
ESAIM: M2AN ESAIM: Mathematical Modelling and Numerical Analysis
Vol. 39, No 4, 2005, pp. 797–826

DOI: 10.1051/m2an:2005035

ANALYSIS OF A PROTOTYPICAL MULTISCALE METHOD COUPLING
ATOMISTIC AND CONTINUUM MECHANICS
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Abstract. In order to describe a solid which deforms smoothly in some region, but non smoothly in
some other region, many multiscale methods have recently been proposed. They aim at coupling an
atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide
here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general
case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-
Jones case. In the latter situation, we prove that the discretization needs to account in an adequate
way for the coexistence of a discrete model and a continuous one. Otherwise, spurious discretization
effects may appear. We provide a numerical analysis of the approach.
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1. Introduction

Traditionally, mechanics makes use of a continuum description of matter [9, 15]. However, when nanoscale
phenomena arise, the atomistic nature of material cannot be ignored: for instance, to understand how dislo-
cations appear and propagate under a nanoindenter, one has to describe the deformed atomistic lattice. The
situation is the same when the material is subjected to singular body forces, or is likely to break because of
extensional forces. In all these examples, an appropriate model to describe the localized phenomena is the atom-
istic model, in which the solid is considered as a set of discrete particles interacting through given interatomic
potentials.

Nevertheless, the size of the materials that can be simulated by only resorting to an atomistic description is
very small in comparison with the size of the materials one is interested in. Indeed, for some phenomena we have
mentioned above, it is not possible to make accurate computations by just considering a small piece of material,
because large scale or bulk effects have to be accounted for. For instance, crack propagation depends on the far
stress field (so there is an influence of the coarse scale onto the fine scale), and, at the same time, when crack
propagates, it creates stress waves that modify the far stress field (so there is also a feedback influence of the
fine scale onto the coarse scale).
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Fortunately, in the situations we have considered above, the deformation is smooth in the major part of the
solid. Hence, a natural idea is to try to take advantage of both models, the continuous one and the atomistic
one, by coupling them. The atomistic model is used in the zone where the deformation is expected to be non
smooth, while the continuum description is used everywhere else. Many methods following this paradigm have
been proposed and employed on realistic and complex situations: see [18,25,26] for some variational approaches
(based on global minimizers), and [7] for time-dependent methods based on hybrid Hamiltonians. Notice that
alternative ways, consisting in the approximation of the variational problems with a Γ-limit approach [5], or
considering local minimizers instead of global ones [11], have also been considered.

We consider here a prototypical example of a variational method that couples a fine scale model in one zone
with a coarse-grained model in another zone. This example is a toy-model for more advanced methods such
as the Quasi-Continuum Method [12, 16, 18–22]. At least from the theoretical standpoint, a first key issue in
the method is the consistency of the two models. Indeed, if the solution to be determined is smooth, then the
solution given by the coarse-grained model should be the same as that given by the fine scale model, within an
error controlled by the discretization parameters. A second issue is the adaptivity in the determination of the
zones: we need to know where to use one model rather than the other one. Several multiscale methods that we
have mentioned above include such an adaptation procedure, that seems however to lack from a rigorous basis.

The present work aims at giving such a theoretical basis for the micro-macro variational approach under
study. The setting is one-dimensional. It is a clear limitation of the work. We have not been able to extend our
analysis to the three-dimensional mechanically relevant case and it is not clear to us, even at the formal level,
which of the results contained here may survive in the three-dimensional setting. We however hope that the
present study will contribute to a better understanding of the fundamental issues.

1.1. The atomistic and continuum problems

Let us consider a one dimensional material, occupying in the reference configuration the domain Ω = (0, L).
Let u be the deformation, i.e. the map defined on Ω such that u(x) is the position, in the current configuration,
of a material point that is at x in the reference configuration. This material is subjected to body forces f and
to Dirichlet boundary conditions u(0) = 0 and u(L) = a > 0.

The solid will be described at two different space scales:
• the fine scale, at which the atomistic nature of the matter is taken into account;
• the coarse scale, which corresponds to a continuum description.

At the fine scale, the solid is considered as a set of N+1 atoms, whose current positions are (ui)Ni=0. The energy
of the system is modelled by nearest-neighbour interactions:

Eµ(u0, . . . , uN) = h
N−1∑

i=0

W

(
ui+1 − ui

h

)
− h

N∑

i=0

ui f(i h). (1)

In this equation, W is the interaction potential between atoms and h is the atomic lattice parameter, which is
linked to the number of atoms and the size of the solid by L = Nh. The potential W is normalized so that
its minimum is attained at 1. The atomistic equilibrium configuration, denoted by uµ = (u0

µ, . . . , u
N
µ ), is the

solution1 of the variational problem

Iµ = inf
{
Eµ(u0, . . . , uN), (u0, . . . , uN) ∈ Xµ(a)

}
, (2)

where the minimizing space is

Xµ(a) =
{
(u0, . . . , uN), u0 = 0, uN = a, ∀i, ui+1 > ui

}
. (3)

1 Existence and uniqueness of solutions will be discussed in the next sections.
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Recall that a deformation u of the solid is mechanically admissible only if it is an injective function. As we work
in a one-dimensional setting and impose uN = a > 0 = u0, a necessary and sufficient condition for injectivity is
that u is increasing, thus the constraint ui+1 > ui in (3).

On the other hand, at the coarse scale, the solid deformation is described by a map u : Ω → R chosen in the
variational space

XM (a) =
{
u ∈ H1(Ω), u(0) = 0, u(L) = a, u is increasing on Ω

}
. (4)

The energy of the system reads

EM (u) =
∫

Ω

W (u′(x)) dx −
∫

Ω

f(x)u(x) dx. (5)

We will give below (see Sect. 1.4.1) more precise assumptions to ensure that the energy is well-defined as soon
as u ∈ H1(Ω). The equilibrium configuration, denoted by uM (x), is a solution of the variational problem

IM = inf {EM (u), u ∈ XM (a)} . (6)

Remark 1.1. In a two- or three-dimensional setting, some sufficient conditions for the injectivity of a map are
given in [9], pp. 222–231.

The question we address in the present work concerns the approximation of problem (2). Indeed, for any
deformation u of the material, the energy is given by (1), but the number of atoms to be considered in the sum,
typically of the order 1023 in a macroscopic sample of material, makes the computation of (1) untractable in
practice.

When the deformation u is regular and fixed independently of h, it has been shown in [4] that the atomistic
energy Eµ(u(0), u(h), . . . , u(Nh)) converges to EM (u) when the atomic lattice parameter h goes to 0 and the
number of atoms goes to infinity such that Nh remains constant, Nh = L. This result ensures the above
mentioned consistency of the two descriptions, (1) on the one hand and (5) on the other hand, and also provides
with an economical way to compute the sum (1), namely by approximating the integral (5). It remains that,
when deformations that are expected to play a role are not regular enough to allow for the above convergence,
the only way to compute the energy seems to be resorting to the atomistic expression (1). An economical
approach is the coupled approach we consider in the present work.

1.2. A coupled problem

Let ΩM ⊂ Ω be an open subset of the solid in which the deformation u is supposed to be smooth enough so
that the atomistic expression of the energy may be replaced by the continuum one. Throughout this article, we
suppose that ΩM satisfies the following property:

Property 1.1. For simplicity, we suppose

ΩM =
J⋃

j=1

(ajh, bjh) ⊂ Ω, (7)

with aj , bj ∈ {0, . . . , N}, aj < bj < aj+1, and where the number J of connected components of ΩM is bounded
by Ncc, where Ncc is a given fixed parameter (see Fig. 1).
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ajh bjh
aj+1h

Continuum mechanics Atomistic model

Figure 1. Partition of Ω into a regular zone ΩM where the continuum mechanics model is used, and
a singular zone Ωµ where the atomistic model is used. By definition, we have ajh ∈ Ωµ and bjh ∈ Ωµ.

Definition 1.1. Let us denote by

Nµ =
{
i ∈ {0, . . . , N − 1}; ih ∈ Ωµ and ih+ h ∈ Ωµ

}
(8)

the set of indices i such that both atoms i and i+ 1 are contained in Ωµ.

With (7), we can see that Nµ = ∪J−1
j=1 {bj, . . . , aj+1 − 1}.

For any partition Ω = ΩM ∪ Ωµ, the solid deformation can be described by an element of the hybrid
(atomistic/continuum) space

Xc(a,ΩM ) =






u; u|ΩM
∈ XW (ΩM ), u|Ωµ

is the discrete set of variables (ui)ih∈Ωµ ,

u
(
(ajh)+

)
= uaj , u

(
(bjh)−

)
= ubj ,

u is increasing on Ω





, (9)

where XW (ΩM ) is some functional space that depends on the potential W and that will be made precise below.
We have written down the boundary conditions supposing that 0 and L are in ΩM (otherwise, adequate and
simple modifications are in order). The last line in (9) is equivalent to the injectivity of u.

A natural idea is to first fix ΩM , next, for each u ∈ Xc(a,ΩM ), to define the energy of the deformed system by

Ec(u) = h
∑

i∈Nµ

W

(
ui+1 − ui

h

)
− h

∑

i,ih∈Ωµ

uif(ih) +
∫

ΩM

W (u′) − uf, (10)

and finally to state a minimization problem at ΩM fixed,

Ic(ΩM ) = inf {Ec(u), u ∈ Xc(a,ΩM )} . (11)

The point is unfortunately that ΩM is difficult, or even impossible, to determine in advance. In fact, it depends
on the minimizer uµ of (2) as it should, vaguely stated, consist of all the zones of regularity of uµ (in order
to allow for both an economical and correct evaluation of the energy), and uµ, which is the reference (ideal)
solution, cannot be computed. In the case of a convex interaction potential W , it is possible to explicitly
determine the zone ΩM of regularity of uµ. Consequently:

(1) when the atomistic solution uµ is smooth in some region of Ω, the set ΩM is a domain embedding this
region;

(2) the minimization problem (11) is theoretically well posed;
(3) an algorithm can be proposed to compute a solution of (11);
(4) the error between the computed solution and the reference solution uµ may be estimated.

Section 1.4 briefly presents the main mathematical statements corresponding to the above claims. On the other
hand, we deal in Section 2 with a nonconvex interaction potential W , which is the mechanically relevant case.
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The examination is performed on a special case of a nonconvex elastic energy density W , that is the Lennard-
Jones case. Then, the minimization problem set with energy (10) is ill-posed. Both the continuum model
and the atomistic model are unable to sustain traction (see Sects. 2.1 and 2.2), and a fracture appears for
any extensional load. With the coupled model, a spurious effect appears in the energy functional (10): the
comparison of the energy of a fracture in the zone Ωµ with that of the same fracture in the zone ΩM shows
that the energetically most favorable situation is the latter (see Sect. 2.3). This rules out the possibility of ever
self-consistently adapting the partition to the singularities of the deformation and leads us to a modification of
the coupled energy: instead of defining it by (10), we define it by

Emod(u) = h
∑

i∈Nµ

W

(
ui+1 − ui

h

)
− h

∑

i,ih∈Ωµ

uif(ih) +
∫

ΩM

Wh(u′) − uf , (12)

with

Wh(r) = W (r) +
√
h τ(r − r0).

