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Abstract. We study the theoretical and numerical coupling of two hyperbolic systems of conservation
laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense
the continuity of the solution at the interface without imposing the overall conservativity of the coupled
model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we
either use a linearized approach or a coupling method based on the solution of a Riemann problem.
We discuss both approaches in the case of the coupling of two fluid models at a material contact
discontinuity, the models being the usual gas dynamics equations with different equations of state.
We also study the coupling of two-temperature plasma fluid models and illustrate the approach by
numerical simulations.
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1. Introduction

In the modeling of complex problems, different mathematical models are frequently used in different regions
of interest. On the one hand, one can assume that some physical effects are negligible in some domains, which
amounts to drop the corresponding terms in the equations of the complete model. For instance, when “small”
relaxation times occur, one can often replace the model by its relaxation approximation where some equilibrium
is assumed. On the other hand, one can suppose that the phenomenon is fully three-dimensional in some domains
and only one or two-dimensional in other ones. Mathematically, this leads to couple different (nonlinear) systems
of partial differential equations of different sizes at various artificial boundaries. The study of such coupling
is of rapidly increasing importance in engineering problems where one wants to take into account the physical
complexity of a phenomenon but at a reasonable computing cost. However, the mathematical and numerical
analyses of this coupling lead to nonconventional and highly challenging problems which have been very little
investigated.

The purpose of this series of papers is to contribute to the study of the coupling of nonlinear hyperbolic
systems from both mathematical and numerical points of view. The coupling condition (Condition (2.6))
results by expressing that two boundary value problems should be well-posed, which resumes to impose as far
as possible the continuity of the solution at the interface. In a first paper [17], we have considered the scalar case
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where we couple two different one-dimensional conservation laws at a fixed interface. In this paper, we begin the
study of the coupling of systems. Although we restrict ourselves to the one-dimensional case and to systems of
the same size, the situation is still far more complicated than in the scalar case. As expected, we are able to give
a detailed analysis of the coupling only in the linear case. In the nonlinear case, one can either use a linearized
approach which gives a heuristic answer or a coupling method based on the solution of a Riemann problem. We
will discuss both approaches in the case of the coupling of two fluid models at a material contact discontinuity,
the models being the usual gas dynamics equations in Lagrangian coordinates, with different equations of state
(the numerical approach of this problem is considered in [18], and in [1, 11] for Eulerian coordinates). We
will also study the coupling of two-temperature fluid models for a quasi-neutral ionized plasma with different
current densities but the same equation of state (see [26] for a detailed discussion of these models and their
coupling in the context of a physical application). Though in this 4-equation system, the flux function of only
one equation changes when crossing the interface, the coupling already presents significative difficulties, such as
the non uniqueness for the coupled problem and the possible occurrence of resonance.

The plan of the paper is as follows. In Section 2, we introduce the coupling problem at an interface of two
nonlinear systems of conservation laws and detail the coupling constraint. We also introduce the associated
numerical coupling procedure. In Section 3, we consider the linear case with constant coefficients and study
the well-posedness of the coupled Cauchy problem. Indeed, depending on the number of entering or outgoing
characteristic lines on each side of the interface, this problem may be ill-posed in the sense that it possesses
a continuum of solutions. In Section 4, we apply the previous results to the linearized Euler system of gas
dynamics. In Section 5, we study the coupling of various standard fluid models at a material contact discontinuity
whose position is kept fixed when working in Lagrangian coordinates. The next sections are devoted to the
coupling of plasma models. In Section 6, we introduce the two-temperature plasma model where the current
density plays the role of a parameter and we solve the associated Riemann problem. In Section 7, we consider
the coupling of two plasma models corresponding to different densities. We prove that, in physically relevant
situations, the coupled Riemann problem admits a continuum of solutions depending on a one-dimensional
parameter. In Section 8, we solve numerically this coupled Riemann problem and we check that the obtained
approximate solution depends only slightly on the chosen numerical scheme and on the CFL. We also study the
influence of initial data and of the equation of state on the numerical solution.

2. The coupling problem for systems

Let Ω ⊂ R
p be the set of states and let fα, α = L, R, be two “smooth” functions from Ω into R

p. Given a
function u0 : x ∈ R → u0(x), we want to find a function u : (x, t) ∈ R × R+ → u(x, t) ∈ Ω solution of

∂u
∂t

+
∂

∂x
fL(u) = 0, x < 0, t > 0, (2.1)

∂u
∂t

+
∂

∂x
fR(u) = 0, x > 0, t > 0, (2.2)

and satisfying the initial condition

u(x, 0) = u0(x), x ∈ R. (2.3)

At the interface x = 0, we need to supplement equations (2.1)–(2.3) with coupling conditions in order to obtain
a well-posed problem. At that stage, we have first to define what we mean by an admissible boundary condition
at x = 0 for both systems (2.1) and (2.2). In fact we will assume in all the sequel that the systems (2.1)
and (2.2) are hyperbolic, i.e. for α = L, R, the Jacobian matrix Aα(u) ≡ f ′α(u) of fα(u) is diagonizable with
real eigenvalues λα,k(u) and corresponding eigenvectors rα,k(u), 1 ≤ k ≤ p. Then we introduce the solution

w(x, t) = Wα(x/t;uL,uR)
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of the Riemann problem 




∂
∂tw + ∂

∂x fα(w) = 0, x ∈ R, t > 0,

w(x, 0) =
{

uL, x < 0,
uR, x > 0.

(2.4)

We set for all b ∈ Ω, {OL(b) = {w = WL(0−;uL,b);uL ∈ Ω}
OR(b) = {w = WR(0+;b,uR);uR ∈ Ω} (2.5)

and following [10, 17], we define conditions of the form

u(0−, t) ∈ OL(b(t)), t > 0,

and
u(0+, t) ∈ OR(b(t)), t > 0,

as admissible boundary conditions for (2.1) and (2.2) respectively. Hence natural coupling conditions for prob-
lem (2.1)–(2.3) consist in requiring {

u(0−, t) ∈ OL(u(0+, t)),
u(0+, t) ∈ OR(u(0−, t)). (2.6)

Other more rigorous ways of writing boundary conditions can be found in [13,14,32], however using the formu-
lation with Riemann problems is more practical and in the first paper of this series [17] devoted to the scalar
case, we have shown that this was indeed a “reasonable” way of coupling two hyperbolic equations.

Remark 1. Note that the coupling conditions (2.6) do not imply the continuity of the flux at the interface: we
have in general

fL(u(0−, t)) �= fR(u(0+, t))
so that our coupling method is not conservative. However, there exist other approaches which are conservative.
For instance we might want to write (2.1)(2.2) in the form of the single system

∂u
∂t

+
∂

∂x
f(u, x) = 0, x ∈ R, t > 0,

with a flux function depending discontinuously on x,

f(u, x) =
{

fL(u), x < 0,
fR(u), x > 0.

Such systems are studied for instance by Lyons [27], Klausen and Risebro [23], Towers [22, 33], Adimurthi and
Veerappa Gowda [2], Bale et al. [4], Seguin and Vovelle [31], Mishra [28] in the context of flow in porous
media with discontinuous permeability, gravitational waves (sedimentation) or traffic flow (more references can
be found in these papers). Since they are in conservative form, the Rankine-Hugoniot jump condition gives at
x = 0 the continuity of the flux as interface condition

fR(u(0+, t)) = fL(u)(0−, t)) (2.7)

in place of (2.6). Coming back to the nonconservative approach, we have

∂u
∂t

+
∂

∂x
f(u, x) = M, x ∈ R, t > 0,

where M is a Dirac measure concentrated on x = 0, with weight fR(u(0+, t))− fL(u(0−, t)). Conservation laws
with such Dirac source terms are considered in [9, 19].
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Remark 2. Another way of satisfying the flux coupling condition (2.7) consists in writing (2.1) (2.2) in the
form of an augmented system {

∂u
∂t + ∂

∂x f(u, a) = 0,

∂a
∂t = 0,

x ∈ R, t > 0,

with a Riemann datum for a

a(x, 0) =
{

aL, x < 0,
aR, x > 0,

so that a(x, t) = a(x, 0) is also piecewise constant, and a flux function f(u, a) such that

f(u, aL) = fL(u), f(u, aR) = fR(u).

Observe that the above system may be resonant at states (u∗, a∗) such that the (partial) Jacobian matrix
Duf(u∗, a∗) has a zero eigenvalue. Such problems have been studied by Isaacson and Temple [21].

Another type of augmented system is proposed in [18] in the case of material interfaces: they set
f(u, a) = (1 − a)fL(u) + afR(u) but the switching parameter a satisfies at + k(a)x = 0 for some concave
function k such that k(0) = k(1) = 0, so that the corresponding shock waves between 0 and 1 are stationary.

In these conservative approaches, one is faced in general with the non uniqueness of the solution for the
Cauchy problem and thus of selecting an “admissible” solution; various selection criteria are proposed in the
above references. Note that in the scalar case and for the first conservative approach, entropy conditions and
uniqueness results have been recently proved by Audusse and Perthame [3].

In our coupled method, the problem of non uniqueness also arises; we have already met it in the scalar case
(see [17]) when the signs of f ′

L and f ′
R change when crossing the interface, we may have an infinite number of

solutions. We will meet it again in the next sections. However, we have not yet found out a satisfying criterium
for selecting an “admissible” solution. On the other hand, resonance may be avoided at least in some cases as
we will notice it in Section 7.

Let us turn to the numerical approximation of problem (2.1)–(2.3) and (2.6). We introduce a uniform mesh
space ∆x and a time step ∆t and we set

µ =
∆t

∆x
, xj+1/2 =

(

j +
1
2

)

∆x, j ∈ Z, tn = n ∆t, n ∈ N.

Then, for α = L, R, we are given a numerical flux function gα : Ω2 → R
p consistent with the flux function fα

and we consider the three-point numerical schemes
{

un+1
j−1/2 = un

j−1/2 − µ
(
gn

L,j − gn
L,j−1

)
, j ≤ 0,

un+1
j+1/2 = un

j+1/2 − µ
(
gn

R,j+1 − gn
R,j

)
, j ≥ 0,

(2.8)

where
gn

α,j = gα

(
un

j−1/2,u
n
j+1/2

)
, α = L, R,

and u0
j+1/2 is an approximation of “u0(xj+1/2)”, for instance

u0
j+1/2 =

1
∆x

∫ xj+1

xj

u0(x)dx, j ∈ Z. (2.9)

The coupling of the difference schemes (2.8) is performed through the evaluation of gn
α,0 = gα(un

−1/2,u
n
1/2),

α = L, R. We have proven in the scalar case that in a number of significant situations, the coupled numerical
scheme “converges” to a solution of the coupled problem satisfying condition (2.6) (we refer to [17] for details).

Since in general gn
L,0 �= gn

R,0, the overall numerical scheme (2.8) is not conservative. However we can “enforce”
the conservativity as explained in Remark 4.
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Remark 3. In order to obtain rather general theoretical results, we have made the implicit assumption that
both numerical fluxes can be defined at the interface i.e., gn

α,0 = gα(un
−1/2,u

n
1/2), α = L, R make sense. However,

there are situations where these formulae cannot be used. An example is given by [5] with a gas-liquid (air-
water) compressible flow model, using a stiffened equation of state, which allows the pressure in the water to be
negative (this is the cavitation phenomena). Though the boundary value problems are well-posed, a numerical
problem arises if the values of the pressure on each side of the interface are not in agreement (negative in the
liquid, positive in the gas). The numerical method must then be adapted.

