ESAIM: M2AN Vol. 39, N° 4, 2005, pp. 637–648 DOI: 10.1051/m2an:2005028 ESAIM: Mathematical Modelling and Numerical Analysis

CHARACTERIZATION OF THE LIMIT LOAD IN THE CASE OF AN UNBOUNDED ELASTIC CONVEX

Adnene Elyacoubi¹ and Taieb Hadhri¹

Abstract. In this work we consider a solid body $\Omega \subset \mathbb{R}^3$ constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces λf and a density of forces λg acting on the boundary where the real λ is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by $\overline{\lambda}$ beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, *RAIRO: Modél. Math. Anal. Numér.* **29** (1995) 391–419]. Then assuming that the convex of elasticity at the point x of Ω , denoted by K(x), is written in the form of $K^D(x) + \mathbb{R}I$, I is the identity of \mathbb{R}^9_{sym} , and the deviatoric component K^D is bounded regardless of $x \in \Omega$, we show under the condition "Rot $f \neq 0$ or g is not colinear to the normal on a part of the boundary of Ω ", that the Limit Load $\overline{\lambda}$ searched is equal to the inverse of the infimum of the gauge of the Elastic convex translated by stress field equilibrating the unitary load corresponding to $\lambda = 1$; moreover we show that this infimum is reached in a suitable function space.

Mathematics Subject Classification. 74xx.

Received: February 6, 2004.

1. The Hencky's problem for a non-homogeneous elastoplastic structure

Using the notations and the operators given in [5], the Hencky's problem is given by the following system: find a tensor σ and a displacement u such that

$$\begin{cases} \operatorname{div} \sigma = \lambda f \quad a.e. \text{ in } \Omega \\ \sigma \cdot n = \lambda g \quad \text{on } \Gamma_1 \\ u = u_0 \quad \text{on } \Gamma_0 \\ \sigma(x) = \Pi_{K(x)} \left(A_{(x)}^{-1}(\varepsilon(u)(x)) \right). \end{cases}$$
(1)

Here:

$$\varepsilon(u) = (\varepsilon_{ij}(u)) \text{ and } \varepsilon_{ij}(u) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \text{ for } 1 \le i, j \le 3$$

© EDP Sciences, SMAI 2005

Keywords and phrases. Elasticity, limit load.

¹ LIM, Polytechnic School of Tunisia. adnene.elyacoubi@ept.rnu.tn; taieb.hadhri@ept.rnu.tn

 A_x^{-1} the inverse matrix of A_x , A_x defined for $\eta = (\eta_{ij})_{1 \le i,j \le 3} \in \mathbb{R}^9$ by:

$$(A_x(\eta))_{ij} = \frac{1}{9K_0(x)}\eta_{kk}(x)\delta_{ij} + \frac{1}{2\mu(x)}\eta_{ij}^D$$

 $K_0(x) = \alpha(x) + \frac{2\mu(x)}{3}$ where α and μ are the Lamé coefficients.

We suppose that:

(H₁) $\Gamma_1 \cup \Gamma_0 = \partial \Omega$: the boundary of Ω with $(\Gamma_1) \neq 0$ and the interiors of Γ_1 and Γ_0 satisfy $\Gamma_1^0 \cap \Gamma_0^0 = \emptyset$ (H₂) K(x) is a closed convex part of \mathbb{R}^9_{sym} and $\exists c > 0$ such that:

$$B(0,c) \subset K(x) \ a.e.$$
 in Ω .

Here: $\mathbb{R}^9_{sym} = \{X = (x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33}), x_{ij} \in \mathbb{R} \text{ for } 1 \leq i \leq 3; 1 \leq j \leq 3 \text{ and } x_{ij} = x_{ji}\}$ (H₃) $g \in (L^{\infty}(\Gamma_1))^3, f \in (L^4(\Omega))^3$ such that:

$$\exists \tilde{g} \in (L^{\infty}(\partial \Omega))^3, \ \tilde{g} = g \text{ on } \Gamma_1 \text{ and } \int_{\Omega} f \mathrm{d}x \ + \ \int_{\partial \Omega} \tilde{g} \mathrm{d}\Gamma \ = 0$$

 (H_4) $K(x) = K^D(x) + \mathbb{R}I$ and $\exists M > 0$ such that:

$$K^D(x) \subset B(o, M)$$
 a.e. in Ω .