In the latter relation, r0 is some threshold parameter (to be made precise below) and the function τ , which
does not depend on h, is a regularization of the function t ∈ R �→ t+ = max(0, t). The minimization problem
associated to the energy (12) reads

Imod(ΩM ) = inf {Emod(u), u ∈ Xc(a,ΩM )} . (13)

This modification remedies to the above obstruction, and is also consistent both with the atomistic model
energy (1) and the continuum mechanics model energy (5). Again, as in the convex case, ΩM should consist of
all the zones of regularity of the reference solution uµ. In Sections 2.4 and 2.5, we show that this set can be
approximated by a set (again denoted by ΩM ) that can be computed. We then show that the solution of the
so-obtained problem (13) is a converging approximation of the reference solution uµ, and that, when the solid
is subjected to an extensional load, the atomistic domain Ωµ = Ω \ ΩM contains the fracture.

1.3. Outline of the article

We wish to point out that the main purpose of the present work is to study the coupled (atomistic/continuum)
models (11) and (13), in the nonconvex case, because this is the mechanically relevant case and the most
interesting case from numerical analysis standpoint. But before going to this, we need to lay some groundwork.
First, for the sake of comparison, we study in Section 1.4 the continuum, the atomistic and the coupled problems
in the convex case. Next, in the nonconvex case, we need to study the continuum and the atomistic problems
separately (this is performed in Sects. 2.1 and 2.2).

All these problems of Sections 1.4, 2.1, 2.2 have been addressed before in the literature (see [9,13,15,23,24]).
But in the absence of a systematic mathematical study and with a view to self-consistency, we have chosen
to still present them in the following way. For the case of a convex energy (Sect. 1.4), since the analysis is
quite simple, the main results will be stated without any proofs. The detailed arguments and some additional
comments can be found in [3, 14]. In the nonconvex case, for the continuum and atomistic problems, we again
state the main results, but postpone the proofs until appendices A, B and C. The reader, either familiar with
such studies, or not mathematically oriented, may directly proceed to the heart of the matter, namely Sections
2.3, 2.4 and 2.5, where the most original results are discussed.

We collect now the main results of our work. At this stage, they are somewhat vaguely stated, but they will
be made precise below.

(1) The atomistic problem (2) and the continuum problem (6) are well posed in the convex case (see
Lem. 1.1) and in the Lennard-Jones case (see Thms. 2.1 and 2.3).
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(2) In the convex case,
• for any ΩM ⊂ Ω, the coupled problem (11) is well posed (see Lem. 1.1);
• it is possible to define ΩM in such a way that the solution of the coupled problem (11) is a converging

approximation of the solution of the atomistic problem (2) (see Def. 1.3 and Thm. 1.1).
(3) In the Lennard-Jones case,

• for any ΩM ⊂ Ω, the coupled problem (13) is well posed (see Thm. 2.5) and if a fracture appears,
it is located in Ωµ;

• it is possible to define ΩM in such a way that the solution of the modified coupled problem (13) is a
converging approximation of the solution of the atomistic problem (2) (see Thm. 2.6 and Def. 2.1).

1.4. The case of a convex elastic energy density W

Let us first make precise the space Xc(a,ΩM ) defined in (9). In this section, we set XW (ΩM ) = H1(ΩM ).

1.4.1. Properties of the variational problems

In this subsection, we provide conditions ensuring that the variational problems we consider are well-posed.
Let us begin with a definition

Definition 1.2. We suppose that the body forces f satisfy

f ∈ C0
(
Ω
)
. (14)

Let us define FM and Fµ by

∀x ∈ Ω, FM (x) =
∫ x

0

f(s) ds, (15)

F 0
µ = 0 and ∀i ∈ {1, . . . , N}, F iµ = h

i∑

j=1

f(jh). (16)

For any ΩM , we also define a function Fc as follows: on ΩM , we set, for all x ∈ (ajh, bjh), j ∈ {1, . . . , J},

Fc(x) =
∫

ΩM∩(0,x)

f(s) ds+ h

j−1∑

k=1

(f(bkh) + f(bkh+ h) + . . .+ f(ak+1h)) , (17)

whereas, on Ωµ, for all j ∈ {1, . . . , J − 1}, we set, for all i ∈ {bj, . . . , aj+1},

F ic =
∫

ΩM∩(0,ih)

f(s) ds+ h

j−1∑

k=1

(f(bkh) + . . .+ f(ak+1h)) + h

i∑

q=bj

f(qh). (18)

We note that Fc is continuous on ΩM , continuous at ajh, but not continuous at bjh. In the sequel of this
section, we assume that the elastic energy density W satisfies






W ∈ C2(R),
∃α > 0, ∀x ∈ R, α ≤W ′′(x),
∃β > 0, ∀x ∈ R, |W ′(x)| ≤ β |x− 1| .

(19)
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Although W is defined on R, we need in fact to know W (x) only for x > 0, due to the injectivity constraint
that is included in the variational spaces (3), (4) and (9). Let us set

a∗M =
∫

Ω

(W ′)−1
(
W ′(0) + sup

Ω
FM − FM (x)

)
dx, (20)

a∗µ = h

N−1∑

i=0

(W ′)−1
(
W ′(0) +

(
sup

0≤i≤N−1
F iµ

)
− F iµ

)
, (21)

a∗c =
∫

ΩM

(W ′)−1 (
W ′(0) + Fc − Fc(x)

)
dx+ h

∑

i∈Nµ

(W ′)−1 (
W ′(0) + Fc − F ic

)
, (22)

where Fc = sup(supx∈ΩM
Fc(x), supi∈Nµ

F ic). Then, we have:

Lemma 1.1 (existence and uniqueness of solutions). Let ΩM be a fixed subdomain of Ω. We assume that the
elastic energy density W satisfies (19) and that the body forces f satisfy (14).

If a > a∗M , then the continuum problem (6) has a unique minimizer uM , which is in addition in H2(Ω). If
a < a∗M , the problem (6) is not attained.

If a > a∗µ, then the atomistic problem (2) has a unique minimizer uµ. If a ≤ a∗µ, then the problem (2) is not
attained.

If a > a∗c , then the coupled problem (11) has a unique minimizer uc. If a < a∗c , the problem (11) is not
attained.

Before proceeding further, let us recall the Euler-Lagrange equation for (2). Under the assumption a > a∗µ,
the constraint ui+1 > ui is not active, thus

∀i ∈ {1, . . . , N − 1}, W ′
(
uiµ − ui−1

µ

h

)
−W ′

(
ui+1
µ − uiµ
h

)
− hf(ih) = 0. (23)

An equivalent formulation is easily obtained:

∀i ∈ {0, . . . , N − 1}, ui+1
µ − uiµ
h

= (W ′)−1
(
λµ − F iµ

)
, (24)

where λµ = W ′ ((u1
µ − u0

µ)/h
)

and Fµ is defined by (16). With similar arguments, it can be shown that the
minimizer uc of (11) satisfies

∀x ∈ ΩM , u′c(x) = (W ′)−1 (λc − Fc(x)) ,

∀i ∈ Nµ,
ui+1
c − uic
h

= (W ′)−1
(
λc − F ic

)
,

(25)

where λc = W ′(u′c(0)) (recall we have assumed 0 ∈ ΩM ), the set Nµ is defined by (8) and Fc is defined by (17)
and (18).

1.4.2. Definition of the partition

We now introduce a criterion in order to define the subdomain ΩM . Actually, due to the convexity ofW , which
allows for elliptic regularity results on the Euler-Lagrange equation (23), the singularities of the solution uµ are
solely linked to the singularities of the body forces f . So the subdomain ΩM is simply the zone of regularity
of f . The situation will be radically different in the Lennard-Jones case (see Def. 2.1).

Definition 1.3 (partition in the convex case). We assume that (14) is satisfied. Let κf > 0. We say that the
interval (ih, ih+ h) is a regular interval if f ∈W 1,1(ih, ih+ h) with

∀x ∈ (ih, ih+ h), |f(x)| ≤ κf and
∫ ih+h

ih

|f ′(x)| dx ≤ h
κf
L

·
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We define

ΩM =
∗⋃

(ih,ih+h) regular

(ih, ih+ h) and Ωµ = Ω \ ΩM ,

where
∗⋃

means that the point {ih} is also included in ΩM if both (ih − h, ih) and (ih, ih + h) are regular
intervals.

By construction, f and f ′ are bounded on ΩM :

‖f‖L∞(ΩM ) ≤ κf and ‖f ′‖L1(ΩM ) ≤ κf . (26)

In Definition 1.2, we have introduced the functions FM , Fµ and Fc (see (15), (16), (17) and (18)). An estimate
of their difference is provided by the following lemma.

Lemma 1.2. We assume that the body forces satisfy (14) and (26). Then

lim
h→0

sup
k

∣∣FM (kh) − F kµ
∣∣ = 0, (27)

and, for all h,

∀k s.t. kh ∈ ΩM , |Fc(kh) − F kµ | ≤ hκf(Ncc + 1),

∀k s.t. kh ∈ Ωµ, |F kc − F kµ | ≤ hκf (Ncc + 1).
(28)

1.4.3. Comparison of the atomistic problem and the coupled problem

In this subsection, we assume that the partition is defined according to Definition 1.3. We introduce:

Definition 1.4. The operator Πc : vµ ∈ Xµ(a) �→ Πcvµ ∈ Xc(a,ΩM ) is the interpolation-on-ΩM operator
defined by

∀x ∈ ΩM , (Πcvµ)(x) = vr(x), and ∀ih ∈ Ωµ, (Πcvµ)i = viµ,

where vr is the piecewise linear interpolate of vµ, at points ih, in ΩM .
The operator Πµ : vc ∈ Xc(a,ΩM ) �→ Πµvc ∈ Xµ(a) is the evaluation operator defined by

∀ih ∈ ΩM , (Πµvc)i = vc(ih), and ∀ih ∈ Ωµ, (Πµvc)i = vic.

Next, for any u ∈ Xc, we define

‖u‖L∞(Xc) = max
(
‖u‖L∞(ΩM ), max

i,ih∈Ωµ

|ui|
)
, (29)

|u|W 1,∞(Xc) = max
(
‖u′‖L∞(ΩM ),max

i∈Nµ

∣∣∣∣
ui+1 − ui

h

∣∣∣∣

)
, (30)

and for any u ∈ Xµ,

‖u‖L∞(Xµ) = max
i∈[0,N ]

|ui| and |u|W 1,∞(Xµ) = max
i∈[0,N−1]

∣∣∣∣
ui+1 − ui

h

∣∣∣∣· (31)
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The main result for the comparison of the atomistic and the coupled problems in this convex case is the following:

Theorem 1.1. We assume (14), (19) and
a > a∗M , (32)

where a∗M is defined by (20). We also assume that the partition Ω = ΩM∪Ωµ is defined according to Definition 1.3
for some κf > 0. Let Πc and Πµ be the operators defined in Definition 1.4.