Remark 4. Note that the coupled problem (2.1)–(2.3), (2.6) is not in conservation form since, at x = 0, the
fluxes fL(u(0−, t)) and fR(u(0+, t)) differ in general. In fact we can enforce conservativity (which is indeed
required in some physical problems) in the following way. Since the flux functions fα are defined up to an
additive function of time, letting for instance fL remain fixed, we replace in (2.2) fR by

f̃R(t,u) = fR(u) − ϕ(t),

where the function ϕ is determined in such a way that

f̃R(t,u(0+, t)) = fL(u(0−, t)),

i.e.,
ϕ(t) = fR(t,u(0+, t)) − fL(u(0−, t)).

At the numerical level, we obtain a conservative scheme by replacing in (2.8) gn
R,j , j ≥ 0, by

g̃n
R,j = gn

R,j − ϕn, ϕn = gn
R,0 − gn

L,0.

Observe that this does not change the numerical method except at infinity, or in practice at the artificial right
boundary, where the numerical flux is modified as above. However this modification is somewhat arbitrary and
should not be used in any context.

3. The case of linear systems with constant coefficients

We analyze in this section the simplest possible case where

fα(u) = Aαu, α = L, R, (3.1)

where AL and AR are constant p× p matrices. As a preliminary step, we recall some standard results (cf. [16]
for instance) concerning the initial boundary-value problem






∂u
∂t + A∂u

∂x = 0, x > 0, t > 0,

u(x, 0) = u0(x), x > 0,

u(0+, t) ∈ OR(b(t)), t > 0,

(3.2)

where for all b ∈ R
p

OR(b) = {w = W(0+;b,v);v ∈ R
p}.

We suppose that the eigenvalues λk of the matrix A are real, distinct and ordered as

λ1 < λ2 < · · · < λq ≤ 0 < λq+1 < · · · < λp.

We denote by rk and �k the corresponding right and left eigenvectors associated with the eigenvalue λk and,
throughout this section, we assume the normalization

�T
j · rk = δjk, 1 ≤ j, k ≤ p. (3.3)
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Lemma 1. We have for any b ∈ R
p

OR(b) =

{

b +
q∑

k=1

αkrk; αk ∈ R, 1 ≤ k ≤ q

}

.

Hence the boundary condition of (3.2) at x = 0 reads

u(0+, t) − b(t) ∈ [r1, . . . , rq],

or equivalently
�T
j · u(0+, t) = �T

j · b(t), q + 1 ≤ j ≤ p.

Then one can solve trivially problem (3.2).

Lemma 2. The solution u of (3.2) is given by

u(x, t) =
p∑

k=1

αk(x, t)rk, αk(x, t) = �T
k · u(x, t),

where

αk(x, t) =






�T
k · u0(x − λkt), 1 ≤ k ≤ q,
{

�T
k · b(t − x/λk), x < λkt,

�T
k · u0(x − λkt), x > λkt,

q + 1 ≤ k ≤ p.

We obtain in particular

�T
k · u(0+, t) =

{
�T
k · u0(−λkt), 1 ≤ k ≤ q,

�T
k · b(t), q + 1 ≤ k ≤ p.

(3.4)

If λq = 0, �T
q · u0(−λqt) = �T

q · u0(0) should be replaced by �T
k · u0(0+). We will omit this kind of correction in

the sequel.
Consider on the other hand the initial boundary value problem






∂u
∂t + A∂u

∂x = 0, x < 0, t > 0,

u(x, 0) = u0(x), x < 0,

u(0−, t) ∈ OR(b(t)), t > 0,

(3.5)

where
OL(b) = {w = W(0−;v,b);v ∈ R

p}.
Here, we suppose that the eigenvalues λk of A are ordered as

λ1 < λ2 < · · · < λq < 0 ≤ λq+1 < · · · < λp.

Then we have

�T
k · u(0−, t) =

{
�T
k · b(t), 1 ≤ k ≤ q,

�T
k · u0(−λkt), q + 1 ≤ k ≤ p.

(3.6)

Now we pass to the coupled problem (2.1)–(2.3), (2.6) where the flux functions are given by (3.1). We suppose
that the eigenvalues λL,k of the matrix AL verify

λL,1 < λL,2 < · · · < λL,qL < 0 ≤ λL,qL+1 < · · · < λL,p, (3.7)
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while the eigenvalues λR,k of the matrix AR verify

λR,1 < λR,2 < · · · < λR,qR ≤ 0 < λR,qR+1 < · · · < λR,p. (3.8)

Then we obtain from (3.4) and (3.6) that any solution of the coupled problem satisfies

�T
L,k · u(0−, t) =

{
�T
L,k · u(0+, t), 1 ≤ k ≤ qL,

�T
L,k · u0(−λL,kt), qL + 1 ≤ k ≤ p,

(3.9)

and

�T
R,k · u(0+, t) =

{
�T
R,k · u0(−λR,kt), 1 ≤ k ≤ qR,

�T
R,k · u(0−, t), qR + 1 ≤ k ≤ p.

(3.10)

This gives a system of 2p linear equations in the 2p unknown components of u(0±, t). Conversely, with any
solution u(0±, t) of (3.9), (3.10), one can associate in a unique way a solution u of the coupled problem. Indeed
the boundary values

�T
L,k · u(0−, t), 1 ≤ k ≤ qL, �T

R,k · u(0+, t), qR + 1 ≤ k ≤ p,

together with the initial data u0 allow us to solve separately the initial boundary value problems for x < 0 and
x > 0 and therefore the coupled problem. Thus, we have proved

Lemma 3. In the linear case (3.1), the coupled problem (2.1)–(2.3), (2.6) has a unique solution if and only if
the system (3.9), (3.10) has a unique solution.

Observe that the jump
v(t) = u(0+, t) − u(0−, t) (3.11)

is solution of the p + qL − qR homogeneous equations

{
�T
L,k · v(t) = 0, 1 ≤ k ≤ qL,

�T
R,k · v(t) = 0, qR + 1 ≤ k ≤ p.

(3.12)

We begin by considering the simplest case qL = qR.

Theorem 1. Assume
qL = qR = q. (3.13)

In the linear case (3.1), the coupled problem (2.1)–(2.3), (2.6) has a unique solution if and only if {�L,1, . . . �L,q,
�R,q+1, . . . �R,p} and {�R,1, . . . �R,q, �L,q+1, . . . �L,p} are two bases of R

p. The coupling conditions (3.12) then read

u(0+, t) = u(0−, t). (3.14)

Proof. If {�L,1, . . . �L,q, �R,q+1, . . . �R,p} is a basis of R
p, (3.12) and (3.14) are equivalent. If, in addition,

{�R,1, . . . �R,q, �L,q+1, . . . �L,p} is a basis of R
p, the equations

{
�T
R,k · u(0, t) = �T

R,k · u0(−λR,kt), 1 ≤ k ≤ q,

�T
L,k · u(0, t) = �T

L,k · u0(−λL,kt), q + 1 ≤ k ≤ p,
(3.15)

determine u(0, t) in a unique way. Conversely, if the vectors �L,1, . . . �L,q, �R,q+1, . . . �R,p are linearly dependent,
system (3.12) has nontrivial solutions and and equations. (3.9), (3.10) have not a unique solution. Similarly, if
�R,1, . . . �R,q, �L,q+1, . . . �L,p are linearly dependent vectors, (3.15) is not a well-posed system. �
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We next pass to the general case qL �= qR. Choosing v(t) and u(0−, t) as unknowns, equations (3.9),(3.10)
are equivalent to (3.12) and

{
�T
L,k · u(0−, t) = �T

L,k · u0(−λL,kt), qL + 1 ≤ k ≤ p,

�T
R,k · u(0−, t) + �T

R,k · v(t) = �T
R,k · u0(−λR,kt), 1 ≤ k ≤ qR.

(3.16)

We first study the case qR > qL. We set

q = qR = qL + m, m ≥ 1. (3.17)

Lemma 4. Assume (3.17). Then a necessary condition for the system (3.9), (3.10) to have a unique solution
is that the p − m vectors �L,1, . . . �L,q−m, �R,q+1, . . . �R,p are linearly independent.

Proof. With condition (3.17), we have �L,q−m = �L,qL and �R,q+1 = �R,qR+1. If the vectors �L,1, . . . , �L,qL ,
�R,qR+1, . . . �R,p are linearly dependent, the 2p × 2p linear system (3.12), (3.16) is clearly undetermined, which
proves our assertion. �

Let us introduce the space
E = [rR,1, . . . rR,q] ∩ [rL,q−m+1, . . . , rL,p]. (3.18)

We observe that on the one hand

v(t) ∈ E ⇐⇒ v(t) satisfies equations (3.12),

and on the other hand the vectors �L,1, . . . �L,q−m, �R,q+1, . . . �R,p are linearly independent if and only

dim E = m. (3.19)

Assuming the condition (3.19), it remains to give simple algebraic criteria which ensure that the system (3.9),
(3.10) (or (3.12), (3.16)) has a unique solution.

Let us first examine two trivial situations.

Example 3.1. qR = p. We have in this case

E = [rL,p−m+1, . . . , rL,p], dim E = m,

and the coupled problem has a unique solution (3.9). Indeed (3.10) gives

u(0+, t) =
p∑

k=1

�T
R,k · u0(−λR,kt)rR,k,

and (3.9) determines u(0−, t).

Example 3.2. qL = 0. This is the symmetric case of that of the previous example. We have here

E = [rR,1, . . . , rR,m], dim E = m.

Again the coupled problem has a unique solution, (3.9) determines u(0−, t) and then (3.10) gives u(0+, t).

Example 3.1 (resp. Ex. 3.2) corresponds to the case where the problem
{

∂u
∂t + AR

∂u
∂x = 0, x > 0, t > 0,

u(x, 0) = u0(x), x > 0,
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(resp. the problem {
∂u
∂t + AL

∂u
∂x = 0, x < 0, t > 0,

u(x, 0) = u0(x), x < 0,
)

is well posed since all the characteristics are outgoing at the boundary. Coupling the two problems is then
obvious!

Let us go back to the general situation (3.17) with the assumption (3.19). In addition, we make the following
assumption

the p vectors �R,1, . . . �R,q−m, �L,q−m+1, . . . �L,p are linearly independent. (3.20)
Then we may write

�L,k =
q−m∑

j=1

βj,k�R,j +
p∑

j=q−m+1

βj,k�L,j, 1 ≤ k ≤ q − m. (3.21)

Lemma 5. Assume (3.20). Then the (q − m) × (q − m) matrix (βi,j)1≤i,j≤q−m is invertible and its inverse
matrix (αi,j)1≤i,j≤q−m is given by

αi,j = �T
R,j · rL,i.

Proof. Using (3.21), we have

�T
R,j · rL,i =

q−m∑

j=1

βj,k�T
R,j · rL,i +

p∑

j=q−m+1

βj,k�T
L,j · rL,i,

and by (3.3)

δi,k =
q−m∑

j=1

βj,k�T
R,j · rL,i,

which proves the result. �

We next introduce the subspace

F =
{

� ∈ [�R,1, . . . , �R,q]; �T · rL,i = 0, 1 ≤ i ≤ q − m
}
. (3.22)

Lemma 6. Assume the hypothesis (3.20). Then dimF = m and F is spanned by the vectors

�i = �R,i −
q−m∑

j,k=1

βj,k(�T
R,i · rL,k) �R,j , q − m + 1 ≤ i ≤ q. (3.23)

Proof. Let

� =
q∑

j=1

γj�R,j ∈ F,

we have
q−m∑

j=1

γj�
T
R,j · rL,i = −

q∑

j=q−m+1

γj�
T
R,j · rL,i, 1 ≤ i ≤ q − m,

and by Lemma 5,

γj = −
q−m∑

k=1

βj,k

q∑

s=q−m+1

γs�
T
R,s · rL,k, 1 ≤ j ≤ q − m.

