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FINITE ELEMENT APPROXIMATION FOR DEGENERATE PARABOLIC
EQUATIONS. AN APPLICATION OF NONLINEAR SEMIGROUP THEORY
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Abstract. Finite element approximation for degenerate parabolic equations is considered. We pro-
pose a semidiscrete scheme provided with order-preserving and L1 contraction properties, making use
of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply
nonlinear semigroup theory, and the wellposedness and stability in L1 and L∞, respectively, of the
scheme are established. Under certain hypotheses on the data, we also derive L1 convergence without
any convergence rate. The validity of theoretical results is confirmed by numerical examples.
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1. Introduction

This paper is concerned with the finite element method applied to the initial-boundary value problem for
degenerate parabolic equation, 





ut − ∆f(u) = 0 in Ω × (0, T ),

f(u) = 0 on ∂Ω × (0, T ),

u|t=0 = u0(x) on Ω,

(1.1)

where Ω ⊂ R
n, n = 1, 2, 3, denotes a bounded domain with the Lipschitz boundary ∂Ω, T an arbitrary positive

constant, and f a non-decreasing continuous function defined on R satisfying f(0) = 0.
Problem (1.1) describes, for instance, the flow of homogeneous fluid in porous media if

f(u) = u |u|γ−1 (1.2)

with γ > 1, the fast diffusion if (1.2) with 0 < γ < 1, and the two phase Stefan problem in enthalpy formulation if

f(u) =






α(u+ 1) (u ≤ −1)
0 (−1 < u < 1)
β(u− 1) (u ≥ 1)

(1.3)

with α, β > 0. See, for more detail [14, 15, 32].
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L1 theory to (1.1) was developed in early 1970’s in use of nonlinear semigroups. To summarise it, we set
X = L1(Ω) and introduce operators L and A in X by Lv = −∆v for v ∈ D(L) = {v ∈ W 1,1

0 (Ω) | Lv ∈ X}
and Av = Lf(v) for v ∈ D(A) = {v ∈ X | f(v) ∈ D(L)}, respectively. Then, problem (1.1) is reduced to the
nonlinear evolution equation

du
dt

+Au = 0 with u(0) = u0 (1.4)

in X . Brezis-Strauss [6] proved that the operator −A is m-dissipative in X . This means that

‖v − v̂‖L1(Ω) ≤ ‖v − v̂ + λAv − λAv̂‖L1(Ω) (1.5)

holds for v, v̂ ∈ D(A) and λ > 0, and also R(I + λA) = L1(Ω) = D(A). Then, theory of Crandall-Liggett [12]
guarantees the generation of semigroup {S(t)}t≥0 on X by

S(t) = s-lim
m→∞

(

I +
t

m
A

)−m

, (1.6)

and u(t) = S(t)u0 is regarded as the solution to (1.4). Another important property of A is the order-preserving,
that is,

g ≥ ĝ ⇒ (I + λA)−1g ≥ (I + λA)−1ĝ. (1.7)

Relations (1.5) and (1.7) are summarised as

∥
∥[v − v̂]+

∥
∥

L1(Ω)
≤
∥
∥[v − v̂ + λAv − λAv̂]+

∥
∥

L1(Ω)
(1.8)

for v, v̂ ∈ D(A), where [v]+ = max {0, v}. This implies

∥
∥[S(t)u0 − S(t)û0]+

∥
∥

L1(Ω)
≤
∥
∥[u0 − û0]+

∥
∥

L1(Ω)
(1.9)

by (1.6), where u0, û0 ∈ X and t ∈ [0, T ]. Inequality (1.9) means that {S(t)}t≥0 is an order-preserving and L1

contraction semigroup on X .
L∞ stability of the resolvent,

∥
∥(I + λA)−1g

∥
∥

L∞(Ω)
≤ ‖g‖L∞(Ω) , (1.10)

is also proven in [6], where g ∈ X ∩ L∞(Ω) and λ > 0. This implies L∞ stability of the semigroup

‖S(t)u0‖L∞(Ω) ≤ ‖u0‖L∞(Ω) , (1.11)

where u0 ∈ X ∩ L∞(Ω) and t ∈ [0, T ].
So far, several schemes of time discretization have been examined. In fact, those structures of the problem,

particularly (1.6), justify the backward difference approximation to (1.1), which was studied by [28]. Another
scheme was obtained by the use of the nonlinear Chernoff formula of [5], where solution at each discrete time
level is approximated by a linear elliptic equation. This approach was taken first by [3]. Whereas L1 framework
was employed in [3,28], L2 error estimates were obtained by [20,26,27] for modified schemes of [3]. Those works
were done in the literature of porous media or that of Stefan problems. For fast diffusion problems, we refer to
[23, 24].

On the other hand, for porous media and Stefan problems, fully discrete schemes where the space variable
was discretized by finite element methods were also studied by many authors; [10,13,21,30,31,34,36]. Some of
them gave error analysis in the H−1 framework. We will mention a few remarks on such schemes in the next
section, after having presented our scheme.



FINITE ELEMENT APPROXIMATION FOR DEGENERATE PARABOLIC EQUATIONS 757

The present paper deals with a spatial discretization for (1.1), that is,

duh

dt
+Ahuh = 0 with uh|t=0 = u0h,

where Ah, uh, and u0h stand for the finite element approximations of A, u, and u0, respectively.
Our purposes are twofold. Firstly, we introduce the spatial discretization Ah of A which preserves above

mentioned properties. It can be done by making use of piecewise linear trial functions and the lumping mass
technique, if a family of the triangulation {Th} of Ω, h > 0 being the discretization parameter, is of acute type
(the definition will be recalled in Sect. 3). Actually, in Sections 2 and 3, we introduce Ah and prove that Ah

satisfies the discrete analogue of (1.8) in a suitable Banach space Xh, respectively. From this, we immediately
obtain the nonlinear semigroup {Sh(t)}t≥0 on Xh which is generated by −Ah and satisfies the discrete analogue
of (1.9). Moreover, as will be mentioned in Section 4, Ah and Sh(t) are L∞ stable as well as A and S(t) are so.

The second purpose of this paper is to make error analysis. The goal of this end is to derive

lim
h↓0

sup
t∈[0,T ]

‖uh(t) − u(t)‖L1(Ω) = 0. (1.12)

Our main theorem (Th. 7.1) shows that (1.12) is valid, for example, if Ω ⊂ R
2 is convex, u0 is continuous on Ω

with the value zero on ∂Ω, f is strictly increasing, and {Th} is provided with acuteness and quasi-uniformity.
Further an extension of Theorem 7.1 to the case where f is nondecreasing is also discussed (Prop. 7.1 and
Lem. 7.2). However we have no error estimates and they will be studied in subsequent works. Proof of (1.12)
follows the principle that the convergence of semigroup is a consequence of that of resolvents. Thus, Sections 5–7
are devoted to the proof of the convergence of the resolvent, the Yosida approximation, and the semigroup,
respectively.

Finally, in Section 8, we present results of numerical experiments for the porous media nonlinearity. The
time discretization makes use of the forward difference formula. We observe that L1 convergence of numerical
solutions really takes place.

At this stage, we clarify our motivation of this work. As was mentioned above, several physical phenomena
are modelled by (1.1), and therefore order-preserving and L1 contraction properties are essential requirements
from not only mathematical but also physical points of view. Consequently we are interested in discrete schemes
which preserve such properties of the original problem. However it seems that little effort has been made in
this direction. The first contribution of this paper is to give an discrete scheme enjoying a discrete version of
order-preserving and L1 contraction properties for a general nondecreasing f . Moreover our presented scheme
is well suited for an actual computation. The second contribution is a convergence result of the form (1.12).
Our result can be applied to porous media and fast diffusion nonlinearities (1.2). Especially we do not know
any convergence results for a spatial discretization to the fast diffusion problem at present. On the other hand,
for the Stefan nonlinearity (1.3), our convergence result may be restrictive, since f and u0 are assumed to
be strictly increasing and continuous, respectively. The main interest here is to reveal a general nature of
convergence rather than to go into details under specific assumptions on f . The convergence result itself is
to be expected from semigroup theory. But, as is well-known, fundamental theorems in nonlinear semigroup
theory were established by quite technical and somewhat tricky arguments. Therefore, it is not obvious that
the similar argument works for discrete problems. For example, the effect of perturbation on f causes a new
issue which have not appeared in the continuous problem (see Rem. 7.1). Thus, in the present paper, we will
develop a discrete nonlinear semigroup theory. Also we note that, concerning the regularity of solutions, we only
have u(t) ∈ X and f(u(t)) ∈ W 1,1

0 (Ω), even if u0 is continuous. Our argument does not require any redundant
assumptions on the regularity of solutions.