Then there exist h0 ≤ 1 (which depends on κf ) and constants C1 and Ci(κf ), i = 2, . . . , 5, such that, for all
h ≤ h0, problems (2) and (11) have unique minimizers, respectively denoted by uµ and uc. In addition these
minimizers satisfy

|uc|W 1,∞(Xc) ≤ C1 and |uµ|W 1,∞(Xµ) ≤ C1,

and are at a distance of order h from one another in the sense that

|(Πµuc) − uµ|W 1,∞(Xµ) ≤ C2(κf )hκf , (33)

|uc − (Πcuµ)|W 1,∞(Xc) ≤ C2(κf )hκf , (34)

‖(Πµuc) − uµ‖L∞(Xµ) ≤ C3(κf )hκf , (35)

‖uc − (Πcuµ)‖L∞(Xc) ≤ C4(κf )hκf , (36)

while the energy infima also differ of an order h:

|Ic(ΩM ) − Iµ| ≤ C5(κf )hκf . (37)

The constant C1 does not depend on κf , and the functions κf �→ Ci(κf ), i = 2, . . . , 5, are bounded on any
compact set.

Remark 1.2. The proof (not included herein for the sake of brevity) yields the following explicit expressions
for the constants Ci, i = 1, . . . , 5:

C1 =
L

4α
‖f‖L∞(Ω) + 4

a

L
, C2(κf ) =

2 + Ncc

α

(
1 +

βK(κf )
α

)
,

C3(κf ) = LC2(κf ), C4(κf ) = C2(κf )h+ C3(κf ),

C5(κf ) = 2a+ L
(
β C2(κf )(C1 + 1) + C3(κf )‖f‖L∞(Ω)

)
,

where βK(κf ) = maxKW ′′ (W ′ (·)).
Here, K is the closed interval of center 0 and of radius h0κf (1 + Ncc) + β (C1 + 1).

Remark 1.3. An alternative method to evaluate uµ − uc is based on the observation that minimizing Eµ
over Xµ(a) is equivalent to minimizing Ec over a finite element space Xh

c (a,ΩM ) ⊂ Xc(a,ΩM ) of mesh size h,
where the body force integral term is now computed by a numerical integration formula (namely, a Riemann
sum). So standard results of FEM theory can be applied in order to obtain an H1 estimate on uµ−uc. However,
obtaining L∞ estimates from such an argument is more tricky (see [6, 8, 10, 17]).

Remark 1.4. In view of Remark 1.3, the atomistic problem can be seen as a continuum problem posed on a
finite element space of mesh size h. Therefore the convergence of order h for the “first derivative” of uc − uµ is
sharp (see (33) and (34)). Using an argument à la Aubin-Nitsche, and assuming additionally that W ∈ C3(R)
and f ∈ H2(ΩM ), one can improve (35) and (36) and show that, for h small enough,

‖(Πµuc) − uµ‖L∞(Xµ) + ‖uc − Πcuµ‖L∞(Xc) ≤ Ch2

for some constant C that does not depend on h.
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Figure 2. The Lennard-Jones potential (solid line) and its convex envelop (dashed line).

2. The Lennard-Jones case

In this section, the interaction potential is the Lennard-Jones potential

WLJ(r) =
1
r12

− 2
r6
, (38)

which attains its minimum at 1: WLJ(1) = inf WLJ = −1.
Let W ∗∗

LJ be the convex envelop of WLJ, and let us set

rc =
(

13
7

)1/6

≈ 1.11,

such that WLJ is convex on the interval (0, rc) and concave on (rc,+∞). We also define the functions

ψ : (−∞,W ′
LJ(rc)) → (0, rc) such that ψ ◦W ′

LJ = Id, (39)

ϕ : (0,W ′
LJ(rc)) → (rc,+∞) such that ϕ ◦W ′

LJ = Id. (40)

For x ≤ 0, we will also make use of the notation (W ′
LJ)

−1 (x) = ψ(x), as there is in such a case no ambiguity.
We denote by H(t) the Heaviside function (H(t) = 0 if t < 0, H(t) = 1 otherwise).

We use the Lennard-Jones potential as a prototype for a nonconvex interaction potential. One important
feature allowing for the appearance of fracture is that lim

r→∞WLJ(r)/r = 0.

In Section 2.1, we study the continuum mechanics problem (6), and show that a fracture (a Dirac mass in the
derivative of the deformation) appears for any extensional load. The atomistic model (2), studied in Section 2.2,
exhibits the same behavior. For the sake of conciseness, and in order to concentrate on the coupled problem
that will be dealt with in the subsequent sections, we have postponed the somewhat lengthy proofs of the main
results of Sections 2.1 and 2.2 (namely Thms. 2.1, 2.2 and 2.3) to Appendices A–C. In Section 2.3, we study
the coupled problem (11) where the energy is defined by (10). In Section 2.4, we study the modified coupled
problem (13) with the energy (12). We then propose a way to build the atomistic-continuum partition (see
Def. 2.1 below) such that the solution of the modified coupled problem approaches the solution of the atomistic
problem. To build the partition, we will make use of a preliminary step: the determination of the solution of
the continuum problem, a task which is assumed to be little demanding computationally in comparison with
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the resolution of a problem with a discrete component. The situation is thus different from the convex case
in which we only use the given body forces f , and not the solution of the continuum problem, to define the
partition.

Before entering the details, let us point out that the analysis below is highly dependent on the one-dimensional
setting we chose here. However, the fact that the most natural way to couple the atomistic and the continuum
models creates some difficulties (see Sect. 2.3) is more general, and occurs also in higher dimensions.

Remark 2.1. The results of this section do not depend on the particular choice of the exponents that we have
made in (38). One would obtain the same results with the potential W (r) = q

rp − p
rq with p > q > 0.

2.1. The continuum problem

We study in this subsection the continuum problem (6) for the Lennard-Jones potential, with f ∈ L1(Ω).
The natural variational space is

XM (a) =
{
u ∈W 1,1(Ω),

1
u′

∈ L12(Ω), u′ > 0 a.e., u(0) = 0, u(L) = a

}
, (41)

which will possibly need to be enlarged in order for the energy (5) to have a minimizer, as will be seen below.
Let us set

θM =
∫

Ω

(W ′
LJ)

−1 (inf FM − FM (x)) dx, (42)

v1(x) = (W ′
LJ)

−1 (inf FM − FM (x)) , (43)

where FM is defined by (15). We also recall (see [1, 2]) the definition of the set

SBV (Ω) =

{
u ∈ D′(Ω), u′ = Dau+

∑

i∈N

viδxi , Dau ∈ L1(Ω), xi ∈ Ω,
∑

i∈N

|vi| < +∞
}
.

We now state the main result of the present subsection. Its proof is contained in Appendix A.

Theorem 2.1 (minimizers of the continuum LJ model). If θM ≥ a, where θM is defined by (42), then the
problem

I1
M = inf {EM (u), u ∈ XM (a)} , (44)

where XM (a) is defined by (41) and EM is defined by (5), has a unique minimizer.
If θM < a, then the problem (44) is not attained, but the problem

IBVM = inf
{
EM (u), u ∈ SBV (Ω),

1
u′

∈ L12(Ω), u′ > 0, u(0) = 0, u(L) = a

}
(45)

has at least one minimizer. Moreover, IBVM = I1
M and the minimizers of the problem (45) are the functions

u(x) =
∫ x

0

v1(t) dt+
∑

i∈I

ṽiH(x− xi),

where v1 ∈ L1(Ω) is defined by (43), I is any countable set, and ṽi and xi are any real numbers such that

∑

i∈I

ṽi = a− θM and ∀i ∈ I, ṽi > 0, xi ∈ arg inf FM .
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Remark 2.2. Let u ∈ SBV (Ω): its derivative reads u′ = Dau +
∑
i ṽiδxi with Dau ∈ L1(Ω). The notation

u′ > 0 means Dau > 0 a.e. on Ω and ṽi > 0. When u′ > 0, we also use the convention 1
u′ = 1

Dau
. The reason

is that the inverse of a regularization of u′ converges to the inverse of Dau in the sense of distribution. Since
WLJ(+∞) = 0, we will also use the convention WLJ(u′) = WLJ(Dau).

2.2. The atomistic problem

In this subsection, we study the atomistic problem (2), where the energy Eµ is given by (1) with W ≡WLJ.
In particular, we show that, for some particular choices of boundary conditions, a fracture appears. This means
that the distance between a pair (and actually only one) of consecutive atoms is outstretched. The ideas of the
proof are first explained on the simple case f ≡ 0. Next we deal with the general case, which is more technical.
The main result of this subsection is Theorem 2.3, which is a generalization of some results given in [24].

2.2.1. The case of no body force

To study problem (2), we need the following lemma.

Lemma 2.1. If a > L, there exists h0 such that, for all h ≤ h0, there exists a unique pair (s(h), sf (h)) ∈ R
2

such that
1 ≤ s(h) ≤ 1 + h, W ′

LJ(s(h)) = W ′
LJ(sf (h)) and (L− h)s(h) + hsf (h) = a. (46)

In addition, we have the estimates

sf (h) ∼h→0
a− L

h
and s(h) − 1 ∼h→0 C0h

7,

for some C0 that does not depend on h.

We skip the proof of Lemma 2.1, since it proceeds from an elementary study of the variations of the function
g(s) = W ′

LJ(s) −W ′
LJ

(
a−(L−h)s

h

)
.

We now state

Theorem 2.2. We suppose that there are no body force: f ≡ 0.

If a ≤ L, then (2) has a unique minimizer, defined by uiµ = ih a/L, i = 0, . . . , N .

If a > L, then there exists h0 such that, for all h ≤ h0, the minimizers of (2) are exactly the N discrete functions
defined for iµ ∈ {0, . . . , N − 1} by

u
iµ+1
µ − u

iµ
µ

h
= sf (h) and ∀i �= iµ,

ui+1
µ − uiµ
h

= s(h), (47)

where s(h) and sf (h) are defined by Lemma 2.1.

The proof is contained in Appendix B.

2.2.2. The general case

We now assume that the body forces f are in C0
(
Ω
)
, and are not necessarily zero. This regularity assumption

is needed for Eµ to be well-defined. For any configuration u ∈ Xµ(a), we define a partition of the set of indices
{0, . . . , N − 1} in 3 different subsets:

G1(u) =
{
i ∈ [0, N − 1]; 0 < ui+1−ui

h ≤ 1
}
, G2(u) =

{
i ∈ [0, N − 1]; 1 < ui+1−ui

h < rc

}
,

G3(u) =
{
i ∈ [0, N − 1]; rc ≤ ui+1−ui

h

}
.
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Let us set

Fµ = inf
i=0,...,N−1

F iµ, (48)

θµ = h
N−1∑

i=0

(W ′
LJ)

−1(Fµ − F iµ), (49)

where Fµ is defined by (16). In view of (27), we have lim
h→0

θµ = θM , where θM , given by (42), is the threshold

for appearance of a fracture in the continuum model (see Thm. 2.1). We note that, if f ≡ 0, θµ = θM = L. To
study problem (2), we need the following lemma:

Lemma 2.2 (estimate on the Lagrange multiplier for the atomistic problem (2)). Let iµ be an index such that
F
iµ
µ = Fµ, and let us assume that a > θM .
There exists h0 such that, for all h ≤ h0, there exists a unique λµ such that

0 < λµ ≤ h and h
∑

i∈{0,...,N−1},i�=iµ
ψ
(
Fµ − F iµ + λµ

)
+ hϕ(λµ) = a, (50)

where ψ and ϕ are defined by (39) and (40).
In addition, λµ does not depend on iµ and satisfies λµ ∼h→0 C0h

7, for some C0 that does not depend on h.