We define the following set K_{ad} :

$$K_{ad} = \{ \eta \in (L^2(\Omega))_s^9 \text{ such that } \eta(x) \in K(x) \quad a.e. \text{ in } \Omega \}.$$
(2)

It is clear that K_{ad} is a closed convex of $(L^2(\Omega))_s^9$.

We define now the Quasi-elastic problem:

Find a tensor σ^e and a displacement u^e satisfying:

$$\begin{cases} \operatorname{div} \sigma^{e} = f & a.e. \text{ in } \Omega \\ \sigma^{e} \cdot n = \tilde{g} & \operatorname{on} \partial \Omega \\ \sigma^{e}(x) = \left(A_{(x)}^{-1}(\varepsilon(u^{e})(x)) \right) & a.e. \text{ in } \Omega. \end{cases}$$
(3)

Referring to [3], the above problem has a solution (σ^e, u^e) , which is unique within a rigid body displacement for u^e , since f and g satisfy (H_3) ; moreover, we have the following proposition.

Proposition 1. We assume that f and g satisfy (H_3) , then we have:

$$\sigma^e \in L^{\infty}(\Omega, \mathbb{R}^9_{sym}).$$

Proof. According to [3], we have $\sigma^e \in (W^{1,4}(\Omega))^9$ and according to [1] we conclude that: $\sigma^e \in L^{\infty}(\Omega, \mathbb{R}^9_{sym})$. \Box

2. Characterization of the limit load $\bar{\lambda}$

Definition 1. Considering the functional F defined on V_1 :

$$V_1 = \{ \eta \in L^2(\Omega, \mathbb{R}^9_{sym}) \text{ such that } \operatorname{div} \eta = 0 \text{ a.e. in } \Omega \text{ and } \eta \cdot n = 0 \text{ on } \Gamma_1 \}$$
(4)

by:

$$F(\eta) = \mathcal{J}_{K_{ad}}(\sigma^e - \eta) \tag{5}$$

where, $J_{K_{ad}}$ is the gauge of K_{ad} defined by:

$$J_{K_{ad}}(\alpha) = \inf\{s > 0 \text{ such that } \alpha(x) \in s.K(x) \text{ a.e. in } \Omega\}.$$
(6)

Then we have:

Proposition 2. The functional F is l.s.c (lower semicontinuous) on V_1 for the weak topology of $L^2(\Omega, \mathbb{R}^9_{sym})$ and we have: $F(\eta) = F(\eta^D)$.

Proof. The functional F is l.s.c for the strong topology of $L^2(\Omega, \mathbb{R}^9_{sym})$ and according to [2] we have F is l.s.c on V_1 for the weak topology of $L^2(\Omega, \mathbb{R}^9_{sym})$.

On the other hand K_{ad} is, according to (H_4) , unchanged in the direction of the spherical stress, then we have: $F(\eta) = F(\eta^D)$.

Definition 2. The Limit Load $\overline{\lambda}$ is defined in [5] by:

$$\bar{\lambda} = \sup\{\lambda > 0 \text{ such that } D_{\lambda} \neq \emptyset\}$$
(7)

where

$$D_{\lambda} = \left\{ \sigma \in L^{2}(\Omega, \mathbb{R}^{9}_{sym}) \text{ such that} \left\{ \begin{array}{cc} \operatorname{div} \sigma - \lambda f = 0 & a.e. \text{ in } \Omega \\ \sigma \cdot n = \lambda g & \operatorname{on} \Gamma_{1} \\ \sigma(x) \in \mathrm{K}(\mathbf{x}) \ a.e. \text{ in } \Omega \end{array} \right\} \right\}.$$
(8)

Then we have the following theorems:

Theorem 1. Under the hypotheses $(H_1), (H_2)$ and (H_3) we have: (i) If $\inf_{\eta \in V_1} F(\eta) = 0$, then $\bar{\lambda} = +\infty$. (ii) If $\inf_{\eta \in V_1} F(\eta) \neq 0$, then $\bar{\lambda} = \frac{1}{\inf_{\eta \in V_1} F(\eta)}$.

Proof.

1. Proof of (i). We assume that:

$$\inf_{\eta \in V_1} F(\eta) = 0. \tag{9}$$

Let $\lambda > 0$, and let us show that $\bar{\lambda} > \lambda$.