Recently some of the authors and their colleague published the monograph [17], where finite element ap-
proximation to (1.1) on flat torus with uniform triangulation is studied. Some lemmas and theorems described
below are proven similarly, but we shall give them for completeness. Furthermore, the method of [17] for the
convergence of resolvent is restrictive, and we shall provide new arguments here.
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We follow the standard notation of [1]. We put ‖ · ‖p = ‖ · ‖Lp(Ω) for p ∈ [1,∞]. The space Wm,p
0 (Ω) stands

for the closure in Wm,p(Ω) of C∞
0 (Ω), the set of C∞ functions with compact supports in Ω. We write Hm(Ω)

and Hm
0 (Ω) instead of Wm,2(Ω) and Wm,2

0 (Ω), respectively, for m ≥ 0. The standard inner product of L2(Ω)
is denoted by (·, ·). Furthermore we set

W = {v ∈ C(Ω)| v|∂Ω = 0}. (1.13)

Generic positive constants depending on Ω are denoted by C, C1, and so forth. If it is necessary to specify
the dependence on other parameters, say γ1, γ2, · · · , then we write C(Ω, γ1, γ2, · · · ). We shall use the same
symbol I to indicate the identity operator on any space.

2. Finite element approximation

For the sake of simplicity, in what follows, we suppose that Ω is an n-dimensional polyhedron. We take a
family of triangulations {Th} = {Th}h↓0 defined on Ω, where each element σ ∈ Th is a closed simplex. The
maximum side length of all elements in Th is denoted by h. We take the piecewise linear approximation, putting

Xh = {χ ∈W | χ is linear on σ for each σ ∈ Th} .
Let Ih be the set of vertices of σ ∈ Th belonging to Ω. For a ∈ Ih, the function wa ∈ Xh is defined by

wa =

{
1 (at a)
0 (at b ∈ Ih \ {a}).

Then, {wa | a ∈ Ih} forms a basis of Xh and the interpolation operator πh : W → Xh is defined by

πhv =
∑

a∈Ih

v(a)wa.

Each a ∈ Ih takes barycentric domain Da. See [17], p. 203 for its precise definition. Let

wa(x) =
{

1 (x ∈ Da)
0 (x ∈ Ω \Da),

and denote by Xh the vector space spanned by {wa | a ∈ Ih}. The linear transformation Mh : Xh → Xh,
referred to as the lumping operator, is defined through wa 
→ wa. Sometimes, we shall write χh for Mhχh,
where χh ∈ Xh.

The semidiscrete scheme studied in this paper is to solve uh ∈ C1([0, T ];Xh) satisfying

d
dt

(uh, vh) + (∇πhf (uh) ,∇vh) = 0 with (uh(0), vh) = (u0h, vh) (2.1)

for any vh ∈ Xh, where u0h ∈ Xh is an appropriate approximation of u0 ∈ X . In order to convert (2.1) to
the operator theoretic form, we introduce the following operators. Let Lh : Xh → Xh be the finite element
approximation L defined by

(Lhχh, vh) = (∇χh,∇vh)
for χh, vh ∈ Xh. Let M∗

h : Xh → Xh be the adjoint operator of Mh associated with the L2 inner product, and
set

Kh = M∗
hMh : Xh → Xh.

Then (2.1) is expressed as

Kh
duh

dt
+ Lhπhf(uh) = 0 with uh(0) = u0h. (2.2)
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The operator Mh is invertible in Xh and hence K−1
h = M−1

h (M∗
h)−1 is well-defined. Therefore, scheme (2.2) is

equivalent to
duh

dt
+Ahuh = 0 with uh(0) = u0h (2.3)

in Xh, where
Ahv = K−1

h Lhπhf(v)
is defined for v ∈W .

We here describe some examples of u0h ∈ Xh:

u0h = Phu0 (if u0 ∈ L2(Ω));
u0h = Rhu0 (if u0 ∈ H1

0 (Ω));
u0h = πhu0 (if u0 ∈ W ),

where Rh : H1
0 (Ω) → Xh and Ph : L2(Ω) → Xh denote the Ritz and the orthogonal projection operators. They

are defined by
(∇(v −Rhv),∇χh) = 0 (χh ∈ Xh) (2.4)

and
(v − Phv, χh) = 0 (χh ∈ Xh), (2.5)

respectively. Further, if u0 ∈ W 1,1
0 (Ω), we can apply Scott and Zhang’s interpolation operator

Πh : W 1,1
0 (Ω) → Xh and take u0h = Πhu0. (For the precise definition of Πh, see [35]. A version of such

interpolation is described in [4].) In convergence analysis presented below, we assume u0 ∈ W and take
u0h = πhu0.

Before concluding this section, we state a remark on another finite element scheme to (1.4). From the L2

theoretical point of view, it may be natural to take
d
dt

(uh, vh) + (∇f(uh),∇vh) = 0 with (uh(0), vh) = (u0h, vh) (2.6)

for vh ∈ Xh. In this case, the operator theoretic representation reads
duh

dt
+ LhRhf(uh) = 0 with uh(0) = u0h.

If f is locally Lipschitz continuous, scheme (2.6) is well-defined, because then vh ∈ Xh implies f(vh) ∈ H1
0 (Ω).

Namely, in this case (2.6) is conforming and was studied by [21, 30, 31, 34] including its time discretizations.
Based on the energy method, they discussed the stability, convergence, and error estimate in the L2 norm for
the porous media and the Stefan nonlinearities.

However, the linear part LhRh does not have such properties as (3.8), (3.9) and (3.10) given below. Thus,
in general, vh ∈ Xh 
→ −LhRhf(vh) ∈ Xh is not m-dissipative. This means that, even if an approximate
solution converges to the original one, it is not certain that the approximate solution has order-preserving
and L1 contraction properties. On the contrary, −Ah is m-dissipative as will be shown in the next section.

3. Wellposedness

We pose on {Th} that

(H1) Acuteness. Given σ ∈ Th, a vertex P0 ⊂ σ, and the opposite face F ⊂ σ to P0, let S be a plane
including F . Then the foot of the perpendicular from P0 to S is always included in F .

Remark 3.1. If n = 1, (H1) always holds. If n = 2, it is equivalent to saying that each σ ∈ Th is a right or
an acute triangle. Generally, it corresponds to the non-negative type of Ciarlet and Raviart [9] or acuteness of
Fujii [16].

This section is devoted to the proof of the following theorem, which is a discrete analogue of (1.8).
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Theorem 3.1. Assume that (H1) holds. Then we have

‖Mhπh[vh − v̂h]+‖1 ≤
∥
∥Mhπh [vh − v̂h + λAhvh − λAhv̂h]+

∥
∥

1
, (3.1)

for vh, v̂h ∈ Xh and λ > 0. Furthermore, it holds that R(I + λAh) = Xh.

This assures the unique solvability of (2.3). In fact, Xh forms a Banach space equipped with the norm

‖χh‖1,h =
∫

Ω

Mhπh |χh| (3.2)

for χh ∈ Xh. Theorem 3.1 means that −Ah is m-dissipative in Xh with respect to this norm. Therefore, from
the generation theorem of [12], scheme (2.3) is uniquely solvable globally in time and the solution is given as
uh(t) = Sh(t)u0h, where

Sh(t) = lim
m→∞

(

I +
t

m
Ah

)−m

. (3.3)

Combining (3.1) with (3.3), we deduce

‖[Sh(t)u0h − Sh(t)û0h]+‖1,h ≤ ‖[u0h − û0h]+‖1,h (3.4)

for u0h, û0h ∈ Xh and t ∈ [0, T ]. Therefore, it holds that

u0h ≥ û0h ⇒ Sh(t)u0h ≥ Sh(t)û0h

In particular, Sh(t)u0h ≥ 0 follows from u0h ≥ 0 and it holds that

‖Sh(t)u0h‖1,h ≤ ‖u0h‖1,h .

At this stage, we assume that

(H2) Regularity. There is a positive constant ν1 independent of h such that

ρ(σ) ≥ ν1d(σ)

for any σ ∈ Th, where ρ(σ) and d(σ) indicate diameters of the inscribing and the circumscribing balls of σ,
respectively.

Under such a reasonable assumption, we have a constant C > 0 independent of h satisfying

C−1 ‖χh‖1 ≤ ‖χh‖1,h ≤ C ‖χh‖1 (3.5)

for χh ∈ Xh. Hence, by (3.4), we obtain
∥
∥[Sh(t)vh − Sh(t)v̂h]+

∥
∥

1
≤ C
∥
∥[vh − v̂h]+

∥
∥

1
.