The proof of Lemma 2.2 is rather simple and based on the study of the variations on [0, h] of the function

gµ defined by gµ(λ) = λ−W ′
LJ

(
a−h∑ i�=iµ

ψ(Fµ−F i
µ+λ)

h

)
. We now turn to Theorem 2.3 that is the main result

of this section. Its proof is contained in Appendix C.

Theorem 2.3 (minimizers of the atomistic problem (2)). We assume that f ∈ C0
(
Ω
)
. Let θµ be defined by (49).

If a ≤ θµ, then (2) has a unique minimizer.
If a > θM , there exists h0 such that, for all h ≤ h0, the minimizers of (2) are exactly the discrete functions

defined for iµ ∈ {0, . . . , N − 1} such that F iµµ = Fµ by u0
µ = 0 and

u
iµ+1
µ − u

iµ
µ

h
= ϕ(λµ) and ∀i �= iµ,

ui+1
µ − uiµ
h

= ψ(Fµ − F iµ + λµ), (51)

where λµ is defined by Lemma 2.2 and ψ and ϕ are defined by (39) and (40). In addition, G3(uµ) = {iµ} and

u
iµ+1
µ − u

iµ
µ

h
∼h→0

a− θM
h

· (52)

Remark 2.3. If θµ < θM , Theorem 2.3 does not apply to a ∈ (θµ, θM ]. Note however that lim
h→0

θµ = θM , thus

all boundary conditions a are asymptotically covered.

2.3. The natural coupled approach

We study in this subsection the problem (11). We will see that this coupled problem, though natural, has
a flaw. In order to illustrate this fact, we restrict ourselves to the case f ≡ 0 (see Rem. 2.6 below for the case
f �= 0). We also assume that

a > L,

so that a fracture must appear when minimizing (11). Note that if a ≤ L, the minimizers of the continuum and
atomistic problems are equal and no singularity appears, and it is therefore not interesting to use a coupled
method. We assume that Ω = (0, L) is partitioned into two subsets ΩM and Ωµ = Ω \ ΩM , and that, for
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Figure 3. A minimizer of problem (11).

simplicity, Ωµ = (0,Kh], ΩM = (Kh,L). We will see in Remark 2.4 below that the treatment of the general
case follows exactly the same lines. Our aim is to study the minimization problem (11), where the variational
space Xc(a,ΩM ) is defined by (9), with XW (ΩM ) = SBV (ΩM ), and where the corresponding energy Ec is given
by (10), with W ≡ WLJ. The key ingredient of the mathematical analysis is the following observation. Let us
choose x0 ∈ ΩM and let us consider the configurations u1 ∈ Xc(a,ΩM ) and u2 ∈ Xc(a,ΩM ) defined by

∀i ∈ {0, 1, . . . ,K}, ui1 = ih, ∀x ∈ ΩM , u1(x) = x+ (a− L)H(x− x0),
∀i ∈ {1, . . . ,K}, ui2 = ih+ (a− L), ∀x ∈ ΩM , u2(x) = x+ (a− L) (53)

and u0
2 = 0. Within the configuration u1 (resp. u2), a fracture appears in ΩM (resp. in Ωµ). We have

Ec(u1) = Ec(F ∈ ΩM ) = LWLJ(1) and Ec(u2) = Ec(F ∈ Ωµ) = LWLJ(1) + h+O(h7), so

Ec(F ∈ Ωµ) > Ec(F ∈ ΩM ). (54)

So, if the energy is defined by (10), a fracture costs less energy when it lies in ΩM (F ∈ ΩM ) than when it lies
in Ωµ (F ∈ Ωµ). Hence, the fracture of the minimizers of (11) appears in ΩM , as stated by the following lemma.

Lemma 2.3. For h small enough, the minimizers of problem (11) are of the form

ui = ih ∀i ∈ {0, 1, . . . ,K}, (55)

u(x) = x+
∑

i∈I

ṽiH(x− xi), ∀i, xi ∈ (Kh,L), ṽi > 0, (56)

with I ⊂ N and
∑

i∈I

ṽi = a− L.

Proof. Since the minimum of WLJ is attained at 1, we have Ec(u) ≥ KhWLJ(1) + (L − Kh)WLJ(1), with a

strict inequality if for some i ∈ {0, 1, . . .K − 1}, u
i+1 − ui

h
�= 1. Moreover, this value is attained when u is of

the form (56). Conversely, if u is a minimizer, we necessarily have (55), and the restriction of u to ΩM is thus
a minimizer of

IKh,LM (a−Kh) = inf
{∫ L

Kh

WLJ(u′), u ∈ SBV (Kh,L), u′ > 0,
1
u′

∈ L12(Kh,L), u(Kh) = Kh, u(L) = a

}
.

Now, Theorem 2.1 implies that a minimizer of this problem satisfies (56). �
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Remark 2.4. The case of a general set Ωµ may be treated likewise. Then, any minimizer of problem (11)
satisfies:

ui+1 − ui = h ∀i s.t. ih ∈ Ωµ and ih+ h ∈ Ωµ,

u′ = 1 +
∑

i∈I

ṽiδxi in ΩM , ∀i, xi ∈ ΩM , ṽi > 0, and
∑

i∈I

ṽi = a− L.

The above argument shows that, in the simplest case where we expect a fracture of the material, for any
partition of the domain Ω into a regular domain ΩM and a singular one Ωµ, the fracture naturally appears in
the regular one.

Hence, if the following algorithm is used to compute an approximation of uµ: initialize Ωµ to ∅,
(1) solve (11) for ΩM = Ω \ Ωµ;
(2) find the set where the solution uc of (11) has a large derivative, enlarge Ωµ correspondingly if necessary

and go back to 1,
then Ωµ converges to Ω, because, at each step, the above algorithm computes a solution having a singularity in
the set ΩM . The latest iterations are therefore as costly as the determination of the atomistic solution.

Remark 2.5. A way around the above difficulty might be to allow the set Ωµ to shrink back if the computed
minimizer happens to be regular enough (in some sense) in Ωµ. However, we have not been able to solve the
difficulty with this alternative strategy.

Remark 2.6. The preceding analysis can be carried out in the case of a force f �= 0 satisfying f ∈ C0(Ω).
Let us assume that a > θM , where θM is defined by (42), and that inf

x∈ΩM

Fc(x) = inf
i∈Nµ

F ic , where Fc is defined

by (17) and (18). Let Ec(F ∈ ΩM ) (resp. Ec(F ∈ Ωµ)) be the energy of a configuration with a fracture in ΩM
(resp. Ωµ). Then the inequality (54) holds.

2.4. A modified coupled approach

In this subsection, we propose a way to build a coupled problem that remedies to the difficulties observed in
the previous subsection.

We again assume, for the time being, that the partition Ω = ΩM ∪ Ωµ is given. We show in Theorem 2.5
that the modified coupled variational problem (13) is well-posed. In Theorem 2.6, we show that its solution is
a converging approximation of the solution to the atomistic problem (2), and in Section 2.5, we will propose a
definition of the partition (see Def. 2.1 below).

The variational space we work with is Xc(a,ΩM ) defined by (9) with

XW (ΩM ) =
{
u; u ∈W 1,1(ΩM ),

1
u′

∈ L12(ΩM )
}
.

As announced in the Introduction, the modified coupled energy is given by

Emod(u) = h
∑

i∈Nµ

WLJ

(
ui+1 − ui

h

)
− h

∑

i,ih∈Ωµ

uif(ih) +
∫

ΩM

Wh
LJ(u

′) − uf ,

with
Wh

LJ(r) = WLJ(r) +
√
h τ(r − r0).

Here, r0 is any real number in (1, rc) and the function τ is a regularization of the function t ∈ R �→ t+ = max(0, t)
(in particular, it does not depend on h).

The energy Emod differs from the natural coupled energy Ec given by (10) by the use of the energy den-
sity Wh

LJ instead of WLJ on the continuum domain ΩM . Let us explain this choice, assuming that there
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are no body forces. According to the definition (12), the energy of the fractured configurations (53) reads
Emod(F ∈ Ωµ) = LWLJ(1) + h+O(h7) and Emod(F ∈ ΩM ) = LWLJ(1) + (a− L)

√
h, so

Emod(F ∈ Ωµ) < Emod(F ∈ ΩM ). (57)

If we compare (54) and (57), we see that, with the modified definition of the coupled energy, a fracture costs
now less energy when it lies in Ωµ than when it lies in ΩM .

Remark 2.7. It is worth emphasizing that the additional term
√
hτ(r− r0) inserted in Wh

LJ is by no means the
only manner to successfully modify the interaction potential. We only use the fact that

√
h −→ 0 and h� √

h.

Let us now assume that the solution uµ of the atomistic problem (2) shows a fracture (on the atom iµ),
and that we want to use a coupled model to compute an approximation of uµ. At this point, the domain ΩM
is unknown. In order to determine both ΩM and an approximation of uµ, a possible algorithm is the one
already given in the previous subsection, which consists in iterating over two steps, first solve a coupled problem
with ΩM fixed, second modify the partition according to the computed solution. Assume now that, at some
moment, a “correct” partition has been found, in the sense that the atom iµ (where we expect the fracture to
take place) belongs to Ωµ. At that moment, we want the algorithm to stop, because the zone Ωµ is satisfactory.
Let us consider the minimization problem of the first step of the algorithm. The position of the fracture is such
that its energy cost is minimal. If one works with the coupled energy (10), then, as explained in the previous
subsection, the fracture is located in ΩM , which is not satisfactory. If one works with the modified coupled
energy (12), then, in view of (57), the fracture is located in Ωµ and the computed solution is smooth in ΩM , so
the partition is not updated and the algorithm stops.

The difference between Ec defined by (10) and Emod defined by (12) is of order
√
h, that is a small quantity

(recall that h is the atomic lattice parameter). However, even if it is small, this correction has an influence on
the choices of the zones, since it allows for the zone Ωµ to contain the fracture.

Before studying the modified coupled problem (13), we study the continuum problem with energy den-
sity Wh

LJ. The following Theorem (which is to be compared with Theorem 2.1) will be needed in the sequel.

Theorem 2.4. Consider the energy EhM defined by

EhM (u) =
∫

Ω

Wh
LJ(u

′(x)) − f(x)u(x) dx.

Let us set βh(x) ∈ (0, rc) such that W ′
LJ(β

h(x)) =
√
h+ inf FM − FM (x) and θhM =

∫
Ω
βh(x) dx.

