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OPTIMAL CONTROL AND NUMERICAL ADAPTIVITY
FOR ADVECTION–DIFFUSION EQUATIONS

Luca Dede’1 and Alfio Quarteroni1, 2

Abstract. We propose a general approach for the numerical approximation of optimal control prob-
lems governed by a linear advection–diffusion equation, based on a stabilization method applied to
the Lagrangian functional, rather than stabilizing the state and adjoint equations separately. This ap-
proach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori
error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems
from splitting the error on the cost functional into the sum of an iteration error plus a discretization
error. Once the former is reduced below a given threshold (and therefore the computed solution is
“near” the optimal solution), the adaptive strategy is operated on the discretization error. To prove
the effectiveness of the proposed methods, we report some numerical tests, referring to problems in
which the control term is the source term of the advection–diffusion equation.
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Introduction

Many physical problems can be modelled by linear advection–diffusion partial differential equations; this is
the case for example if we want to forecast the distribution of a substance in a continuous medium, such as a
pollutant in air or water. In this contest it is interesting to operate the source terms (e.g. the emission rate of
pollutants) in order that the PDE solution approaches as closely as possible a desired distribution (or, otherwise
said, the concentration of pollutant stands below a pre-assigned threshold). This aspect can be conveniently
accommodated in the framework of the optimal control theory, for which we assume as control function the
source term, while the “observation” is a function depending on the PDE solution. The classical approach to
this kind of problems is based on the theory developed by Lions [10] (see also [2,13,15,17]), or, as complementary
to the previous one, on the Lagrangian functional formalism [4]. By adopting the latter methodology, which is
useful for practical problems, but it does not ensure the existence and uniqueness of solution (see [1]), we address
a generic optimal control problem applied to an advection–diffusion equation. For its approximation we use an
iterative method applied to the Galerkin-FE discretization of both state and adjoint equations. To get rid of
numerical instabilities arising in the transport dominated regimes, we propose a stabilization on the Lagrangian
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functional term, introducing the stabilized Lagrangian concept, rather than stabilizing separately the state and
adjoint equations [16]. By this approach we achieve intrinsic coherence between the stabilized state and adjoint
equations. Moreover, we propose a posteriori estimate of the error on the control problem, that we interpret as
the error on the cost functional [3, 4], i.e. on the observation of the system. With this approach we treat the
error contribution arising from the numerical discretization separately from the one arising from the iteration
process, in view of operating the grid adaptation. More precisely, our a posteriori estimates stem from splitting
the error on the cost functional into the sum of an iteration error plus a discretization error. Once the former
is reduced below a given threshold (and therefore the computed solution is “near” the optimal solution), the
adaptive strategy is operated on the discretization error.

We prove the effectiveness of the proposed method on a couple of test cases in which the advection–diffusion
equation is associated to a pollution problem (atmospheric and hydraulic) for which the control term is the
source term of the equation. In this contest the problems can be interpreted as emission control problems, e.g.
the control of the rate of emission to keep the pollutant level in water (or in air) below a desired threshold.

An outline of this paper is as follows. In Section 1 we formulate an abstract control problem, for a linear
advection–diffusion equation. In Section 2 we introduce the stabilized Lagrangian concept and provide a com-
plete analysis of the stabilized control problem. In Section 3 we propose the separation of the iteration and
discretization error, for which we provide the a posteriori error estimate; we also report a method to intro-
duce the grid adaptivity in the contest of the iterative optimization and we propose a quadratic reconstruction
method in order to compute the error indicator. In Section 4 we report some numerical results applied to two
test problems, for which we show the effectiveness of the proposed methods.

1. Optimal control problem for advection–diffusion equations

We start by providing a general approach for the analysis of optimal control problems, that we will apply to
the particular case of problems governed by a linear advection–diffusion equation.

1.1. An abstract formulation for optimal control

To analyze optimal control problems, we adopt the Lagrangian approach [4], in the linear elliptic case. This
approach results complementary to the analysis on optimal control, developed by Lions [10], however it allows
a systematical mean to define appropriate a posteriori error estimates.
The goal is to minimize a cost functional J = J(w, u) so that a state equation is satisfied, i.e.:

{
J = J(w, u) minimum,
Aw = f +Bu,

(1)

where A is an elliptic differential operator, w is the state variable, f a source term and B a differential operator
acting on the control variable u in state equation. By introducing the Lagrangian functional and a Lagrangian
multiplier p:

L(w, p, u) := J(w, u) + 〈p, f +Bu−Aw〉, (2)

problem (1) has a unique solution (for the linear case see [10]) which satisfies the PDE system:

∇L(w, p, u) = 0. (3)

Considering w ∈ V , u ∈ U , with V and U being two suitable Hilbert spaces, we have the following weak form
for state equation (1):

a(w,ϕ) = (f, ϕ) + b(u, ϕ), ∀ϕ ∈ V , (4)

where (·, ·) is the L2(Ω) inner product, a(·, ·) is a bilinear form associated to the linear elliptic operator while b(·, ·)
is the bilinear form associated with Bu, that is b(u, ϕ) = 〈Bu,ϕ〉. We assume that the cost functional has the
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following form [10]:

J(w, u) :=
1
2
‖Cw − zd‖2 +

1
2
n(u, u), (5)

where the operator C takes the state variable w into the observation space Z (a Hilbert space), zd is the
observation function, ‖ · ‖ is a suitable norm, and n(·, ·) is a non–negative Hermitian form. Then:

L(w, p, u) = J(w, u) + b(u, p) + (f, p) − a(w, p). (6)

The optimal control solution consists in solving the following problem:

find (w, p, u) ∈ V × V × U s.t. ∇L(w, p, u)[(φ, ϕ, ψ)] = 0, ∀(φ, ϕ, ψ) ∈ V × V × U . (7)

Derivatives are to be intended in Fréchet sense [8], so that, from equation (7), we have:



L,w [φ] = (Cw − zd, Cφ) − a(φ, p) = 0, ∀φ ∈ V ,
L,p [ϕ] = (f, ϕ) + b(u, ϕ) − a(w,ϕ) = 0, ∀ϕ ∈ V ,
L,u [ψ] = b(ψ, p) + n(u, ψ) = 0, ∀ψ ∈ U .