Remark 3.2. Inequalities (3.5) follows from

C−1 ‖χh‖L1(σ) ≤ ‖Mhπh |χh|‖L1(σ) ≤ C ‖χh‖L1(σ) (χh ∈ Xh). (3.6)

for any σ ∈ Th. Because {Th} is regular, inequality (3.6) is reduced to the case σ = σ̂, where σ̂ denotes the
canonical reference element. The linear functions on σ̂ form a finite dimensional vector space Y . The desired
estimate holds because Y is isometric to an Euclidean space, and any two norms on Y are equivalent to each
other. We also have

‖Khχh‖p + ‖K−1
h χh‖p ≤ C‖χh‖p (χh ∈ Xh, 1 ≤ p ≤ ∞). (3.7)

under (H2). See [17], p.174.
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Before stating the proof of Theorem 3.1, we collect some inequalities concerning linear part K−1
h Lh, which

hold under (H1). They are shown in [17], Sect. 5.1 and the proof is omitted here. First, discrete maximum
principle

max
Ω

(I + λK−1
h Lh)−1vh ≤ max

Ω
πh[vh]+ (3.8)

holds, where vh ∈ Xh and λ > 0. Here, well-definedness of (I + λK−1
h Lh)−1 : Xh → Xh is included. It follows

from (3.8) that
0 ≤ vh ∈ Xh, λ > 0 ⇒ (I + λK−1

h Lh)−1vh ≥ 0. (3.9)
Next, discrete L1 contraction property is expressed as

0 ≤ vh ∈ Xh, λ > 0 ⇒
∫

Ω

Mh(1 + λK−1
h Lh)−1vh ≤

∫

Ω

Mhvh. (3.10)

The proof of (3.8) and (3.10) is explicitly mentioned for the case n = 2 in [17]. However, the other cases
n = 1, 3 can be done similarly under the assumption (H1). In (3.9) and (3.10), contribution of mass lumping
is essential for λ > 0. If the consistent mass is employed, then (3.9) is restricted to the range 0 < h2/λ � 1,
while property (3.10) is not certain to hold. See Ciarlet-Raviart [9] and Fujii [16] for the former fact.
Thanks to (3.9) and (3.10), we can prove the following inequality, which is comparable to Kato’s one of [22].

Lemma 3.1. Assume that (H1) holds. Then we have
∫

Ω

Mhπh

[
(K−1

h Lhπhv) sgn+ v
]
≥ 0 (3.11)

for v ∈W , where

sgn+ v =

{
1 (v ≥ 0)
0 (v < 0).

Proof. First, we show that
∫

Ω

Mhπh

[(
I + λK−1

h Lh

)−1
vh

]

+
≤
∫

Ω

Mhπh [vh]+ (3.12)

holds for vh ∈ Xh and λ > 0. In fact, taking

v±h ≡ πh [vh]± = ±
∑

a∈I±
h

vh(a)wa, (3.13)

we have 0 ≤ v±h ∈ Xh and vh = v+
h − v−h , where I±h = {a ∈ Ih | ±vh(a) ≥ 0} and [ · ]± = max{0,± · }. This

implies
(
I + λK−1

h Lh

)−1
v±h ≥ 0 by (3.9), and hence

[(
I + λK−1

h Lh

)−1
vh

]

+
≤
(
I + λK−1

h Lh

)−1
v+

h .

Because πh and Mh are order-preserving, we have

Mhπh

[(
I + λK−1

h Lh

)−1
vh

]

+
≤Mh

(
I + λK−1

h Lh

)−1
v+

h ,

which implies ∫

Ω

Mhπh

[(
I + λK−1

h Lh

)−1
vh

]

+
≤
∫

Ω

Mhv
+
h

by (3.10). This means (3.12).



762 A. MIZUTANI ET AL.

Given v ∈W , we take vh = πhv and uh =
(
I + εK−1

h Lh

)−1
vh for ε > 0. Because of

vh − uh = ε
(
I + εK−1

h Lh

)−1
K−1

h Lhvh,

we have

ε

∫

Ω

Mhπh

[((
I + εK−1

h Lh

)−1
K−1

h Lhvh

)
· sgn+ vh

]
=
∫

Ω

Mhπh

[
(vh − uh) · sgn+ vh

]

=
∫

Ω

Mhπh [vh]+ −
∫

Ω

Mhπh

[
uh · sgn+ vh

]

≥
∫

Ω

Mhπh [vh]+ −
∫

Ω

Mhπh [uh]+ .

The right-hand side is non-negative by (3.12), and hence
∫

Ω

Mhπh

[((
1 + εK−1

h Lh

)−1
K−1

h Lhvh

)
· sgn+ vh

]
≥ 0.

Making ε ↓ 0, we have ∫

Ω

Mhπh

[(
K−1

h Lhvh

)
· sgn+vh

]
≥ 0.

Hence noting
πh

(
η · sgn+v

)
=

∑

a∈Ih∩{πhv≥0}
η(a)wa = πh

(
η · sgn+πhv

)

for any η ∈W , we obtain (3.11). The proof is complete. �
Now we give the following.

Proof of Theorem 3.1. To prove (3.1), we show more generally that
∥
∥Mhπh [v − v̂]+

∥
∥

1
≤
∥
∥Mhπh [v − v̂ + λAhv − λAhv̂]+

∥
∥

1
, (3.14)

where v, v̂ ∈ W and λ > 0. To this end, we suppose that f is strictly increasing. Otherwise, we replace f by
fε(u) = f(u) + εu and make ε ↓ 0. Putting g = v + λK−1

h Lhπhf(v) and ĝ = v̂ + λK−1
h Lhπhf(v̂), we get that

∥
∥Mhπh [v − v̂]+

∥
∥

1
=
∫

Ω

Mhπh

[
(v − v̂) · sgn+ (v − v̂)

]

=
∫

Ω

Mhπh

[
(g − ĝ) · sgn+ (v − v̂)

]

−λ
∫

Ω

Mhπh

[(
K−1

h Lhπh (f(v) − f(v̂))
)
· sgn+ (v − v̂)

]
.

Here, we have sgn+ w = sgn+ (v− v̂) holds for w = f(v)−f(v̂) ∈W , because f is strictly increasing. Therefore,
(3.11) guarantees that

∫

Ω

Mhπh

[(
K−1

h Lhπh (f(v) − f(v̂))
)
· sgn+ (v − v̂)

]
=
∫

Ω

K−1
h πh

[
K−1

h Lhπhw · sgn+ w
]
≥ 0.

This leads to
‖Mhπh[v − v̂]+‖1 ≤

∫

Ω

Mhπh

[
(g − ĝ) · sgn+ (v − v̂)

]

≤
∫

Ω

Mhπh [g − ĝ]+ =
∥
∥Mhπh [v − v̂ + λAhv − λAhv̂]+

∥
∥

1
,

and hence (3.1) follows.
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Now we prove the maximality (I+λAh)Xh = Xh for λ > 0. Namely, given gh ∈ Xh, we show the existence of
vh ∈ Xh satisfying vh +λAhvh = gh. In fact, Tλ = I+λAh is a continuous mapping on Xh, a finite dimensional
vector space provided with the norm ‖ · ‖1,h. In use of (3.1) we can take an open ball O ⊂ Xh sufficiently large
such that gh �∈ Tλ(∂O) for any λ > 0. We may suppose that gh ∈ O. Then the topological degree deg (Tλ, gh,O)
is well-defined and its homotopy invariance implies

deg (Tλ, gh,O) = deg (I, gh,O) = 1.

This means that gh ∈ Tλ(O), and the proof is complete. �

4. L∞
stability

This section is devoted to the L∞ stability of approximate solutions. Precisely, we show the following.

Theorem 4.1. Under the assumption (H1), it holds that

‖Sh(t)u0h‖∞ ≤ ‖u0h‖∞ , (4.1)

where u0h ∈ Xh and t ∈ [0, T ].

Note that, as will be verified at the end of this section, (4.1) gives
∥
∥(I + λAh)−1gh

∥
∥
∞ ≤ ‖gh‖∞ , (4.2)

for gh ∈ Xh, λ > 0.
To prove Theorem 4.1, we make use of the nonlinear Chernoff formula, taking a finite element analogue of

the time-discretization scheme of [3]. For the moment, we suppose that f is locally Lipschitz continuous. Let
µ > 0 be the Lipschitz constant of f on [−M,M ], where M = ‖u0h‖∞ for u0h ∈ Xh. We take τ = T/N for
N ∈ N and put tm = mτ for 0 ≤ m ≤ N . Then, we introduce the regularizing parameter sτ > 0 satisfying

lim
τ↓0

sτ = 0 and
µτ

sτ
≤ 1, (4.3)

and take {wτ
h(tm)}N

m=0 ⊂ Xh by

wτ
h(tm+1) − wτ

h(tm)
τ

+

(
1 − e−sτ K−1

h Lh

sτ

)

πhf(wτ
h(tm)) = 0

with wτ
h(0) = u0h, where {e−sK−1

h
Lh}s≥0 denotes the linear semigroup in Xh generated by K−1

h Lh. We extend
wτ

h(tm) to all t ∈ [0, T ] as

wτ
h(t) =

{
wτ

h(0) (t = 0)
wτ

h(tm) (tm−1 < t ≤ tm, 1 ≤ m ≤ N)
. (4.4)

The following lemma is proven similarly to [3].