The result follows by choosing γs = δi,s, q − m + 1 ≤ i, s ≤ q. �
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Let E◦ denote the orthogonal of E in R
p. We are now able to state

Theorem 2. Assume the hypotheses (3.17) and (3.19) together with (3.1). Then under the condition (3.20),
the coupled problem (2.1)–(2.3), (2.6) has a unique solution if and only if the subspaces E and F satisfy
E◦ ∩ F = {0}.
Proof. Let us derive an equation for v(t) ∈ E. Using (3.16) for qL + 1 = q − m + 1 ≤ k ≤ p, we write

u(0−, t) =
p∑

k=1

�T
L,k · u(0−, t)rL,k

=
q−m∑

k=1

�T
L,k · u(0−, t)rL,k +

p∑

k=q−m+1

�T
L,k · u0(−λL,kt)rL,k.

On the other hand, using (3.21) we have

q−m∑

k=1

�T
L,k · u(0−, t)rL,k =

q−m∑

j,k=1

βj,k�T
R,j · u(0−, t)rL,k +

q−m∑

k=1

p∑

j=q−m+1

βj,k�T
L,j · u(0−, t)rL,k,

and by using again (3.16)

q−m∑

k=1

�T
L,k · u(0−, t)rL,k =

q−m∑

j,k=1

βj,k�T
R,j · u0(−λR,jt)rL,k

−
q−m∑

j,k=1

βj,k�T
R,j · v(t)rL,k +

q−m∑

k=1

p∑

j=q−m+1

βj,k�T
L,j · u0(−λL,jt)rL,k.

Thus we obtain

u(0−, t) = −
q−m∑

j,k=1

βj,k�T
R,j · v(t)rL,k +

q−m∑

k=1






q−m∑

j=1

βj,k�T
R,j · u0(−λR,jt) +

p∑

j=q−m+1

βj,k�T
L,j · u0(−λL,jt)





rL,k

+
p∑

j=q−m+1

�T
L,k · u0(−λL,kt)rL,k.

At that stage, we remark that we have not yet used in (3.16) the equations corresponding to
qL + 1 = q − m + 1 ≤ k ≤ q = qR. By replacing u(0−, t) by the above expression in these equations,
we find

�T
R,i · v(t) −

q−m∑

j,k=1

βj,k(�T
R,i · rL,k)�T

R,j · v(t) = −
q−m∑

k=1

{
q−m∑

j=1

βj,k�T
R,j · u0(−λR,kt)

+
p∑

j=q−m+1

βj,k�T
L,j · u0(−λL,jt)

}

�T
R,irL,k

+�T
R,i · u0(−λR,it)

−
p∑

k=q−m+1

�T
L,k · u0(−λL,kt)�T

R,i · rL,k, q − m + 1 ≤ i ≤ q.
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In other words, we obtain

�T
i · v(t) = known right-hand side, q − m + 1 ≤ i ≤ q,

where the �i’s are defined as in (3.23). It follows from Lemma 6 that this system of m equations has a unique
solution v(t) ∈ E if and only if E and F satisfy the condition of nonorthogonality E◦ ∩ F = {0} where E◦

denotes the orthogonal of E in R
p. Once v(t) is known, we get u(0, t) trivially. �

A simple sufficient condition is rR,i = rL,i, i = q − m + 1, . . . q and �R,i = �L,i, i = q − m + 1, . . . q
since E = [rR,q−m+1, . . . rR,q] = [rL,q−m+1, . . . rL,q], F = [�R,q−m+1, . . . �R,q] = [�L,q−m+1, . . . �L,q], and
E◦ = [�R,1, . . . �R,q−m, �R,q+1, . . . �R,p] = [�L,1, . . . �L,q−m, �L,q+1, . . . �L,p] so that E◦ ∩ F = {0}.

We will see in next section an illustration of a more complex situation with q = qR = qL + 1 = 2,
dimE = m = 1 but rR,2 and rL,2 do not coincide.

It remains to consider the case

qL > qR. (3.24)

Then the solution of the coupled problem is not unique in general. Let us make the following natural assumptions

the p + qL − qR vectors �L,1, . . . , �L,qL , �R,qR+1, . . . , �R,p span R
p, (3.25)

{
the p − (qL − qR) vectors �R,1, . . . , �R,qR , �L,qL+1, . . . , �L,p are
linearly independent. (3.26)

We choose qL−qR vectors �qR+1, . . . , �qL in such a way that the p vectors �R,1, . . . , �R,qR , �qR+1, . . . , �qL , �L,qL+1,
. . . , �L,p form a basis of R

p.

Theorem 3. Assume (3.1), (3.24) and the hypotheses (3.25) and (3.26). Then the solutions of the coupled
problem (2.1)–(2.3), (2.6) form an affine variety of dimension qL−qR. Any solution u satisfies (3.14). Moreover
such a solution is uniquely determined if, in addition, we prescribe the values of

�T
k · u(0, t), qR + 1 ≤ k ≤ qL,

at the interface x = 0.

Proof. Under the hypothesis (3.25), equations (3.12) yield

v(t) = 0,

so that (3.14) holds and (3.16) becomes

{
�T
L,k · u(0, t) = �T

L,k · u0(−λL,kt), qL + 1 ≤ k ≤ p,

�T
R,k · u(0, t) + �T

R,k · v(t) = �T
R,k · u0(−λR,kt), 1 ≤ k ≤ qR.

Together with prescribed values of �T
k ·u(0, t), qR + 1 ≤ k ≤ qL, this determines u(0, t) in a unique way as soon

as (3.26) holds. �
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4. Application to the linearized system of gas dynamics in Lagrangian

coordinates

Consider the system of gas dynamics in Lagrangian coordinates

∂u
∂t

+
∂

∂x
f(u) = 0, (4.1)

where
u = (τ, v, e)T , f(u) = (−v, p, pv)T . (4.2)

In (4.1), x stands for a mass variable while in (4.2), τ denotes the specific volume, v the velocity, e = ε+ 1
2v2 the

specific total energy, ε the specific internal energy, and p = p(τ, ε). In Sections 4 and 5, we study the coupling of
two such systems at a contact discontinuity located at x = 0 and separating two fluids with different equations
of state p = pα(τ, ε), α = L, R. We denote by fα(u), α = L, R, the corresponding flux functions.

Let uL and uR be two constant states separated by such a contact discontinuity, i.e., we have continuity of
the 2-Riemann invariants {

vL = vR,
pL(τL, εL) = pR(τR, εR). (4.3)

In this section, we consider the coupling problem for the gas dynamics system linearized at the states uL and
uR respectively and we show that it is indeed well-posed. The situation is that of Section 3 with

Aα = Aα(uα), α = L, R,

where A(u) is the Jacobian matrix of f(u)



0 −1 0
pτ −vpε pε

vpτ p − v2pε vpε



 ,

with the notations
pε =

∂p

∂ε
(τ, ε), pτ =

∂p

∂τ
(τ, ε).

Here p = 3 and
λ1 = −C < λ2 = 0 < λ3 = C,

where
C =

√−pτ + ppε

denotes the Lagrangian sound speed. Recall that the right eigenvectors of A(u) can be chosen as

r1 =




−1
−C

p − Cv



 , r2 =




pε

0
−pτ



 , r3 =




−1
C

p + Cv



 , (4.4)

while the left eigenvectors are given by

�1 =
1

2C2




pτ

−C − vpε

pε



 , �2 =
1

C2




p
−v
1



 , �3 =
1

2C2




pτ

C − vpε

pε



 .

In this case, we have qL = 1 and qR = q = 2. We are therefore in the situation (3.17) with m = 1. Let us check
that the dimension of the subspace

E = [rR,1, rR,2] ∩ [rL,2, rL,3]
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is equal to 1. Let r ∈ E; we write

r = β1rR,1 + β2rR,2 = γ2rL,2 + γ3rL,3. (4.5)

The quadruple (β1, β2, γ1, γ2) is solution of the system of equations





−β1 + β2(pε)R = γ2(pε)L − γ3,
−CRβ1 = CLγ3,
(p − CRv)β1 − β2(pτ )R = −γ2(pτ )L + (p + CLv)γ3.

Multiplying the first equation by p and adding it to the third equation, we obtain

−CRvβ1 + C2
Rβ2 = C2

Lγ2 + CLvγ3,

and by the second equation
C2

Rβ2 = C2
Lγ2.

Then, choosing β2 as a parameter, we find that the pair (β1, γ3) is the unique solution of the system

{
β1 − γ3 =

(
(pε)R − C2

R

C2
L
(pε)L

)
β2,

CRβ1 + CLγ3 = 0,

which proves that dimE = 1.
Next, a simple calculation gives

det(�R,1, �L,2, �L,3) =
1

4CRC3
L

(CR + CL) > 0,

so that assumption (3.20) holds. Then, by Lemma 6, the subspace

F =
{
� ∈ [�R,1, �R,2]; �T .rL,1 = 0

}

is one-dimensional. Since
�T
R,2.rL,1 = 0,

we find that F is spanned by �R,2. Moreover, if r belongs to E, i.e., is of the form (4.5), we have

�T
R,2.r = β2,

which proves that E and F are not orthogonal. The well-posedness of the corresponding coupled problem then
follows from Theorem 2. We have thus proved that imposing the continuity of the pressure and velocity at the
material interface leads to two well-posed linearized boundary value problems.

Remark 5. Note that �L,2 is parallel to �R,2 which implies that

[rL,1, rL,3] = [rR,1, rR,3],

but rL,2 and rR,2 do not coincide.
For instance for two ideal gases p = (γ − 1)ε/τ with γ = γL or γR, so that ∂p

∂τ = −p/τ, ∂p
∂ε = p/ε, we get

r2 =
p

ε




1
0

−p/(γ − 1)



 ,
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which obviously depends on γ. However the intersection E of the planes [rR,1, rR,2] and [rL,2, rL,3] is indeed a
line, since if it were a plane, it would contain rR,1, rR,2, rL,2, rL,3 and thus the whole space.

5. The coupling of fluid models at a material contact discontinuity

We pass to the coupling of nonlinear hyperbolic systems. We consider in this section the coupling of two
gas dynamics systems at a contact discontinuity. Again, we use Lagrangian coordinates so that the contact
discontinuity is fixed and located at x = 0. We begin by considering the problem (2.1)–(2.3), (2.6) where

u = (τ, v, e)T , fα(u) = (−v, p, pv)T , p = pα(τ, ε), α = L, R. (5.1)

Given a left state uL, we denote by S1
R(uL) the 1−wave curve consisting of states u which can be connected to

uL on the right by either a 1−shock or a 1−rarefaction wave corresponding to the equation of state p = pR(τ, ε).
Similarly, given a right state uR, we denote by S3

L(uR), the 3-wave curve consisting of states u which can be
connected to uR on the left by a 3−shock or a 3−rarefaction wave corresponding to the equation of state
p = pL(τ, ε). We denote by S1

R(uL) and S3
L(uR) the projections onto the (v, p)-plane of the wave curves S1

R(uL)
and S3

L(uR) respectively. We then make the following hypothesis which is indeed satisfied for “standard”
equations of state

{
for any pair of states (uL,uR), the curves

S1
R(uL) and S3

L(uR) may intersect at one point at most.
(5.2)

Lemma 7. Assume the hypothesis (5.2). Then, in the case (5.1), the coupling conditions (2.6) are equivalent to

{
v(0+, t) = v(0−, t),
p(0+, t) = p(0−, t). (5.3)

Proof. By using the structure of the solution of the Riemann problem for the gas dynamics equations, the
condition u(0−, t) ∈ OL(u(0+, t)) simply means that (v, p)(0−, t) ∈ S3

L(u(0+, t)). Similarly, the condi-
tion u(0+, t) ∈ OR(u(0−, t)) means that (v, p)(0+, t) ∈ S1

R(u(0−, t)). If (5.2) holds, then (v, p)(0+, t) and
(v, p)(0−, t) must necessarily coincide which proves the lemma. Note that the coupling conditions have been
expressed using the variables (u, p) (we refer to [6] for a more general approach). �

Remark 6. Condition (5.2) can be connected to the condition (3.19) for the linearized problem. It is convenient
here to use the set of variables

ũ = (τ, v, p)T (5.4)

and the corresponding nonconservative form of the gas dynamics equations

∂ũ
∂t

+ Ã(ũ)
∂ũ
∂x

= 0,

with

Ã(ũ) =




0 −1 0
0 0 1
0 C2 0



 .

