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ABOUT ASYMPTOTIC APPROXIMATIONS IN THIN WAVEGUIDES
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Abstract. We study the propagation of electromagnetic waves in a guide the section of which is a
thin annulus. Owing to the presence of a small parameter, explicit approximations of the TM and TE
eigenmodes are obtained. The cases of smooth and non smooth boundaries are presented.
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1. Introduction

Physical studies often give rise to problems of applied mathematics. To obtain solutions of these problems,
numerical methods are generally used. Beside this, an interesting field is that where asymptotic expansions can
be operated. This work enters this field. The propagation in closed waveguides is studied. We assume that
one of the two characteristic lengths of the section is small compared to the other: precisely, the transverse
section of the guide is a thin annulus. Its thickness is the small parameter of the problem. We consider an
electromagnetic waveguide and we formulate two assumptions: the electromagnetic material is homogeneous
and the distance between the two curves of the boundary of the section is constant. Then, explicit expressions
result from the Laplacian operator of the problem.

The paper is mainly divided into two parts. The first one is devoted to the study for a smooth boundary and
the other to a boundary with angular points. Asymptotic results are compared, in both cases, with computed
ones.

2. Statement of the problem

Let us consider an electromagnetic cylindrical waveguide Ω × R. The bounded section has a boundary ∂Ω,
constituted by two curves, Γ0 and Γ1 (Fig. 1). The distance between them is small compared to the diameter
of the section Ω.
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Figure 1. The problem.

Along Γ0 × R and Γ1 × R, the waveguide is in contact with a perfect infinite conductor.
Let (x1, x2, x3) represents the Cartesian coordinates of a point of R

3 and (x1, x2) the transverse coordinates.
An electromagnetic wave ( �E(x), �H(x)) exp[i (ω t − β x3)] propagates inside the guide. The real positive given
parameter β is the wave number in the direction x3 of the propagation. Maxwell’s harmonic equations [1] govern
the problem:

i ω ε �E − Rotβ
�H = 0, i ω µ �H + Rotβ

�E = 0 in Ω

�E ∧ �N = 0, �H ∧ �N = 0 on ∂Ω,

�N is a normal vector to ∂Ω and Rotβ�u is the vector with the following components:

(u3,2 + iβ u2, −u3,1 − iβ u1, u2,1 − u1,2) (the notation ui,j = ∂ui/∂xj is used).

Assumption 1. We assume that the dielectric constant ε and the magnetic permeability µ of the medium are
real, positive constants.

We introduce real valued unknown fields [2]:

e1 = E1, e2 = E2, e3 = i E3, h1 = H1, h2 = H2, h3 = −iH3 (i2 = −1).

The equations now can be written, with rotβ = Rotiβ :

rotβ�u = (u3,2 − β u2, −u3,1 + β u1, u2,1 − u1,2) (2.1)

ω ε�e = rot−β
�h, ω µ�h = rotβ�e. (2.2)

Eliminating the magnetic field �h, the problem in the electric field �e follows:

rot−β (rotβ �e) = ω2 ε µ�e in Ω (2.3)

�e ∧ �N = 0 on ∂Ω. (2.4)

In a closed guide, for a given wave number β, there exists an infinite countable sequence of eigenfrequencies.
The longitudinal and transversal fields problems provide them. Let us denote by e3 and e the longitudinal and
transversal components of the electric field �e. From (2.2), the relation div e = β e3 results, with div e = e1,1+e2,2

and problem (2.3), (2.4) leads to a Dirichlet problem for e3 and then to a problem for e:

∆e3 +
(
ω2 ε µ− β2

)
e3 = 0 in Ω (2.5)

e3 = 0 on ∂Ω (2.6)

rot rot e− (
ω2ε µ− β2

)
e = β grad e3 in Ω (2.7)

e ∧ �N on ∂Ω. (2.8)

This last boundary condition is associated with the operator rot rot, which is defined by its two components:

rot rotu = (u2,12 − u1,22, u1,21 − u2,11).
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Related to the distance between Γ0 and Γ1, a small parameter η allows approximations of the eigenfrequencies
and the eigenfunctions.

3. Approximations for a C
1

boundary

3.1. Local coordinates

We introduce local non dimensional coordinates. Two characteristic lengths are to be considered: the diam-
eter l and the thickness η l of Ω, η being a small parameter (η � 1). We denote by s l the arc length parameter
along the boundary Γ0. And a point P is located in Ω from a point M on Γ0 by:

−−→
MP = η l ν �n, where �n = �n(s)

is the unitary normal vector to Γ0 in M , oriented to the interior of Ω (Fig. 2).

