Jacobian is evaluated using Roe averages (the classical ones defined for the Euler
equations with the perfect gas state equation [12] for Ig, modified ones for barotropic flows [4,13] for SBS).

A well-known problem for this kind of formulation is that, dealing with a nearly incompressible flow, the
accuracy becomes very poor. Thus, preconditioning must be applied for the low Mach number regime. Following
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[5], a preconditioning modifying only the upwind part of the numerical flux function can be introduced as follows:

prec __
q)lr -

(F(W) + F(W,)) — 5 P 1P| (W, — W) (6)

|~

Ig starts from equation (6) using primitive variables, i.e. for the 1D case U = (p, u, ln(p/pv))T, and considering
as preconditioning matrix the simplest preconditioner of Turkel type [5,15], i.e. P = diag(3?,1,1), in which
the free parameter 3 is set equal to the typical Mach number of the flow.

SBS use conservative variables, i.e. in a 1D context and with the reduced governing equations Q = (p, pu)T
Nevertheless, the preconditioning matrix is first derived in primitive variables with the same choice as Ig:
P(U) = diag(p?,1) with U = (p,u)” and 3 is assumed to be proportional to a reference Mach number. Then,
returning to the conservative variables by P(Q) = %P(U )g—g the following expression of the preconditioning
matrix in equation (6) is obtained:

2
P, = ( i (52 ~1) (1) > where ;. is the value of the Roe average of wu.

Due to the fact that the time derivative has not been modified, the time-consistency is maintained and the
method with preconditioning is also applicable to unsteady problems. Nevertheless, this formulation does not
cure the problem of inefficiency for low Mach limit, and thus, ad hoc efficient time-advancing schemes must be
used (see Sect. 2.2).

Alternatively, starting from governing equations in conservative variables (i.e., @ = (p, pu, ph® — p))T),
LM rewrite the equations choosing the primitive variables (i.e., U = (p,u,T)T) as the primary dependent
variables. In this way, the time derivative is expanded by the Jacobian dQ/0U. Then, to avoid singularities
and improve accuracy and convergence in the low Mach-number regime, the critical term dp/9dp is replaced by
1/ VPQ, where V), is the preconditioning velocity scale and should be the fluid particle velocity to ensure proper
conditioning of the time-derivatives terms [16,17]. In this way, the resulting matrix I" remains well conditioned
even in the incompressible limit, and the resulting scheme is the following:

oU; 1
I'i— 4+ — (5401 —P;—1,;) =0 7
g T Ay (it 1,i) (7)
in which the numerical fluxes are obtained by equation (6) with P = I" and 7 is a pseudo-time. Indeed, since
the time derivative term has been modified only steady solutions can be considered.

2.2. Time discretization

As previously pointed out, with a time-consistent preconditioning, an implicit formulation for time advancing
is useful, since for the low Mach limit the stability condition for explicit schemes becomes too severe. An implicit
approach is also useful with a pseudo-time formulation since it allows the convergence to steady solutions to be
accelerated.

Let us consider a fully implicit backward Euler scheme, which can be written in a unified way for both the
semi-discretizations in equations (5) or (7), as follows:

A"W; 1

At + Az ((I)?;trll - q’?jllz) =0 (8)

&

where C; = T'; or Iy, At can be the time step or the pseudo-time step, and A™(-) = (-)"*1 — (\)» n denoting
the n-th temporal iteration level.
A linearization of equation (8) can be obtained by introducing the following approximation:

A"y, ~ HY AW, + HE A"W,.
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In this way, an implicit linearized scheme in delta form is obtained by LM (see [9]) and SBS (see [13]). SBS uses a
linearization which exploits algebraic properties of the Roe numerical fluxes [13]. As a result, the approximation
is also valid for inhomogeneous fluxes as in the barotropic case.

The resulting implicit linearized schemes can be expressed as follows:

- A"Ui AU [Pullip — [Pl

e LM formulation: I‘iA—T + BrLm Ay = Az ,
A™Q); A™Q; Qo)1 — [Poliq,

e SBS formulation: A?z + Bsps Ag = 7[ oli +1AI[ Qli“, .

The matrices By and Bsgs come from the respective linearization of the spatial first-order discrete operator
including preconditioning. In order to avoid a too expensive matrix inversion, when the basic numerical treat-
ment of fluxes is modified to obtain higher order accuracy in space, this is done only on the right-hand side of
the previous equations, i.e. in the computation of explicit numerical fluxes. SBS only uses first-order accuracy,
i.e. exactly equation (6) for the numerical fluxes, while LM consider a second-order spatial scheme.