The (right) eigenvectors r̃j = r̃j(ũ) of the matrix Ã = Ã(ũ) may be chosen as

r̃1 =




−1
−C
C2



 , r̃2 =




1
0
0



 , r̃3 =




−1
C
C2



 .
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Again, we consider two states uL and uR separated by a contact discontinuity so that (4.3) holds. We set

Ãα = Ãα(ũα), α = L, R,

and we denote by r̃α,j the (right) eigenvectors of Ãα, α = L, R,and P r̃α,j their projections onto the (v, p)-plane.
Then, at the point (vL, pL) = (vR, pR), the curves S1

R(uL) and S3
L(uR) are tangent to the vectors P r̃R,1 and

P r̃L,3 respectively. Hence the linearized analog of (5.2) reads:

the vectors P r̃R,1 and P r̃L,3 are not colinear. (5.5)

Observe that r̃L,2 = r̃R,2 = r̃2 is orthogonal to the (v, p)-plane so that the condition (5.5) amounts to suppose
that the subspace

Ẽ = [r̃R,1, r̃R,2] ∩ [r̃L,2, r̃L,3]

is spanned by the vector r̃2 or equivalently that dimẼ = 1.
Lastly, we remark that condition (5.5) is trivially satisfied.

It follows from Lemma 7 that it is equivalent to look for a solution of the coupled problem (2.1)–(2.3), (2.6)
or of the system of conservation laws {

∂u
∂t + ∂

∂x f(x,u) = 0,

u(x, 0) = u0(x)
(5.6)

where the flux function f(x,u) is defined by

f(x,u) =
{

fL(u), x < 0,
fR(u), x > 0.

(5.7)

Note that the conditions (5.3) imply that

fL(u(0−, t)) = fR(u(0+, t)),

so that x = 0 is a contact discontinuity between the two fluids.
Recall that the system (2.1), (2.2) with (4.2) and the two corresponding equations of state pL, pR, can be

put in a canonical form called the extended system of gas dynamics. Introduce a smooth function p = p(τ, ε, φ)
such that

p(τ, ε, φ) =
{

pL(τ, ε), φ = φL,
pR(τ, ε), φ = φR

(5.8)

for some values φL and φR of φ. The extended system of gas dynamics in Lagrangian coordinates may then be
written

∂U
∂t

+
∂

∂x
F(U) = 0, (5.9)

where
U = (τ, v, e, φ)T , F(U) = (−v, p, pv, 0)T . (5.10)

The function φ is called a “colour function” and can be chosen in a number of ways (see [25] for an extensive
discussion of possible color functions or [1] and the references therein). System (5.9)(5.10) is hyperbolic, with
the eigenvalues −C, 0, 0, C and eigenvectors

Ri =
(

ri

0

)

, i = 1, 2, 3,

associated to the eigenvalues −C, 0, C, where the ri are given by (4.4) and a fourth eigenvector associated
to 0 which may be taken as R2,φ = (0, 0, pφ,−pε)T . A solution of the conservative system associated to a
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discontinuous initial data across x = 0, with φ = φL, x < 0, and φ = φR, x > 0, has a contact discontinuity
satisfying [F(U)] = 0 on x = 0 so that (5.3) holds as well as (2.1), (2.2).

Hence, there are three ways of numerically solving the interface problem for the system of gas dynamics: two
classical ways are based on either the direct formulation (5.6), (5.7) or the extended formulation (5.8), (5.9),
(5.10); a nonconservative way is based on the coupled problem and uses the general numerical method (2.8)–(2.9)
of solution of coupled problems. We refer to [1] for a discussion of the corresponding methods in Eulerian
coordinates.

We can also generalize the above approach in order to couple different fluid models at a contact discontinuity.
Consider the coupling of the isentropic gas dynamics equations with the general gas dynamics equations. The
isentropic system in Lagrangian coordinates reads

{
∂τ
∂t − ∂v

∂x = 0,

∂v
∂t + ∂p

∂x = 0,

where

p = p(τ, s0)

for some fixed value s0 of the specific entropy and p = p(τ, s) is the equation of state of the fluid expressed in
terms of τ and s. An extended form of the isentropic model consists in solving






∂τ
∂t − ∂v

∂x = 0,

∂v
∂t + ∂p

∂x = 0,

∂s
∂t = 0,

(5.11)

with p = p(τ, s). We then consider the coupled problem

{
∂w
∂t + ∂

∂x fL(w) = 0, x < 0,

∂u
∂t + ∂

∂x fR(u) = 0, x > 0,
(5.12)

where

u = (τ, v, e)T , w = (τ, v, s)T

and

fL(w) = (−v, p, 0)T , fR(u) = (−v, p, pv)T ,

and the systems have now the same size. As coupling conditions, we take

{
w(0−, t) ∈ OL(w(0+, t)), w(0+, t) = w(u(0+, t)),
u(0+, t) ∈ OR(u(0−, t)), u(0−, t) = u(w(0−, t)).

Then, one can easily check that the analogue of Lemma 7 holds. Provided that the equation of state is a
“standard” one, the coupling conditions are again equivalent to (5.3).
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6. Analysis of a fluid model of plasma physics

In plasma physics, a classical two-temperature fluid model for a quasi neutral fully ionized plasma composed
of ions and electrons is provided by the system of equations






∂ρ
∂t + ∂

∂x (ρv) = 0,

∂
∂t (ρv) + ∂

∂x (ρv2) + ∂
∂x(p + pe) = 0,

∂W
∂t + ∂

∂x ((W + p)v) + v ∂pe

∂x = S,

∂We

∂t + ∂
∂x ((We + pe)ve) − ve

∂pe

∂x = Se.

(6.1)

In (6.1), ρ denotes the mass density of the ion fluid, v, p and W (resp. ve, pe and We) denote the mean velocity,
the pressure and the energy per unit volume of the ion fluid (resp. the electron fluid). The source terms S and Se

take into account effects of collision: Joule effects, relaxation of temperatures. We supplement equations (6.1)
with the following thermodynamic closure relations which correspond for the sake of simplicity to a singly
ionized monoatomic gas {

p = ρRT, W = ρ
(

3
2RT + 1

2v2
)
,

pe = ρRTe, We = ρ 3
2RTe,

(6.2)

where T (resp. Te) is the ion (electron) temperature and R is the specific gas constant.
In fact, we need an additional closure relation for obtaining a closed system of equations. We then observe

that ρ(v − ve) is proportional to the electric current density. If we specify this current density, this amounts to
set

ve = v − β

ρ
(6.3)

for some given function β = β(x, t). One often assumes that this current density is negligible so that β ≡ 0 and
one obtains the usual two-temperature model. In that case, the total energy W + We satisfies the conservation
equation

∂

∂t
(W + We) +

∂

∂x
((W + We + (p + pe)v) = S + Se,

while We is solution of
∂We

∂t
+

∂

∂x
((We + pe)v) − v

∂pe

∂x
= Se.

From physical arguments (cf. [34]) or mathematical ones (cf. [7] and the references therein), one knows that
the electron pressure pe cannot present any discontinuity so that the electron energy equation makes sense.

The situation is more complex when the current density cannot be neglected. For the sake of simplicity, we
will restrict to consider in all the sequel smooth solutions (6.1)–(6.3). More precisely, we will assume that these
solutions do not present any shock discontinuity. Then we can put system (6.1)–(6.3) in conservation form (see
[30] or [26] for details). Again for simplicity, we will suppose on the one hand that the source terms S = Se = 0
and on the other hand that β is a constant. Introducing “entropies”

s =
p

1
γ

ρ
, se =

p
1
γ
e

ρ
, (6.4)

with γ = 5
3 for a monoatomic gas, one can easily check that the system (6.1)–(6.3) may be equivalently written

in the form
∂u
∂t

+
∂

∂x
f(u) = 0, (6.5)

with {
u = (ρ, ρv, ρs, ρse)T ,
f(u) = (ρv, ρv2 + p + pe, ρsv, ρseve)T ,

(6.6)
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Figure 6.1. Case β = 0, solution of the Riemann problem.

and the closure relation (6.3).
We shall study in Section 7 the coupling of two such systems corresponding to a same γ-law (γ > 1) but to

different constant current densities, i.e., to different β′s. As a preliminary step, we solve the Riemann problem
for (6.5), (6.6) where ve is defined by (6.3) for some constant β ≥ 0. Let us first discuss the hyperbolicity
properties of system (6.5), (6.6). Choosing (ρ, v, p, pe) as independent variables, this system takes the following
nonconservative form:






∂ρ
∂t + v ∂ρ

∂x + ρ ∂v
∂x = 0,

∂v
∂t + v ∂v

∂x + 1
ρ

∂
∂x (p + pe) = 0,

∂p
∂t + v ∂p

∂x + γp ∂v
∂x = 0,

∂pe

∂t + ve
∂pe

∂x + γβpe

ρ2
∂ρ
∂x + γpe

∂v
∂x = 0.

(6.7)

The eigenvalues λ of the associated Jacobian matrix are easily seen to be equal to

λ = v, ve, v ± c, c =

√

γ(p + pe)
ρ

·

Hence the system (6.7) (or (6.5), (6.6)) is strictly hyperbolic if ve �= v, v ± c, i.e., if β �= 0, ρc. Let us check that
it is indeed hyperbolic except for β = ρc. The right eigenvectors r corresponding to the eigenvalues λ may be
chosen as






λ = v, r = (ρ, 0,−γpe, γpe)T ,

λ = ve, r =
(
ρ,−β

ρ , γp, β2

ρ − γp
)T

,

λ = v ± c, r = (ρ,±c, γp, γpe)T .

(6.8)

Thus the characteristic fields associated with λ = v and λ = ve are linearly degenerate, while those associated
with λ = v±c are genuinely nonlinear except for ve = v−c (or β = ρc). In this latter case, we obtain a resonant
state corresponding to an eigenvalue of multiplicity 2 and an eigenspace of dimension 1. Observe on the other
hand that, for β = 0, the system (6.7) is always hyperbolic.

In fact, for β = 0, the solution of the Riemann problem for (6.5), (6.6) is classical and consists of four constant
states separated by a 1−wave, a double 2, 3−contact discontinuity and a 4−wave (see Fig. 6.1).
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Let us then discuss the case β �= 0. We begin by characterizing the discontinuity waves. For a discontinuity
wave of velocity σ separating two constant states labeled 1 and 2, the Rankine-Hugoniot jump conditions read






σ[ρ] = [ρv],
σ[ρv] = [ρv2 + P ],
σ[ρs] = [ρsv],
σ[ρse] = [ρseve],

where, as usual, for a quantity φ, [φ] denotes the jump φ2 − φ1, and we have set

P = p + pe. (6.9)

Since by the first jump relation
M = ρ1(v1 − σ) = ρ2(v2 − σ)

is constant across the discontinuity, the other jump relations can be equivalently written





M = − [P ]
[v] ,

M [s] = 0,
(M − β)[se] = 0.

We distinguish the three following situations.
(i) M = 0. This is the case of a material contact discontinuity for which σ = v1 = v2. Then we have






[v] = 0,
[P ] = 0,
[se] = 0.