 
 

Figure 2. Local basis.

Assumption 2. We assume that the equation of Γ0 (resp. Γ1) is ν = 0 (resp. ν = 1).
Let �τ be the tangential vector to Γ0 in M : �τ = �x3 ∧�n. For this plane curve, the Frenet-Serret formulas hold:

d�n = R−1ds �τ , d�τ = −R−1ds �n (3.1)

where R(s) is the non dimensional radius of curvature of Γ0 in M . Then, from
−−→
OP =

−−→
OM +

−−→
MP , we have:

d�P = η l dν �n+ σ l ds �τ ; σ = 1 + η ν R−1. (3.2)

Owing to relations (3.1) and (3.2), we can express, on the local basis, the operators grad p and ∆ p, for a scalar
function p(ν, s). The gradient of p is defined by: gradp .d�P = dp. The Laplacian ∆ p is nothing other than the
trace of the gradient gradV , with V = grad p, and the vector gradient operator defined by: (gradV )(d�P ) = dV .
We obtain:

gradp =
1
η l

∂p

∂ν
�n+

1
σ l

∂p

∂s
�τ ; ∆ p =

1
η2l2

(
∂2p

∂ν2
+

η

σ R

∂p

∂ν
+
η2

σ2

∂2p

∂s2
+ η3 ν R

′

σ3R2

∂p

∂ν

)
· (3.3)

In (3.3-2), R′ denotes the derivative dR/ds.

3.2. Transverse magnetic (TM) wave: e3 �= 0, h3 = 0

With the new variables, the equation for the longitudinal electric field problem becomes:

∂2e3
∂ν2

+
η

σ R

∂e3
∂ν

+
η2

σ2

∂2e3
∂s2

+ η3 ν R
′

σ3R2

∂e3
∂ν

+ η2l2(ω2ε µ− β2) e3 = 0 in Ω (3.4)

e3 = 0 on ∂Ω. (3.5)

The presence of the parameter η involves that the eigenelements depend on the parameter η. Let us denote:
e3 = wη, η l

√
ω2ε µ− β2 = αη. For small η, we search expansions of the solution:

wη = w0 + η w1 + η2 w2 + . . . ; αη = α0 + η α1 + η2α2 + . . . (3.6)

We insert these expressions in (3.4), (3.5) (with Assumption 2) and we identify the successive terms, powers
of η, assuming that is R is O(1) compared to η.
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From the term η0, we obtain the homogeneous problem for w0:

∂2w0

∂ν2
+ α2

0w0 = 0 for 0 < ν < 1 (3.7)

w0 = 0 on ν = 0, ν = 1. (3.8)

Its solution is:
α0 = α0(n) = nπ (n ∈ N∗); w0(ν, s) = C0(s) sin(α0ν). (3.9)

To determine the function C0, we must go on.
From the term η1, we obtain a non homogeneous problem for w1.

∂2w1

∂ν2
+ α2

0w1 = − 1
R

∂w0

∂ν
− 2α0α1w0 for 0 < ν < 1 (3.10)

w1 = 0 on ν = 0, ν = 1. (3.11)

The scalar product in L2(0, 1) of equation (3.10) by sin(α0ν)leads, after integrations by parts, to:

α1 = 0. (3.12)

Then, we obtain:

w1(ν, s) = C1(s) sin(α0ν) − C0(s)
2R

ν sin(α0ν). (3.13)

The term η2 gives α2 and the function C0. The problem to be solved is, for 0 < ν < 1:

∂2w2

∂ν2
+ α2

0w2 = − 1
R

∂w1

∂ν
+

ν

R2

∂w0

∂ν
− ∂2w0

∂s2
− (α2

1 + 2α0α2)w0 − 2α0α1w1 (3.14)

w2 = 0 on ν = 0, ν = 1. (3.15)

With (3.12), from the scalar product of equation (3.12) by sin(α0ν) and integrations by parts, we obtain the
differential equation:

d2C0

ds2
+

(
1

4R2
+ 2α0α2

)
C0 = 0. (3.16)

Then, we get the term w2:

w2(ν, s) = C2(s) sin(α0ν) − C1(s)
2R

ν sin(α0ν) +
3C0(s)

8R2
ν2 sin(α0ν). (3.17)

Equation (3.16) is a Hill’s equation which has periodic solutions for an infinite countable sequence of the
parameter α2 [3]. We can observe that C0 depends on two independent fundamental solutions of (3.16).