If θhM ≥ a, then the problem

inf
{
EhM (u), u ∈W 1,1(Ω),

1
u′

∈ L12(Ω), u′ > 0 a.e., u(0) = 0, u(L) = a

}
(58)

has a unique minimizer which reads u(x) =
∫ x
0 ψ (−λ+ inf FM − FM (s)) ds for some λ ≥ −√

h and where ψ is
defined by (39).

If θhM < a, then (58) is not attained, but the problem

inf
{
EhM (u), u ∈ SBV (Ω),

1
u′

∈ L12(Ω), u′ > 0, u(0) = 0, u(L) = a

}
(59)

has at least one minimizer.
Moreover, the minimizers of (59) are exactly the functions u(x) =

∫ x
0
βh(t) dt +

∑
i∈I

ṽiH(x − xi), where I is
any countable set, and ṽi and xi are any real numbers such that

∑

i∈I

ṽi = a− θhM and ∀i ∈ I, ṽi > 0, xi ∈ arg inf FM .
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We skip the proof of Theorem 2.4, which is an easy adaptation of the proof of Theorem 2.1.
We now study the existence and the uniqueness of solutions of the modified coupled problem (13). Let Fc

be defined by (17) and (18), and let us set

Fc = inf
(

inf
ΩM

Fc, inf
i∈Nµ

F ic

)
.

The threshold for the appearance of a fracture will be shown to be

θmod =
∫

ΩM

(W ′
LJ)

−1 (
Fc − Fc(x)

)
dx+ h

∑

i∈Nµ

(W ′
LJ)

−1 (
Fc − F ic

)
.

Remark 2.8. The modified coupled problem (13) could have been introduced in the convex case, although it
was not needed (the coupled problem (11) leads to satisfactory results). In this case, one would have proved
results similar to those given in Lemma 1.1 and Theorem 1.1.

To study the problem (13), we need the following lemma:

Lemma 2.4. Let us assume that a > θM , where θM is defined by (42), and that the partition is such that, for
any h small enough, there exists imod ∈ Nµ such that

Fc ≤ F imod
c ≤ Fc + Ch (60)

for some constant C that does not depend on h.
Then there exists h0 such that, for all h ≤ h0, there exists a unique λmod such that 0 ≤ λmod ≤ Ch and

h
∑

i∈Nµ,i�=imod

ψ
(
Fc − F ic + λmod

)
+ hϕ(Fc − F imod

c + λmod) +
∫

ΩM

ψ
(
Fc − Fc(x) + λmod

)
dx = a (61)

where ψ and ϕ are defined by (39) and (40).

Proof. Let us define gmod(λ) = λ+ Fc − F imod
c −W ′

LJ

(
pmod(λ)

h

)
on [0, 2Ch], where

pmod(λ) = a− h
∑

i∈Nµ,i�=imod

ψ
(
Fc − F ic + λ

)−
∫

ΩM

ψ
(
Fc − Fc(x) + λ

)
dx.

For h small enough, gmod is an increasing function and gmod(2Ch) ≥ Ch − W ′
LJ

(
a−θM

2h

)
> 0. Moreover,

gmod(0) < 0. Hence there exists a unique λmod ∈ [0, 2Ch] such that gmod(λmod) = 0. �

Theorem 2.5 (minimizers of the modified coupled problem). We assume that f ∈ C0(Ω) and that there exists
εf > 0 such that (26) is satisfied.

If a ≤ θmod, then problem (13) has a unique minimizer umod, which is smooth: there exists C0 independent
of h such that

|umod|W 1,∞(Xc) ≤ C0, (62)
where | · |W 1,∞(Xc) is defined by (30).

If a > θM , and if
∃i0 ∈ Nµ such that Fµ ≤ F i0µ ≤ Fµ + C1h, (63)

for some constant C1 ≥ 0 independent of h (recall Fµ is defined by (48)), then there exists h0 > 0 such that, for
all h ≤ h0, the minimizers of (13) are exactly the functions defined, for imod ∈ Nµ such that F imod

c = inf
i∈Nµ

F ic ,
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by umod(0) = 0 and






u′mod(x) = ψ
(
λmod + Fc − Fc(x)

)
on ΩM ,

ui+1
mod − uimod

h
= ψ
(
λmod + Fc − F ic

)
for all i ∈ Nµ, i �= imod,

uimod+1
mod − uimod

mod

h
= ϕ
(
λmod + Fc − F imod

c

)
,

(64)

where λmod is defined by Lemma 2.4.

Remark 2.9. If θmod < θM , Theorem 2.5 does not apply to a ∈ (θmod, θM ]. Note however that lim
h→0

θmod = θM ,

thus all boundary conditions a are asymptotically covered.

Proof of Theorem 2.5. The proof in the case θmod ≥ a follows the same pattern as the proof of Theorem 2.1 (in
the case θM ≥ a). We concentrate on the case a > θM . Let us set

P cx(t) = Wh
LJ(t) +

(
Fc(x) − Fc

)
t, (65)

P ci (t) = WLJ(t) + (F ic − Fc)t, (66)

and, for i ∈ Nµ,
vi1,c = (W ′

LJ)
−1
(
Fc − F ic

)
. (67)

For x ∈ ΩM , we also define βcx ∈ (0, rc) such that

W ′
LJ(β

c
x) =

√
h+ Fc − Fc(x). (68)

We first reformulate the energy Emod, which reads

Emod(u) =
∫

ΩM

P cx(u
′(x)) dx + h

∑
i∈Nµ

P ci

(
ui+1−ui

h

)
+ a
(
Fc − Fc(L)

)
.

Let us consider the problem
Imod = inf

{
Emod(v), v ∈ Yc(a,ΩM )

}
, (69)

where Emod is given by

Emod(v) =
∫

ΩM

P cx(v(x)) dx + h
∑

i∈Nµ

P ci (v
i), (70)

and where Yc(a,ΩM ) is given by

Yc(a,ΩM ) =






v; v ∈ L1(ΩM ),
1
v
∈ L12(ΩM ), v|Nµ

is the discrete set

of variables (vi)i∈Nµ , v > 0,
∫

ΩM

v + h
∑

i∈Nµ

vi = a





. (71)

Clearly, Imod = Imod + a
(
Fc − Fc(L)

)
and u is a minimizer of (13) if and only if v, defined by ∀x ∈ ΩM ,

v(x) = u′(x) and ∀i ∈ Nµ, v
i = ui+1−ui

h , is a minimizer of (69).

Step 1 (a lower bound on the atomistic deformation). Let un be a minimizing sequence of problem (13) and
let vn be the associated minimizing sequence of problem (69). Since un is an increasing function, we have
0 ≤ vin ≤ a/h for all i in Nµ. So, up to a subsequence extraction, we can assume that the sequence

(
vin
)
n

converges. Let us set
a∞µ = lim

n→+∞ h
∑

i∈Nµ

vin. (72)
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As
∫
ΩM

vn + h
∑

i∈Nµ
vin = a, we can also define a∞M = limn→+∞

∫
ΩM

vn(x) dx = a − a∞µ . Let us establish a
lower bound on a∞µ . For all t > 0, we have

P cx(t) ≥ P cx(β
c
x) +

√
h (t− βcx), (73)

P ci (t) ≥ P ci (v
i
1,c), (74)

where P cx , P ci , β
c
x and v1,c are defined by (65), (66), (68) and (67). We now consider (70) with v ≡ vn. With (73)

and (74), we obtain

Imod ≥
∫

ΩM

P cx(βcx) dx+
√
h

(
a∞M −

∫

ΩM

βcx dx
)

+ h
∑

i∈Nµ

P ci (v
i
1,c). (75)

Let us now choose imod ∈ Nµ such that F imod
c = inf

i∈Nµ

F ic . With (63) and (28), we see that

Fc ≤ F imod
c ≤ Fc + Ch (76)

for some constant C that does not depend on h. Let us consider the test function vb defined by vb(x) = βcx
in ΩM , vib = vi1,c for all i ∈ Nµ, i �= imod, and vimod

b such that
∫
ΩM

vb + h
∑

i∈Nµ
vib = a. By construction, we

have
vimod
b ∼h→0 (a− θM )/h. (77)

The function βcx is continuous and positive, and vib > 0 for all i ∈ Nµ. So vb is a test function for (69), and we
have

Imod ≤ Emod(vb) =
∫

ΩM

P cx(βcx) dx+ h
∑

i∈Nµ

P ci (vi1,c)+ hP cimod
(vimod
b ) − hP cimod

(vimod
1,c ). (78)

The last two terms of (78) satisfy

hP cimod
(vimod
b ) − hP cimod

(vimod
1,c ) = h

(
WLJ(vimod

b ) −WLJ(vimod
1,c )
)

+ h(F imod
c − Fc)(vimod

b − vimod
1,c ). (79)

We now bound this quantity. From (67), we have 0 < vimod
1,c ≤ 1, thus WLJ(vimod

1,c ) ≥ WLJ(1). With this
inequality and (77), we obtain

h
(
WLJ(vimod

b ) −WLJ(vimod
1,c )
) ≤ Ch (80)

for some C that does not depend on h. Since lim
h→0

h(vimod
b − vimod

1,c ) = a− θM , we infer from (76) that

h(F imod
c − Fc)(vimod

b − vimod
1,c ) ≤ Ch (81)

for some C that does not depend on h. Collecting (80) and (81), we obtain hP cimod
(vimod
b )−hP cimod

(vimod
1,c ) ≤ Ch.

Inserting this inequality in (78) and making use of (75), we see that a∞M − ∫
ΩM

βcx dx ≤ C
√
h.

Since θM = limh→0

(∫
ΩM

βcx dx+
∫
Ωµ

(W ′
LJ)

−1 (inf FM − FM (x)) dx
)
, we obtain, for h small enough, the fol-

lowing lower bound on a∞µ :

a− θM
2

+
∫

Ωµ

(W ′
LJ)

−1 (inf FM − FM (x)) dx ≤ a∞µ . (82)

Step 2 (an auxiliary problem). For any positive real numbers aM and aµ, let us define

IM (aM ) = inf
{∫

ΩM

P cx(v(x)) dx, v ∈ L1(ΩM ),
1
v
∈ L12(ΩM ), v > 0 a.e. on ΩM ,

∫

ΩM

v = aM

}
(83)
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and

Iµ(aµ) = inf
{
h
∑

i∈Nµ

P ci (vi), vi > 0, h
∑

i∈Nµ

vi = aµ

}
. (84)

Problem (83) (resp. (84)) can be studied with arguments similar to the ones used to prove Theorem 2.4 (resp.
Thm. 2.3). The conclusion is the following: let

athM =
∫

ΩM

ψ

(√
h+ inf

ΩM

Fc − Fc(x)
)

dx, (85)

and
athµ =

∫

Ωµ

(W ′
LJ)

−1
(
inf
Ω
FM − FM (x)

)
dx. (86)

If aM ≤ athM , then problem (83) has a unique minimizer which is continuous, and if aM > athM , then prob-
lem (83) has no minimizer (any minimizing sequence converges to some measure which includes Dirac masses).
If aµ > athµ , then a fracture appears in the minimizer(s) of (84).