Lemma 4.1. In addition to the basic assumption on f , suppose that f is locally Lipschitz continuous on R.
Then wτ

h(t) ∈ Xh is well-defined for all t ∈ [0, T ], and moreover

lim
τ↓0

sup
t∈[0,T ]

‖wτ
h(t) − Sh(t)u0h‖1,h = 0 (4.5)

for u0h ∈ Xh.
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Proof. We have the formula
wτ

h(tm) = Fh(τ)mu0h,

where
Fh(τ)φh = φh +

τ

sτ

[
e−sτ K−1

h Lhπhf (φh) − πhf (φh)
]
. (4.6)

Since, by µτ/sτ ≤ 1, the mapping r 
→ r − (τ/sτ )f(r) is non-increasing, we have

−M − τ

sτ
f(−M) ≤ u0h − τ

sτ
πhf(u0h) ≤M − τ

sτ
f(M). (4.7)

On the other hand, (3.8) implies 0 ≤
(
I + λK−1

h Lh

)−1
v±h ≤ maxΩ v

±
h for vh ∈ Xh and λ > 0 with v±h ∈ Xh

defined by (3.13). In particular,

max
Ω

(
1 + λK−1

h Lh

)−1
πh[v]± ≤ max

Ω
πh[v]±

holds for any v ∈ W and λ > 0. Then, the linear semigroup theory guarantees that

max
Ω

e−sK−1
h Lhπh[v]± ≤ max

Ω
πh[v]±

for any s > 0 and v ∈ W . Therefore, noting that f(−M) ≤ πhf(u0h) ≤ f(M), we can deduce

f(−M) ≤ e−sτ K−1
h

Lhπhf(u0h) ≤ f(M). (4.8)

Inequalities (4.7) and (4.8) imply

−M ≤ wτ
h(t1) = u0h +

τ

sτ

[
e−sτ K−1

h Lhπhf(u0h) − πhf(u0h)
]
≤M,

which means ‖Fh(τ)u0h‖∞ ≤M . Therefore, we get by an induction that

‖wτ
h(tm)‖∞ ≤ ‖u0h‖∞ . (4.9)

This allows us to assume that f is Lipschitz continuous with Lipschitz constant µ in R by replacing f(u) by
f(±M) for ±u ≥M . Then, r 
→ f(r) and r 
→ r − (τ/sτ )f(r) are non-decreasing on R, and it follows that

τ

sτ
|f(r) − f(s)| +

∣
∣
∣
∣(r − s) − τ

sτ
(f(r) − f(s))

∣
∣
∣
∣ = |r − s| (4.10)

for r, s ∈ R. On the other hand, from (3.1) and (3.3) applied to f(u) = u, we have
∥
∥
∥e−sK−1

h Lhπh[v]+
∥
∥
∥

1,h
≤ ‖πh[v]+‖1,h

for v ∈ W . This, together with (4.10), gives that

‖Fh(τ)φh − Fh(τ)ψh‖1,h ≤ τ

sτ
‖f (φh) − f (ψh)‖1,h +

∥
∥
∥
∥(φh − ψh) − τ

sτ
(f(φh) − f(ψh))

∥
∥
∥
∥

1,h

= ‖φh − ψh‖1,h (4.11)

for φh, ψh ∈ Xh.
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Now we shall show (4.5). It is a consequence of the Chernoff formula, Theorem 3.1 of [5]. Namely, it suffices
to prove that

lim
τ↓0

[

I +
λ

τ
(I − Fh(τ))]

]−1

φh = (I + λAh)−1
φh (4.12)

for φh ∈ Xh and λ > 0. For this purpose, we put

ψh = (I + λAh)−1
φh, ψτ

h =
[

I +
λ

τ
(I − Fh(τ))

]−1

φh, φτ
h = ψh +

λ

τ
(I − Fh(τ))ψh.

Then, we have

φh = ψτ
h +

λ

τ
(I − Fh(τ))ψτ

h

and

φh − φτ
h =
(

1 +
λ

τ

)

(ψτ
h − ψh) +

λ

τ
(Fh(τ)ψh − Fh(τ)ψτ

h) .

Therefore, inequality (4.11) gives that

(

1 +
λ

τ

)

‖ψτ
h − ψh‖1,h ≤ ‖φh − φτ

h‖1,h +
λ

τ
‖ψτ

h − ψh‖1,h ,

and hence
‖ψτ

h − ψh‖1,h ≤ ‖φh − φτ
h‖1,h . (4.13)

Inequality (4.13) provides an a priori estimate and hence the existence of ψτ
h follows similarly to the proof of

Theorem 3.1.
Finally, by (4.6), we have

φτ
h = ψh − λ

sτ

[
e−sτ K−1

h Lhπhf(ψh) − πhf(ψh)
]

and hence
lim
τ↓0

φτ
h = ψh + λK−1

h Lhπhf (ψh) = ψh + λAhψh = φh.

Thus, we get (4.12) by (4.13) and the proof is complete. �

Now, we give the following.

Proof of Theorem 4.1. If f is locally Lipschitz continuous, then we have (4.5) and (4.9), which implies (4.1) by
dim Xh < +∞.

If this is not the case, we take the Yosida approximation, a family {fλ} converging to f locally uniformly as
λ ↓ 0. Namely, in use of the maximal monotone graph β = f−1, we define the inverse function of fλ as

f−1
λ ≡ βλ =

1
λ

[
1 − (1 + λβ)−1

]
(4.14)

which is non-decreasing, fλ(0) = 0, and locally Lipschitz continuous. Let Aλ
hv = Lhπhfλ(v). Then it generates

the semigroup {Sλ
h(t)}t≥0 in Xh satisfying

∥
∥Sλ

h(t)u0h

∥
∥
∞ ≤ ‖u0h‖∞

for u0h ∈ Xh and t ∈ [0, T ]. Making λ ↓ 0, we obtain (4.1) by dim Xh < +∞. �
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We proceed to the proof of (4.2). For this end, we take the duality map F : Xh → X∗
h, regarding Xh as a

closed subspace of L∞(Ω). Namely, for vh, χh ∈ Xh it holds that

χh ∈ F (vh) ⇐⇒ 〈vh, χh〉 = ‖vh‖2
∞ = ‖χh‖2

∗ ,

where 〈·, ·〉 denotes the pairing between Xh and X∗
h, and ‖ · ‖∗ the operator norm. See Miyadera [29], e.g., for

the existence of such an operator. Then, by making use of (4.1), it holds that
〈(

Sh(τ) − 1
τ

)

vh, χh

〉

=
1
τ
{〈Sh(τ)vh, χh〉 − 〈vh, χh〉}

=
1
τ

{
〈Sh(τ)vh, χh〉 − ‖vh‖2

∞
}

≤ 1
τ
{‖Sh(τ)vh‖∞ − ‖vh‖∞} ‖χh‖∗ ≤ 0

for vh ∈ Xh, τ > 0, and χh ∈ F (vh). Hence, by making τ ↓ 0, we obtain 〈Ahvh, χh〉 ≤ 0 for vh ∈ Xh and
χh ∈ F (vh). The general theory of the duality map, say Corollary 2.7 of [29], guarantees that

‖gh‖∞ ≤ ‖(1 + λAh) gh‖∞

for any gh ∈ Xh and λ > 0. Thus we establish (4.2).

5. Convergence of resolvent

Convergence of semigroup follows from that of resolvent. We assume the following condition concerning the
domain Ω ⊂ R

n:
(D) If n = 3 the Dirichlet problem

−∆w = g in Ω, w = 0 on ∂Ω

admits the elliptic estimate
‖w‖W 2,p(Ω) ≤ Cp ‖g‖p

for p ∈ (1, µ), where µ > n = 3.
As for the triangulation, we suppose

(H3) Inverse inequality. There is a positive constant ν2 independent of h such that

d(σ) ≥ ν2h

for any σ ∈ Th.
This section is devoted to the

Theorem 5.1. If Ω is convex and provided with the property (D) (if n = 3), {Th} satisfies (H1), (H2) and (H3),
and f is strictly increasing, then it holds that

lim
h↓0
∥
∥(I + λA)−1g − (I + λAh)−1πhg

∥
∥
∞ = 0, (5.1)

where g ∈W and λ > 0.

Several remarks are in order.

Remark 5.1. The family of triangulation {Th} satisfying (H2) and (H3) is often called quasi-uniform.
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Remark 5.2. Convexity of Ω ⊂ R
n assures

L−1(L2(Ω)) ⊂ H1
0 (Ω) ∩H2(Ω) ⊂W. (5.2)

In fact, the second inclusion is a consequence of Sobolev’s embedding theorem by n = 1, 2, 3. On the other
hand, the first inclusion follows from the elliptic regularity of the Green operator of L. See [19].

Remark 5.3. Rannacher and Scott [33] showed that if n = 2, Ω is convex, and {Th} satisfies (H2) and (H3),
then the following estimate holds for the Ritz operator Rh defined by (2.4). That is, there is h0 > 0 such that

‖Rhw‖W 1,p(Ω) ≤ C ‖w‖W 1,p(Ω) (5.3)

for any w ∈ H1
0 (Ω) ∩ W 1,p(Ω), 0 < h ≤ h0, and p ∈ [2,∞]. (See also [17] for the proof.) By virtue of

Theorem 7.5.3 of Brenner and Scott [4], on the other hand, the same conclusion follows if n = 3, Ω is provided
with (D), and {Th} satisfies (H2) and (H3).

For later use, it is sufficient for (5.3) to hold with some p > n. It is obvious for n = 1, because we can take
p = 2 then. Namely, assumptions on Ω are reduced to (5.2) and (5.3) with some p > n.

Remark 5.4. Condition (D) is fulfilled, when all edges and all vertices of a polyhedron Ω ⊂ R
3 are small

enough not to produce singularities. See, for a more complete description, Theorems 8.2.1.2 and 8.2.2.8 of
Grisvard [19].