There exists $\eta \in V_1$ such that $F(\eta) < \frac{1}{\lambda}$ and according to (5) we have:

$$\mathbf{J}_{K_{ad}}(\sigma^e - \eta) < \frac{1}{\lambda} \cdot$$

Using (6) we obtain:

$$(\sigma^e - \eta) \in \frac{1}{\lambda} K_{ad}.$$

and then

$$\lambda(\sigma^e - \eta)(x) \in K(x) \quad a.e. \text{ in } \Omega.$$
(10)

On the other hand, we have: $\operatorname{div}(\lambda(\sigma^e - \eta)) = \lambda(\operatorname{div}\sigma^e - \operatorname{div}\eta).$

Using
$$(3)$$
 and (4) we conclude:

$$\operatorname{div}(\lambda(\sigma^e - \eta)) = \lambda f \quad \text{in } \Omega, \tag{11}$$

and

$$\lambda(\sigma^e - \eta) \cdot n = \lambda g \quad \text{on} \quad \Gamma_1. \tag{12}$$

From (10)–(12) we obtain: $\lambda(\sigma^e - \eta) \in D_{\lambda}$, and according to (7) it is clear that:

$$\bar{\lambda} > \lambda$$
.

 $\bar{\lambda} = +\infty.$

We finally conclude that:

2. Using the same idea, we prove (ii).

We now distinguish these two cases:

Theorem 2. Under the hypotheses $(H_1), (H_2), (H_3)$ and (H_4) the following statements (i) and (ii) are equivalent:

(i) $\exists \eta \in V_1 \text{ such that } F(\eta) = 0.$

(ii) The following problem (P_2) has at least one solution

$$(P_2) \begin{cases} Find \ \alpha \ in \ W^{1,2}(\Omega) \ satisfying: \\ \nabla \alpha \ = -f \ in \ \Omega \\ \alpha n \ = -g \ on \ \Gamma_1. \end{cases}$$
(13)

Proof.

1. Assume there exists $\eta \in V_1$ such that $F(\eta) = 0$, then according to (5) we have

$$\mathbf{J}_{K_{ad}}(\sigma^e - \eta) = 0,\tag{14}$$

which implies, using (6):

$$\inf\{s > 0 \text{ such that } (\sigma^e - \eta)(x) \in sK(x) \text{ a.e. in } \Omega\} = 0;$$

and using (H_4) we have:

$$\inf\{s>0 \text{ such that } (\sigma^e-\eta)^D(x)\in sK^D(x) \text{ a.e. in } \Omega\}=0$$

which implies:

$$\exists s_n > 0; (s_n)_{n \in \mathbb{N}} \text{ independent of } x \text{ and such that: } \begin{cases} s_n \xrightarrow[n \to +\infty]{n \to +\infty} 0 \\ \text{and} \\ (\sigma^e - \eta)^D(x) \in s_n K^D(x) \text{ a.e. in } \Omega. \end{cases}$$

Then we can write:

$$(\sigma^e)^D(x) = \eta^D(x) \quad a.e. \text{ in } \Omega, \tag{15}$$

and then:

$$\eta(x) = (\sigma^e)^D(x) + \frac{1}{3} \mathrm{tr} \eta I,$$

and so:

$$\operatorname{div} \eta = \operatorname{div}(\sigma^e)^D + \operatorname{div}\left(\frac{1}{3}\mathrm{tr}\eta I\right).$$

But $\eta \in V_1$, then div $\eta = 0$, which gives using (3):

$$\nabla \alpha = -f,\tag{16}$$

640

where $\alpha = \frac{1}{3}(\mathrm{tr}\eta - \mathrm{tr}\sigma^e).$

It is clear that $\alpha \in L^2(\Omega)$ and $\nabla \alpha \in (L^2(\Omega))^3$ which implies that $\alpha \in W^{1,2}(\Omega)$. On the other hand, using (4) we obtain:

$$\eta \cdot n = 0 \quad \text{on } \Gamma_1,$$

then

$$\left(\eta^D + \frac{1}{3} \mathrm{tr} \eta I\right) \cdot n = 0 \quad \text{on } \Gamma_1,$$

which can be written using (15) as:

$$\left((\sigma^e)^D + \frac{1}{3} \mathrm{tr} \eta I \right) \cdot n = 0 \quad \text{on } \Gamma_1$$

or

$$\left((\sigma^e) + \frac{1}{3}(\mathrm{tr}\eta - \mathrm{tr}\sigma^e)I\right) \cdot n = 0 \quad \text{on } \Gamma_1$$

and using (3), we have:

$$\left(\frac{1}{3}(\mathrm{tr}\eta - \mathrm{tr}\sigma^e)I\right) \cdot n = -g \quad \text{on } \Gamma_1,$$

that means:

$$\alpha \cdot n = -g \quad \text{on } \Gamma_1$$

and using (16) we conclude the first implication. 2. Assume now that (P_2) has at least one solution in $W^{1,2}(\Omega)$, then there exists $\alpha \in W^{1,2}(\Omega)$ such that:

$$\begin{cases} \nabla \alpha = -f & \text{in } \Omega \\ \text{and} \\ \alpha \cdot n = -g & \text{on } \Gamma_1. \end{cases}$$
(17)