With (69), (70) and (71), we see that Imod = inf {IM (a− a) + Iµ(a), a ∈ [0, a]} . Let us define g by

g(a) = IM (a− a) + Iµ(a), (87)

and let a∗ be any real number in [0, a] such that Imod = inf g = g(a∗). One can consider a minimizing
sequence of problem (84) with aµ = a∗, and one can also consider a minimizing sequence of problem (83) with
aM = a − a∗. So we can build a minimizing sequence vn of problem (69) and apply results of Step 1 to this
sequence. By construction, h

∑
i∈Nµ

vin = a∗, so the real number a∞µ defined by (72) reads a∞µ = a∗. Hence,
with (82) and (86), we see that a∗ ∈ Ig, where we set Ig =

[
a−θM

2 + athµ , a
]
. So Imod = inf {g(a), a ∈ Ig}. In

the sequel of this Step, we study the variations of the function g to show that, on the interval Ig, g has a unique
minimizer.

Let us choose a ∈ Ig, let us set aµ = a and aM = a − a and let us consider problems (83) and (84). Since
a > athµ , problem (84) is an atomistic problem with boundary conditions so that a fracture appears. With results
of Section 2.2, one can show that there exists λµ ∈ [0, h] such that the minimizers v of (84) read vimod = ϕ(λµ)
and ∀i �= imod, v

i = ψ(infi∈Nµ F
i
c − F ic + λµ), where imod is any index such that F imod

c = infi∈Nµ F
i
c . We have

also shown that λµ depends on aµ but not on imod. As a consequence, we can compute Iµ(aµ) and show that

dIµ(aµ)
daµ

= λµ + inf
i∈Nµ

F ic − Fc. (88)

In addition,
dλµ
daµ

∼h→0 −Ch7 (89)

for some constant C > 0. We now study problem (83). If aM ≤ athM defined by (85), then problem (83) has a
unique minimizer v which reads v(x) = ψ (−λM + infΩM Fc − Fc(x)) for some λM ≥ −√

h. If aM > athM , then

problem (83) has one or many minimizers v which read v(x) = ψ
(√

h+ infΩM Fc − Fc(x)
)

+ Dirac masses .
So we can compute IM (aM ) and show that

dIM (aM )
daM

= −λM + inf
ΩM

Fc − Fc, (90)

where λM ∈ [−√
h,+∞). If aM ≥ athM , then λM = −√

h, and if aM ≤ athM , then

dλM
daM

≤ −W
′′
LJ(1)

2 |ΩM | · (91)
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We now study the variations of the function g defined by (87). In view of (88) and (90), it satisfies

g′(a) = λM − inf
ΩM

Fc + λµ + inf
i∈Nµ

F ic . (92)

If inf
i∈Nµ

F ic ≥ inf
ΩM

Fc, then Fc = inf
ΩM

Fc, and with (76), we obtain

inf
i∈Nµ

F ic − inf
ΩM

Fc ≤ Ch. (93)

The above inequality also holds if inf
i∈Nµ

F ic < inf
ΩM

Fc. Inserting (93) in (92), and since λµ ≤ h, we obtain

g′(a) ≤ λM + Ch for some constant C that does not depend on h.
If aM = a−a ≥ athM then λM = −√

h, so g′(a) < 0. If a−a ≤ athM , we differentiate (92) with respect to a, and
with (89) and (91), one can show that g′′(a) > 0. Since g′(a) = +∞, there exists a unique a∗ which minimizes
g on Ig , and a∗ ∈ (a− athM , a).

Step 3 (conclusion). We know that Imod = inf g = g(a∗) with a∗ ∈ Ig ∩ (a − athM , a). There exist minimizers
for problem (83) with aM = a − a∗ < athM and for problem (84) with aµ = a∗. So problems (69) and (13)
have a minimizer. Let now umod be a minimizer of problem (13) and let vmod be its first derivative, which is a
minimizer of (69). As g has a unique minimizer a∗, we see that

∫
ΩM

vmod(x) dx = a − a∗ < athM , so that umod

has no fracture on ΩM . We also see that h
∑
i∈Nµ

vimod = a∗ ≥ a−θM

2 + athµ , so umod has a unique fracture
on Ωµ. We apply Theorem 2.3 on problem (84) and Theorem 2.4 on problem (83), and we obtain (64) for some
Lagrange multiplier λ∗mod ∈ (0, Ch).

We now identify λ∗mod. We know that λ∗mod ∈ (0, Ch), and we see from (64) that λ∗mod satisfies (61). In
addition, we see that (63) implies (60). Since a > θM , we can apply Lemma 2.4, that defines λmod, and we have
λ∗mod = λmod. �

We now estimate the difference between a minimizer umod of the modified coupled problem (13) and a
minimizer uµ of the atomistic problem (2).

Theorem 2.6 (estimate on the minimizers). We assume that f ∈ C0(Ω) and that there exists κf > 0 such
that (26) is satisfied. Let uµ be a minimizer of problem (2) and umod be a minimizer of problem (13).

If a < θM , then there exist h0 ≤ 1 and C(κf ), that both depend on κf , such that, for all h ≤ h0, the
minimizers uµ and umod, as well as their respective energies, are at distance of order h in the sense that

|(Πµumod) − uµ|W 1,∞(Xµ) + |umod − (Πcuµ)|W 1,∞(Xc)
≤ C(κf )hκf , (94)

‖(Πµumod) − uµ‖L∞(Xµ) + ‖umod − (Πcuµ)‖L∞(Xc)
≤ C(κf )hκf , (95)

|Imod − Iµ| ≤ C(κf )hκf , (96)

where Πc and Πµ are the operators defined in Definition 1.4, and ‖ · ‖L∞(Xc), | · |W 1,∞(Xc), ‖ · ‖L∞(Xµ) and
| · |W 1,∞(Xµ) are the norms defined by (29), (30) and (31). In addition, the function κf �→ C(κf ) is bounded on
any compact set.
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If a > θM , and if the partition Ω = ΩM ∪ Ωµ satisfies (63), then there exist h0 ≤ 1 and a constant C (that
both depend on κf ) such that, for all h ≤ h0, there exist iµ ∈ {0, . . . , N − 1} and imod ∈ Nµ so that

‖u′mod − (Πcuµ)′‖L∞(ΩM\[iµh,iµh+h]) ≤ Ch, (97)

sup
i∈Nµ,i�=iµ,i�=imod

∣∣∣∣∣
ui+1
mod − uimod

h
− ui+1

µ − uiµ
h

∣∣∣∣∣ ≤ Ch, (98)

∣∣(uimod+1
mod − uimod

mod) − (uiµ+1
µ − uiµµ )

∣∣ ≤ Ch, (99)

uimod+1
mod − uimod

mod ∼h→0 a− θM , uiµ+1
µ − uiµµ ∼h→0 a− θM , (100)

|Imod − Iµ| ≤ Ch. (101)

In the case a > θM , we see that both uµ and umod have a singularity, that is localized on a unique atom pair
(see (100)). With (99), we can see that the difference between the discontinuity of umod and of uµ converges
to 0 when h goes to zero.

Proof. We first treat the case a < θM . Then, for h small enough, the atomistic problem (2) and the modified
coupled problem (13) are well-posed (see Thms. 2.3 and 2.5), and the analysis can be conducted in exactly the
same way as in the convex case (see Thm. 1.1). We thus obtain estimates (94), (95) and (96), which are similar
to (33), (34), (35), (36) and (37).

We now treat the case a > θM . Then, for h small enough, the configuration uµ, which is a minimizer of
the atomistic problem (2), is given by (51) for some iµ ∈ {0, . . . , N − 1} and some λµ ∈ (0, h] (see Thm. 2.3).
The configuration umod, which is a minimizer of problem (13), is given by (64) for some imod ∈ Nµ and some
λmod ∈ (0, Ch] (see Thm. 2.5). Hence, we obtain

|λµ − λmod| ≤ Ch, (102)

for some constant C that does not depend on h. Collecting (51), (64) and (102), we obtain estimates (97)
and (98). Using boundary conditions, one can prove (99). The estimate (52) implies the estimate (100) on uµ,
and we infer from the latter and (99) the estimate (100) on umod. Collecting (97), (98) and (99), we obtain the
energy estimate (101). �

2.5. Definition of the partition

In the statement of Theorem 2.6, we have supposed that we were given some body forces f and a partition
Ω = ΩM ∪ Ωµ satisfying (26) and (63). In the sequel, we describe a strategy to find such a partition without
resorting to the computation of Fµ, an object which is expensive to compute.

Definition 2.1 (partition in the Lennard-Jones case). We assume that f ∈ W 1,1(Ω). Let us fix κf > 0, and
let uM ∈ SBV (Ω) be a minimizer of the continuum problem (45).

The interval (ih, ih+ h) is said to be a regular interval if f satisfies

∀x ∈ (ih, ih+ h), |f(x)| ≤ κf and
∫ ih+h

ih

|f ′(x)| dx ≤ h
κf
L
,

and if uM is continuous on [ih, ih+ h].
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We define ΩM by

ΩM =
∗⋃

(ih,ih+h) regular
(ih, ih+ h) and Ωµ = Ω \ ΩM ,

where
∗⋃

means that the point {ih} is also included in ΩM if both (ih − h, ih) and (ih, ih + h) are regular
intervals.

Note that we make a stronger assumption on f than before (until now, we have only assumed f ∈ C0(Ω)).

Remark 2.10. In the case a ≤ θM , one can show that problem (45) has a unique minimizer uM , which is
the minimizer of (44). So uM is continuous on Ω and the last condition for an interval to be regular is always
satisfied.

Theorem 2.7. Let us consider a partition Ω = ΩM ∪ Ωµ as defined by Definition 2.1. Then the body forces f
satisfy (26). If a > θM , then the function Fµ defined by (16) satisfies (63).