Alternatively, Ig uses a preconditioned dual-time implicit procedure [10]: to cure the inefficiency for low Mach
limit, the time derivative has been multiplied by a preconditioning matrix, but in order to save time-depended
consistency, it has been done only for an artificial time. Thus, instead of equation (5), the following semi-discrete
formulation is considered:

8;7/2 + 8;72 + Aiac (Piit1 — Pim1,) =0 9)
in which the spatial discretization is unchanged and P corresponds to the simplest Turkel preconditioner pre-
viously introduced.

Then, the artificial time derivative is discretized with a first-order finite difference while a second-order BDF
scheme is used for the physical time derivative. More precisely, the following scheme in delta form is obtained:

n [Q)Q]§+1/2 - [(I)Q]?—1/2>

P71

P +

Ar | TaAr T PleTAy Tt SAL Az

VAR, 3AM, AT <3Qf —4Qr + Q!
where 2 = 9U/9Q and By, comes from the linearization of the spatial first-order discrete operator including
preconditioning. The calculation of the explicit fluxes [@Q]fil /2 is carried out by a 5th-order WENO scheme
[6].

A factored Newton-type method is constructed by defining a sequence of approximation A*U, between two
time steps n and n + 1, where k stands for the Newton sub-iterations. After each Newton cycle, the solution
update in primitive variables, AU, is converted into conservative ones by multiplying it by Q~!. This scheme
shows good convergence and allows large CF L, . numbers (10? to 10%) to be used.

The previously described characteristics of the different numerical approaches are summarized in Table 2.

3. DESCRIPTION OF THE TEST-CASES

In the present benchmark, the flow over a NACAO0015 hydrofoil is considered. The hydrofoil is mounted in
a water tunnel at 4° angle of attack and spans the entire width of the rectangular test chamber section, which
is equal to 0.7¢, ¢ being the hydrofoil chord length, equal to 115 mm (see Fig. 1). This configuration has been
considered in an experimental study [11], for which the pressure coefficient distribution on the symmetry plane
of the hydrofoil is available. Thus, the symmetry plane of the 3D computational domain can be considered as
the computational domain for 2D simulations (Fig. 2). The dimensions of the computational domain are shown
in Figure 2.

The working liquid is water at T = 25 °C. Both cavitating and non-cavitating flows can be considered by
varying the inlet conditions, which are described in Table 3. For the cavitating case, the cavitation number,
Pin — Psat

, is equal to 1.52.
%pinUiQD

defined as s =
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TABLE 2. Main characteristics of the different numerical approaches.

Ig LM SBS
spatial finite volume finite volume finite volume
discretization for structured grids for unstructured grids for unstructured grids
upwind schemes upwind schemes upwind schemes
spatial accuracy WENO 5th-order second-order first-order
preconditioning Turkel type regularized 0Q/0U Turkel type

(conservative form)

artificial and physical pseudo-time (steady solutions) time-consistent

time derivatives:

time preconditioned dual-time implicit linearized implicit linearized
discretization implicit formulation scheme in delta form scheme in delta form
time accuracy second-order BDF first-order first-order
variables primitive - conservative primitive conservative

M 07

FIGURE 1. Test-case geometry.

Sc Tc

= f.28c

FIGURE 2. Symmetry plane of the water tunnel and 2D computational domain.

4. RESULTS AND DISCUSSION

4.1. Non-cavitating flow

For this first problem, Ig and LM carried out 2D simulations, by discretizing the symmetry section of the water
tunnel (see Fig. 2). Ig used a multi-block structured grid having 7952 cells (129 nodes on the hydrofoil), while
LM employed a hybrid structured /unstructured grid, structured near the hydrofoil and having 38 371 elements
(315 nodes on the hydrofoil). SBS carried out two 3D simulations; in the first one, the entire 3D computational
domain is discretized by an unstructured grid having 180000 tetrahedra, while, in the second one, only a slice
of 0.1c width is considered and discretized by 88400 tetrahedra (151 nodes on the hydrofoil). The main features
of the different simulations are summarized in Table 4.
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TABLE 3. The inlet experimental conditions.

non-cavitating flow | cavitating flow
Temperature | Ti, 298 298
in Kelvin
velocity Uin 3.11 3.41
in m/s
pressure Pin 0.59 0.12
in bar
viscosity Lin 0.00089 0.00089
in (N s)/m?
density Pin 1000 1000
in kg/m3
Mach number | M;, 0.0021 0.0023

TABLE 4. Main grid characteristics in the different contributions.