(8)

The differential L,p corresponds, in weak form, to the state equation, L,w to the adjoint equation and L,u
to an optimal control constraint. The function p is the adjoint variable and expresses the cost functional
sensitivity to the variations of the control variable u; the optimal control constraint L,u [ψ], in weak form,
can be related to a strong derivative J ′ (cost functional derivative) by means of Riesz Theorem. Indeed,
L,u [ψ] = 〈J ′(p, u), ψ〉 = (J ′(p, u), ψ).

The control problem is solved by an iterative method, starting with an initial value for the control variable u0.
At each step j ≥ 0 we solve the state equation; then we compute the value of the cost functional and we solve
the adjoint equation. Once pj is available, we determine the cost functional derivative J ′(pj , uj) and apply
a suitable stopping criterium. If this criterium is not fulfilled, we adopt an optimization iteration on control
function u; for example we use a steepest-descent method:

uj+1 = uj − τ jJ ′(pj , uj), (9)

where τ j is a relaxation parameter that can be determined by analyzing the mathematical properties of the
control problem [1, 19].

1.2. Optimal control problem governed by an advection–diffusion equation

We apply the general approach for linear elliptic problems proposed in the previous section to the case of an
advection–diffusion state equation:




L(w) := −∇ · (ν∇w) + V · ∇w = u, in Ω ⊂ R
2,

w = 0, on ΓD,
ν ∂w

∂n = 0, on ΓN ,
(10)

where u ∈ L2(Ω) is the control function defined on the domain Ω, w = w(u) is the state variable, while ν and V
depend on the domain coordinates (x, y). We have imposed a homogeneous Dirichlet condition over inflow
boundary ΓD := {x ∈ ∂Ω : V(x) ·n(x) < 0}, where n(x) is the unit vector directed outward, and homogeneous
Neumann condition on the outflow boundary ΓN := ∂Ω\ΓD. Let us notice that, for the sake of simplicity, we
have considered homogeneous conditions on both Dirichlet and Neumann boundaries; however our approach is
straightforward to apply to problems with non–homogeneous boundary conditions. Defining the observation of
the system on a part D of the domain Ω (D ⊆ Ω), the optimal control problem reads:

find u : J(w, u) :=
1
2

∫
D

(g w(u) − zd)
2 dD minimum, (11)
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Figure 1. Domain for the advection–diffusion control problem (11).

where D ⊆ Ω is the domain of observation, g ∈ C∞(D) is a function that project the state solution w in the
observation space, while zd represents the desired observation function. Note that Equation (11) is a special
case of Equation (5) in which n(·, ·) = 0. The domain reported in Figure 1 is typical for this kind of problems.

Defining H1
ΓD

:= {v ∈ H1(Ω) : v|ΓD
= 0}, the weak form of Equation (10) reads:

find w = w(u) ∈ H1
ΓD

(Ω) : a(w,ϕ) = F (ϕ;u), ∀ϕ ∈ H1
ΓD

(Ω), (12)

where:

a(w,ϕ) :=
∫

Ω

ν∇w · ∇ϕ dΩ +
∫

Ω

V · ∇w ϕ dΩ, (13)

F (ϕ;u) :=
∫

Ω

uϕ dΩ. (14)

The Lagrangian functional becomes:

L(w, p, u) := J(w, u) + F (p;u) − a(w, p), (15)

where p ∈ H1
ΓD

(Ω) is the Lagrange multiplier. By differentiating L with respect to the state variable (L,w [φ]),
we obtain the adjoint equation in weak form:

find p ∈ H1
ΓD

(Ω) : aad(p, φ) = F ad(φ;w), ∀φ ∈ H1
ΓD

(Ω), (16)

where:

aad(p, φ) :=
∫

Ω

ν∇p · ∇φ dΩ +
∫

Ω

V · ∇φ p dΩ, (17)

F ad(φ;w) =
∫

D

(g w − zd) g φ dD, (18)

that is (in distributional sense):




Lad(p) := −∇ · (ν∇p+ Vp) = χDg (g w − zd), in Ω,
p = 0, on ΓD,

ν ∂p
∂n + V · n p = 0, on ΓN ,

(19)
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where χD is the characteristic function of the subdomain D. By differentiating L with respect to the control
function u we obtain the optimal condition constraint in weak form:

L,u [ψ] =
∫

Ω

pψ dΩ = 0, ∀ψ ∈ L2(Ω), (20)

from which we obtain the cost functional derivative:

J ′(p) = p. (21)

If we use the iterative procedure (9), in the current case the following stopping criterium can be adopted:

‖J ′(p)‖L2(Ω) = ‖p‖L2(Ω) < Tol. (22)

2. Numerical discretization: the stabilized Lagrangian

To solve the control problem we adopt an iterative method as described in Section 1.1. At each step, we solve
both the state and adjoint equations by a Galerkin finite element method using linear elements on unstructured
meshes, composed by triangular elements {K} s.t.

⋃
K∈Th

= Ω, where Th is the union of triangles covering the
domain Ω.

Both state and adjoint equations are diffusion–transport equations, in which the transport term can dominate
the diffusion term; a suitable stabilization is mandatory. To avoid numerical instabilities and their propagation in
the course of the optimization iterative method, we propose a stabilization directly on the Lagrangian functional,
introducing the stabilized Lagrangian concept, instead of stabilizing separately state and adjoint equations [3]
in a conventional manner [16].