So, we obtain the leading term w0 of the longitudinal field and the approximation of the dispersion relation:

ω2ε µ = β2 + η−2l−2α2
0 + 2l−2α0α2 +O(η). (3.18)

As for the transversal electric field, from h3 = 0 and equation (2.2-2), we get rot rot e = 0. Thus, from (2.7),
we have approximation of e on the local basis. We introduce the decomposition on the local basis:

e = u�n+ v�τ . (3.19)
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Table 1. Computed eigenvalues and approximations for TM waves.

n = 1
m = 0

n = 1
m = 1

n = 1
m = 2

n = 2
m = 0

n = 2
m = 1

n = 2
m = 2

η−1α 62.829 62.837 62.860 125.663 125.667 125.678

η−1αapp 62.829 62.837 62.861 125.662 125.667 125.678

η−1αfem 62.846 62.853 62.876 125.791 125.795 125.806

The leading term of each component is (with the similar notations as in (3.6-1)):

u1(ν, s) = −β lα−1
0 C0(s) cos(α0ν), v2(ν, s) = −β lα−2

0 C′
0(s) sin(α0ν).

We observe therefore that, in this case, the longitudinal component is the significant term.
For a circular section, the characteristic length of Γ0 is the radius, R = 1, and an approximation of√
ω2ε µ− β2 is:

η−1αapp = η−1nπ +
η

2nπ

(
m2 − 1

4

)
(n ∈ N∗, m ∈ N) .

Some computed values η−1α and η−1αfem are compared to η−1αapp, for η = 0.05 (Tab. 1). The value η−1α is
obtained from the use of Mathematica� and η−1αfem from a finite elements method (code ASTER for a quarter
circle with 32 841 nodes in the radial direction, with linear element approximation). The parameter mis related
to the index of Bessel’s functions.

For m �= 0, we observe that the order of multiplicity of the eigenvalues η−1αfem is 2.
The difference between the fem solution and the approximation comes from the error of finite elements

approximation. It should be reduced by increasing the number of nodes.

3.3. Transverse electric (TE) wave: h3 �= 0, e3 = 0

In this case, from equation (2.7), we have div e = 0 and the Hodge’s decomposition [1] of e is: e1 = p,2, e2 =
−p,1, i.e. e = grad p ∧ �x3. The unknown scalar function p can be determined from the Neumann problem:

∆ p+ (ω2 ε µ− β2) p = 0 in Ω (3.20)
∂p

∂n
= 0 on ∂Ω. (3.21)

For small values of the parameter η, in a similar way as for the TM wave, we search expansions for a solution
of this eigenvalue problem:

p = pη = p0 + η p1 + η2 p2 + . . . ; η l
√
ω2ε µ− β2 = aη = a0 + η a1 + η2a2 + . . . (3.22)

We insert these expressions in (3.20), (3.21) and, using (3.3-2), we identify powers of η. Various problems
are obtained whose equations are similar to the preceding ones, (3.7), (3.10), (3.14), with ai instead of αi

(i = 0, 1, 2 . . .) . The boundary conditions are different: ∂pi

∂ν = 0.
At order η0, a first case emerges:

a0 = 0. (3.23)
The first approximation of p is: p0(ν, s) = D0(s). At order η, we get: p1(ν, s) = D1(s). The term η2 (see (3.14))
provides to the function D0. As to respect the periodicity, if T denotes the non dimensional length of the
curve Γ0, we obtain:

a1 = 2πm/T (m ∈ N∗); D0(s) = A0 cos(a1s) +B0 sin(a1s). (3.24)
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Table 2. Computed eigenvalues and approximations for TE waves

n = 1
m = 0

n = 1
m = 1

n = 1
m = 2

n = 2
m = 0

n = 2
m = 1

n = 2
m = 2

η−1a 62.837 62.845 62.867 125.663 125.671 125.682

η−1aapp 62.837 62.845 62.869 125.666 125.671 125.682

η−1afem 62.853 62.861 62.884 125.796 125.799 125.810

A0 and B0 are arbitrary constants. An approximation of the solution of the problem is then, using (3.3-1) and
the notation (3.19):