Then, let

$$\eta = \sigma^e + \alpha I. \tag{18}$$

So, we get:

$$\eta \in L^2(\Omega, \mathbb{R}^9_{sym})$$
 and $\operatorname{div} \eta = \operatorname{div} \sigma^e + \nabla \alpha.$ (19)

According to (17) and (3) we obtain:

$$\operatorname{div}\eta = 0 \quad \text{in } \Omega. \tag{20}$$

Let us show now that $\eta \cdot n = 0$ on Γ_1 . Let $\phi \in W^{1,2}(\Omega)$ be such that $\phi/((\partial \Omega) \setminus \Gamma) = 0$ we have for

Let $\phi \in W^{1,2}(\Omega)$ be such that $\phi/((\partial \Omega) \setminus \Gamma_1) = 0$, we have for $i \in \{1, 2, 3\}$

$$\int_{\Omega} \eta^{i} \nabla \phi \mathrm{d}x = -\int_{\Omega} \mathrm{div} \eta^{i} \phi \mathrm{d}x + \int_{\Gamma_{1}} \eta^{i} . n. \phi \mathrm{d}\Gamma$$

where η^i is the vector line of η .

Using (18) and (20) we obtain:

$$\int_{\Gamma_1} \eta^i . n.\phi \mathrm{d}\Gamma = \int_{\Omega} (\sigma^e)^i . \nabla \phi \mathrm{d}x + \int_{\Omega} (\alpha . I)^i \nabla \phi \mathrm{d}x.$$

A. ELYACOUBI AND T. HADHRI

Then since $\phi/((\partial \Omega) \setminus \Gamma_1) = 0$,

$$\int_{\Gamma_1} \eta^i . n.\phi \mathrm{d}\Gamma = -\int_{\Omega} (\mathrm{div}\sigma^e)^i \phi \mathrm{d}x + \int_{\Gamma_1} (\sigma^e)^i . n.\phi \mathrm{d}\Gamma - \int_{\Omega} (\nabla \alpha)^i \phi \mathrm{d}x + \int_{\Gamma_1} (\alpha . n_i) \phi \mathrm{d}\Gamma.$$

And then according to (3) and (17) we have:

$$\int_{\Gamma_1} (\eta.n) \phi \mathrm{d}\Gamma = 0. \tag{21}$$

The statements (19)–(21) prove that $\eta \in V_1$; moreover, we have:

$$F(\eta) = F(\eta^{D}) = F((\sigma^{e})^{D})) = F(\sigma^{e}) = 0.$$

Then

$$\eta \in V_1 \text{ and } F(\eta) = 0.$$

Moreover, we have the following theorem:

Theorem 3. Under the hypotheses of Theorem 2, we have:

If
$$Rot f \neq 0$$
, then $\inf_{\eta \in V_1} F(\eta) \neq 0$.

Proof. Assume that there exists a sequence $(\eta_n)_n \in V_1$ such that $F(\eta_n) \xrightarrow[n \to +\infty]{} 0$. Then, according to (5) we have:

$$\begin{aligned} \mathbf{J}_{K_{ad}}(\sigma^e - \eta_n) &\xrightarrow[n \to +\infty]{} 0 \\ \text{and then } \exists \alpha_n > 0 \ (\alpha_n \text{ independent of } x) \text{ such that: } \begin{cases} \alpha_n &\xrightarrow[n \to +\infty]{} 0 \\ \text{and} \\ (\sigma^e - \eta_n)^D(x) \in \alpha_n K^D(x) \quad a.e. \text{ in } \Omega. \end{cases} \end{aligned}$$

This gives, according to (H_4) :
$$\eta_n^D \xrightarrow[n \to +\infty]{} (\sigma^e)^D \quad a.e. \text{ in } \Omega. \end{aligned}$$

and

$$\eta^D_n \xrightarrow[n \to +\infty]{} (\sigma^e)^D \quad \text{ in } \mathcal{D}'(\Omega).$$