Remark 5.5. Given g ∈W and u = (I + λA)−1g, we have

f(u) = λ−1L−1 (g − u) ∈W

by (1.10) and (5.2). Therefore, if f is strictly increasing, then u ∈W follows.

First, we show the following.

Lemma 5.1. Let λ > 0, g ∈ W , and uh = (I + λAh)−1πhg. Then, under the assumptions of the previous
theorem, the family {uh} is relatively compact as h ↓ 0 in W .

Proof. Recall uh = (I + λAh)−1πhg with λ > 0 and g ∈ W . We shall show that any ε > 0 admits δ > 0 and
h1 > 0 such that

0 < h ≤ h1, x, y ∈ Ω, |x− y| < δ ⇒ |uh(x) − uh(y)| < ε. (5.4)

Then, Ascoli-Arzela’s theorem assures that any
{
uhj

}
with hj ↓ 0 admits a subsequence, uniformly converging

on Ω. Thus, the lemma is proven.
In fact, we have

Lhπhf(uh) =
1
λ
Kh(πhg − uh). (5.5)

Putting φh = λ−1Kh(πhg − uh) ∈ Xh ⊂W , we take w satisfying

−∆w = φh in Ω with w = 0 on ∂Ω.



768 A. MIZUTANI ET AL.

Because φh = Lhπhf(uh) holds, we obtain Rhw = πhf(uh). By virtue of (5.3), (5.2), (3.7), and (4.2), it follows
for p > n that

‖πhf(uh)‖W 1,p ≤ Cp ‖w‖W 1,p(Ω) ≤ C · Cp ‖w‖H2(Ω)

≤ C · Cp · C ‖φh‖2 = λ−1C′
p ‖Kh(πhg − uh)‖2

≤ λ−1C′′
p ‖πhg − uh‖2

≤ λ−1C′′
p |Ω|1/2 ‖πhg − uh‖∞

≤ λ−1C′′
p |Ω|1/2 (‖πhg‖∞ + ‖uh‖∞)

≤ 2λ−1C′′
p |Ω|1/2 ‖g‖∞

for 0 < h ≤ h0. Here and henceforth, |Ω| denotes the n dimensional volume of Ω. Therefore, by Morrey’s
inequality, there is a constant C̃ = C̃(λ, g,Ω, h0) such that

|πhf(uh(x)) − πhf(uh(y))| ≤ C̃ |x− y|α

for 0 < h ≤ h0 and x, y ∈ Ω, where α = 1 − n/p > 0.
Let Bh be the set of nodal points of Th belonging to ∂Ω, and put Ih = Ih ∪Bh. Since πhf(uh(x)) = f(uh(x))

for x ∈ Ih, we have
|f(uh(x1)) − f(uh(x2))| ≤ C̃ |x1 − x2|α (5.6)

for x1, x2 ∈ Ih.
Let σ ∈ Th and V (σ) be the set of vertices of σ. Because uh ∈ Xh, we have x, x ∈ V (σ) such that

uh(x) = max
σ

uh and uh(x) = min
σ
uh.

This implies
max

σ
f(uh) = f(uh(x)) and min

σ
f(uh) = f(uh(x))

because f is non-decreasing. Therefore, if x, y ∈ σ we have by (5.6) that

|f(uh(x)) − f(uh(y))| ≤ f(uh(x)) − f(uh(x)) ≤ C̃ |x− x|α ≤ C̃hα. (5.7)

We shall combine (5.6) and (5.7) in the following way. Namely, given x, y ∈ Ω in |x− y| ≤ h, we take σ1, σ2 ∈ Th

satisfying x ∈ σ1 and y ∈ σ2. We also take x1 ∈ V (σ1) and x2 ∈ V (σ2). Then, we get from those inequalities
that

|f(uh(x)) − f(uh(y))| ≤ |f(uh(x)) − f(uh(x1))|
+ |f(uh(x1)) − f(uh(x2))| + |f(uh(x2)) − f(uh(y))|

≤ C̃hα + C̃ |x1 − x2|α + C̃hα

≤ 2C̃hα + C̃ (|x1 − x| + |x− y| + |y − x2|)α ≤ 5C̃hα.

Finally, f is continuous and strictly increasing, the inverse function f−1 is uniformly continuous on
[−‖g‖∞ , ‖g‖∞]. Because of ‖uh‖∞ ≤ ‖g‖∞, each ε > 0 admits δ1 > 0 such that

|f(uh(x)) − f(uh(y))| < δ1 ⇒ |uh(x) − uh(y)| < ε (5.8)

for x, y ∈ Ω. Those relations (5.8) and (5.8) imply (5.4) and the proof is complete.
We also make use of the following lemma, where Ph denotes the L2 orthogonal projection defined by (2.5).

For the proof, see that of Theorems 1.12 and 5.4 in [17]. We note that those results hold even if Ω is not convex,
or (D) does not hold.
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Lemma 5.2. Suppose (H2) and (H3), and take

q ∈
[

1,min
(

2,
n

n− 1

))

· (5.9)

Then it holds that

‖χh‖W 1,q(Ω) ≤ C ‖Lhχh‖L1(Ω) , (5.10)
∥
∥L−1

h KhPh

∥
∥

L1(Ω),W 1,q(Ω)
≤ C, (5.11)

and
∥
∥L−1

h KhPhv − L−1v
∥
∥

W 1,q(Ω)
= 0, (5.12)

where χh ∈ Xh and v ∈ L1(Ω).

Now we can give the

Proof of Theorem 5.1. Given λ > 0 and g ∈ W , we put gh = πhg and

uh = (1 + λAh)−1
gh. (5.13)

In use of (5.5), (3.7), and (4.2), we get

‖Lhπhf(uh)‖1 = λ−1 ‖Kh(πhg − uh)‖1 ≤ λ−1C ‖πhg − uh‖1

≤ λ−1C |Ω| (‖πhg‖∞ + ‖uh‖∞)

≤ 2λ−1C |Ω| ‖g‖∞ .

Therefore, we have ‖πhf(uh)‖W 1,q ≤ C by (5.10), where q is taken from (5.9).
From this inequality and Lemma 5.1, any hj ↓ 0 admits {h′j} ⊂ {hj}, w ∈ W 1,q(Ω), and u ∈ C0(Ω) satisfying

πhf(uh) → w weakly in W 1,q(Ω)
πhf(uh) → w a.e. in Ω
uh → u uniformly on Ω

as h = h′j ↓ 0.
Here, we show that

w = f(u) a.e. (5.14)

holds by Egorov’s theorem. In fact, given ε > 0, we have a measurable set Ωε ⊂ Ω satisfying |Ω \ Ωε| < ε and
uh → u uniformly on Ωε. This implies πhf(uh) → f(u) uniformly on Ωε, because f(u) is continuous on Ω and

‖πhf(uh) − f(u)‖L∞(Ωε) ≤ 3 ‖f(uh) − f(u)‖L∞(Ωε) + ‖(πh − 1)f(u)‖L∞(Ωε)

follows from
πhf(uh) − f(u) = (πh − I) (f(uh) − f(u)) + (f(uh) − f(u)) + (πh − I)f(u).

Hence we deduce w = f(u) a.e. on Ωε, and therefore (5.14) follows. Thus, we have

πhf(uh) → f(u) weakly in W 1,q(Ω) (5.15)

as h = h′j ↓ 0.
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On the other hand, we have by (5.11) and (5.12) that
∥
∥L−1

h Khuh − L−1u
∥
∥

W 1,q ≤
∥
∥L−1

h KhPh (uh − u)
∥
∥

W 1,q +
∥
∥L−1

h KhPhu− L−1u
∥
∥

W 1,q

≤ C ‖uh − u‖1 +
∥
∥L−1

h KhPhu− L−1u
∥
∥

W 1,q

≤ C |Ω| · ‖uh − u‖∞ +
∥
∥L−1

h KhPhu− L−1u
∥
∥

W 1,q → 0 (5.16)

and similarly, ∥
∥L−1

h Khgh − L−1g
∥
∥

W 1,q → 0 (5.17)

as h = h′j ↓ 0. Writing (5.13) as L−1
h Khuh + λπhf(uh) = L−1

h Khgh, we obtain L−1u+ λf(u) = L−1g by (5.15),
(5.16), and (5.17). This means u = (I + λA)−1 g and the proof is complete. �

6. Convergence of Yosida approximation

Throughout this and the following sections, supposing

u0 ∈W,

we take
u0h = πhu0.

Relation (1.12) is referred to as a convergence of the semigroup. To show this result, we make use of the Yosida
approximation. Since −A is an m-dissipative operator in X = L1(Ω), we can apply the abstract theory. See
Miyadera [29] for the proof of the following facts.