ω2ε µ = β2 + l−2a2
1 +O(η); u0(ν, s) = 0, v0(ν, s) = l−1a1[−A0 sin(a1s) +B0 cos(a1s)]. (3.25)

In the general case (a0 �= 0), at order η0, we obtain:

a0 = a0(n) = nπ (n ∈ N∗); p0(ν, s) = D0(s) cos(a0ν). (3.26)

We use the same step as in Section 3.2. At order η, after a projection on cos(a0ν), we obtain a1 and then the
function p1.

a1 = 0; p1(ν, s) = D1(s) cos(a0ν) +
D0(s)
2a2

0R
[sin(a0ν) − νa0 cos(a0ν)]. (3.27)

At order η2, the following Hill’s equation supplies the term a2 and the function D0(s):

d2D0

ds2
+

(
2a0a2 − 3

4R2

)
D0 = 0. (3.28)

The transversal electric field is deduced from p, and the leading term of each component on the local basis is,
for a0 �= 0:

u1(ν, s) = l−1D′
0(s) cos(a0ν); v0(ν, s) = l−1D0(s) a0 sin(a0ν). (3.29)

The tangential component here is the significant term. An approximation of the dispersion relation is, in this
case:

ω2ε µ = β2 + η−2l−2a2
0 + 2l−2a0a2 +O(η). (3.30)

For a circular section, with R = 1, some computed values η−1a, η−1afem, and approximations η−1aapp,
η−1aapp = η−1nπ + η

2nπ (m2 + 3
4 ) (n ∈ N∗, m ∈ N), are compared for η = 0.05 (Tab. 2).

A good agreement between these some values η−1a and η−1aapp is observed.

3.4. Transverse electric magnetic (TEM) wave: e3 = 0, h3 = 0

From h3 = 0 and (2.2-2), we have rot rot e = 0. So, from e3 = 0 and (2.7), we get the well known result:
ω2εµ = β2 . The relation between the frequency and the wave number does not depend on the geometry of the
section.

As for the electric field, it is given, as in Section 3.3, from a scalar function p which satisfies:

∆ p = 0 in Ω (3.31)
∂p

∂n
= 0 on ∂Ω. (3.32)

We identify the successive powers of η in the expansions of (3.31) and (3.32). An approximation of p is
p0(ν, s) = D0s+ E0, (D0, E0 constant). And the leading term of e is u0�n, with u0 constant.

We can mention that, for TM and TE waves, the first approximation of ω2ε µ− β2 is the same.
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4. Justification of the approximations

Let us consider a TM wave. The justification of the results of Section 3.2 comes from a variational form Pη

of the eigenvalue problem (2.5), (2.6) for the longitudinal electric field. We introduce a test function ϕ of the
Sobolev space H1

0 (Ω). Owing to a Green’s formula, we obtain:

wη ∈ H1
0 (Ω);

∫

Ω

gradwη. gradϕ dx = (ω2ε µ− β2)
∫

Ω

wηϕdx, ∀ϕ ∈ H1
0 (Ω).

In the variables (η, s), the problem Pη follows:

wη ∈ H1
0 (Ω); aη(wη, ϕ) = α2

η bη(wη, ϕ), ∀ϕ ∈ H1
0 (Ω) (4.1)

where aη et bη are the bilinear forms

aη(w,ϕ) =
∫

Ω

(
∂w

∂ν

∂ϕ

∂ν
+
η2

σ2

∂w

∂s

∂ϕ

∂s

)
σ dν ds, bη(w,ϕ) =

∫

Ω

wϕσ dν ds.

As Ω can be identified, in the variables (η, s), to the set [0, 1] × [0,T] (T is the non dimensional length of
the interior closed curve Γ0), the accurate meaning of ϕ ∈ H1

0 (Ω) is that ϕ belongs to the Sobolev space
H1([0, 1] × [0,T]) and satisfies:

ϕ(0, s) = ϕ(1, s) = 0, ϕ(ν, 0) = ϕ(ν,T). (4.2)

In other words, the test function is an element of H1
0,p([0, 1]× [0,T]) (0 for the boundary conditions on η, p for

the periodicity on s).
According to the results of Section 3.2, we define new eigenfunction and test function: wη(ν, s) = σ− 1

2 fη(ν, s),
ϕ(ν, s) = σ− 1

2 ψ(ν, s), with σ = 1 + η ν R−1.
We obtain for Pη:

fη ∈ H1
0,p([0, 1]× [0,T]);