Then:

$$\operatorname{div} \eta_n^D \xrightarrow[n \to +\infty]{} \operatorname{div} (\sigma^e)^D \quad \text{ in } \mathcal{D}'(\Omega),$$

which can be written:

$$\operatorname{div}\left(\eta_n - \frac{1}{3} \operatorname{tr} \eta_n . I\right) \longrightarrow [n \to +\infty] \operatorname{div}(\sigma^e)^D \quad \text{in } \mathcal{D}'(\Omega);$$

but according to (4) we have $\operatorname{div}(\eta_n) = 0$, then:

$$\operatorname{div}\left(-\frac{1}{3}\operatorname{tr}\eta_n.I\right)\xrightarrow[n\to+\infty]{}\operatorname{div}(\sigma^e)^D\quad\text{in }\mathrm{D}'(\Omega),$$

or also

$$abla \left(-\frac{1}{3} (\operatorname{tr}(\eta_n - \operatorname{tr}\sigma^e)) \right) \longrightarrow [n \to +\infty] \operatorname{div}(\sigma^e) \quad \text{in } \mathcal{D}'(\Omega),$$

642

which implies:

$$\operatorname{Rot}\nabla\left(-\frac{1}{3}(\operatorname{tr}(\eta_n - \operatorname{tr}\sigma^e)\right) \longrightarrow [n \to +\infty]\operatorname{Rot}(\operatorname{div}(\sigma^e)) \quad \text{in } \operatorname{D}'(\Omega).$$

Using $\operatorname{Rot}\nabla\delta = 0 \quad \forall \delta \in \operatorname{in } D'(\Omega)$ we obtain $\operatorname{Rot}f = 0$, which concludes the proof.

Corollary 1. Under the hypotheses $(H_1), (H_2), (H_3)$ and (H_4) we have:

If
$$Rotf \neq 0$$
, then $\bar{\lambda} = \frac{1}{\inf_{\eta \in V_1} F(\eta)}$.

Proof. Results from Theorems 1 and 3.

In Theorem 3 we have characterized the Limit load $\bar{\lambda}$; and we have shown that Rotf $\neq 0$ is a sufficient condition to prove that $\bar{\lambda} = \frac{1}{\inf_{\eta \in V_1} F(\eta)}$; but this condition is not always satisfied by the volumic force f. In the case where Rotf = 0, we introduce in the following a condition on the boundary force g to show the same characterization of the Limit load.

Theorem 4. Under the hypotheses $(H_1), (H_2), (H_3), (H_4)$ and if we assume that Rot $f \neq 0$ or g satisfies:

$$C_g$$
 : $\exists B \subset \Gamma_1, meas(B) \neq 0$ such that $g \land n \neq 0$ on B (22)

(which means that g is not collinear to the normal on B).

Then, we have:

$$F(\eta) \neq 0 \quad \forall \eta \in V_1.$$

Proof. The result is deduced from Theorem 2.

In the following part, we will prove, by adding a condition on the open set Ω , that $\bar{\lambda} = \frac{1}{\inf_{\eta \in V_1} F(\eta)}$ under hypothesis Rot $f \neq 0$ or g satisfying C_g given above and that $\inf_{\eta \in V_1} F(\eta)$ is reached on V_1 .

3. An existence result obtained by extension of Ω

3.1. Problem obtained by extension of Ω

We assume that Ω satisfies:

There exists an open set
$$\Omega_0 \subset \mathbb{R}^3$$
 such that:
 $\Omega \subset \Omega_0$
 Ω_0 is convex ; $\Omega_0 \setminus \Omega$ is connex
 $\partial\Omega \cap (\partial(\Omega_0 \setminus \Omega)) = \Gamma_1$
and
 $\forall \phi \in W^{1,2}(\Omega), \exists \phi_1 \in W^{1,2}(\Omega_0 \setminus \Omega)$ such that: $\phi = \phi_1$ on Γ_1 .
(23)

Let now $(\eta_n)_n$ be a minimizing sequence of $F(\eta)$ on V_1 and let $\tilde{\eta}_n$ be defined by:

$$\tilde{\eta}_n = \begin{cases} \eta_n & \text{in } \Omega\\ 0 & \text{in } \Omega_0 \backslash \Omega. \end{cases}$$
(24)

Then we have the following results:

Lemma 1. We assume that (23) is satisfied, then we have:

div
$$\tilde{\eta}_n = 0$$
 in Ω_0 .