(6.10)

(ii) M = β. This corresponds to the case of the other contact discontinuity for which σ = ve,1 = ve,2. We
obtain 





[ve] = 0,
β[v] + [P ] = 0,
[s] = 0.

(6.11)

Setting τ = 1
ρ , the first two jump relations (6.11) can be also written

{
[v] = β[τ ],
β2[τ ] + [P ] = 0.

(6.12)

(iii) M �= 0, β. This is the case of an “isentropic shock wave”. We find





βM = [v]
[τ ] ,

M2 = [P ]
[τ ] ,

[s] = [se] = 0.

(6.13)

We next consider rarefaction waves separating two constant states. It is an easy matter to check that the
Riemann invariants associated with the characteristic fields

λ = v ± c, r = (ρ,±c, γp, γpe)T

may be chosen as

s, se, v ± 2c

γ − 1
·
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Then, given a state u0, we look for the states u that can be connected to u0 by a rarefaction wave associated
with λ = v ± c. As the corresponding Riemann invariants are constant through the rarefaction wave, we obtain

s = s0, se = se,0, v = v0 ∓ 2
γ − 1

(c − c0).

Since
P = ργ(sγ + sγ

e ) = K0ρ
γ , K0 = sγ

0 + sγ
e,0, (6.14)

we have
c2 =

γP

ρ
= γK

1
γ

0 P
γ−1

γ ,

and therefore

v = v0 ∓ 2
√

γ

γ − 1
K

1
2γ

0

(

P
γ−1
2γ − P

γ−1
2γ

0

)

.

Finally, we look for the states u that can be connected to u0 by an “isentropic shock wave”. Using (6.13),
we find

s = s0, se = se,0, v = v0 + M(τ − τ0),
with

M2 = −P − P0

τ − τ0
·

Again, we have (6.14) and therefore

[v = v0 ± K
1
2γ

0

√

(P − P0)(P
− 1

γ

0 − P− 1
γ ).

Thus setting

Φ0(P ) =






2
√

γ

γ − 1
K

1
2γ

0 (P
γ−1
2γ − P

γ−1
2γ

0 ), P ≤ P0

K
1
2γ

0

√

(P − P0)(P− 1
γ − P

− 1
γ

0 ), P ≥ P0

, K0 = sγ
0 + sγ

e,0, (6.15)

and using classical arguments in gas dynamics, we obtain that the states u that can be connected to u0 on the
left by a wave associated with λ = v + c (i.e., by a 4−wave) are given by

{
s = s0, se = se,0,
v = v0 + Φ0(P ), (6.16)

while the states u that can be connected to u0 on the right by a wave associated with λ = v − c are given by
{

s = s0, se = se,0,
v = v0 − Φ0(P ). (6.17)

We can now construct the solution of the Riemann problem for the system (6.5), (6.6) corresponding to the
initial data

u0 =
{

uL, x < 0
uR, x > 0.

(6.18)

The construction is different depending on whether ve,L < vL − cL or ve,L > vL − cL. For the sake of clarity,
we will restrict ourselves to the case

ve,L < vL − cL (6.19)
which is indeed the situation that we will encounter in Section 7. The case ve,L > vL − cL will be briefly
discussed in Appendix B. When (6.19) holds, the solution of the Riemann problem is necessarily of the form
below (Fig. 6.2).
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Figure 6.2. Case β �= 0, ve,L < vL − cL, solution of the Riemann problem.

Setting
KL = sγ

L + sγ
e,L, K1 = sγ

L + sγ
e,R, (6.20)

we can state

Theorem 4. Assume (6.19). Then, under the condition

PL + β2

(
KL

PL

) 1
γ

≥ (γ + 1)



β2 K
1
γ

1

γ





γ
γ+1

if se,L < se,R, (6.21)

(no condition if se,L ≥ se,R), the Riemann problem for (6.5), (6.6) has a unique “admissible” solution of the
above form.

By admissible solution, we mean a solution which depends continuously on the initial data. Moreover, as in
classical gas dynamics, we allow vacuum to appear in order to guarantee the existence of a solution.

Proof. The Rankine-Hugoniot jump conditions (6.10), (6.11) and the relations (6.16), (6.17) yield in that case
(using obvious notations)






ve,1 = ve,L,
β(v1 − vL) + P1 − PL = 0,
s1 = sL,

(6.22)






v2 = v1 + Φ1(P2),
s2 = s1,
se,2 = se,1,





v3 = v2,
P3 = P2,
se,3 = se,2,

and 




v3 = vR + ΦR(P3),
s3 = sR,
se,3 = se,R.

We observe that {
s1 = s2 = sL, s3 = sR,
se,1 = se,2 = se,3 = se,R.
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As a first consequence, we have indeed
K1 = sγ

1 + sγ
e,1.

Let us now check that the conditions (6.22) together with the relation se,1 = se,R enable us to determine the
state u1 under the condition (6.21). In fact, we need only to find v1 and P1. Since

ρ1 =
(

P1

K1

) 1
γ

, ρL =
(

PL

KL

) 1
γ

,

the first two conditions (6.22) give respectively





v1 = vL + β

((
K1
P1

) 1
γ −

(
KL

PL

) 1
γ

)

,

v1 = vL + 1
β (PL − P1).

Eliminating v1 between the above equations yields

P1 + β2

(
K1

P1

) 1
γ

= PL + β2

(
KL

PL

) 1
γ

· (6.23)

Then we use the following result whose proof is given in Appendix A. �
Lemma 8. Given a > 0, we set

f(ξ; a) = ξ +
a

ξ
1
γ

, ξ > 0, (6.24)

and we consider the equation
f(η(ξ); b) = f(ξ; a), (6.25)

where b > 0 is a parameter. Then if b > a, equation (6.25) has at least one solution η(ξ) = η(ξ; b) if and only if

f(ξ; a) ≥ (γ + 1)
(

b

γ

) γ
γ+1

, (6.26)

it has exactly one solution if the equality holds in (6.26) and two solutions if the strict inequality holds; if b ≤ a,
equation (6.25) has two solutions.

In both cases, among the possible solutions of (6.25), there exists only one solution which satisfies

η(ξ; b) → ξ as b → a.

We then apply Lemma 8 with a = β2K
1
γ

L and b = β2K
1
γ

1 for se,R > se,L (i.e., b > a), a necessary and sufficient
condition for equation (6.23) to have at least one solution is given by (6.21), while for for se,R ≤ se,L (i.e.,
b ≤ a), equation (6.23) has always two solutions. In any case, we select the admissible solution as the unique
one which satisfies

P1 → P2 as se,R → se,L. (6.27)
This determines the state u1 under the condition (6.21).

Next setting
v∗ = v2 = v3, P∗ = P2 = P3,

it remains only to find the pair (v∗, P∗) solution of the system
{

v∗ = v1 − Φ1(P∗),
v∗ = vR + ΦR(P∗),
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or equivalently to find the intersection in the (v, P )−plane of the 2 and 4−wave curves. These curves indeed
intersect at a unique point if and only if

v1 − Φ1(0) ≥ vR + ΦR(0),

or if and only if

vR − v1 ≤ 2
√

γ

γ − 1

(

K
1
2γ

R P
γ−1
2γ

R − K
1
2γ

1 P
γ−1
2γ

1

)

. (6.28)

When this latter condition does not hold, vacuum appears exactly as in the solution of the Riemann problem
for the classical gas dynamics equations.

For se,L ≥ se,R, Theorem 4 provides a global existence and uniqueness result for the solution of the Riemann
problem. For se,L < se,R, it remains to check the condition (6.21) where resonance does not occur. Let us notice
that this condition trivially holds for β small enough or β large enough (due to the fact that 1 < 2γ/(γ+1) < 2),
i.e., for an electric current density small enough or large enough. Indeed, in [30], we have not met physical
situations where resonance occurs. Therefore we have not tried to deal with resonance problems which are
beyond the scope of this paper and we refer to [21, 24] for the study of resonance. See however Remark 9.

7. The coupling of two plasma fluid models

We want to couple two plasma models of the form (6.5), (6.6) corresponding to different β’s, namely
βL = β, βR = 0 (cf. [30] for a physical derivation of such a coupled problem). Remark that only the 4th
equation of conservation of the electron entropy changes at the interface x = 0. This equation reads

∂

∂t
(ρse) +

∂

∂x
(ρseve) = 0, (7.1)

with

ve =
{

v − β
ρ , x < 0,

v, x > 0.
(7.2)

Thus we have here
u = (ρ, ρv, ρs, ρse)T ,
fL(u) = (ρv, ρv2 + P, ρsv, ρsev − βse)T ,
fR(u) = (ρv, ρv2 + P, ρsv, ρsev)T ,

where P = p+pe = (ρs)γ +(ρse)γ (γ = 5/3 for our physical application). The first step in this coupling problem
consists in expressing the conditions (2.6). It is out of scope to treat all the possible coupling situations according
to the sign of the eigenvalues. In fact, we are interested in the situation where ve < v − c < 0 < v < v + c.
In the linear case with constant coefficients analyzed in Section 3, this case would correspond to the case
p = 4, qL = 2, qR = 1. In such a situation, we know from Theorem 3 that the solution of the coupled problem
is not unique. We will see that this is also true for the nonlinear coupled problem.

Assume therefore that the states u(0−, t) and u(0+, t) satisfy

{
ve(0−, t) =

(
v − β

ρ

)
(0−, t) < (v − c)(0−, t) < 0 < v(0−, t) < (v + c)(0−, t),

(v − c)(0+, t) < 0 < ve(0+, t) = v(0+, t) < (v + c)(0+, t).
(7.3)

Lemma 9. Under the hypotheses (7.3), the coupling conditions (2.6) are equivalent to

u(0−, t) = u(0+, t). (7.4)
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Proof. Let us first discuss the condition

u(0+) ∈ OR(u(0−)) =
{
WR(0+;u(0−),uR);uR ∈ Ω

}
, (7.5)

where, for the sake of simplicity, we have dropped the dependence of u(0±, t) on t. Condition (7.5) yields the
following situation (Fig. 7.1) where the states u(0−) and u(0+) are connected by a 1−R wave (i.e., a 1−wave
associated with the flux function fR). We have therefore






v(0+) = v(0−) − Φu0(0−)(P (0+)),
s(0+) = s(0−),
se(0+) = se(0−).

(7.6)

Let us next consider the condition

u(0−) ∈ OL(u(0+)) =
{
WL(0−;u(0+),uL);uL ∈ Ω

}
. (7.7)

Applying the results of Section 6, we obtain here the situation described in Figure 7.2.
The states u∗ and u(0+) are connected by a 4 − L wave, while the states u(0−) and u∗ are connected by a

3 − L contact discontinuity. Hence we find






v∗ = v(0+) + Φu0(0+)(P ∗),
s∗ = s(0+),
s∗e = se(0+),

and





v(0−) = v∗,
P (0−) = P ∗,
se(0−) = s∗e,

so that





v(0−) = v(0+) + Φu0(0+)(P (0−)),
P (0−) = P ∗,
se(0−) = se(0+).

(7.8)

Observe that the function Φu is in fact the same for both systems. We thus have

{
v(0+) = v(0−) − Φu0(0−)(P (0+)),
v(0−) = v(0+) + Φu0(0+)(P (0−)).

Since the corresponding curves in the (v, P )−plane can intersect at one point at most, we get

{
v(0−) = v(0+),
P (0−) = P (0+).

Together with the last two equations (7.6), this yields the continuity constraint (7.4). �

We are now able to solve the Riemann problem for the coupled system: given two states uL and uR satisfying
(cf. (7.3))

{
ve,L < vL − cL < 0 < vL < vL + cL,
vR − cR < 0 < ve,R = vR < vR + cR,

(7.9)
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Figure 7.1. u(0+) ∈ OR(u(0−)). Figure 7.2. u(0−) ∈ OL(u(0+)).