The stabilized Lagrangian is defined as:

Lh(w, p, u) := L(w, p, u) + Sh(w, p, u), (23)

with
Sh(w, p, u) :=

∑
K∈Th

δK

∫
K

R(w;u) Rad(p;w) dK. (24)

The terms R(w;u) and Rad(p;w) represent the residuals of the state and adjoint equations respectively, while δK
is a stabilization parameter depending on the local Péclet number PeK := |V|∞,KhK

2ν [7], being hK the diameter
of the element K ∈ Th, while |V|∞,K is the maximum length of V on K. More precisely, from Equations (10)
and (19), we obtain:

R(w;u) := L(w) − u, (25)
Rad(p;w) := Lad(p) −G(w), (26)
G(w) := χDg (g w − zd). (27)

Considering the Galerkin–FE approximation and differentiating the stabilized Lagrangian with respect to the
adjoint variable, we obtain the stabilized state equation in weak form:

find wh ∈ Xh : a(wh, ϕh) + sh(wh, ϕh;uh) = F (ϕh;uh), ∀ϕh ∈ Xh, (28)

with:
sh(wh, ϕh;uh) := −

∑
K∈Th

δK

∫
K

R(wh;uh) Lad(ϕh) dK. (29)

Equivalently, the state equation reads:

find wh ∈ Xh : ah(wh, ϕh) = Fh(ϕh;uh), ∀ϕh ∈ Xh, (30)
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where:

ah(wh, ϕh) := a(wh, ϕh) −
∑

K∈Th

δK

∫
K

L(wh)Lad(ϕh) dK, (31)

Fh(ϕh;uh) := F (ϕh;uh) −
∑

K∈Th

δK

∫
K

uhL
ad(ϕh) dK. (32)

Similarly, by differentiating the stabilized Lagrangian with respect to the state variable, we obtain the stabilized
adjoint equation:

find ph ∈ Xh : aad(ph, φh) + sad
h (ph, φh;wh) = F ad(φh;wh), ∀φh ∈ Xh, (33)

where:

sad
h (ph, φh;wh) := −

∑
K∈Th

δK

∫
K

(
Rad(ph;wh) L(φh) −R(wh;uh) G′(φh)

)
dK, (34)

and:
G′(w) := χDg

2w. (35)

Equivalently, the adjoint equation reads:

find ph ∈ Xh : aad
h (ph, φh) = F ad

h (φh;wh;uh), ∀φh ∈ Xh, (36)

where:

aad
h (ph, φh) := aad(ph, φh) −

∑
K∈Th

δK

∫
K

Lad(ph)L(φh) dK, (37)

and:

F ad
h (φh;wh;uh) := F ad(φh;wh) −

∑
K∈Th

δK

∫
K

(G(wh)L(φh) +R(wh;uh)G′(φh) ) dK. (38)

Notice that the terms a(wh, ϕh), F (ϕh;uh), aad(ph, φh) and F ad(φh;wh) are defined in Equations (13), (14), (17)
and (18), uh is a discrete approximation of the control function u and Xh ⊂ H1

ΓD
is the finite element space. In

this way we obtain discrete state and adjoint equations that can be regarded as Galerkin approximations to the
exact state and adjoint equations, plus extra terms deriving from differentiating the term Sh in Equation (23).
Considering the state equation, we note that this extra term differs from the one that we could have obtained
by stabilizing directly the state equation by means of a strongly consistent method like GLS (Galerkin least
squares) [16], that is:

find wh ∈ Xh : a(wh, ϕh) + s̃h(wh, ϕh;uh) = F (ϕh;uh), ∀ϕh ∈ Xh, (39)

with

s̃h(wh, ϕh;uh) :=
∑

K∈Th

δK

∫
K

R(wh;uh)L(ϕh) dK. (40)

In the same manner we can apply the stabilization by a GLS method to the adjoint equation, obtaining the
following weak form:

find ph ∈ Xh : aad(ph, φh) + s̃ad
h (ph, φh;wh) = F ad(φh;wh), ∀φh ∈ Xh, (41)

with

s̃ad
h (ph, φh;wh) :=

∑
K∈2Th

δK

∫
K

Rad(ph;wh)Lad(φh) dK. (42)
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Note that Equation (41) is not the adjoint of Equation (39). On the contrary, with the approach that we
advocate in this paper, Equation (36) is indeed the adjoint of Equation (30), that is ah(wh, ph) = aad

h (ph, wh)
for all wh and ph, as it can be grasped from a direct inspection of Equations (31) and (37).
Finally, differentiating Lh with respect to uh, we obtain:

J ′(ph, wh) = ph −
∑

K∈Th

δK Rad(ph;wh); (43)

the associated stopping criterium reads:

‖J ′(ph, wh)‖L2(Ω) = ‖ph −
∑

K∈Th

δK Rad(ph;wh)‖L2(Ω) < Tol. (44)

Equation (43) differs from that achievable from the separate stabilization of the state and adjoint equations,
which does not involve the constraint equation and would read: J ′(ph) = ph.
This approach features the following properties:

• stabilization is based on a strongly consistent method [16] (this will allow a convenient a posteriori error
estimates in the field of estimates with residuals);

• there is coherence between state and adjoint stabilized equations;
• as we will see in Section 3.3, this is a systematical method to achieve error estimates for linear control

problems or functionals depending on PDE solution [3], without introducing second order terms (that
need to be bounded).

Remark 2.1. For the sake of simplicity in this work we have adopted an advection–diffusion state equation
(see Eq. (10)); however the control problem and the stabilized Lagrangian concept can be applied in the same
manner for an equation that contains a reaction (zero–th order) term.

3. A POSTERIORI error estimate

To obtain appropriate a posteriori error estimates for our optimal control problem, we consider a strategy
dealing with error on cost functional [4], rather than the sum of errors on state, adjoint and control vari-
ables [9, 11, 12]. In fact, the error on cost functional can be bounded by suitable combination of the errors on
state, adjoint and control variables, as we shall see in Section 3.3.