1∫

0

T∫

0

[
∂fη

∂ν

∂ψ

∂ν
− η

2σR

(
fη
∂ψ

∂ν
+ ψ

∂fη

∂ν

)
+

η2

4σ2R2
fηψ +

η2

σ2

∂fη

∂s

∂ψ

∂s

− η3νR′

2σ3R2

(
fη
∂ψ

∂s
+ ψ

∂fη

∂s

)
+
η4ν2R′2

4σ4R4
fηψ

]
dν ds = α2

η

1∫

0

T∫

0

fηψ dν ds, ∀ψ ∈ H1
0,p([0, 1] × [0,T]).

Let us pay attention to the first terms of the integral in the first member and, specially, to the second one. Using
an expansion of the expression (3.2-2) of σ, we transform it. After integrations by parts and thanks to (4.2-1),
we obtain that problem Pη appears to be a perturbation of the eigenproblem:

w̃η ∈ H1
0,p([0, 1] × [0,T]);

1∫

0

T∫

0

[
∂w̃η

∂ν

∂ψ

∂ν
+ η2 ∂w̃η

∂s

∂ψ

∂s
− η2

4R2
w̃ηψ

]
dν ds = γ2

η

1∫

0

T∫

0

w̃ηψ dν ds, ∀ψ ∈ H1
0,p([0, 1] × [0,T]).

We can verify that the function w̃η(ν, s) = C0(s) sin(α0ν), with C0 being a T-periodic solution of (3.16), is an
eigenfunction of this problem, associated to the eigenvalue α2

0 + 2η2α0α2. And Kato’s perturbation theorem [4]
gives a justification of the approximations of Section 3.2.
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We can present here a variational form of the eigenvalue problem issued from the Hill’s equation (3.16).
Denoting by H1

p [0,T] the set of the T-periodic elements of H1[0,T], we have:

C0 ∈ H1
p [0,T];

T∫

0

(
dC0

ds
dc
ds

− 1
4R2

C0c

)
ds = 2α0α2

T∫

0

C0c ds, ∀c ∈ H1
p [0,T]. (4.3)

As the boundary is regular, R(s) is continuous on the interval [0,T]. After the shift of the spectral parameter:
2α0α2 → 2α0α2 +m2, m2 = max( 1/R2(s)) for s ∈ [0,T], we obtain a standard eigenvalue problem on H1

p [0,T],
from which computational values of C0 and α2 can be derived.

For the TE wave, the same approach leads to the justification.

5. Approximations for a piecewise C
1

boundary

5.1. Equations near a corner

The presence of an angular point has two effects. First, it involves a modification in the preceding approxi-
mations. And, in addition, it introduces other modes, we can call them “corner modes”.

The TM wave problem is considered. Our study is mainly devoted to the perturbation brought by a corner,
in the previous results. Let O be an angular point of Γ0. Near O three regions are to be considered (Fig. 3).

Figure 3. The geometry near a corner.

Ω(1) and Ω(3) are strips with thickness η l. We assume that in Ω(1), s ≤ T and in Ω(3), s ≥ 0. Ω(2) is a
curvilinear quadrilateral OACB, with an angle φ in O. The geometry of this quadrilateral should be specified
but it does not interfere in the first approximation of the field.

For the study in Ω(2), a suitable local basis is (O; �n(T−), �n(0+)) with
−→
OA = η l �n(T−) and

−−→
OB = η l �n(0+).

A point P in Ω(2) is located by:
−−→
OP = xη l �n(T−) + yη l �n(0+).

We consider the case of only one angular point, so Ω(1) = Ω(3). In Ω(1), the field w
(1)
η (ν, s) satisfies the

equation and boundary conditions:

∂2w
(1)
η

∂ν2
+

η

σ R

∂w
(1)
η

∂ν
+

η2

σ2

∂2w
(1)
η

∂s2
+ η3 ν R

′

σ3R2

∂w
(1)
η

∂ν
+ α2w(1)

η = 0 (5.1)

w(1)
η (0, s) = w(1)

η (1, s) = 0. (5.2)

In Ω(2), the field w(2)
η (x, y) satisfies the equation and boundary conditions:

∂2w
(2)
η

∂x2
+
∂2w

(2)
η

∂x2
+ α2w(2)