First, the Yosida approximation of A is defined by Aλ = λ−1(I−Jλ), where λ > 0 and Jλ = (I+λA)−1. It is
(2/λ)-Lipschitz continuous in X , because Jλ is a contraction. Furthermore −Aλ is m-dissipative in X . Hence,
it generates a contraction semigroup and, for u0 ∈ X , we have a unique solution uλ ∈ C1([0, T ];X) to

duλ

dt
+Aλuλ = 0 with uλ(0) = u0. (6.1)

The Yosida approximation Ah,λ of the approximate operator Ah is also defined similarly in Xh. We have
Ah,λ = λ−1(I − Jh,λ) with Jh,λ = (I + λAh)−1. We note that Ah,λ has the same properties on Xh equipped
with the norm ‖ · ‖1,h as those for Aλ on X with ‖ · ‖1. It is (2/λ)-Lipschitz continuous and −Ah,λ is m-
dissipative. We have a unique uh,λ ∈ C1([0, T ];Xh) satisfying

duh,λ

dt
+Ah,λuh,λ = 0 with uh,λ(0) = πhu0. (6.2)

This section is devoted to the following.

Lemma 6.1. Suppose that Ω is convex and is provided with the property (D) if n = 3, that {Th} satisfies (H1),
(H2) and (H3), and that f is strictly increasing. Given λ > 0 and u0 ∈ W , let uλ and uh,λ be the solutions
to (6.1) and (6.2), respectively. Then, it holds that

lim
h↓0

sup
t∈[0,T ]

‖uh,λ(t) − uλ(t)‖1 = 0. (6.3)

There is a technical difficulty to prove the above lemma. That is, it is not obvious that uλ(t) ∈W follows from
u0 ∈ W in spite that uλ(t) ∈ L∞(Ω) actually follows from u0 ∈ L∞(Ω). This causes a problem because the
interpolation operator πh works only to continuous functions. To avoid such an issue, we take time discretizations
and derive an analogous result first.
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Taking τ = T/N with N ∈ N, we introduce the backward difference approximation to (6.1):





uτ
λ(tm+1) − uτ

λ(tm)
τ

+Aλu
τ
λ(tm+1) = 0 (0 ≤ m ≤ N)

uτ
λ(0) = u0,

(6.4)

where tm = mτ . It is defined only at a discrete time level tm, and the extension to the continuous time interval
[0, T ] is given by

uτ
λ(t) =

{
uτ

λ(0) (t = 0)
uτ

λ(tm) (tm−1 < t ≤ tm, 1 ≤ m ≤ N).

The backward difference approximation is also taken to (6.2):





uτ
h,λ(tm+1) − uτ

h,λ(tm)
τ

+Ah,λu
τ
h,λ(tm+1) = 0 (0 ≤ m ≤ N)

uτ
h,λ(0) = πhu0

(6.5)

and the extension uτ
h,λ(t) to the continuous time interval is defined similarly.

Remark 6.1. The relation u = (I + τAλ)−1g is equivalent to
(
λ

τ
+ 1
)

u =
λ

τ
g + Jλu (6.6)

and hence (

1 +
λ

τ

)

‖u‖∞ − λ

τ
‖g‖∞ ≤

∥
∥
∥
∥u+

λ

τ
(u− g)

∥
∥
∥
∥
∞

= ‖Jλu‖∞ ≤ ‖u‖∞

follows from (4.2). This implies ‖u‖∞ ≤ ‖g‖∞, that is, L∞ stability of Aλ described as

∥
∥(I + τAλ)−1g

∥
∥
∞ ≤ ‖g‖∞ .

On the other hand, relation (6.6) reads

u = u+
λ

τ
(u− g) + λLf

(

u+
λ

τ
(u− g)

)

and hence Lf
(
u+ λ

τ (u − g)
)
∈ L∞(Ω) follows from u, g ∈ L∞(Ω). This relation implies u ∈W if g ∈ W and f

is strictly increasing, in the similar way as Remark 5.5. In particular, uτ
λ(tm) = (I + τAλ)−mu0 ∈ W follows

from u0 ∈W . On the other hand, it is obvious that

uτ
h,λ(tm) = (I + τAh,λ)−mπhu0 ∈ Xh.

Under those preparations, first we show the following

Lemma 6.2. Let uτ
λ(t) and uτ

h,λ(t) be the solutions to (6.4) and (6.5), respectively, where τ > 0, λ > 0, and
u0 ∈W . Then, under the same assumptions of Lemma 6.1, it holds that

lim
h↓0

sup
t∈[0,T ]

∥
∥uτ

h,λ(t) − uτ
λ(t)
∥
∥

1
= 0. (6.7)
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Proof. By the associative law of operators, we calculate as

uτ
h,λ(tm) − uτ

λ(tm) = (I + τAh,λ)−m πhu0 − (I + τAλ)−m u0

= (I + τAλ)−mπhu0 − (I + τAλ)−m
u0

+
m∑

l=1

[
(I + τAλ)−(m−l)(I + τAh,λ)−l

− (I + τAλ)−(m−l+1)(I + τAh,λ)−(l−1)
]
πhu0. (6.8)

Because (I + τAλ)−1 is a contraction in X , it holds that

∥
∥(I + τAλ)−1v − (I + τAλ)−1v̂

∥
∥

1
≤ ‖v − v̂‖1 (6.9)

for v, v̂ ∈ X . This implies

‖(I + τAλ)mπhu0 − (I + τAλ)mu0‖1 ≤ ‖(πh − 1)u0‖1 .

On the other hand, the L1 norm of the third term of the right-hand side of (6.8) is estimated from above by

m∑

l=1

∥
∥
∥

[
(I + τAλ) (I + τAh,λ)−l − (I + τAh,λ)−(l−1)

]
πhu0

∥
∥
∥

1

=
m∑

l=1

∥
∥
∥[(I + τAλ) − (I + τAh,λ)] (I + τAh,λ)−l

πhu0

∥
∥
∥

1

= τ

m∑

l=1

∥
∥
∥

[
Aλ (1 + τAh,λ)−l −Ah,λ(1 + τAh,λ)−l

]
πhu0

∥
∥
∥

1

≤ τ
m∑

l=1

(I1 + I2) ,

where

I1 =
∥
∥
[
Aλ(I + τAh,λ)−l −Aλ(I + τAλ)−l

]
πhu0

∥
∥

1
, I2 =

∥
∥
[
Aλ(I + τAλ)−l −Ah,λ(I + τAh,λ)−l

]
πhu0

∥
∥

1
.

In use of the (2/λ)-Lipschitz continuity of Aλ, we get

I1 ≤ 2
λ

∥
∥
[
(1 + τAh,λ)−l − (I + τAλ)−l

]
πhu0

∥
∥

1

≤ 2
λ

(∥
∥(I + τAh,λ)−lπhu0 − (I + τAλ)−lu0

∥
∥

1
+
∥
∥(I + τAλ)−lu0 − (1 + τAλ)−lπhu0

∥
∥

1

)
,

which, together with (6.9), leads to

I1 ≤ 2
λ

(∥
∥uτ

h,λ(tl) − uτ
λ(tl)
∥
∥

1
+ ‖(πh − 1)u0‖1

)
.
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To estimate I2, we note that

[
Aλ(I + τAλ)−l −Ah,λ(I + τAh,λ)−l

]
πhu0 = Aλ (I + τAλ)−l πhu0 −Aλ (I + τAλ)−l u0

+
{
Aλ(I + τAλ)−lu0 −Ah,λ (I + τAh,λ)−l

πhu0

}

= Aλ (I + τAλ)−l
πhu0 −Aλ (I + τAλ)−l

u0

+
1
λ

{
(I + τAλ)−l

u0 − (I + τAh,λ)−l
πhu0

}

− 1
λ

{
Jλ (I + τAλ)−l

u0 − Jh,λ (I + τAh,λ)−l
πhu0

}

= Aλ(I + τAλ)−lπhu0 −Aλ (I + τAλ)−l
u0

+
1
λ

{
(I + τAλ)−lu0 − (I + τAh,λ)−lπhu0

}

− 1
λ

[Jλ − Jh,λπh] (I + τAλ)−lu0

− 1
λ

{
Jh,λπh(1 + τAλ)−lu0 − Jh,λ(I + τAh,λ)−lπhu0

}
.

We have
‖ Aλ(I + τAλ)−lπhu0 −Aλ (I + τAλ)−l

u0‖1 ≤ 2
λ
‖(πh − 1)u0‖1

as before. Moreover we obtain by (3.5)
∥
∥
∥
∥

1
λ

{
Jh,λπh(1 + τAλ)−lu0 − Jh,λ(I + τAh,λ)−lπhu0

}
∥
∥
∥
∥

1

≤ C

λ
‖πhu

τ
λ(tl) − uτ

h,λ(tl)‖1

because Jh,λ is a contraction in Xh with respect to ‖ · ‖1,h. Those relations yield

I2 ≤ C

λ

(
‖(πh − 1)u0‖1 +

∥
∥uτ

h,λ(tl) − uτ
λ(tl)
∥
∥

1
+
∥
∥πhu

τ
λ(tl) − uτ

h,λ(tl)
∥
∥

1
+ ‖(Jλ − Jh,λπh)uτ

λ(tl)‖1

)
.