Proof. Estimates (26) are a direct consequence of the definition of ΩM . We now assume a > θM and prove (63).
Let us first note that the assumption f ∈W 1,1(Ω) implies that

∀k ∈ {0, . . . , N}, ∣∣FM (kh) − F kµ
∣∣ ≤ h‖f ′‖L1(Ω), (103)

which is a better estimate than (27).
Theorem 2.1 shows that the minimizers uM of (45) read uM (x) =

∫ x
0 v1(t) dt +

∑
i∈I

ṽiH(x − xi), where
v1 ∈ L1(Ω) is defined by (43), I is any countable set, and ṽi and xi are such that, for all i ∈ I, ṽi > 0 and
xi ∈ arg inf FM . So uM is not continuous at x1. Let σ1 be such that x1 ∈ [σ1h, σ1h + h). So the interval
(σ1h, σ1h+ h) is not regular, thus [σ1h, σ1h+ h] ⊂ Ωµ, i.e. σ1 ∈ Nµ. With (103), we see that

|FM (σ1h) − F σ1
µ | ≤ h‖f ′‖L1(Ω). (104)

We also have

|FM (x1) − FM (σ1h)| ≤
∫ x1

σ1h

|f(s)|ds ≤ h‖f‖L∞(Ω). (105)

We also infer from (103) that

| inf FM − Fµ| ≤ Ch (106)

for some C that does not depend on h, and where Fµ = inf
0≤i≤N−1

F iµ. As FM (x1) = inf FM , we infer from (104),

(105) and (106) that |F σ1
µ − Fµ| ≤ Ch. As σ1 ∈ Nµ, we obtain (63). �
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Appendix A

Proof of Theorem 2.1. The energy (5) can also be written

EM (u) =
∫

Ω

(WLJ(u′(x)) + (FM (x) − inf FM )u′(x)) dx+ a (inf FM − FM (L)) . (107)

We first treat the case θM ≥ a. Consider the following minimization problem:

IM = inf
{
EM (v), v ∈ L1(Ω), v > 0 a.e.,

1
v
∈ L12(Ω),

∫

Ω

v = a

}
,

where EM (v) =
∫
Ω
WLJ(v) + (FM − inf FM ) v. Clearly, I1

M = IM + a (inf FM − FM (L)) and u is a minimizer
of I1

M if and only if u′ is a minimizer of IM . Let us define

v0(x) = (W ′
LJ)

−1 (inf FM − FM (x) − λ) , (108)

where λ ≥ 0 is chosen such that
∫
Ω
v0 = a. This is possible because

∫
Ω

(W ′
LJ)

−1 (inf FM − FM (x)) dx = θM ≥ a

and limλ→+∞
∫
Ω

(W ′
LJ)

−1 (inf FM − FM (x) − λ) dx = L (W ′
LJ)

−1 (−∞) = 0. We see that v0(x) is a continu-
ous function which satisfies v0(x) ≥ (W ′

LJ)
−1 (inf FM − supFM − λ) > 0. Thus it is a test function for IM .

Consider now v ∈ L1(Ω) satisfying v > 0, 1/v ∈ L12(Ω) and
∫
Ω v = a. The function v = inf{v, 1} satisfies

EM (v) ≥ EM (v). Define now for α ∈ [0, 1] the function p(α) = EM ((1 − α)v0 + αv) . We have that p is convex,
because both v0 and v ly in (0, 1] where WLJ is convex, and that p′(0) = −λ ∫Ω (v − v0) ≥ 0, hence p is nonde-
creasing. Therefore p(0) = EM (v0) ≤ p(1) = EM (v) ≤ EM (v). Hence, v0 is a minimizer of IM . On the other
hand, if for some v as above, EM (v0) = EM (v), then p(α) must be constant on α ∈ [0, 1] and EM (v) = EM (v).
As the minimum of WLJ is attained at 1, the latter implies that v = v, while p constant implies that p′′ = 0,
thus v0 = v (because WLJ is strictly convex on (0, 1]). This shows that v0 is the unique minimizer of IM , and
that u0(x) =

∫ x
0 v0(t) dt is the unique minimizer of (44).

We now turn to the case θM < a and show that (45) has at least a minimizer. Consider u ∈ SBV (Ω)
such that 1/u′ ∈ L12(Ω), u′ > 0, u(0) = 0 and u(L) = a. We use the notation u′ = Dau+

∑

i∈I

ṽiδxi with

Dau ∈ L1(Ω), Dau > 0 and ṽi > 0. Recall that we use the convention that WLJ(u′) = WLJ(Dau). Thus

EM (u) =
∫

Ω

Px(Dau(x)) dx +
∑

i∈I

ṽi (FM (xi) − inf FM ) + a (inf FM − FM (L)) , (109)

where Px(t) is the function

Px(t) = WLJ(t) + (FM (x) − inf FM ) t. (110)
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On (0,+∞), this function has a unique minimizer which is the function v1(x) defined by (43).
So Px(Dau(x)) ≥ Px(v1(x)) on Ω and we infer from (109) that

EM (u) ≥
∫

Ω

Px(v1(x)) dx +
∑

i∈I

ṽi (FM (xi) − inf FM ) + a (inf FM − FM (L)) . (111)

Consider now a point x0 ∈ arg inf FM , and define

u0(x) =
∫ x

0

v1(t) dt+ (a− θM )H(x− x0). (112)

We have Dau0 = v1 ∈ L1(Ω). Since v1 is a continuous function which satisfies v1(x) ≥ inf v1 > 0, we see that
1/v1 ∈ L12(Ω), thus u0 is an admissible function of (45) and, making use of (109) with u ≡ u0, we obtain

EM (u0) =
∫

Ω

Px(v1(x)) dx + a (inf FM − FM (L)) . (113)

Collecting (111) and (113), we obtain

EM (u) ≥ EM (u0) +
∑

i∈I

ṽi (FM (xi) − inf FM ) (114)

for all test functions u of problem (45) such that u′ = Dau+
∑

i∈I
ṽiδxi . Since ṽi > 0, we have EM (u) ≥ EM (u0)

and the function u0 is a minimizer of problem (45).
We now look for all the minimizers of problem (45). Let u be any test function. From (114), we see that

EM (u) > EM (u0) if there exists i ∈ I such that xi /∈ arg inf FM and ṽi > 0. In addition, in view of (109)
and (113), we infer from EM (u) = EM (u0) that

∫
Ω Px(Dau(x)) dx =

∫
Ω Px(v1(x)) dx. As v1(x) is the unique

minimizer of t ∈ (0,+∞) �→ Px(t), we obtain that v1 = Dau a.e. on Ω. Hence, any minimizer of (45) may be
written u(x) =

∫ x
0

(W ′
LJ)

−1 (inf FM − FM (t)) dt+
∑

i∈I
ṽiH(x−xi), where I is any countable set, xi ∈ arg inf FM

and ṽi > 0 for all i ∈ I, and
∑

i∈I
ṽi = a− θM .

Let us now show that IBVM = I1
M . We already have IBVM ≤ I1

M and we have shown that IBVM = EM (u0),
where u0 is defined by (112). Let uε0 be a regularization of u0: then uε0 is a test function for (44) and
IBVM = EM (u0) = limε→0EM (uε0) ≥ I1

M . Thus IBVM = I1
M . To prove that problem (44) is not attained, we

argue by contradiction. Let us assume that problem (44) is attained and let u be a minimizer. With (107), we
see that

EM (u) =
∫

Ω

Px(u′(x)) dx + a (inf FM − FM (L)) , (115)

where Px(t) is defined by (110). We have EM (u) = I1
M = IBVM = EM (u0), thus, in view of (113) and (115), we

obtain
∫
Ω Px(v1(x)) dx =

∫
Ω Px(u

′(x)) dx, which implies that v1(x) = u′(x) a.e. on Ω. But this is impossible
since

∫
Ω
v1 = θM < a =

∫
Ω
u′. �
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Appendix B

Proof of Theorem 2.2. As we impose the increasing condition ui+1 > ui, any minimizing sequence uin satisfies
0 ≤ uin ≤ a for all i, hence is compact in R

N+1. Thus, one can extract a subsequence that converges to a
configuration (denoted by uµ) which is a minimizer of the energy. This configuration satisfies the constraint
ui+1
µ > uiµ for all i. Otherwise, there exists i such that lim

n→+∞ui+1
n − uin = 0, which implies, as WLJ(0) = +∞,

that the infimum (2) is +∞, which is a contradiction. Hence, (2) has at least one minimizer.
Choosing ui = ih a/L as a test function, we show that LWLJ (a/L) ≥ Iµ. Bounding WLJ from below by

W ∗∗
LJ , and utilizing the convexity of W ∗∗

LJ , we show that Iµ ≥ LW ∗∗
LJ (a/L). Thus LWLJ

(
a
L

) ≥ Iµ ≥ LW ∗∗
LJ

(
a
L

)
.

We first treat the case a ≤ L, where WLJ (a/L) = W ∗∗
LJ (a/L), thus Iµ = LWLJ (a/L). The configu-

ration uiµ = ih a/L is thus a minimizer. Let us now consider a configuration u for which the quantities
ui+1−ui

h , i = 0, . . . , N − 1, are not all equal to a/L. Then

Eµ(u) = h

N−1∑

i=0

WLJ

(
ui+1 − ui

h

)
≥ h

N−1∑

i=0

W ∗∗
LJ

(
ui+1 − ui

h

)
> LW ∗∗

LJ

(
h

L

N−1∑

i=0

ui+1 − ui

h

)
,

where we have made use of the strict case of the convexity inequality. Thus we have Eµ(u) > LW ∗∗
LJ(a/L) = Iµ,

and u is not a minimizer. This shows the uniqueness claimed in the theorem.
We now turn to the case a > L. Let us consider a minimizer uµ of problem (2). As WLJ(0) = +∞, the

constraint ui+1 > ui is not active, so the Euler-Lagrange equation of (2) reads as (23):

∀i ∈ {1, . . . , N − 1}, W ′
LJ

(
uiµ − ui−1

µ

h

)
= W ′

LJ

(
ui+1
µ − uiµ
h

)
·

If one slope ui+1
µ −ui

µ

h is equal to or smaller than 1, then the same holds for the other slopes, and this is in contra-
diction with the fact that a > L. So all the slopes are strictly larger than 1. In addition, due to the variations
of WLJ, there are two values s∗(h) and s∗f (h), with 1 < s∗(h) ≤ rc ≤ s∗f (h), W ′

LJ(s
∗(h)) = W ′

LJ(s
∗
f (h)), such

that each of the slopes is either s∗(h) or s∗f (h). Let k = Card
{
i ∈ {0, . . . , N − 1} such that

ui+1
µ −ui

µ

h = s∗f (h)
}
.

We have (L − kh)s∗(h) + khs∗f(h) = a and Iµ = (L− kh)WLJ(s∗(h)) + khWLJ(s∗f (h)).
We claim that k = 1. For this purpose, we consider the discrete function ub defined by uib = ih for

i = 0, . . . , N − 1, and uNb = a. Its energy is Eµ(ub) = (L − h)WLJ(1) + hWLJ

(
a−L
h + 1

)
, and satisfies

lim
h→0

Eµ(ub) = LWLJ(1). We first show that k �= 0. Otherwise, all slopes
(
ui+1
µ − uiµ

)
/h are equal to the same

value s∗(h), which thus needs to be a/L. As uµ is a minimizer, Iµ = LWLJ(a/L). However, we also have
Iµ ≤ Eµ(ub). Letting h go to zero, we obtain WLJ(a/L) ≤WLJ(1), which is a contradiction as a > L.

We now show that k ≤ 1. As Iµ ≤ Eµ(ub), one obtains

L
(
WLJ(s∗(h)) −WLJ(1)

)
+ kh

(
WLJ(s∗f (h)) −WLJ(s∗(h))

) ≤ −hWLJ(1). (116)

The left hand side is a sum of two nonnegative terms, for 1 < s∗(h) ≤ s∗f (h) and WLJ is an increasing
function on [1,+∞). So we have lim

h→0
WLJ(s∗(h)) = WLJ(1), hence lim

h→0
s∗(h) = 1, which in turn implies that

lim
h→0

s∗f (h) = +∞. Inserting this information in (116), we obtain k ≤ 3/2, thus k = 1 for h small enough.