η = 0 (5.3)

w(2)
η = 0 on A

�

C and B
�

C. (5.4)
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These problems are to be completed by conditions of continuity on O
�

A and O
�

B. On O
�

A, using (3.3-1), we
have:

w(1)
η (ν,T) = w(2)

η (x, 0);
η

σ(T)
∂w

(1)
η

∂s
(ν,T) = −∂w

(2)
η

∂n
(x, 0), for 0 ≤ ν = x ≤ 1 (5.5)

with ∂w(2)
η

∂n (x, 0) = cot anφ ∂w(2)
η

∂x (x, 0) − (sinφ)−1 ∂w(2)
η

∂y (x, 0). Similar conditions exist on O
�

B.
We assume expansions of the eigenelements, similar to (3.6). We study how the presence of the angular point

modifies the first approximation, i.e. the terms w(1)
0 and α2.

5.2. First approximation

As no transversal boundary conditions is prescribed in the problem (5.1), (5.2), in Ω(1) some results obtained
section 3 still remain, and specially:

α0 = α0(n) = nπ, α1 = 0, w
(1)
0 (ν, s) = C

(1)
0 (s) sin(α0ν).

The problem in Ω(2), at order η0, is a homogeneous problem, with Dirichlet-Neumann conditions deduced
from (5.4) and (5.5-2). It has only one solution: w

(2)
0 (x, y) = 0, except for special cases we do not study.

According to the continuity of the field on O
�

A and O
�

B, we obtain:

C
(1)
0 (T) = C

(1)
0 (0) = 0. (5.6)

So, a restriction has to be done among the previous solutions of the Hill’s equation (3.16). From this supple-
mentary condition, we can remark that C(1)

0 (s) is generated by only one fundamental solution of (3.16).
Such result is valid for more than one angular point. But, for special geometries, indeterminations can occur

and to go on the next terms, we have to deal with stiff problems. Both conditions of continuity on O
�

A ∪ O�

B
cannot be satisfied locally. For one of them, we adopt a global condition. An example is given in Section 6.

To justify the first approximation, we can use the arguments developed in [5] (Chap. VII). We transform
the problem in one settled on Ω(1), thank to a frontier operator defined from the problem in Ω(2). The problem
obtained is in the general framework of holomorphic perturbation theory.

5.3. Corner modes

Another kind of waves which can propagate is those due mainly to the angular point. In this case, the field
is prevalent in the corner. But, in general, the eigenvalue is different from nπ, so elsewhere than in the corner,
the field is null. Another partition of the domain Ω is made, insulating the corner (Fig. 4).

Figure 4. Geometry for the corner modes.

In such a geometry, the singularity that can occur in O can be taken in account.
The continuity of the field implies that α is an eigenvalue of the Dirichlet problem in Ω(2):

∂2w(2)

∂x2
+
∂2w(2)

∂x2
+ α2w(2) = 0 in Ω(2) (5.7)

w(2) = 0 on ∂Ω(2). (5.8)

Of course, the approximation which is obtained depends on the choice of the domain Ω(2). A study would be
done to optimise the results.
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6. Thin square waveguider

6.1. Analytical results

To illustrate the case of more than one angular point, we present explicit expressions of approximations for
the TM waves in a thin square guide. Thanks to the symmetries of the section, we can reduce the domain.
Also, we get simplifications in the equations, coming from the fact that the curvature is null in every smooth
point of Γ0.

The section has a centre and three independent axis of symmetry: two are parallel to the sides of the interior
square and the other has the direction of one of the bisecting lines. So the domain can be reduced to the eighth
of the section. Figure 5 shows the general shape of the selected eighth of the section and the exact shape in
variables (ν, s) and (x, y).

Figure 5. The eighth of the section.

The domain is divided in Ω(1), part of the side, Ω(1) = {(ν, s), 0 ≤ ν ≤ 1, −1/2 ≤ s ≤ 0} and in Ω(2), part of
the corner, Ω(2) = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x ≤ y} (in the non dimensional variables).