Ig LM SBS
Non-cavitating flows
type of grids || 2D multi-block hybrid 2D tetrahedrical 3D
structured unstructured /structured unstructured
n° of elements 7952 38371 180000 (3D domain)
88400 (slice of 0.1 ¢)
n° nodes on 129 315 151
the hydrofoil (symmetry section)
Cavitating flows
type of grids hybrid 2D tetrahedrical 3D
unstructured /structured unstructured
n° of elements 108000 88400 (slice of 0.1 ¢)
n° nodes on 540 151
the hydrofoil (symmetry section)

In all the computations, since the assumption of inviscid flow was made, free-slip boundary conditions were
used at the hydrofoil and at the lateral walls; inflow conditions were specified according to Table 3.
Figure 3 shows the pressure coefficient distribution at the hydrofoil obtained in the different simulations.

Lpinf Since, as expected, 3D effects are not critical in the
1/2piﬂ[Jin

present case and no significant differences are observed between the two computations carried out by SBS (see,

The pressure coefficient is defined as: Cj, =
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0 0.2 0.4 0.6 0.8 1
x/c

FI1GURE 3. Non-cavitating flow: pressure coefficient distribution on the hydrofoil.

reduced domain

! complete 3D domain -------

Cp

0 0.2 0.4 0.6 0.8 1
x/c

FIGURE 4. Non-cavitating flow: pressure coeflicient distribution on the hydrofoil obtained in
SBS simulations with different computational domains.

e.g., Fig. 4), only the simulation on the domain slice is shown in Figure 3 for SBS. Experimental data are
also reported in Figure 3 together with the solutions obtained by a 2D and a 3D potential solver. On the
windward side, fairly good agreement is observed between all the simulations and the reference data, except
near the trailing edge where LM and Ig results become more far from the experimental data. This is due to
the fact that these simulations are 2D, and, indeed, a similar behavior is observed in the 2D potential flow
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experiments  +

.l LM |
SBS (A=0.01) -
SBS (A=0.1)
05 g

2 ! ! ! ! !

0 0.2 0.4 0.6 0.8 1

FI1GURE 5. Cavitating flow: pressure coefficient distribution on the leeward side of the hydrofoil.

solution. Consistently, the best agreement with the experimental data near the trailing edge is obtained in the
3D simulation by SBS. Conversely, on the leeward side, the SBS results show a significant underestimate of the
suction peak near the leading edge. This is due to the low order of spatial accuracy of the numerical method
(1st order) together with the moderate grid resolution near the hydrofoil. Indeed, the simulation by SBS has
a much lower resolution near on the hydrofoil than the one by LM, in which a second-order spatial accuracy is
employed (see Tab. 4); Ig has a resolution comparable to SBS, but the numerical method is 5th-order accurate
in space.

4.2. Cavitating flow

For this second problem, SBS used the same reduced computational domain and the same grid as in the
previous case, while a more refined hybrid mesh having approximately 108 000 elements has been employed by
LM. SBS carried out two different simulations with two different values of the free-parameter in the cavitation
model, A =dr/R (A=0.1 and A =0.01).

The C), distribution on the leeward side of the hydrofoil obtained in the different simulations is compared with
the experimental data in Figure 5. The presence of a cavitation bubble forming near the leading edge is clearly
detectable in all the simulations (it corresponds to the plateau in the C), distribution). However, significant
differences are observed between the results obtained in the various simulations. The LM C), distribution
shows a larger plateau than those of the SB.S simulations, indicating a larger width of the cavitating bubble;
this behavior well agrees with the experimental data near the leading edge, but significant discrepancies are
observed at the edge of the cavitating bubble (x/c ~ 0.4). Although the presence of some wiggles, the best
overall agreement with the experimental C), distribution is obtained in the SBS simulation with dz/R = 0.01.
Nevertheless, the LM simulation gives a more accurate prediction of the mean length of the cavitation bubble;
indeed in the experiments the length has been estimated to oscillate in time between 0.4c to 0.46¢ and in the LM
simulation is roughly equal to 0.4c¢ (see, for instance, the iso-contours of the vapor volume fraction in Fig. 6).
Conversely, the length obtained in the SBS computation with ér/R = 0.01 is approximately 0.2¢ and in the
other simulation is lower, as can be seen in Figure 8, in which the iso-contours of the cavitation number are
shown.