Figure 7.3. Self-similar solution of the coupled system (7.10).

we consider the coupled problem






∂u
∂t + ∂

∂x fL(u) = 0, x < 0, t > 0,

∂u
∂t + ∂

∂x fR(u) = 0, x > 0, t > 0,

u(x, 0) =
{

uL, x < 0,
uR, x > 0,

u(0−, t) = u(0+, t), t > 0.

(7.10)

Let us show that, under the conditions (7.9), problem (7.10) possesses (at least) a one-parameter family of
self-similar solutions. We first observe that, in the coupling of two linear hyperbolic systems with constant
coefficients considered in Section 3 and for qL > qR, the coupled Riemann problem possesses an affine variety
of dimension qL − qR of solutions consisting of p + 1 + qL − qR constant states separated by qL L–waves with
negative speeds and p − qR R–waves with positive speeds. Hence, if we use a linearized approach and consider
the coupling of the linearized plasma systems at uL and uR respectively, we have p = 4, qL = 2, qR = 1 and we
may expect a one-parameter family of five waves solutions to appear. But since λR

2 = λR
3 , we have a double

wave and the solution of the corresponding coupled Riemann problem consists of five constant states separated
by two L–waves with negative speeds and two R–waves with positive speeds. Now for our coupled Riemann
problem (7.10), it seems fairly natural to look for a solution of the form depicted in Figure 7.3.

Thus, we expect the second wave to be a L–wave with negative speed (as in Fig. 7.3). However, the problem
is nonlinear and there is no evidence that this holds true. In fact, as we shall see it in the proof of Theorem
5, the second wave is allowed to have positive speeds: this follows from the fact that the 2 − L wave and the
1 − R wave are characterized in the same way.
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We can state

Theorem 5. Assume the conditions (7.9). Then the coupled Riemann problem (7.10) admits a one-parameter
family of self-similar solutions parameterized by s∗e ∈ [0, s∗e,max] where

s∗e,max =






(
γ

β2

)γ (
1

γ + 1

(

PL + β2

(
KL

PL

) 1
γ

))γ+1

− sγ
L






1
γ

. (7.11)

Proof. The proof is fairly similar to that of Theorem 4. We look for a solution consisting of five constant states.
First the states uL and u1 are connected by a 1 − L wave so that






ve,1 = ve,L,
β(v1 − vL) + P1 − PL = 0,
s1 = sL.

(7.12)

If we assume that the states u1 and u∗ are connected by a 2 − L wave we have





v∗ = v1 − Φ1(P ∗),
s∗ = s1,
s∗e = se,1.

In fact, since the function Φ0 defined by (6.15) does not depend on β, these relations only mean that the states
u1 and u∗ are connected by a wave associated with the eigenvalue v− c. Next, assuming that the states u∗ and
u2 are connected by a double (2, 3) − R contact discontinuity while the states u2 and uR are connected by a
4 − R wave, we obtain {

v2 = v∗,
P2 = P ∗,

and 




v2 = vR + ΦR(P2),
s2 = sR,
se,2 = se,R.

We thus obtain 11 scalar equations in 12 unknowns corresponding to the states u1,u∗ and u2. Then, for any
choice of s∗e in the interval [0, s∗e,max], we next check that the above equations define a self-similar solution of
the Riemann problem in a unique way. As in the proof of Theorem 4, the relations (7.12) together with the
constraint s∗e = se,1 determine the state u1. Indeed, on the one-hand, P1 satisfies equation (6.23) with

K1 = sγ
L + (s∗e)

γ .

By Lemma 8, this equation has a unique admissible solution provided that either

s∗e ≤ se,L,

or, in the case s∗e > se,L, if

PL + β2

(
KL

PL

) 1
γ

≥ (γ + 1)



β2 K
1
γ

1

γ





γ
γ+1

. (7.13)

Since by Hölder’s inequality

PL + β2

(
KL

PL

) 1
γ

≥ (γ + 1)



β2 K
1
γ

L

γ





γ
γ+1

,
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the above solvability conditions reduce in fact to (7.13) which reads equivalently

s∗e ≤ s∗e,max,

where s∗e,max is defined by (7.11). On the other hand, we have






v1 = vL + 1
β (P1 − PL),

s1 = sL,
se,1 = s∗e.

The state u1 being obtained, it remains only to determine the pair (v∗, P ∗) solution of the system

{
v∗ = v1 − Φ1(P ∗),
v∗ = vR + ΦR(P ∗),

or equivalently to solve a classical Riemann problem for the gas dynamics equations which has a unique solution
(provided that we allow vacuum to appear). �

Remark 7. The fact that the second wave may have a positive or a vanishing speed, also follows from a
(heuristic) linearized approach. On the one hand, if we have (v − c)(0−) > 0, (7.3) has to be replaced by

{
ve(0−, t) < 0 < (v − c)(0−, t) < v(0−, t) < (v + c)(0−, t),
0 < (v − c)(0+, t) < ve(0+, t) = v(0+, t) < (v + c)(0+, t),

and it is straightforward to check that the coupling conditions (2.6) are again equivalent to u(0−, t) = u(0+, t).
Thus, linearizing the two systems at the same state u(0, t), we obtain qL = 1 > qR = 0, and therefore a
one-parameter family of solutions of the Riemann problem whose second wave has positive velocities. If, on
the other hand, we have (v − c)(0, t) = 0, then linearizing the two systems at u(0, t) gives now qL = 1 = qR.
However, since �R,1 and �L,2 coincide (they correspond to the same eigenvalue v − c), the uniqueness condition
of Theorem 1 ({�L,1, �R,2, �R,3, �R,4} and {�R,1, �L,2, �L,3, . . . �L,4} are two bases of R

4) is not met and again the
solutions of the Riemann problem form a one-parameter family.

It remains to know the parameter s∗e in order to specify the solution of the Riemann problem (7.10). We first
observe that choosing s∗e = se,L amounts to solve an uncoupled Riemann problem, namely the Riemann problem
for the usual gas dynamics equations. Indeed, for s∗e = se,L, P1 satisfies equation (6.23) with K1 = sγ

L+sγ
e,L = KL

so that P1 = PL and therefore v1 = vL. Hence, we obtain u1 = uL and our assertion follows.
We will see in the next section that various numerical methods of upwind type approximate solutions of (7.10)

given by Theorem 5 and corresponding to a value of the parameter s∗e depending on the equation of state, i.e.,
on the adiabatic exponent γ, on the initial conditions and also “slightly” on the numerical scheme and the CFL.

Remark 8. It is an open question to know whether all the solutions of problem (7.10) are given by Theorem 5
or if there exist other solutions which exhibit a fewer number of waves. However, we have not observed such
solutions numerically.

Remark 9. Since by (7.9), ve jumps over v − c when passing from the left state uL to the right state uR, the
self-similar solutions given by Theorem 5 could eventually exhibit a resonant state. This is not the case, at
least in numerical computations: the first eigenvalue of the Jacobian matrix jumps over the second one at the
interface so that the resonant state is not observed. On the other hand, when the coupling is ensured through
a regularization of a flux function, the resonant state is indeed attained and the numerical solution presents a
non physical peak close to the interface. In fact, our coupling method seems to avoid resonance problems at
the interface. This point deserves more investigation in order to see if this property could be general.
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8. The numerical coupling of the two plasma fluid models

We have already proved in the scalar case (see [17]) that we need to use an upwind scheme, whose prototype
is the Godunov method, in order to ensure adequate numerical coupling of the two models. On the other hand,
since in the situation (7.3) we have shown in the previous section that the coupled Cauchy problem possesses
in general a continuum of solutions, a natural question arises: does the “converged” numerical solution depend
on the chosen upwind scheme? We thus introduce several upwind schemes for solving the coupled problem.

We first consider the simplest Godunov-type method, namely the HLLE method [20] which corresponds to
the numerical fluxes 





gα,j = gα(uj−1/2,uj+1/2), α = L, R,

= 1
b+α,j−b−α,j

(
b+
α,jfα(uj−1/2) − b−α,jfα(uj+1/2)

)

+ 1
b+α,j−b−α,j

b−α,jb
+
α,j(uj+1/2 − uj−1/2),

(8.1)

where the b±α,j are chosen in such a way that the HLLE scheme is entropy preserving, namely

{
b−L,j = min(vj−1/2 − cj−1/2, ve,j−1/2), b+

L,j = vj+1/2 + cj+1/2,

b−R,j = vj−1/2 − cj− 1
2
, b+

R,j = vj+1/2 + cj+1/2,
(8.2)

and we use the associated coupled scheme (2.8). Next we use the second order MUSCL method constructed
from the HLLE method.

Defining {
u+

j = uj+1/2 − ∆x
2 sj+1/2,

u−
j = uj−1/2 + ∆x

2 sj−1/2,
(8.3)

where sj−1/2 is the slope in the cell j + 1/2 obtained by the min-mod procedure (for instance), we set

{
u+

j = u+
j − ∆t

2∆x

(
f(u−

j+1) − f(u+
j )
)
,

u−
j = u−

j − ∆t
2∆x

(
f(u−

j ) − f(u+
j−1

)
,

(8.4)

and we take as numerical fluxes





gα,j = gα(u−
j ,u+

j ), α = L, R,

= 1

b
+
α,j−b

−
α,j

(
b
+

α,jfα(u−
j ) − b

−
α,jfα(u+

j )
)

+ 1

b+α,j−b
−
α,j

b
−
α,jb

+

α,j(u
+
j − u−

j ),
(8.5)

with {
b
−
L,j = min(v−j − c−j , v−e,j), b

+

L,j = v+
j + c+

j ,

b
−
R,j = v−j − c−j , b

+

R,j = v+
j + c+

j .
(8.6)

As it is well known, the HLLE method does not resolve accurately contact discontinuities. This could appear
here as a major drawback of the method since the discontinuities of se indeed arise at contact discontinuities.
Hence we have considered a more elaborate scheme based on a Roe-type solver. In fact, it is easy to construct
such a Roe solver in the framework of Lagrange-projection methods (see for instance [16]) which are commonly
used in the numerical simulation of physically complex problems. In Lagrange coordinates, the plasma fluid
model (6.5), (6.6) takes the simple form

∂w
∂t

+
∂

∂m
h(w) = 0, (8.7)

with {
w = (τ, v, se, s)T ,
h(w) = (−u, p + pe,−βse, 0)T (8.8)
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where τ = 1
ρ and m is a mass variable such that dm = ρ0dx. Given two states w1 and w2, we set ∆w = w2−w1.

In order to obtain a Roe matrix for the system (8.7), we follow the approach of Gallice [12]. It is enough to
postulate two relations of the form {

∆pe = χe∆τ + κe∆se,
∆p = χ∆τ + κ∆s,

(8.9)

where χe and κe (resp. χ and κ) are approximations of ∂pe

∂τ = −γpe

τ and ∂pe

∂se
= γpe

se
(resp. of ∂p

∂τ = −γp
τ and

∂p
∂s = γp

s ) between the two states w1 and w2. Then the matrix

B = B(w1,w2) =







0 −1 0 0
χ + χe 0 κe κ

0 0 −β 0
0 0 0 0





 (8.10)

satisfies
∆h(w) = B.∆w.