Proof. Let $\phi \in D(\Omega_0)$, we have:

$$\int_{\Omega_0} (\mathrm{div} \tilde{\eta}_n^i) \phi \mathrm{d}x = -\int_{\Omega_0} \tilde{\eta}_n^i \nabla \phi \mathrm{d}x.$$

This means:

$$\int_{\Omega_0} (\operatorname{div} \tilde{\eta}_n^i) \phi \mathrm{d}x = -\int_{\Omega} \tilde{\eta}_n^i \nabla \phi \mathrm{d}x - \int_{\Omega_0 \setminus \Omega} \tilde{\eta}_n^i \nabla \phi \mathrm{d}x$$

and according to (24) we obtain:

$$\int_{\Omega_0} (\operatorname{div} \tilde{\eta}_n^i) \phi \mathrm{d}x = \int_{\Omega} \operatorname{div} \eta_n^i \phi \mathrm{d}x - \int_{\partial \Omega} (\eta_n^i \cdot n) \phi \mathrm{d}\Gamma.$$

But ϕ belongs to $D(\Omega_0)$ then $\phi = 0$ on $\partial \Omega \setminus \Gamma_1$ and $(\eta_n)_n \in V_1$, and we get:

$$\int_{\Omega_0} \operatorname{div} \tilde{\eta}_n^i \phi \mathrm{d}x = 0, \text{ for all } \phi \in \mathrm{D}(\Omega_0) \text{ and for all } 1 \le i \le 3,$$

which allows us to conclude:

$$\operatorname{div}\tilde{\eta}_n = 0 \qquad \text{in} \quad \Omega_0. \qquad \Box$$

Remark 1. Let $(\eta_n)_{n\in\mathbb{N}}$ be a minimizing sequence of $F(\eta)$ on V_1 , then we have:

$$J_{K_{ad}}(\sigma^e - \eta_n) \le \text{Const.}$$

Using Proposition 2 and the property (H_4) , we obtain:

$$|\eta_n^D||_{L^{\infty}(\Omega,\mathbb{R}^9_{sym})} \le \text{Cte for all } n \in \mathbb{N}.$$
(25)

Then, let:

$$(\tilde{\eta}_n)^D = \begin{cases} \eta_n^D & \text{in } \Omega\\ 0 & \text{in } \Omega_0 \backslash \Omega. \end{cases}$$
(26)

We obtain:

 $(\tilde{\eta}_n^D)_n$ is bounded in $L^{\infty}(\Omega_0, \mathbb{R}^9_{sym})$, then there exists a subsequence of $(\tilde{\eta}_n^D)_n$ (denoted also $(\tilde{\eta}_n^D)_n$) and there exists $\sigma_0 \in L^2(\Omega_0, \mathbb{R}^9_{sym})$ such that:

$$(\tilde{\eta}_n^D) \longrightarrow \sigma_0 \quad \text{weakly in } \mathbf{L}^2(\Omega_0, \mathbb{R}^9_{sym}).$$
 (27)

Lemma 2. Under the hypotheses (H_1) , (H_2) , (H_3) , (H_4) and assuming that Ω satisfies (23), we have:

$$\operatorname{Rot}(\operatorname{div}\sigma_0) = 0 \quad in \quad \Omega_0,$$

where σ_0 is the element of $L^2(\Omega_0, \mathbb{R}^9_{sym})$ given by (27).

Proof. Using (27) we get:

 $(\tilde{\eta}_n)^D \xrightarrow[n \to +\infty]{\sigma} \quad \text{in } \mathcal{D}'(\Omega_0),$

which implies:

$$\operatorname{div}(\tilde{\eta}_n)^D \xrightarrow[n \to +\infty]{} \operatorname{div}\sigma_0 \quad \text{in } \mathcal{D}'(\Omega_0)$$

and

$$\operatorname{Rot}(\operatorname{div}(\tilde{\eta}_n)^D) \xrightarrow[n \to +\infty]{} \operatorname{Rot}(\operatorname{div}\sigma_0) \quad \text{in } \mathcal{D}'(\Omega_0),$$
(28)

but we have:

$$\operatorname{div}(\tilde{\eta}_n)^D = \operatorname{div}\tilde{\eta}_n - \frac{1}{3}\nabla(\operatorname{tr}\tilde{\eta}_n).$$

Then according to Lemma 1.1, we obtain:

$$\operatorname{Rotdiv}(\tilde{\eta}_n)^D = -\frac{1}{3} \operatorname{rot} \nabla(\operatorname{tr} \tilde{\eta}_n) \quad \forall n \in \mathbb{N}.$$

Finally, we conclude from (28) that:

$$\operatorname{Rot}(\operatorname{div}\sigma_0) = 0$$
 in $D'(\Omega_0)$.