3.1. Separating iteration error from discretization error

At the iterative step j the adaptivity will be based on the evaluation of the following error [4]:

|J(w∗, u∗) − J(wj
h, u

j
h)|, (45)

where ∗ indicates optimal variables. Equation (45) involves both the iteration and discretization errors, say ε(j)IT

and ε(j)D , since:

J(w∗, u∗) − J(wj
h, u

j
h) = J(w∗, u∗) − J(wj , uj)︸ ︷︷ ︸ + J(wj , uj) − J(wj

h, u
j
h)︸ ︷︷ ︸,

ε
(j)
IT ε

(j)
D

(46)

the iteration error being the distance between the cost functional ideally computed on continuous variables at
the step j and the cost functional on the optimum. If we use an adaptive procedure based on grid refinement,
to reduce error (45), we make sure to reduce the component due to the discretization error, but not that of the
iteration error. Indeed, although the latter is grid independent, when evaluated on the new grid, generally it
increases, so that, after grid adaptation, error (45) can get larger. To avoid this problem we propose an adaptivity
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Figure 2. Convergence history for cost functional J (a) and iteration error (evaluated as
‖J ′‖) (b) (in log–log scale) for problem (47) with wd = 5y(1 − y) sin(2πx); the effect of grid
refinement is outlined.
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Figure 3. Convergence history for cost functional J (a) and iteration error (evaluated as
‖J ′‖) (b) (in log–log scale) for problem (47) with wd = 5y(1− y) sin(2πx) + e−10x; the effect of
grid refinement is outlined.

based, at each step, on the evaluation of the discretization error |J(wj , uj)−J(wj
h, u

j
h)|; this approach is effective

since the very early stages of the optimization procedure, when we are still far from the optimal solution.
Figures 2 and 3 are instances of the effect of grid refinement on the behavior of the cost functional J(wh, uh)

and the iteration error along the iterations of the optimization method. More specifically, we refer to the
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following problem:

find u : J(w, u) =
1
2

∫
Ω

(w − wd)2 dΩ minimum, with
{

−∆w = u, in Ω = (0, 1) × (0, 1),
w = 0, on ∂Ω, (47)

where we solve the problem by means of the optimization method proposed in Section 1.1, starting by u0 = 0 and
assuming τ = 700. We solve problem by piecewise linear finite elements, initially on a coarse grid of 130 elements,
then on a uniformly refined grid with 2080 elements. In one case (Fig. 2), for which wd = 5y(1−y) sin(2πx) and
stopping criterion ‖J ′‖ < Tol = 5× 10−6, J is increasing with grid refinement, while in the other (Fig. 3), with
wd = 5y(1 − y) sin(2πx) + e−10x and stopping criterion ‖J ′‖ < Tol = 10−4, J is decreasing when re–evaluated
on the fine grid. Notice that we identify the iteration error with the cost functional derivative J ′(ph, uh) (in an
appropriate norm), as we will see in Section 3.2; in particular we plot the iteration error re–evaluated on the
fine grid.

3.2. Evaluation of the iteration error

Definition 3.1. A control problem is linear if ∇L(x) is linear in x := (w, p, u).

This is the case, e.g., if the control problem is governed by a linear state equation and the cost functional is
quadratic with respect to both w and u.

Theorem 3.2. For linear control problems, the iteration error at the j-th iteration has the following expression:

ε
(j)
IT =

1
2

(J ′(pj , uj), u∗ − uj). (48)

Proof. We have ε(j)IT = L(x∗) − L(xj), where x∗ := (w∗, p∗, u∗) and xj := (wj , pj , uj), being the state equation
satisfied adopting continuous variables. From the Fundamental Calculus Theorem, we obtain:

ε
(j)
IT =

∫ x∗

xj

∇L(x̄) · x̄ =
∫ 1

0

∇L(xj + s(x∗ − xj)) · (x∗ − xj) ds,

being x̄ := (w̄, p̄, ū) and having applied the variables transformation x̄ = xj + s(x∗ − xj), with s ∈ R.
By writing [14]:

ε
(j)
IT = ∇L(xj) · (x∗ − xj) +

∫ 1

0

(∇L(sx∗ + (1 − s)xj) −∇L(xj)) · (x∗ − xj) ds,

and using the fact that∇L(x) is linear and the optimal condition ∇L(x∗) = 0, we obtain [14]

ε
(j)
IT = ∇L(xj) · (x∗ − xj) +

∫ 1

0

s∇L(x∗ − xj) · (x∗ − xj) ds =
1
2
∇L(xj) · (x∗ − xj).

Being wj and pj the exact state and adjoint solutions respectively, we finally have:

ε
(j)
IT =

1
2
L,u (xj)[u∗ − uj] =

1
2

(J ′(pj , uj), u∗ − uj). �

Corollary 3.3. If a steepest–descent iterative method with constant relaxation parameter τ is used, the iteration
error can be written as:

ε
(j)
IT = −1

2
τ‖J ′(pj , uj)‖2 − 1

2
τ

∞∑
r=j+1

(J ′(pj , uj), J ′(pr, ur)). (49)
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Proof. In Equation (48) we replace u∗−uj with u∗−uj+1− τJ ′(pj , uj) (see Eq. (9)). By proceeding recursively
we obtain:

ε
(j)
IT =

1
2


J ′(pj , uj),

∞∑
r=j

−τJ ′(pr, ur)


 ,

from which the result follows. �

By applying Equation (49) to the advection–diffusion control problem defined in Section 1.2, we obtain:

ε
(j)
IT = −1

2
τ‖pj‖2

L2(Ω) −
1
2
τ

∞∑
r=j+1

(pj , pr)L2(Ω). (50)

Notice that we can not evaluate correctly this error, since we don’t know the values of pr for r ≥ j+1. For this
reason we can estimate the iteration error as |ε(j)IT | ≈ 1

2τ‖pj‖2
L2(Ω), or more simply:

|ε(j)IT | ≈ ‖pj‖2
L2(Ω), (51)

that leads to the usual stopping criterium: ‖J ′(pj)‖ < Tol.

3.3. A posteriori estimate for the discretization error

We want to estimate the discretization error in Equation (47).

Theorem 3.4. For a linear control problem with a strongly consistent stabilized Lagrangian Lh (Eqs. (23) and
(24)), letting xj

h := (wj
h, p

j
h, u

j
h) be the Galerkin approximation, the discretization error at the j-th iteration

becomes:

ε
(j)
D =

1
2
(J ′(pj , uj), uj − uj

h) +
1
2
∇Lh(xj

h) · (xj − xj
h) + Λh(xj

h), (52)

where Λh(xj
h) := Sh(xj

h) + sh(wj
h, p

j
h;uj

h), being sh(wj
h, p

j
h;uj

h) the stabilization term (Eq. (29)) induced from
Equation (23) on the state equation (Eq. (28)).