We finally identify (s∗(h), s∗f (h)) for h small enough. We have (L − h)s∗(h) + hs∗f (h) = a. So, using
lim
h→0

s∗(h) = 1, we see that s∗f (h) ∼h→0 (a− L)/h. So W ′
LJ(s

∗(h)) = W ′
LJ(s

∗
f (h)) ∼ Ch7, and s∗(h) = 1+O(h7).

As a consequence, s∗(h) ∈ [1, 1 + h]. By uniqueness of the pair (s(h), sf (h)) satisfying (46) (see Lemma 2.1
above), one has s∗(h) = s(h) and s∗f (h) = sf (h). So uµ satisfies (47) for some integer iµ. �
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Appendix C

Proof of Theorem 2.3. If f ≡ 0, then Theorem 2.3 is identical to Theorem 2.2. We now concentrate on the case
f �= 0. As in the proof of Theorem 2.1 (Appendix A), we first reformulate the energy, here in term of the slopes

vi =
ui+1 − ui

h
, 0 ≤ i ≤ N − 1. (117)

The energy (1) can be written Eµ(u) = a
(
Fµ − FNµ

)
+ h
∑N−1

i=0

(
WLJ

(
ui+1−ui

h

)
+
(
F iµ − Fµ

)
ui+1−ui

h

)
. Then

we consider

Iµ = inf
{
Eµ(v); v ∈ Yµ(a)

}
, (118)

where the space Yµ(a) is defined by Yµ(a) =
{
v = (v0, . . . , vN−1) ∈ R

N , h
∑N−1

i=0 vi = a, vi > 0
}
, and the

energy Eµ by Eµ(v) = h
∑N−1
i=0

(
WLJ(vi) +

(
F iµ − Fµ

)
vi
)
. Clearly, Iµ = Iµ+a

(
Fµ − FNµ

)
. If u is a minimizer

of (2), then the discrete function v defined from u by (117) is a minimizer of (118). On the other hand, if v is
a minimizer of (118), then u defined by ui = h

∑i−1
j=0 v

j for i ≥ 1 and u0 = 0 is a minimizer of (2).
Let vn be a minimizing sequence of Iµ. Since 0 < vin ≤ a/h for all 0 ≤ i ≤ N − 1 and all n, one can extract

a subsequence that converges to the configuration vµ. Again, since WLJ(0) = +∞ and the infimum (118) is not
equal to +∞, we have viµ > 0 for all 0 ≤ i ≤ N−1 and vµ is a minimizer of (118). Hence (118), and therefore (2),
have at least one minimizer, we denote by vµ and uµ two corresponding minimizers of (118) and (2).

In the case a ≤ θµ, the proof of uniqueness follows the same lines as the proof of Theorem 2.1, in the case
a ≤ θM .

We now turn to the case a > θM . As lim
h→0

θµ = θM , we choose h small enough such that a > θµ. We introduce

the function Pi(t) = WLJ(t) + (F iµ − Fµ)t, which attains its minimum with respect to t ∈ [0,+∞) at t = vi1
defined by

vi1 = (W ′
LJ)

−1(Fµ − F iµ), i = 0, . . . , N − 1. (119)

We notice that

∀v ∈ Yµ(a), Eµ(v) = h

N−1∑

i=0

Pi(vi) ≥ Eµ(v1). (120)

As WLJ(0) = +∞, the constraint vi > 0 is not active in (118), so the Euler-Lagrange equation of (118) reads

W ′
LJ(v

i
µ) + F iµ − Fµ = λ∗µ, (121)

where λ∗µ is the Lagrange multiplier associated to the constraint h
N−1∑

i=0

viµ = a. Since a > θµ, one can show that

λ∗µ > 0 (otherwise, (121) leads to viµ ≤ vi1, and summing these inequalities leads to a ≤ θµ). It holds that

∀i ∈ G1(uµ) ∪G2(uµ), viµ = ψ(Fµ − F iµ + λ∗µ). (122)

Step 1 (lim inf hCard(G1(uµ)) > 0). In view of (120), we have

Eµ(v1) ≤ Iµ. (123)
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Let i0 be an index such that F i0µ = Fµ, and let us consider the function vb defined by vib = vi1 > 0 for i �= i0

and vi0b such that h
∑N−1

i=0 vib = a. By construction, vi01 = 1 and hvi0b = a− θµ + h, so

vi0b ∼h→0
a− θM
h

> 0. (124)

Hence, vb is a test function for (118) and we have Iµ ≤ Eµ(vb). Collecting this inequality with (123), we have

Eµ(v1) ≤ Iµ ≤ Eµ(vb). (125)

Since F i0µ = Fµ, we have Eµ(vb) − Eµ(v1) = h
(
WLJ(vi0b ) −WLJ(vi01 )

)
. We know that vi01 = 1. With (124), we

obtain

0 ≤ Eµ(vb) − Eµ(v1) ≤ −hWLJ(1). (126)

With (125) and (126), we have

lim
h→0

Iµ = lim
h→0

Eµ(v1) =
∫

Ω

WLJ(v1(x)) + (FM (x) − inf FM )v1(x) dx, (127)

where v1(x) is defined by (43). We now prove a lower bound for Iµ. Since Iµ = h
∑N−1
i=0

(
WLJ(viµ) + (F iµ − Fµ)viµ

)
,

we have Iµ ≥ h
∑N−1
i=0

(
WLJ(1) + (F iµ − Fµ)

)
+ h
∑
i∈G1(uµ)(F

i
µ − Fµ)(viµ − 1). The previous inequality implies

Iµ − h
∑N−1
i=0

(
WLJ(1) + (F iµ − Fµ)

)
≥ −hCard(G1(uµ))

(
sup0≤i≤N−1 F

i
µ − Fµ

)
. Letting h go to zero in the

above inequality, we obtain, in view of (127),

∫

Ω

WLJ(v1)+(FM−inf FM )v1−
∫

Ω

WLJ(1)+(FM−inf FM ) ≥ − lim inf
h→0

(
hCard(G1(uµ))

(
sup

0≤i≤N−1
F iµ − Fµ

))
.

Since f �= 0, we see that v1(x) �= 1 somewhere in Ω. As v1(x) minimizes the function WLJ(t)+(FM (x)− inf FM )t
on [0,+∞), we obtain lim inf hCard(G1(uµ)) > 0, and there exists L1 > 0 such that, for h small enough,
hCard(G1(uµ)) ≥ L1.

Step 2 (a first estimate of the Lagrange multiplier λ∗µ and of vµ). In view of (125) and (126), we have
0 ≤ Iµ − Eµ(v1) ≤ −hWLJ(1). Since Eµ(v) = h

∑N−1
i=0 Pi(vi) for any v ∈ Yµ(a) (see (120)), we have

h
∑

i∈G1(uµ)

(
Pi(viµ) − Pi(vi1)

)
+ h

∑

i/∈G1(uµ)

(
Pi(viµ) − Pi(vi1)

) ≤ −hWLJ(1). (128)

Since t �→ Pi(t) attains its minimum at vi1, we see that the left hand side of the above inequality is a sum of
two nonnegative terms. We know that vi1 ≤ 1. Using the convexity of Pi on (0, 1], one obtains

∀i ∈ G1(uµ), Pi(viµ) − Pi(vi1) ≥ C(viµ − vi1)
2, (129)

where C stands (here and below) for a generic constant which does not depend on h. With (119) and (122),
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we obtain viµ − vi1 ≥ Cλ∗µ for some constant C. Inserting this information in (128) and (129), one obtains
(λ∗µ)2 h Card(G1(uµ)) ≤ O(h). As hCard(G1(uµ)) ≥ L1 > 0, we have

0 < λ∗µ ≤ C
√
h. (130)

Collecting (119), (122) and (130), we infer that there exists a constant C independent of h such that, for all i
in G1(uµ) ∪G2(uµ), we have |viµ − vi1| ≤ Cλ∗µ, so

∀i ∈ G1(uµ) ∪G2(uµ), |viµ − vi1| ≤ C
√
h,

∀i ∈ G3(uµ), viµ ≥ C

h1/14
·

(131)

Step 3 (CardG3(uµ) = 1). For any i ∈ G1(uµ) ∪ G2(uµ), we see that vi1 and viµ belong to the interval
(0, 1 +C

√
h], on which WLJ and Pi are convex. So inequality (129) is valid for all i ∈ G1(uµ)∪G2(uµ), i.e. for

all i /∈ G3(uµ). Thus, (128) implies on the one hand

C h
∑

i/∈G3(uµ)

(viµ − vi1)
2 ≤ h

∑

i/∈G3(uµ)

(
Pi(viµ) − Pi(vi1)

) ≤ −hWLJ(1). (132)

On the other hand, for any i ∈ G3(uµ), Pi(vi1) ≤ Pi(1) = WLJ(1) + F iµ − Fµ and, with (131),

Pi(viµ) ≥WLJ(viµ) + F iµ − Fµ ≥WLJ

(
C

h1/14

)
+ F iµ − Fµ.

This and (128) gives CardG3(uµ)
(
WLJ

(
C

h1/14

)−WLJ(1)
) ≤ ∑i∈G3(uµ)

(
Pi(viµ) − Pi(vi1)

) ≤ −WLJ(1). So, for
h small enough, CardG3(uµ) ≤ 1. If G3(uµ) = ∅, then, with (132), we obtain

0 < a− θµ = h

N−1∑

i=0

viµ − vi1 ≤
√
L

√√√√h
N−1∑

i=0

(viµ − vi1)2 ≤ O(
√
h),

and we come to a contradiction with a > θM = lim
h→0

θµ. So CardG3(uµ) = 1, and we denote by iµ its unique

index: G3(uµ) = {iµ}.
If F iµµ > Fµ, let i0 be an index such that F i0µ = Fµ. By exchanging viµµ and vi0µ , one can lower the energy

of vµ. This is in contradiction with the fact that vµ is minimizer. So F iµµ = Fµ.

Step 4 (identification of the Lagrange multiplier). We have:
a− θM = a− θµ + o(1) = o(1) + h

∑
i/∈G3(uµ)(v

i
µ − vi1) + h(viµµ − v

iµ
1 ).

With (131), we see that h
∑
i/∈G3(uµ)(v

i
µ − vi1) = o(1). With (119), we have viµ1 = 1, so a − θM = o(1) + hv

iµ
µ .

Hence, viµµ ∼h→0
a−θM

h , which implies (52). As a consequence, W ′
LJ(v

iµ
µ ) ∼ Ch7. From (121), we obtain

λ∗µ = W ′
LJ(v

iµ
µ ). So, for h small enough, we have λ∗µ ∈ (0, h] and, since h

∑
viµ = a, the Lagrange multiplier λ∗µ

satisfies (50). Since λµ, defined by Lemma 2.2, is the unique solution of (50), we have λ∗µ = λµ. Collecting this
equality with (121), we obtain (51). �
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