We can summarise the above relations as

∥
∥uτ

h,λ(tm) − uτ
λ(tm)

∥
∥

1
≤ Cτ

λ

m∑

l=1

∥
∥uτ

h,λ(tl) − uτ
λ(tl)
∥
∥

1
+ C

(

1 +
t

λ

)

‖(πh − 1)u0‖∞

+
Cτ

λ

m∑

l=1

‖(πh − 1)uτ
λ(tl)‖1 +

τ

λ

m∑

l=1

‖(Jλ − Jh,λπh)uτ
λ(tl)‖1 .

Now applying the discrete Gronwall’s lemma, we obtain

sup
t∈[0,T ]

∥
∥uτ

h,λ(t) − uτ
λ(t)
∥
∥

1
≤ exp(CT/λ)

[

C

(

1 +
T

λ

)

‖(πh − 1)u0‖∞

+
Cτ

λ

N∑

l=1

‖(πh − 1)uτ
λ(tl)‖1 +

τ

λ

N∑

l=1

‖(Jλ − Jh,λπh)uτ
λ(tl)‖1

]

.

As is noted, u0 ∈ W implies uτ
λ(tl) ∈ W. Therefore, the right-hand side tends to 0 as h ↓ 0 by (5.1), and the

proof is complete. �
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Now we are able to state the

Proof of Lemma 6.1. Since the semigroup generated by Aλ is a contraction on X , we have ‖uλ(t)‖1 ≤ ‖u0‖1

and hence

‖Aλuλ(t) −Aλuλ(s)‖1 ≤ 2
λ
‖uλ(t) − uλ(s)‖1 ≤ 2

λ

∣
∣
∣
∣

∫ t

s

‖Aλuλ(s)‖1 ds
∣
∣
∣
∣ ≤

4
λ2

|t− s| ‖u0‖1 . (6.10)

We shall show that

sup
t∈[0,T ]

‖uτ
λ(t) − uλ(t)‖1 ≤ 2Tτ

λ2
‖u0‖1 (6.11)

holds. In fact, we have

uτ
λ(tm+1) − uτ

λ(tm) + τAλu
τ
λ(tm+1) = 0

and

uλ(tm+1) − uλ(tm) +
∫ tm+1

tm

Aλuλ(s) ds = 0

so that the error function eτ (tm) = uτ
λ(tm) − uλ(tm) satisfies

(I + τAλ)uτ
λ(tm+1) − (I + τAλ)uλ(tm+1) = eτ (tm) +

∫ tm+1

tm

[Aλuλ(s) −Aλuλ(tm+1)] ds.

This, together with (6.9), implies

‖eτ (tm+1)‖1 ≤ ‖(1 + τAλ)uτ
λ(tm+1) − (1 + τAλ)uλ(tm+1)‖1

≤ ‖eτ (tm)‖1 +
∫ tm+1

tm

‖Aλuλ(tm+1) −Aλuλ(s)‖1 ds

and hence

‖eτ (t)‖1 ≤
m∑

l=1

∫ tl

tl−1

‖Aλuλ(tl) −Aλuλ(s)‖1 ds.

In use of (6.10) we obtain

‖eτ (tm)‖1 ≤
m∑

l=1

4
λ2

· τ
2

2
‖u0‖1 =

2tmτ
λ2

‖u0‖1 ,

which yields (6.11).
Similarly, we have

sup
t∈[0,T ]

∥
∥uτ

h,λ(t) − uh,λ(t)
∥
∥

1,h
≤ 2Tτ

λ2
‖πhu0‖1,h .

Therefore, it follows from (3.5) that

sup
t∈[0,T ]

‖uh,λ(t) − uλ(t)‖1 ≤ CTτ

λ2
‖u0‖∞ + sup

t∈[0,T ]

∥
∥uτ

h,λ(t) − uτ
λ(t)
∥
∥

1
.

Now, send h ↓ 0 and then τ ↓ 0. Then, relation (6.3) follows from (6.7). �
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7. Convergence of semigroup

We complete the proof of (1.12), one of the main result of the present paper.

Theorem 7.1. If Ω is convex and is provided with (D) (in the case of n = 3), {Th} satisfies (H1), (H2),
and (H3), and f is strictly increasing, then it holds that

lim
h↓0

sup
t∈[0,T ]

‖Sh(t)πhu0 − S(t)u0‖1 = 0, (7.1)

where u0 ∈ W .

We begin with the following.

Lemma 7.1. We have ∥
∥K−1

h LhπhL
−1
∥
∥

L2(Ω),L2(Ω)
≤ C. (7.2)

Proof. LetRh and Ph be the Ritz and the orthogonal projection operators defined as (2.4) and (2.5), respectively.
Then it holds that L−1

h Ph = RhL
−1 and hence

LhπhL
−1 = Lh (πh −Rh)L−1 + Ph = LhRh (πh − 1)L−1 + Ph. (7.3)

We also have
‖∇Rhv‖2 ≤ C ‖∇v‖2 (7.4)

for v ∈ H1
0 (Ω) and

‖(πh − 1) v‖2 + h ‖∇ (πh − 1) v‖2 ≤ Ch2 ‖v‖H2(Ω) (7.5)

for v ∈ H1
0 (Ω) ∩H2(Ω). Furthermore, (H3) leads to

‖∇χh‖2 ≤ Ch−1 ‖χh‖2

for χh ∈ Xh. See [17], Sect. 1.4 or [7] for those fundamental facts.
From the last fact, we have

|(Lhχh, ψh)| = |(∇χh,∇ψh)| ≤ Ch−1 ‖∇χh‖2 ‖ψh‖2

for χh, ψh ∈ Xh, and hence
‖Lhχh‖2 ≤ Ch−1 ‖∇χh‖2

for χh ∈ Xh. This, together with (7.4) and (7.5), implies that
∥
∥LhRh (πh − 1)L−1v

∥
∥

2
≤ Ch−1

∥
∥∇Rh (πh − 1)L−1v

∥
∥

2

≤ Ch−1
∥
∥∇ (πh − 1)L−1v

∥
∥

2

≤ C
∥
∥L−1v

∥
∥

H2(Ω)

≤ C ‖v‖2

for v ∈ L2(Ω). As a result, by (7.3), we obtain

‖LhπhL
−1v‖2 ≤ C‖v‖2 + ‖v‖2

for v ∈ L2(Ω). Therefore, (7.2) follows from
∥
∥K−1

h

∥
∥

L2(Ω),L2(Ω)
≤ C. �
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Now we can state the

Proof of Theorem 7.1. It is made of two steps. Let u0 ∈W .

Step 1. We show that the theorem is true under the additional assumption

f (u0) ∈ H2(Ω). (7.6)

In doing so, for λ > 0, we introduce solutions uλ(t) and uh,λ(t) of (6.1) and (6.2), respectively, and show

sup
t∈[0,T ]

‖uλ(t) − u(t)‖1 ≤ 3(
√
λT + λ) ‖Lf(u0)‖1 , (7.7)

sup
0≤t≤T

‖uh,λ(t) − uh(t)‖1,h ≤ 3C(
√
λT + λ) ‖Lf(u0)‖2 . (7.8)

In fact, a formula below (4.5) of [29] assures

∥
∥
∥S(t)u0 − J

[t/λ]
λ u0

∥
∥
∥

1
≤ 2(λ2 + λt)1/2 ‖Au0‖1 ≤ 2(

√
λt+ λ) ‖Au0‖1

for Jλ = (I + λA)−1. Similarly a formula above (3.49) of [29] reads as

∥
∥
∥Sλ(t)u0 − J

[t/λ]
λ u0

∥
∥
∥

1
≤ (

√
λt+ λ) ‖Au0‖1 .

Therefore, for u0 ∈ D(A),

‖S(t)u0 − Sλ(t)u0‖1 ≤ 3(
√
λt+ λ) ‖Au0‖1 ,

which implies (7.7).
Similarly, we obtain

‖uh,λ(t) − uh(t)‖1,h ≤ 3(
√
λt+ λ) ‖Ahπhu0‖1,h . (7.9)

Here, we have by (7.2) that

‖Ahπhu0‖1,h ≤
∥
∥K−1

h Lhπhf (u0)
∥
∥

1,h

≤ C
∥
∥K−1

h LhπhL
−1 · Lf (u0)

∥
∥

2

≤ C ‖Lf (u0)‖2

from the assumption. Combining this with (7.9), we get (7.8).
In use of (7.7) and (7.8), we have

sup
t∈[0,T ]

‖uh(t) − u(t)‖1 ≤ sup
0≤t≤T

‖uh(t) − uh,λ(t)‖1 + sup
0≤t≤T

‖uh,λ(t) − uλ(t)‖1 + sup
t∈[0,T ]

‖uλ(t) − u(t)‖1

≤ sup
t∈[0,T ]

‖uh,λ(t) − uλ(t)‖1 + C(
√
λT + λ) ‖Lf (u0)‖2 .