Proof. Taking into account Equation (15), we have:

J(wj , uj) = L(xj) − F (pj ;uj) + a(wj , pj);

noting that the variables wj and pj are the continuous solutions of the state and adjoint equations corresponding
to uj , we obtain J(wj , uj) = L(xj). In the same manner, from Equations (15) and (23), we can express J(wj

h, u
j
h)

as:
J(wj

h, u
j
h) = Lh(xj

h) − Sh(xj
h) − F (pj

h;uj
h) + a(wj

h, p
j
h).

Adding and subtracting the term sh(wj
h, p

j
h;uj

h) to the right hand side of the previous equation, we obtain that
J(wj

h, u
j
h) = Lh(xj

h) − Λh(xj
h), since wj

h satisfies a state equation like Equation (28) (with a right hand side
depending on j) in which pj

h can play the role of test function.
In order to provide an appropriate estimate, we need to separate entirely the discretization error from the

stabilization error:

ε
(j)
D = ε

(j)
D1 + ε

(j)
D2 + Λh(xj

h) = (L(xj) − Lh(xj)) + (Lh(xj) − Lh(xj
h)) + Λh(xj

h).

The expression of ε(j)D1 is available only if an expression for Lh is known, as in the case of the stabilized Lagrangian
(Eq. (23)); this would not be the case when the state and adjoint equations are stabilized directly [3]. From
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Equations (23) and (24), we have:

ε
(j)
D1 = −Sh(wj , pj , uj) = −

∑
K∈Th

δK(R(wj ;uj), Rad(pj ;wj)).

This term is identically zero, due to the property of strong consistency. By applying the fundamental calculus
Theorem, using the linearity of ∇Lh(x) [14], observing that ∇L(xj) · (xj − xj

h) ≡ L,u (xj)[uj − uj
h] for the

continuous variables and proceeding as done in Theorem 3.2, we obtain:

ε
(j)
D2 =

1
2
(J ′(pj , uj), uj − uj

h) +
1
2
∇Lh(xj

h) · (xj − xj
h).

Then Equation (52) follows. �

Now we apply the abstract result of Theorem 3.4 to the advection–diffusion control problem defined in
Section 1.2. From Equations (24) and (29) we have:

Λh(xj
h) = −

∑
K∈Th

δK

∫
K

G(wj
h)R(wj

h;uj
h) dK. (53)

Putting into evidence the contributions of the single elements K ∈ Th (see e.g. [3, 4]), we obtain:

|ε(j)D | ≤ η
(j)
D :=

1
2

∑
K∈Th

{(ωp
Kρ

w
K + ωw

Kρ
p
K + ωu

Kρ
u
K) + λK} , (54)

where (see Sect. 2 for symbol definitions):

ρw
K := ‖R(wj

h;uj
h)‖K + h

− 1
2

K ‖r(wj
h)‖∂K ,

ωp
K := ‖(pj − pj

h) − δKL
ad(pj − pj

h) + δKG
′(wj − wj

h)‖K + h
1
2
K‖pj − pj

h‖∂K ,

ρp
K := ‖Rad(pj

h;wj
h)‖K + h

− 1
2

K ‖rad(pj
h)‖∂K ,

ωw
K := ‖(wj − wj

h) − δKL(wj − wj
h)‖K + h

1
2
K‖wj − wj

h‖∂K ,

ρu
K := ‖J ′(pj

h, w
j
h) + J ′(pj)‖K = ‖pj + pj

h − δKR
ad(pj

h;wj
h)‖K ,

ωu
K := ‖uj − uj

h‖K ,

λK := 2δK‖R(wj
h;uj

h)‖K ‖G(wj
h)‖K ,

r(wj
h) :=




− 1
2

[
ν

∂wj
h

∂n

]
, on ∂K\∂Ω,

−ν ∂wj
h

∂n , on ∂K ∈ ΓN ,

rad(pj
h) :=




− 1
2

[
ν

∂pj
h

∂n + V · n pj
h

]
, on ∂K\∂Ω,

−
(
ν

∂pj
h

∂n + V · n pj
h

)
, on ∂K ∈ ΓN .

(55)

Notice that ∂K indicates the boundary of the element K ∈ Th, while the term [·] denotes the jump across the
single edge ∂K of the embraced quantity.
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3.3.1. Evaluation of the estimate (54) by quadratic reconstruction

Before using the estimate (54) we need to evaluate wj , pj and uj ; to this aim we propose a technique based
on quadratic reconstruction of FE–linear solutions:

• wj is replaced by (wj
h)q , the quadratic reconstruction of wj

h;
• pj is replaced by (pj

h)q, the quadratic reconstruction of pj
h;

• when considering the optimization steepest–descent method (with τ j = τ constant), uj is replaced by
(uj

h)q := uj
h − τ(J ′((pj

h)q, (wj
h)q) − J ′(pj

h, w
j
h).

We propose the following quadratic reconstruction method, that can be applied for a generic PDE solution v:

• compute the generic numerical solution vh by linear finite elements on the triangular grid Th;
• refine uniformly the mesh Th, dividing each element in four new elements, to obtain the grid T f

h ;
• resolve the PDE on the fine grid T f

h , obtaining the new FE–linear solution vf
h ;

• ∀K ∈ Th take the restriction vf
h |K of vf

h to every one of the four elements of T f
h contained in K;

• ∀K ∈ Th let vq
h be the quadratic reconstruction of vf

h |K (a second order polynomial function on K), so
that the following condition is satisfied[20]:

find vq
K ∈ P

2(K) : ‖vq
K − vf

K‖H1(K) minimum on K.

3.3.2. Adaptive strategy

We propose a general strategy to apply to linear control problems:

• we use the optimization iterative method till convergence to iteration error tolerance;
• we adapt the grid with an error balancing criterium over grid elements in an iterative setting led by the

error indicator η(j)
D (54), till convergence to discretization error tolerance;

• we re-evaluate the variables and the iteration error on the adapted grid;
• if the iteration error is increased (as it happens quite frequently), we perform the optimization iterative

process once time, till new convergence to prescribed tolerance;
• we re-evaluate the discretization error and, if necessary, we adapt the grid anew;
• we repeat this procedure till when both iteration and discretization errors are below the given tolerances.