3.2. An existence result

Firstly, we begin by the following result:

Lemma 3. Let Ω_0 be an open convex set of \mathbb{R}^n and let $v \in (H^{-1}(\Omega_0))^3$ satisfying:

Rot
$$v = 0$$
 in Ω_0 .

Then there exists a unique $q \in L^2(\Omega_0)/\mathbb{R}$ such that:

$$\nabla q = v$$

Proof. See [5].

Remark 2. We remark that div_0 cannot always be equal to 0 and on the other hand we search a stress σ which achieves $\inf_{\eta \in V_1} F(\eta)$, so we will change the spherical component to have a stress σ satisfying $\operatorname{div}_{\sigma} = 0$. That is the purpose of the following paragraph.

Lemma 4. Under the hypotheses of Lemma 2 we have:

$$\exists \sigma \in L^2(\Omega_0, \mathbb{R}^9_{sym}) \text{ such that } \begin{cases} \operatorname{div} \sigma = 0 & \operatorname{in} \ \Omega_0 \\ \sigma^D = \sigma_0^D & \operatorname{in} \ \Omega_0 \\ \sigma = 0 & \operatorname{in} \ \Omega_0 \backslash \Omega. \end{cases}$$
(29)

Proof. Using Lemmas 2 and 3 we get: $\exists q \in L^2(\Omega_0)/\mathbb{R}$ such that :

$$\operatorname{div}\sigma_0 = -\nabla q \quad \text{in } \mathcal{D}'(\Omega_0). \tag{30}$$

And according to (24) and (27), we deduce:

$$\sigma_0 = 0 \text{ on } \Omega_0 \backslash \Omega, \tag{31}$$

then

div
$$\sigma_0 = 0$$
 on $\Omega_0 \setminus \Omega$.

645

This proves that:

$$\nabla q = 0$$
 on $\Omega_0 \setminus \Omega$.

We have, using (23), $\Omega_0 \setminus \Omega$ is connex, and then:

$$q = C_1 \text{ on } \Omega_0 \setminus \Omega \quad (C_1 \in \mathbb{R}),$$

so we can choose $C_1 = 0$.

Then, let $\sigma \in L^2(\Omega_0, \mathbb{R}^9_{sym})$ be defined by:

$$\sigma = \sigma_0 + qI; \tag{32}$$

we have

$$\sigma = 0 \text{ on } \Omega_0 \backslash \Omega. \tag{33}$$

From (30), (32) and (33) we conclude the result.

We can now prove the main theorem:

Theorem 5. Under the hypotheses $(H_1), (H_2), (H_3), (H_4)$ and assuming that Ω satisfies (23), there exists $\sigma_1 \in V_1$ such that

$$F(\sigma_1) = \inf_{\eta \in V_1} F(\eta),$$

so the infimum of F is achieved on V_1 .

Proof. Let $(\eta_n)_{n \in \mathbb{N}}$ be a minimizing sequence of F on V_1 , σ_0 given in the Remark 1. Let $\sigma_1 = \sigma/\Omega$ where σ is given by (29); we have:

$$\sigma_1 \in (L^2(\Omega))_s^9,\tag{34}$$

and:

$$\operatorname{div} \sigma_1 = (\operatorname{div} \sigma) / \Omega = 0 \quad \text{in} \quad \Omega.$$

So,

$$\operatorname{div}\sigma_1 = 0 \quad \text{in} \quad \Omega. \tag{35}$$

Let us prove that $\sigma_1 \cdot n = 0$ in Γ_1 , it is equivalent to prove:

$$\int_{\Gamma_1} (\sigma_1 \cdot n) \phi d\Gamma = 0 \ \forall \phi \in W^{1,2}(\Omega) \text{ be such that } \phi/(\partial \Omega \setminus \Gamma_1) = 0.$$
(36)

Then let $\phi_1 \in W^{1,2}(\Omega_0 \setminus \Omega)$ be such that $\phi_1/\Gamma_1 = \phi/\Gamma_1$, and let $\tilde{\phi}$ be defined by:

$$\tilde{\phi} = \begin{cases} \phi & \text{in } \Omega \\ \phi_1 & \text{in } \Omega_0 \backslash \Omega. \end{cases}$$