Hence by (6.3)

lim
h↓0

sup
t∈[0,T ]

‖uh(t) − u(t)‖1 ≤ C
(√

λT + λ
)
‖Lf(u0)‖2 . (7.10)

Then (7.1) follows by sending λ ↓ 0.
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Step 2. We deal with general u0 ∈ W . For this purpose, we recall that f is strictly increasing and set v0 = f(u0).
We take a sequence {vj}∞j=1 ⊂ H2(Ω) ∩W satisfying ‖vj − v0‖∞ → 0 as j → ∞. Then, uj = f−1(vj) satisfies
that

f (uj) ∈ H2(Ω) ∩W and lim
j→∞

‖uj − u0‖∞ = 0,

and, as saw in Step 1, we know

lim
h↓0

sup
t∈[0,T ]

‖Sh(t)πhuj − S(t)uj‖1 = 0 (j = 1, 2, . . .).

On the other hand, by (1.9), (3.4) and (3.5), we have

‖S(t)u0 − Sh(t)πhu0‖1 ≤ ‖S(t)u0 − S(t)uj‖1 + ‖S(t)uj − Sh(t)πhuj‖1 + ‖Sh(t)πhuj − Sh(t)πhu0‖1

≤ ‖u0 − uj‖1 + ‖S(t)uj − Sh(t)πhuj‖1 + C ‖πhuj − πhu0‖1

≤ (|Ω| + C) ‖uj − u0‖∞ + ‖S(t)uj − Sh(t)πhuj‖1 .

This leads to

sup
t∈[0,T ]

‖Sh(t)πhu0 − S(t)u0‖1 ≤ (|Ω| + C) ‖uj − u0‖∞ + sup
0≤t≤T

‖Sh(t)πhuj − S(t)uj‖1 .

Making h ↓ 0 and then j → ∞, we obtain (7.1) and the proof is complete. �

We describe some observations on a generalization of Theorem 7.1.
Let λ > 0 and βλ be the Yosida regularization of β = f−1. Putting fλ = β−1

λ , we introduce the semigroup
{Sλ

h(t)} generated by Aλ
hv = Lhπhfλ(v) (v ∈W ).

Proposition 7.1. Suppose that the same assumptions on Ω and {Th} as that of Theorem 7.1 hold. Let u0 ∈ W
and suppose that there is {uj}∞j=1 ⊂W such that

f(uj) ∈ H2(Ω) and lim
j→∞

‖uj − u0‖∞ = 0. (7.11)

Furthermore, assume that there is a positive function εT (λ) of λ > 0 such that εT (λ) → 0 as λ ↓ 0 which is
independent of h and that

sup
t∈[0,T ]

‖Sh(t)πhv − Sλ
h(t)πhv‖1 ≤ εT (λ)‖Lf(v)‖2 (7.12)

for v ∈ W with f(v) ∈ H2(Ω). (We note that (7.12) is comparable to (7.8).) Then we have (7.1), even if f is
not strictly increasing.

Remark 7.1. Unfortunately, it is not obvious that εT (λ) in (7.12) really exists or not. In [11], Cockburn and
Gripenberg considered the case of Ω = R

n and derived an explicit continuous-dependence on f of solutions
to (1.4). However, the case of a bounded Ω is open, and it seems to be difficult to derive a corresponding
estimate for solutions to the discrete problem (2.3). It is an important and interesting open problem.

Before stating the proof of Proposition 7.1, we give a class (NI) of nonlineality f and inital data u0 which
ensures the condition (7.11). Actually, (NI) contains porous media, fast diffusion and Stefan nonlinearlities.

(NI) For f ∈ C(R) with f(0) = 0 and u0 ∈ W , the following conditions are satisfied:
(i) There are {a±i }m

i=1 with · · · < a−i < a+
i < a−i+1 < a+

i+1 < · · · and {bi}m
i=1 such that f(s) = bi for all

s ∈ Qi = (a−i , a
+
i ) for i = 1, . . . ,m;

(ii) f is strictly increasing on R\Q, where Q =
m⋃

i=1

Qi;
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(iii) lim
s→a±

i ±0

f(a±i ) − f(s)
a±i − s

<∞ for i = 1, . . . ,m.

(iv) Every ∂Di\∂Ω is a finite number of hypersurfaces of class C1, where

Di = Di(u0) =
{
x ∈ Ω| a+

i−1 < u0(x) < a−i
}
,

for i = 1, . . . ,m + 1 with a+
−1 = −∞ and a−m+1 = ∞. (We note that ∂Di ∩ ∂Ω = ∅ if a+

i−1 �= 0 and
a−i �= 0.)

Then we have the

Lemma 7.2. Let f ∈ C(R) with f(0) = 0 and u0 ∈ W . If (NI) is satisfied, then there is {uj}∞j=1 ⊂ W

satisfying (7.11).

Proof. By (iv), we can take {uj}∞j=1 ⊂W such that

f(uj)|Di
∈ C1(Di) ∩H2(Di) and ‖uj − u0‖∞ → 0 as j → ∞.

Because of f(uj) = bi on {x ∈ Ω| a−i < u0(x) < a+
i }, we have f(uj) ∈ H2(Ω). �

We finally state the

Proof of Proposition 7.1. Let λ > 0. We introduce the semigroup {Sλ(t)} generated by Aλv = Lfλ(v) (v ∈
D(Aλ)). In [2], Bénilan et al. proved

lim
λ→0

sup
t∈[0,T ]

‖S(t)u0 − Sλ(t)u0‖1 = 0 (7.13)

for all u0 ∈ X .
Since fλ is strictly increasing with fλ(0) = 0, we can apply Theorem 7.1 and obtain

lim
h→0

sup
0≤t≤T

‖Sλ(t)uj − Sλ
h(t)πhuj‖1 = 0, (λ > 0, j = 1, 2, . . .). (7.14)

We observe that

sup
t∈[0,T ]

‖Sh(t)πhuj − S(t)uj‖1 ≤ sup
t∈[0,T ]

∥
∥Sh(t)πhuj − Sλ

h(t)πhuj

∥
∥

1

+ sup
t∈[0,T ]

∥
∥Sλ

h (t)πhuj − Sλ(t)uj

∥
∥

1
+ sup

t∈[0,T ]

∥
∥Sλ(t)uj − S(t)uj

∥
∥

1
.

This, together with (7.12) and (7.14), implies

lim
h→0

sup
t∈[0,T ]

‖Sh(t)πhuj − S(t)uj‖1 ≤ εT (λ)‖Lf(uj)‖2 + sup
t∈[0,T ]

∥
∥Sλ(t)uj − S(t)uj

∥
∥

1
.

Hence, from (7.13), we obtain

lim
h→0

sup
t∈[0,T ]

‖Sh(t)πhuj − S(t)uj‖1 = 0, (j = 1, 2, . . .)

by sending λ ↓ 0.
Then, in virtue of (7.11), we can repeat the argument of Step 2 in the proof of Theorem7.1 and establish (7.1). �
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Table 1. Relative L1 error E1(N) and convergence rate αN .

γ = 1.5 γ = 3.0 γ = 6.0
N E1 αN E1 αN E1 αN

8 0.0529 0.0320 0.1780
16 0.0153 1.78 0.0147 1.12 0.1542 0.21
32 0.0041 1.90 0.0074 0.99 0.1290 0.26
64 0.0010 1.99 0.0025 1.57 0.1090 0.24

8. Numerical examples

We assume that Ω is a unit square: Ω = {0 < x1 < 1, 0 < x2 < 1}. We take Th as a uniform mesh composed
of 2N2 equal right triangles for N ∈ N; each sides of Ω is divided into N intervals of same length, and then
each small-square is decomposed into two equal triangles by a diagonal. Put h = 1/N . The time discretization
makes use of the forward difference formula. Namely we find {uτ

h(tm)}Ñ
m=0 ⊂ Xh satisfying






uτ
h(tm+1) − uτ

h(tm)
τ

+K−1
h Lhf (uτ

h(tm)) = 0 (0 ≤ m ≤ Ñ)

uτ
h(0) = πhu0,

where Ñ ∈ N and τ = T/Ñ . We choose a sufficiently small τ relative to h, (specifically we take τ = h2/100,)
since we are interested in the effect of the space discretization on the accuracy of the scheme.

We recall that Barenblatt’s self-similar solution [18]

u∗(x1, x2, t) = (t+ T0)−1/γ

[

a2 − (γ − 1){(x1 − 1/2)2 + (x2 − 1/2)2}
4γ2(t+ T0)1/γ

] 1
γ−1

+

solves ut − ∆uγ = 0 and u|∂Ω = 0 with the initial data u0(x1, x2) = u∗(x1, x2, 0) in a generalised sense. Here
a > 0, T0 > 0, and γ > 1 are given constants. We compute the discrete relative L1 error:

E1(N) =

(
∑

a∈Ih

|Ua|
)−1
∑

a∈Ih

|Ua − u∗(a, T )| ,

where we have put uτ
h(T ) =

∑
Uawa. We may suppose that the effect of the time discretization is relatively

negligible because of τ = h2/100, and assume that E1(N) = Chα = CN−α.
We estimate the rate of convergence α by

α = αN =
logE1(N/2)− logE1(N)

log 2
·

In Table 1, we compare the result taking γ = 3/2, 3, and 6. These results show that the L1 convergence really
takes place. The shape of f affects the accuracy of the scheme. Especially, if the shape of f is like to a linear
function, our scheme has a high accuracy. We also observe that the rate of convergence continuity depends
on f .
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