This procedure is very convenient computationally: owing to the uniqueness of the solution of linear control
problems [10], we can apply the iterative procedure to PDE solved on a coarse grid, and, only near optimal
solution, perform mesh adaptation.
In practice two different tolerances for iteration and discretization errors can be adopted; a better strategy
should account for error balancing [5], however this might not be convenient if the estimate of the iteration
error is too rough.

4. Numerical tests

In this section we report some numerical tests proving the effectiveness of the proposed methods. Particularly,
we refer to two practical problems, that can be interpreted as pollution control problems. The previous one refers
to a water pollution situation in which we regulate the emission sources to keep the pollutant concentration
below a desired threshold in a river. The second problem deals with an air pollution situation, referring to
emissions by industrial plants or chimneys.

To this aim, let us consider the particular case in which the control term u in the state equation (10) is
defined only in some regions Ui ⊂ Ω, with i = 1, . . . , N . This is the case, e.g. if we have some pollutant
sources located in the domain Ω and we want to regulate them in order to keep the pollutant concentration
below a desired threshold in the observation area D. In particular we assume u =

∑N
i=1 uiχUi , being χUi the

characteristic function of the subdomain Ui and ui the control term located in Ui, extended by zero outside Ui.
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According to the choice of u, Equation (14) reads:

F (ϕ;u) =
N∑

i=1

∫
Ui

uiϕ dUi; (56)

in the same manner the optimal control constraint (20) is:

L,u [ψ] =
N∑

i=1

∫
Ui

pψ dUi = 0, ∀ψ ∈ L2(Ω), (57)

while the cost functional derivative becomes:

J ′(p) =
N∑

i=1

pχUi = p

N∑
i=1

χUi , (58)

which leads to the following stopping criterium: ‖J ′(p)‖L2(Ω) = {
∑N

i ‖p‖2
L2(Ui)

} 1
2 < Tol.

Applying the new form for u to the discrete problem (see Sect. 2), the cost functional derivative can be
expressed as:

J ′(ph, uh) =
N∑

i=1


ph −

∑
K∈T i

h

δKR
ad(ph;wh)


χUi , (59)

where T i
h is the union of the triangles K covering Ui; the associated stopping criterium reads:

‖J ′(ph, uh)‖L2(Ω) =




N∑
i=1

‖ph −
∑

K∈T i
h

δKR
ad(ph;wh)‖2

L2(Ui)




1
2

< Tol. (60)

Similarly we can adapt to this specific contest the results and the numerical methods proposed in Section 3. In
particular the estimate (54) yields, Equation (55) holds, and in our case the terms ρu

K and ωu
K take the following

form:
ρu

K = ‖pj + pj
h − δKR

ad(pj
h;wj

h)‖K∈
⋃

i Ui
,

ωu
K = ‖uj − uj

h‖K∈
⋃

i Ui
.

(61)

We solve numerically both the state and adjoint equations by the Galerkin–FE linear method on an initial
(coarse) grid composed by triangular elements. The steepest–descent iterative method is used to solve the
control problem, for which we assume a relaxation parameter τ constant in the iterative process. The grid
adaptivity procedure is carried out using the estimate (54) and the method proposed in Section 3; we will
compare the results provided by the error indicator ηD (see Eq. (54)) with those obtained by virtue of the
following ones:

• the energy norm error indicator [21] for the state equation, i.e.:

ηw
E :=

∑
K∈Th

hK ρw
K , (62)

• the error indicator [3]:

ηwpu
E :=

∑
K∈Th

hK

{
(ρw

K)2 + (ρp
K)2 + (ρu

K)2
} 1

2 , (63)



1032 L. DEDE’ AND A. QUARTERONI

0 0.2 0.4 0.6 0.8 1.0 1.2
−0.4

−0.2

0

0.2

0.4

Ω 

U
1
 

U
2

D 

Γ
D

 

Γ
N

Γ
N

Γ
N

Γ
N

Γ
N

Γ
N

(a)

0 0.2 0.4 0.6 0.8 1.0 1.2
−0.4

−0.2

0

0.2

0.4

Ω 

Γ
D
in 

Γ
D

Γ
D

Γ
D

Γ
D

Γ
N

Γ
N

(b)

Figure 4. Test 1. Reference domain for the control problem. We report the boundary condi-
tions for the advection–diffusion Equation (10) (a) and for the Stokes problem (64) (b).

where ρw
K , ρp

K and ρu
K are defined in Equations (55) and (61) (for the sake of simplicity, we have dropped the

apex (j) on the error indicators). Results are compared with those obtained on fine grids, that we consider an
accurate guess of the exact solution.

4.1. Test 1: water pollution

Let us consider a first test case that is inspired to a problem of a water pollution. The optimal control problem
consists in regulating the emission rates of pollutants (rising e.g. from refusals of industrial or agricultural plants)
to keep the concentration of such substances below a desired threshold in a branch of a river.

We refer to the domain reported in Figure 4a, that could represent a river that bifurcates into two branches
past a hole, which stands for, e.g., an island. Referring to Equation (10), we obtain the velocity field V as the
solution of the following Stokes problem:




−µ∆V + ∇p = 0, in Ω,
V = (1 − ( y

0.2 )2, 0)T , on Γin
D ,

V = 0, on ΓD,
µ∇V · n− pn = 0, on ΓN ,

(64)

where p stands for the pressure, while Γin
D , ΓD and ΓN are indicated in Figure 4b. Adimensional quantities

are used. Here the Stokes problem serves the only purpose to provide an appropriate velocity field for the
advection–diffusion problem; since the latter governs our control problem, the analysis provided in Section 1
and Section 2 applies. Moreover, for the sake of simplicity, we adopt the method and the a posteriori error
estimate (54) proposed in Section 3. In fact, this approach is not fully coherent, being the velocity field V
computed numerically by means of the same grid adopted to solve the control problem, i.e. we consider Vh

instead of V.
For the Stokes problem we assume µ = 0.1 , for which the Reynolds number reads Re ≈ 10; we solve the

problem by means of linear finite elements with stabilization (see [16]), computed with respect to the same grid
of the control problem. In Figure 5 we report the velocity field and its intensity as obtained by solving the
Stokes problem.