In this second test case, beside the differences in the spatial accuracy of the numerical method and in the grid
resolution, already highlighted for the previous problem, the physical model adopted to describe the cavitation
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FIGURE 6. Cavitating flow: iso-contours of vapor volume fraction in the LM simulation.

Iso-Contours of Mach Number

| L
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NACA0015
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FIGURE 7. Cavitating flow: iso-contours of Mach number in the LM simulation.

phenomena clearly has a great influence on the numerical results. The cavitation models used by LM and SBS
have a largely different behavior, as can be seen, for instance, from the iso-contours of the Mach number obtained
in the different simulations and shown in Figures 7 and 9. Indeed, in the LM computation the maximum value
of the Mach number reached in the cavitating region is of the order of 1, while in the SBS ones is much larger
(up to 30 in the simulation with é7/R = 0.1). Furthermore, as previously stated, LM take into account flow
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FIGURE 8. Cavitating flow: iso-contours of cavitation number in the symmetry plane for the
SBS simulations; (a) ér/R = 0.1; (b) ér/R = 0.01.

viscosity and turbulence effects, while SBS still consider the flow as inviscid. In spite of these differences,
both Figures 7 and 9 clearly illustrate the numerical stiffness of the present problem, characterized by the
simultaneous presence of extremely low Mach number regions together with supersonic or highly supersonic
zones.

5. CONCLUDING REMARKS

The results of a numerical workshop, held at the conference “Mathematical and Numerical aspects of Low
Mach Number Flows” (2004) and concerning the simulation of the flow around a hydrofoil mounted in a water
tunnel, have been presented.

The first test-case consisted in the simulation of the flow at a very low Mach number (Mj, = 0.002) in non-
cavitating conditions and was aimed to compare the behavior of different numerical solvers of compressible flows
in the low Mach number regime. Three different contributions have been presented (Ig, LM and SBS). In all
the contributions, a finite volume method is used for spatial discretization and the first-order basic component
of the computation of numerical fluxes is an approximate Riemann solver. In all cases, preconditioning for low
Mach number is applied; SBS and Ig use a Turkel type preconditioning in a time-consistent manner, i.e. only
applied to the upwind part of numerical fluxes. In LM preconditioning is obtained by solving the equations
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FI1GURE 9. Cavitating flow: iso-contours of Mach number in the symmetry plane for the SBS
simulations; (a) é7/R = 0.1; (b) ér/R = 0.01.

in primitive variables; thus, the time-derivative term is pre-multiplied by the Jacobian of the conservative to
primitive change of variables, which is properly modified to avoid ill conditioning in the low Mach number
limit. The basic method for computing numerical fluxes is then modified in Ig and LM to obtain 5th-order and
second-order spatial accuracy respectively; the method by SBS is only first-order accurate in space.

In all the contributions, an ad-hoc efficient implicit time-advancing algorithm is used to overcome the con-
vergence problems typical of the low Mach number limit, namely an implicit linearized scheme in delta form for
LM and SBS and dual time stepping for Ig.

The results obtained for this first test case are consistent with the accuracy of the numerical methods and
with the employed grid resolutions. This shows that the adopted methods of preconditioning are indeed effective
to solve accuracy problems in the low Mach number limit.

The second test-case consisted in the simulation of the flow in the same geometry as previously, but for inflow
conditions leading to the formation of a cavitating bubble on the leeward side of the hydrofoil. This problem
is more challenging than the previous one both from a numerical viewpoint, since it is characterized by the
simultaneous presence of low Mach number and supersonic regions, and from a physical point of view, since the
physical modeling of cavitation phenomena is complex and far form being assessed.
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LM and SBS contributed to this test case using the same numerical methods as in the previous one. Conversely
different cavitation models were adopted; namely, LM simulated a two-phase flow by numerically discretizing
transport equations for liquid and vapor, including source terms to account for vapor generation/condensation.
On the other hand, SBS used a homogeneous flow model, leading to different barotropic state equations for
non-cavitating and cavitating regions.

Both approaches are able to yield the formation of a cavitating bubble on the leeward side of the hydrofoil
and the global agreement with the experimental data is fairly good. However, some discrepancies with the
experiments are present and significant differences between the numerical solutions are observed, which can
not be only explained by the differences in accuracy and grid resolution. Indeed, for this test case, it seems
that the physical model of cavitation phenomena plays a crucial role in the accuracy of the results. Further
investigations are clearly needed on this topic, but they are beyond the scope of the numerical workshop, which
was to investigate whether ad-hoc designed numerical solvers are able to deal with the numerical stiffness of
such problems.
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