We have, due to the trace theorem for $\tilde{\phi}$ on the two sides of $\Gamma_1 = \partial \Omega \cap (\partial(\Omega_0 \setminus \Omega))$:

$$\tilde{\phi} \in W^{1,2}(\Omega_0).$$

On the other hand, we have:

$$\int_{\Omega_0} \sigma.\varepsilon(\tilde{\phi}) \mathrm{d}x = \int_{\Omega} \sigma.\varepsilon(\phi) \mathrm{d}x + \int_{\Omega_0 \setminus \Omega} \sigma.\varepsilon(\tilde{\phi}) \mathrm{d}x,$$

which implies, according to (33):

$$\int_{\Omega_0} \sigma \cdot \varepsilon(\tilde{\phi}) dx = \int_{\Omega} \sigma \cdot \varepsilon(\phi) dx$$
$$= -\int_{\Omega} (\operatorname{div} \sigma) \cdot \phi dx + \int_{\partial \Omega} (\sigma_1 \cdot n) \phi d\Gamma$$

Using div $\sigma = 0$ in Ω_0 , we obtain:

$$\int_{\Omega_0} \sigma \varepsilon(\tilde{\phi}) \mathrm{d}x = \int_{\partial\Omega} (\sigma_1 \cdot n) \phi \mathrm{d}\Gamma$$

This means according to (36) that:

$$\int_{\Omega_0} \sigma \varepsilon(\tilde{\phi}) \mathrm{d}x = \int_{\Gamma_1} (\sigma_1 . n) \phi \mathrm{d}\Gamma.$$
(37)

We have on the other hand:

$$\int_{\Omega_0} \sigma \varepsilon(\tilde{\phi}) \mathrm{d}x = \int_{\Omega_0} (\mathrm{div}\sigma) \cdot \tilde{\phi} \mathrm{d}x + \int_{\partial \Omega_0} (\sigma \cdot n) \tilde{\phi} \mathrm{d}\Gamma.$$

So, using properties (29) and (36), we deduce that:

$$\int_{\Omega_0} \sigma.\varepsilon(\tilde{\phi}) \mathrm{d}x = 0. \tag{38}$$

From (37) and (38), we conclude that:

$$\int_{\Gamma_1} (\sigma_1 . n) \phi d\Gamma = 0 \ \forall \phi \in W^{1,2}(\Omega) \text{ such that } \phi / (\partial \Omega \backslash \Gamma_1) = 0.$$

This proves that:

$$\sigma_1 \cdot n = 0 \quad \text{on } \Gamma_1. \tag{39}$$

We conclude from (34), (35) and (39) that:

$$\sigma_1 \in V_1. \tag{40}$$

Using Proposition 2 and $(\eta_n{}^D)_n$ converge to $\sigma_0{}^D$ weakly in $L^2(\Omega, \mathbb{R}^9{}_{sym})$, we have:

 $F(\sigma_1) \leq \underline{\lim} F(\eta_n^D),$

or also:

 $F(\sigma_1) \le \inf_{\eta \in V_1} F(\eta).$

We finally conclude from (40):

$$F(\sigma_1) = \inf_{\eta \in V_1} F(\eta).$$

Corollary 2. Under the hypotheses of Theorem 5 we have:

If Rotf $\neq 0$ in Ω or (22) is satisfied by g

then

$$\exists \sigma_1 \in V_1 \text{ such that: } \bar{\lambda} = \frac{1}{\inf_{\eta \in V_1} F(\eta)} = \frac{1}{F(\sigma_1)}.$$

Proof. The result is deduced from Theorems 4 and 5.

References

[1] R. Adams, Sobolev Spaces. Academic Press, New York (1975).

[2] H. Brezis, Analyse Fonctionnelle. Masson, Paris (1983).

- [3] P.G. Ciarlet, Lectures on the three-dimensional elasticity. Tata Institute of Fundamental Research, Bombay (1983).
- [4] H. El-Fekih and T. Hadhri, Calcul des charges limites d'une structure élastoplastique en contraintes planes. RAIRO: Modél. Math. Anal. Numér. 29 (1995) 391-419.
- [5] R. Temam, Mathematical Problems in Plasticity. Bordas, Paris (1985).

To access this journal online: www.edpsciences.org