For our control problem we assume ν = 0.015, u = 50 in both the emission areas U1 and U2 and zd = 0.1 in
the observation area D. The initial value of the control function, u = 50, can be interpreted as the maximum
rate of emission of pollutants (divided by the emission area), while the state variable w stands for the pollutant
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Figure 5. Test 1. Velocity field obtained by the Stokes problem: flow arrows (a) and velocity
isolines (b).
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Figure 6. Test 1. State solution at initial step (a) and at convergence (‖J ′‖ ≤ 1.63×10−7) (b);
at convergence it is u1 = 0.705 × umax, while u2 = 0.860 × umax.

concentration. We solve numerically the problem by means of the iterative method proposed in Section 1.1,
with τ = 500 with respect to an initial grid of 212 triangular elements. Moreover, we perform grid adaption
according to the a posteriori error estimate (54) and the method proposed in Section 3.

In Figure 6 we report the results of the optimal control problem: at the initial step, when the value of the state
solution in the observation area is higher than the desired level zd (left), and at convergence (‖J ′‖ ≤ 1.63×10−7)
(right). The two emission sources u1 and u2 must be reduced with respect to the initial value umax = 50. More
precisely, we obtain that at convergence:

• the minimum value of the cost functional is J = 5.40 × 10−9;
• the emission rates become u1 = 0.705 × umax and u2 = 0.860× umax.

In Figure 7 we show two grids adapted by means of the estimates on the error indicators ηD and ηwpu
E ; the grid

that we would obtain by virtue of the error indicator ηw
E results similar to that obtained by ηwpu

E . In Figure 8
we provide an error comparison for the cost functional and the value of u2 on different grids and we prove
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(a) ηD (b) ηwpu
E

Figure 7. Test 1. Adapted meshes (2700 elements) obtained using the error indicators ηD

(left) and ηwpu
E (right); the error indicator ηw

E produces an adapted grid very similar to that on
the right.
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Figure 8. Test 1. Numerical results for adaptivity driven by the error indicators ηD (�),
ηw

E (♦) and ηwpu
E (O) at convergence; we report relative errors (in percent) on cost functional

J (a) and on u2 (b) with the number of elements (Nel) in log–log scale; let us notice that
analogous results hold also for the error on u1.

the validity of the error indicator ηD and the adaptive method. Similar results can be obtained for the error
behavior of u1. The adaptivity driven by the error indicator ηD fits elements in those zones which are more
relevant for the control problem (i.e. {Ui} and D), while the error indicator ηw

E governs the distribution of
elements in those areas which are relevant for the state solution. Finally, the error indicator ηwpu

E fits elements
in those areas which are relevant for both the state and adjoint equations (like e.g. in areas where sources
are located); however these contributions to error indicator are not balanced and, typically, the state error
component dominates the other ones. This explain why ηwpu

E and ηw
E generate similar grids. Let us notice
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(a) stable (b) neutral (c) instable

Figure 9. Test 2. Atmospheric stability conditions: emission chimney behavior in a wind field.

that in lieu of the exact solution, we use a numerical one, obtained with a grid with about 8000 elements, with
elements properly distributed all over the domain.

4.2. Test 2: air pollution

The evolution of pollutant concentration in atmosphere is a complex phenomenon which depends on the
pollutant type, the air composition (presence of other pollutants) and, of course, the specific meteorological
situation (see [6]). If we consider particular pollutants, such as the sulfur oxides (SO2), we can admit that in
urban scales (see [6]) the concentration behavior can be modelled by advection–diffusion equations, neglect-
ing, with acceptable accuracy, the reactive terms. Moreover we consider a stationarity frame, for which the
advection–diffusion equation (10) can be assumed to model the pollutant behavior in air and the optimal con-
trol setting presented in Section 1 can be adopted. Let us notice that Equation (10) models the diffusion and
transport of pollutant at the emission height, i.e. in a plane x − y parallel to soil at height H . Modelling air
motion is a very complex matter, especially in the planetary boundary layer (see [18]), depending on a broad
range of factors, such as: soil orography, type of soil (urban or rural areas), pressure gradients, ground heating
and Coriolis force. For this reason air motion is modelled by means of the medium wind field, plus terms taking
into account the turbulent diffusion, which can be related to atmospheric stability (stability classes are typically
subdivided as stable, neutral and instable; see Fig. 9 and [6]). In the contest of Equation (10), as reported in
[6], the vector V takes into account the medium wind field, while the diffusivity term ν represents the turbulent
diffusion. The molecular diffusivity is much smaller and can be neglected. As we have previously anticipated,
Equation (10) describes the transport and diffusion of the pollutant in a plane, while a complete model should
take into account 3D phenomena. We can adopt a quasi–3D model if we consider the pollutant concentration
w(x, y, z) depending on the concentration at the emission height (which is the solution of Eq. (10)) multiplied
by a function π(x, y, z) which takes into account the distribution of the concentration with the respect to the
vertical coordinate z. The function π can be generated by exploiting the analogy with a Gaussian model (see
[6]). The latter, by assuming a constant wind field, provides the pollutant concentration in a parallelepipedal
domain (3D) emitted by a unique source:

π(x, y, z) := e−
1
2 ( z−H

σz
)2 + e−

1
2 ( z+H

σz
)2 , (65)

where σxy and σz are the dispersion coefficients, which account for atmospherical stability class and soil orog-
raphy (see [6]). For example, considering neutral atmospherical conditions and urban and rural soil, we have:

{
σxy = 0.120 r (1 + 0.00025 r)−

1
2 , [m],

σz = 0.040 r (1 + 0.00020 r)−
1
2 , [m],

(66)

being r the radial coordinate with origin in the emission source.
Our target consists in regulate the emission rates form N chimneys Ui to keep the pollutant concentration

below a desired level in an observation area D, e.g. a town. More particularly, we refer to a domain such as
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Figure 10. Test 2. Reference domain for emission control problem in air.

the one reported in Figure 10, for which we consider the optimal control setting presented in Section 1. To this
aim we make the following assumptions:

• pollutant concentration distribution is governed by 2D linear transport–diffusion equation (Eq. (10)) in
non–conservation form, in the plane x − y, at effective chimney height; the concentration distribution
with respect to z is described by the Gauss model, according to the function π in equation (65);

• turbulent diffusion coefficients depending on radial coordinate with origin at the emission zone (ν = ν(r));
• according to Figure 10, V = V x̂;
• emission areas Ui are approximately at the same distance from the observation area D, in order to

consider the same diffusion coefficient ν =
σ2

xy

2r V ;
• all the emission plants stand at the same height H .