The numerical flux k = k(w1,w2) of the associated Roe method is easily computed

k =
1
2
(h(w1) + h(w2) − |B|∆w) =









−v + 1
2C ∆(p + pe) − βκe

2C(β+C)∆se

p + pe − C
2 ∆v + βκe

2(β+C)∆se

−βse,2

0









(8.11)

where φ = 1
2 (φ1 + φ2) and

C =
√
−(χ + χe) (8.12)

is an approximation of the Lagrangian sound speed CL =
√

− ∂
∂τ (p + pe). Note that we need only to determine C

and κe for specifying the numerical scheme. The choices of C and κe are arbitrary to a certain extent at the
only restriction that they have to meet accuracy and entropy constraints (cf. [8, 12]). Here we have chosen
(cf. [29])

C = γ
p + pe

τ
, κe =

γ pe

se
· (8.13)

The Lagrange-projection Roe scheme for the coupled plasma problem is defined as follows. Starting from the
cell quantities ρn

j+1/2, v
n
j+1/2, s

n
e,j+1/2, s

n
j+1/2, j ∈ Z, at time tn, we compute

pn
e,j+1/2 = (ρn

j+1/2s
n
e,j+1/2)

γ , pn
j+1/2 = (ρn

j+1/2s
n
j+1/2)

γ , Pn
j+1/2 = (p + pe)n

j+1/2, (8.14)

and we define quantities at the cell edges xj = j∆x: for j ≤ 0 (cf. (8.11))






vn
j = 1

2 (vn
j−1/2 + vn

j+1/2) − 1
2Cn

j

(
Pn

j+1/2 − Pn
j−1/2 −

βκn
e,j

β+Cn
j
(sn

e,j+1/2 − sn
e,j−1/2)

)

Pn
j = 1

2 (Pn
j−1/2 + Pn

j+1/2) −
Cn

j

2

(
vn

j+1/2 − vn
j−1/2

)
+

βκn
e,j

2
(
β+Cn

j )
(sn

e,j+1/2 − sn
e,j−1/2

)

sn
e,j = sn

e,j+1/2

(8.15)

and for j ≥ 0 




vn
j = 1

2 (vn
j−1/2 + vn

j+1/2) − 1
2Cn

j

(
Pn

j+1/2 − Pn
j−1/2

)

Pn
j = 1

2 (Pn
j−1/2 + Pn

j+1/2) −
Cn

j

2

(
vn

j+1/2 − vn
j−1/2

) (8.16)
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Figure 8.1. Godunov solver for different CFL’s (pressure and velocity).

where, following (8.13),

Cn
j == γ

Pn
j−1/2 + Pn

j+1/2

τn
j−1/2 + τn

j+1/2

, κn
e,j = γ

pn
e,j−1/2 + pn

e,j+1/2

sn
e,j−1/2 + sn

e,j+1/2

· (8.17)

Observe that (8.15) and (8.16) give two distinct values vn
0± and Pn

0± for vn
0 and Pn

0 respectively.

(i) The Lagrangian step. We then compute for j ∈ Z






x∗
j = xj + ∆tvn

j ,

ρ∗j+1/2 =
∆mn

j+1/2

x∗
j+1−x∗

j
, ∆mn

j+1/2 = ∆xρn
j+1/2,

v∗j+1/2 = vn
j+1/2 − ∆t

∆mn
j+1/2

(
Pn

j+1 − Pn
j

)
,

s∗e,j =

{
sn

e,j+1/2 + β∆t
∆mn

j+1/2

(
sn

e,j+1 − sn
e,j

)
, j < 0,

sn
e,j+1/2, j ≥ 0,

s∗j+1/2 = sn
j+1/2.

(8.18)

Since vn
0 and Pn

0 are not single-valued, ρ∗±1/2 and v∗±1/2 are not well defined. In fact, for j = −1, 0, the second
and third equations (8.18) have to be understood in the following sense






ρ∗−1/2 =
∆mn

−1/2

∆t(vn
0−−vn

−1) , ρ∗1/2 =
∆mn

1/2

∆t(vn
1 −vn

0+) ,

v∗−1/2 = vn
−1/2 − ∆t

∆mn
−1/2

(
Pn

0− − Pn
−1

)
, v∗1/2 = vn

1/2 − ∆t
∆mn

1/2

(
Pn

1 − Pn
0+

)
.

(8.19)
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(ii)The projection step. The cell quantities at time tn+1 are defined as






ρn+1
j+1/2 = ρn

j+1/2 − ∆t
∆x

(
vn

j+1ρ
∗
j+1+ε(j+1,n) − vn

j ρ∗j+ε(j,n)

)
,

(ρv)n+1
j+1/2 = (ρv)n

j+1/2 − ∆t
∆x

(
Pn

j+1 − Pn
j

)

− ∆t
∆x

(
vn

j+1(ρv)∗j+1+ε(j+1,n) − vn
j (ρv)∗j+ε(j,n)

)
,

(ρse)n+1
j+1/2 = (ρse)n+1

j+1/2 +

{
β∆t
∆x (sn

e,j+1 − sn
e,j), j ≤ −1,

0, j ≥ 0,

(ρs)n+1
j+1/2 = (ρs)n

j+1/2 − ∆t
∆x

(
vn

j+1(ρs)∗j+1+ε(j+1,n) − vn
j (ρs)∗j+ε(j,n)

)
,

(8.20)

where

ε(j, n) =

{
−1/2 if vn

j > 0,

1/2 if vn
j < 0.

(8.21)

Again, for j = −1, the pair (vn
0 , Pn

0 ) has to be understood as (vn
0−, Pn

0−), while for j = 1, (vn
0 , Pn

0 ) means
(vn

0+, Pn
0+). We refer to [16] for details concerning the Lagrange-projection method. Let us notice that, at the

difference with the HLLE method, all the components of the numerical flux of the Lagrange-projection method
are discontinuous at j = 0.

We now present some numerical illustrations concerning the solution of the coupled Riemann problem (7.10).
We have used the following Riemann data.

u ρ v ve p pe

L1 1 0.1 −4.9 0.1 0.9
L2 1 1 −4 0.1 0.9
R1 0.5 0.2 0.2 0.01 0.09
R2 0.5 2 2 0.01 0.09
R3 1 2 2 0.01 0.09

We have chosen here β = 5 (recall that ve,L = vL − β/ρL, ve,R = vR). Note that PL = 1, PR = 0.1. In order to
study the dependence of the numerical solution on the data, we have chosen two different values for both the
density ρR, the velocity v and also for adiabatic exponent γ.

Example 8.1. The computations are done with uL1 ,uR1 , γ = 5/3. This set of values satisfies (7.9) and
provides a 2 − L wave (v − c < 0) at the interface. The results are given at time t = 0.15.

The results (computations done with 2000 mesh points) do not seem to depend on the CFL or the dependence
is unsignificant (see Fig. 8.1). On this test, the solution given by the HLLE scheme does not either depend
on the CFL, and coincides with Godunov’s solution which corresponds to s∗e = 1, 3se,R (the computations in
Fig. 8.2 are done at CFL 0.5 with 10 000 mesh points).

Example 8.2. The computations are done with uL2 ,uR2 , γ = 5/3. This set of values also satisfies (7.9) but
provides a 1 − R wave (v − c > 0) at the interface (cf. Rem. 7). We show that the numerical solution depends
only slightly on the numerical scheme. In Figure 8.3, we compare the solution for three first order schemes
namely, the Godunov, HLLE solvers and a Lagrange-projection solver (with the Roe solver in the Lagrangian
step). The CFL is 0.2 and we have taken 10 000 mesh points, the results are given at time t = 0.2.

In Figure 8.4, we compare the HLLE scheme with its 2nd order MUSCL extension. The common converged
solution is a solution of the coupled Riemann problem corresponding to s∗e = 1, 35se,R (see Fig. 8.4, right, where
we compare to this analytical solution).

In Figure 8.5 we compare the solution for the Godunov solver corresponding to different CFL’s on 2000 mesh
points.
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Figure 8.2. Comparison of different schemes.

For Godunov’s scheme the numerical solutions do not seem to depend on the CFL (or the dependence is
unsignificant). For the HLLE solver on the same test however, we have noticed a slight dependence of the level
of the constant states on the CFL.

Note also that the converged solution provided by Godunov’s scheme is a solution of the coupled Riemann
problem corresponding to a slightly different fitted coefficient s∗e = 1, 34se,R (this is confirmed by plotting the
error Σ|ρi − ρ(xi)|∆x). We now give the error between the schemes (Σ|ρa

i − ρb
i |∆x, with obvious notations for

a, b) which tends to prove that the numerical converged solutions given by the Roe and HLLE schemes coincide
and differ slightly from Godunov’s (Fig. 8.7).

Example 8.3. We show here the influence of various γ’s. The computations in Figure 8.8 are done with
uL2 ,uR3 left γ = 7/5, right γ = 5/3.

We observe that s∗e indeed depends on γ: s∗e = 2se,R left, s∗e = 1, 725se,R right, and moreover, comparing
with Example 8.2, we see that s∗e depends on the initial density.
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Figure 8.3. Solution of the Riemann problem (density, velocity, pressure)
with different 1st order schemes.

We have also considered the effect of regularizing the initial data. We start from a Riemann problem between
uL2 and uR3 , where the initial density is continuous (ρR = ρL = 1, γ = 5/3) and the initial velocity and pressure
are discontinuous. We regularize these velocity and pressure using a cubic spline, depending on a parameter ε
tending to 0 (Fig. 8.9).

Comparing with the results of Example 8.3 (see Fig. 8.8, right), we observe that the solution is indeed
different and corresponds to s∗e = 2.8se,R.

We have thus shown that in the case of discontinuous initial data all our numerical schemes converge towards
(almost) the same solution of the coupled Riemann solution that we cannot characterize simply. Moreover,
this solution is not stable with respect to a regularizing process. In the scalar case however we have seen
([17], corollary of Thm. 7) that, when the initial data u0 is continuous, the sequence of discrete solutions
converges to the unique solution of the coupled problem corresponding to u0(0+) = u0(0−) = u0(0). Numerical
experiments in the case of the coupled plasma problem with continuous initial data have lead indeed to realistic
results for physically complex problems (cf. [26]).
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Figure 8.4. Solution of the Riemann problem (pressure): left with HLLE schemes (1st order
and 2nd order extension) – right HLLE and analytical.

Figure 8.5. Godunov solver for different CFL’s (pressure and velocity).

9. Conclusion

In this paper, we have continued the study of our method of coupling systems of conservation laws of the
same dimension at an interface. This method is based on a weak continuity constraint for the solution at the
interface. In the case of linear systems with constant coefficients, we have been able to explicit the coupling
conditions and show that the solution of the coupled system may not be unique in some cases, depending on
the geometry of characteristics at the interface. We have given extensions of the coupling method to some
nonlinear cases of practical interest. In the particular case of the coupled plasma problem, we have checked that
the numerical method works satisfactorily, even in cases of nonuniqueness of the solution. On the one hand,
the numerical solution depends only slightly on the numerical scheme and the wave velocities do not seem to
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Figure 8.6. HLLE solver for different CFL’s.

Figure 8.7. Plot of the error between two schemes.
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Figure 8.8. Solution of the Riemann problem for two different γ ’s.

Figure 8.9. Solution of the regularized Riemann problem.

depend on the scheme. On the other hand, resonance does not appear in the situation where an eigenvalue
jumps over another one at the interface.

It remains to understand the behavior of numerical schemes but we cannot expect to obtain easily theoretical
results. Indeed, at the difference with the scalar case, there are very few theoretical results concerning the
numerical approximation of the boundary value problem for systems (see however [15]). In particular, in the
case of nonuniqueness of the solution of the coupled problem, the numerical method selects a “natural” one
but we have no precise mathematical criterion for predicting or characterizing this natural solution though
numerical experiments on plasma fluid models are constructive.

The paper may me viewed as a first contribution to the study of the coupling of different first order hyperbolic
models occurring in industrial problems. The next step in such a study consists in coupling gas dynamics
systems with different equations of state, and comparing our approach with a flux coupling method. It is also
possible to approach the numerical coupling via an interface model as suggested in Remark 1. Indeed, following
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and extending the ideas of Section 4, the program can be completed when the two systems are written in
Lagrangian coordinates. The problem is more difficult in Eulerian coordinates since the signs of the eigenvalues
of the Jacobian matrix may change through the interface so that the geometry of characteristics at the interface
is not fixed. We refer to [6] for a fairly complete analysis in Lagrangian coordinates and a still partial analysis in
Eulerian coordinates. We have tested the numerical coupling of two such systems at a fixed interface. Note that
we have not considered in this paper the case of a moving interface, for instance a material interface between
two fluids in Eulerian coordinates. This creates other numerical difficulties which were taken up in [1].

A second typical problem consists in coupling an hyperbolic model with a stiff relaxation source term and the
corresponding relaxed model. Such question is frequently met in the context of thermohydraulics. Although the
two systems are of different dimensions, coupling conditions are easy to formulate together with corresponding
numerical methods, but the problem is still essentially open.

Acknowledgements. The authors would like to thank warmly the referees for their many fruitful suggestions and interesting
comments.

Appendix A. Proof of Lemma 8 and complements

We begin with the proof of Lemma 8. We first observe that the function f(.; a) is strictly decreasing from
+∞ to (γ +1)(a

γ )
γ

γ+1 in the interval (0, (a
γ )

γ
γ+1 ] and strictly increasing from (γ +1)(a

γ )
γ

γ+1 to +∞ in the interval

[(a
γ )

γ
γ+1 , +∞).

Hence, for a given a > 0, the equation
f(ξ; a) = α

has at least one solution ξ if and only if

α ≥ (γ + 1)
(

a

γ

) γ
γ+1

.

It has exactly one solution if α = (γ + 1)(a
γ )

γ
γ+1 , and two solutions if α > (γ + 1)(a

γ )
γ

γ+1 .

Consider next equation (6.25) where b > 0 is a parameter. Assume first b > a. Then (6.25) has at least one
solution if and only if

f(ξ; a) ≥ (γ + 1)
(

b

γ

) γ
γ+1

.

Since, for b > a, the equation

f(ξ; a) = (γ + 1)
(

b

γ

) γ
γ+1

has two solutions

ξ1(b) <

(
b

γ

) γ
γ+1

< ξ2(b),

we find that, for ξ < ξ1(b) or ξ > ξ2(b), equation (6.25) has exactly two solutions η1(ξ; b) and η2(ξ; b) which
satisfy

{

η1(ξ; b) <
(

b
γ

) γ
γ+1

< η2(ξ; b)
η1(ξ; b) > ξ for ξ < ξ1(b), η2(ξ; b) < ξ for ξ > ξ2(b).

As b varies, we obtain two branches of solutions ηi(ξ; ·) : b → ηi(ξ; b), i = 1, 2. Setting

bmax(ξ) = γ

(
f(ξ; a)
γ + 1

) γ+1
γ

,
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Figure A.1.

each branch ηi(x; ·) is defined in [a, bmax(ξ)]. A simple computation gives

∂ηi

∂b
= − ηi

η
γ+1

γ

i − b
γ

·

Since
η

η
γ+1

γ − b
γ

{
< 0, if η < ( b

γ )
γ

γ+1 ,

> 0, if η > ( b
γ )

γ
γ+1 ,

we get
∂η1

∂b
(ξ; b) > 0,

∂η2

∂b
< 0, |∂ηi

∂b
(ξ; bmax)| = +∞,

so that we obtain the following graph depicted on Figure A.2 for instance in the case ξ < ( b
γ )

γ
γ+1 .

Note that for ξ < f(ξ;a)
γ+1 , i.e. for ξ < a

γ

γ
γ+1 , we have η1(ξ; a) = ξ, while for ξ > f(ξ;a)

γ+1 , or for ξ > a
γ

γ
γ+1 , we

obtain η2(ξ; a) = ξ. Hence, if we require for the solution of (6.25) to satisfy the continuity property

η(ξ; b) → ξ as b → a, (A.1)

we obtain

η(ξ; b) =






η1(ξ; b), ξ ≤
(

a
γ

) γ
γ+1

η2(ξ; b), ξ ≥
(

a
γ

) γ
γ+1

.
(A.2)

Consider next the case 0 < a < b (the case b = a being obvious). Then clearly equation (6.25) has always two
solutions ηi(.; b), i = 1, 2 and the above analysis still applies. This ends the proof of Lemma 8.

We will need in Appendix B the following estimates for the derivative ∂η
∂ξ of the function η defined by (A.2)

0 ≤ ∂η

∂ξ
(ξ; b) ≤ 1. (A.3)
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Figure A.2.

Assume first ξ < (a
γ )

γ
γ+1 so that

η(ξ, b) = η1(ξ; b).

Since

f(η1; b) = f(ξ; a) ⇐⇒ 1 + aξ−
γ

γ+1 =
η1

ξ

(
1 + bη

− γ
γ+1

1

)

and
η1 < ξ,

we have

aξ−
γ+1

γ < bη
− γ+1

γ

1

and therefore
∂f

∂ξ
(η1; b) = 1 − b

γ
η
− γ+1

γ

1 < 1 − a

γ
ξ−

γ+1
γ =

∂f

∂ξ
(ξ; a).

Hence, we obtain
∂f

∂ξ
(η1; b) <

∂f

∂ξ
(ξ; a) < 0,

which yields

0 <
∂η1

∂ξ
(ξ; b) =

∂f
∂ξ (ξ; a)

∂f
∂ξ (η1(ξ; b); b)

< 1. (A.4)

This proves (A.3) for ξ < (a
γ )

γ
γ+1 .

On the other hand, for ξ > (a
γ )

γ
γ+1 , we find

∂f

∂ξ
(η2; b) >

∂f

∂ξ
(ξ; a) > 0

which again implies (A.3). Finally, the bounds of (A.3) are reached for ξ = (a
γ )

γ
γ+1 .
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Figure B.1.

Appendix B. The Riemann problem for the coupled plasma systems in the case

vL − cL < ve,L < 0.

The purpose of this Appendix is to solve the coupled problem (7.10) when the state uL satisfies

vL − cL < ve,L < 0. (B.1)

We begin by considering the Riemann problem (6.5), (6.6) with the closure relation (6.3). When the condi-
tion (B.1) holds, the solution of the Riemann problem is then of the form depicted in Figure B.1.

The relations between the states uL,u1,u2,u3, and uR read





v1 = vL − ΦL(P1),
s1 = sL,
se,1 = se,L,

(B.2)






ve,2 = ve,1,
α(v2 − v1) + P2 − P1 = 0,
s2 = s1,

(B.3)






v3 = v2,
P3 = P2,
se,3 = se,2,

and 




v3 = vR + ΦR(P3),
s3 = sR,
se,3 = se,R.

(B.4)

Note that {
s1 = s2 = sL, s3 = sR,
se,1 = se,L, se,2 = se,3 = se,R.

We set
v∗ = v2 = v3, P∗ = P2 = P3.

Then, for solving the Riemann problem, a first step consists in forming a system of two equations in (v∗, P∗).
On the one hand, the first equation (B.4) reads

v∗ = vR + ΦR(P∗). (B.5)
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On the other hand, for establishing a second equation in (v∗, P∗), we start from the first equation (B.3) which
yields

v∗ − α

(
K2

P∗

) 1
γ

= v1 − α

(
K1

P1

) 1
γ

, (B.6)

where
K1 = sγ

L + sγ
e,L = KL, K2 = sγ

L + sγ
e,R.

In addition, the second equation (B.2) reads

α(v∗ − v1) + P∗ − P1 = 0. (B.7)

Combining equations (B.6) and (B.7), we obtain

P1 + α2

(
K1

P1

) 1
γ

= P∗ + α2

(
K2

P∗

) 1
γ

. (B.8)

The above equation enables us to determine P1 from P∗ at least under suitable conditions. Indeed, using
Lemma 8, the following holds:
(i) for K2 ≥ K1 or se,R ≥ se,L, equation (B.8) has a unique admissible solution P1 = P1(P∗);
(ii) for K2 < K1 or se,R < se,L, equation (B.8) has a unique admissible solution provided that

P∗ + α2

(
K2

P∗

) 1
γ

≥ (γ + 1)



α2 K
1
γ

2

γ





γ
γ+1

which amounts to suppose P∗ small enough or large enough.
For the sake of simplicity, we assume here

se,R ≥ se,L, (B.9)
so that the function P∗ → P1(P∗) is defined for P∗ ≥ 0. Using the inequality (A.3), we obtain in addition

0 ≤ dP

dP∗
≤ 1. (B.10)

Next, combining the first equation (B.2) with (B.7), we find

v∗ = vL − (ΦL(P1) +
1
α

(P∗ − P1)).

Setting

ΨL(P∗) = ΦL(P1(P∗)) +
1
α

(P∗ − P1(P∗)), (B.11)

the above equation reads
v∗ = vL − ΨL(P∗), (B.12)

hence, the pair (v∗, P∗) is solution of the system of equations (B.5), (B.12).
Now, since by (B.10)

dΨL

dP∗
=

dΦL

dP1

dP1

dP∗
+

1
α

(1 − dP1

dP∗
≥ dΦL

dP1

dP1

dP∗
≥ 0,

the function ΨL is monotonically increasing. As the function ΦR is strictly increasing, the system (B.5), (B.12)
has a unique solution (v∗, P∗) if and only if

vL − ΨL(0) ≥ vR + ΨR(0).
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Figure B.2.

Since P1(0) = 0, we have ΨL(0) = ΦL(0) and the above condition gives

vL − ΦL(0) ≥ vR + ΦR(0), (B.13)

which is nothing but the usual condition in gas dynamics for avoiding vacuum in the solution of the Riemann
problem. If the condition (B.13) does not hold, we have to allow vacuum to appear in the solution of (6.5),
(6.6). In any case, under the hypotheses (B.1) and (B.9), the Riemann problem for (6.5), (6.6) has a unique self
similar solution of the above form. The discussion of the case se,R < se,L is analogous and left to the reader.

We pass to the coupling problem. We first notice that the analogue of Lemma 9 holds with the same proof.
If we assume that the states u(0−, t) and u(0+, t) satisfy

{
(v − c)(0−, t) < ve(0−, t) = (v − α

ρ )(0−, t) < 0 < (v + c)(0−, t),
(v − c)(0+, t) < 0 < ve(0+, t) = v(0+, t) < (v + c)(0+, t),

the coupling conditions (2.6) are again equivalent to the continuity constraint (7.4). We next suppose that the
two states uL and uR satisfy {

vL − cL < ve,L < 0 < vL < vL + cL,
vR − cR < 0 < ve,R = vR < vR + cR.

Then we look for a self-similar solution of (7.10) of the form
Hence we have 





v1 = vL − ΦL(P1),
s1 = sL,
se,1 = se,L,






v∗e = ve,1,
α(v∗ − v1) + P ∗ − P1 = 0,
s∗ = s1,

{
v2 = v∗,
P2 = P ∗,

and 




v2 = vR + ΦR(P2),
s2 = sR,
se,2 = se,R.

Then choosing arbitrarily s∗e and arguing as above, we obtain

P1 + α2

(
K1

P1

) 1
γ

= P ∗ + α2

(
K∗

P ∗

) 1
γ

, (B.15)
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with
K1 = KL = sγ

L + sγ
e,L, K∗ = sγ

L + (s∗e)
γ .

If we suppose K∗ ≥ KL or equivalently
s∗e ≥ se,L,

we know that equation (B.15) has a unique admissible solution P1(P ∗) so that we are left with the system

{
v∗ = vL − ΦL(P ∗),
v∗ = vR + ΦR(P ∗).

This system has a unique solution as soon as (B.13) holds or we allow vacuum to appear. Therefore, under the
assumption (B.14), for any given s∗e ≥ se,L, the Riemann problem (7.10) has a unique self-similar solution.
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