According to these assumptions we can adopt, for the optimal control problem, the same setting presented in
Section 1.2, in which w is the pollutant concentration at the emission height H and u =

∑N
i=1 ui χUi is the

emission rate (control function) (normalized with respect to an appropriate emission volume). We assume in
Equation (11):

g(x, y) = 2e−
1
2 ( H

σz(x,y) )2 , (67)
which is the projection term of pollutant concentration at soil, and zd = w0

d, which stands for the desired pollu-
tant concentration at soil in the observation area D (let us notice that for SO2 the attention level is 125 µg/m3,
while the alarm level is 250 µg/m3; see [6]).

For our test case we refer to the domain reported in Figure 10 and we assume neutral atmospheric conditions
and SO2 as pollutant, for which we take 100 µg/m3 as target concentration level (w0

d); this value is in general
lower than both attention and alarm levels, however it may account for preexistent pollutant level in the domain.
We assume that the maximum emission rate for chimneys is umax = 800 g/s at effective height H = 100 m in a
constant wind field (V = 2.5 m/s). The control function u is the rate of emission normalized with respect to an
appropriate emission volume. We solve numerically both the state and adjoint equations by the Galerkin–FE
linear method on an initial grid of 808 elements. The steepest–descent iterative method is used to solve the
control problem, for which we assume a relaxation parameter τ = 800. The grid adaptivity procedure is carried
out using the estimate (54) and the method proposed in Section 3; we will compare the results provided by the
error indicator ηD (see Eq. (54)) with those obtained by virtue of the estimates (62) and (63).

We report pollutant concentration results in Figure 11: at the initial step (top), when the concentration in
observation area is far superior than the admitted limit, and then at convergence of the optimization iterative
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Figure 11. Test 2. State solutions at initial step and at convergence (‖J ′‖ ≤ 1.8×10−8); pol-
lutant initial concentrations [µg/m3] at effective height (a) and at soil (b) and, at convergence,
in height (c) and at soil (d).

process (bottom). We observe that the emissions in the first and the second industrial complexes must be
reduced, while the control problem does not involve appreciably the emissions of the third one. We report the
results of the optimal control problem (at convergence when ‖J ′(pj

h, u
j
h)‖ ≤ 1.8 × 10−8, for the adimensional

problem) for some interesting quantities:

• the minimum cost functional is J = 2.50 × 10−9 (for the adimensional problem);
• the emission rates become u1 = 0.0858× umax, u2 = 0.325× umax and u3 = 1.00 × umax;
• the maximum value of the concentration of SO2 in the observation area is w0

max = 187 µg/m3, which is
lower than the alarm level.



1038 L. DEDE’ AND A. QUARTERONI

(a) ηD (b) ηwpu
E

Figure 12. Test 2. Adapted meshes (11 000 elements) obtained using the error indicators ηD

(left) and ηwpu
E (right); the error indicator ηw

E produces an adapted grid very similar to that at
the right.
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Figure 13. Test 2. Numerical results for adaptivity driven by the error indicators ηD (�),
ηw

E (♦) and ηwpu
E (O) at convergence; we report relative errors (in percent) on cost functional

J (a) and on w0
max (b) with the number of elements (Nit) in log–log scale.

In Figure 12 we show two grids adapted by virtue of the estimates on the error indicators ηD and ηwpu
E ; the

grid that we would obtain by means of the error indicator ηw
E does not differ significantly from that obtained

using ηwpu
E . In Figure 13 we show an error comparison for the cost functional and the value of w0

max on different
grids, for which we prove the validity of the error indicator ηD and the adaptive method. In particular, the
adaptivity driven by the error indicator ηD leads to a distribution of elements in those domain zones involved
in the control problem (i.e. {Ui} and D), whereas the error indicator ηw

E governs the distribution of elements
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Figure 14. Test 2. Functional cost J (a) and its derivative ‖J ′‖ = ‖∇L‖ (b) versus number
of iterations Nit (in log–log scale). Numerical adaptivity and grid refinement are based on the
error indicator ηD; the final grid is composed of about 10 500 elements.

in the most crucial areas for the state solution. Similarly, the error indicator ηwpu
E fits elements in those areas

which are relevant for the state and adjoint equations and where the derivative of the cost functional is defined,
without balancing their contribution on the control problem. As already mentioned, ηw

E generates a grid quite
similar to that obtained by this last estimate. Let us notice that we consider as exact the solution that is
actually computed using a grid with more than 80 000 elements. In Figure 14 we report the behavior of the
cost functional J and the derivative of the cost functional (in the appropriate norm, ‖J ′‖) versus the number
of iterations. We recall that the latter is equivalent to the gradient of the Lagrangian functional. The jumps
occur in correspondence with grid refinement.

Conclusions

In this work we have proposed a general approach to linear control problems governed by an advection–
diffusion state equation, dealing with both the theoretical aspects and the numerical ones. Particularly we have
introduced the concept of the stabilized Lagrangian to avoid numerical instabilities, providing a valid tool to
afford coherently control problems governed by advection–diffusion equations. On this basis we have proposed
an error estimator dealing with the error on the cost functional, for which we have provided a separation of the
discretization error from the iteration error. The estimator of the discretization error is used in the field of an
adaptive method to refine the grid. The effectiveness of the proposed methods is proved on two numerical tests.

The methods proposed in this work can be easily extended to the case of control problems governed by
advection–diffusion–reaction equations. Moreover the proposed approach can be conveniently applied to prob-
lems of real life interest, e.g. to pollution control problems in the field of environmental engineering.
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