The boundary conditions on the sides [CD ] and [OA] depend on the properties of the field. On an axis of
symmetry, the condition to be taken is:

∂w

∂n
= 0 for a symmetrical field; w = 0 for an antisymmetrical field.

a) Case of a symmetrical field compared to the lines (CD) and (OA).
Taking into account simplifications, the equations of the problem are:

In Ω(1) ∂2w
(1)
η

∂ν2
+ η2 ∂

2w
(1)
η

∂s2
+ α2

η w
(1)
η = 0 (6.1)

w(1)
η (0, s) = w(1)

η (1, s) = 0;
∂w

(1)
η

∂s

(
ν,−1

2

)
= 0. (6.2)

In Ω(2) ∂2w
(2)
η

∂x2
+

∂2w
(2)
η

∂y2
+ α2

η w
(2)
η = 0 (6.3)

w(2)
η (x, 1) = 0;

∂w
(2)
η

∂n
(x, x) = 0. (6.4)

To these equations, we have to add the conditions of continuity on [OB ]:

w(1)
η (ν, 0) = w(2)

η (0, y); η
∂w

(1)
η

∂s
(ν, 0) =

∂w
(2)
η

∂x
(0, y) (ν = y). (6.5)
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For η � 1, the results obtained in Section 3 are valid and they provide general expressions of the different terms
of the approximations. In Ω(1), from (6.1) and (6.2-1), we get:

w
(1)
j (ν, s) = C

(1)
j (s) sin(nπν) (j = 0, 1, 2, ...); α0 = nπ, α1 = 0 (6.6)

d2C
(1)
0

ds2
+ 2α0α2 C

(1)
0 = 0

(
0 < s <

1
2

)
· (6.7)

And from (6.2-2), we have the condition:

dC(1)
j

ds

(
−1

2

)
= 0 (j = 0, 1, 2). (6.8)

This relation provides one of the boundary condition for equation (6.7), the other comes from the solution
in Ω(2) and the continuity on [OB ]. For the problem in Ω(2), we have to deal with two conditions on [OB ], for
j = 0, 1, 2 and ν = y:

w
(2)
j (0, y) = C

(1)
j (0) sin(nπν);

∂w
(2)
0

∂x
(0, y) = 0,

∂w
(2)
j+1

∂x
(0, y) =

dC(1)
j

ds
(0) sin(nπν). (6.9)

Both cannot be satisfied locally. We use global properties and from a variational form of the problem we
determine relations between the unknown coefficients C(1)

j (0).
Let us consider the function: ϕn(x, y) = (1 − y) sin(nπx) + (1 − x) sin(nπy). It satisfies equation (6.3), with

α2
η = n2π2, and the boundary conditions (6.4). Thanks to a Green’s formula, from (6.3), (6.4) and (6.5), we

obtain:

1∫

0

η
∂w

(1)
η

∂s
(y, 0) sin(nπy) − w(1)

η (y, 0)[nπ(1 − y) − sin(nπy)]dy = (α2
η − n2π2)

∫

Ω(2)

w(2)
η ϕn dxdy. (6.10)

The identification in (6.10) of the successive terms, powers of η, provides relations between the coefficients C(1)
j (0).

At order η0, we get, in agreement with Section 5: C(1)
0 (0) = 0. So, the function C(1)

0 (s) satisfies (6.7) and:

dC(1)
0

ds

(
−1

2

)
= 0, C

(1)
0 (0) = 0. (6.11)

The solution of this differential problem gives the approximations:

2α0α2 = (2p+ 1)2π2 (p ∈ N); C
(1)
0 (s) = A

(1)
0 sin[(2p+ 1)π s]. (6.12)

As for the field w(2)
0 , it satisfies:

∂2w
(2)
0

∂x2
+
∂2w

(2)
0

∂y2
+ α2

0 w
(2)
0 = 0 (6.13)

w
(2)
0 (0, y) = 0,

∂w
(2)
0

∂x
(0, y) = 0 (6.14)

w
(2)
0 (x, 1) = 0,

∂w
(2)
0

∂n
(x, x) = 0. (6.15)
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Let us consider the problem (6.13), (6.14-1) and (6.15). Its solution depends on the eigenelements of the
associated eigenvalue problem. These eigenvalues and eigenfunctions are:

ω2
q,r = π2(q2 + r2) (q, r ∈ N∗), wq,r(x, y) = sin(qπx) sin(rπy) + sin(rπx) sin(qπy). (6.16)

• For n2 �= q2 + r2, i.e. when (q, r, n) is not a pythagorician triplet, the only solution of (6.13), (6.14-1)
and (6.15) is w(2)

0 (x, y) = 0. This function which also satisfies (6.14-2) is the solution of (6.13), (6.14) and
(6.15). In this case, we get the following approximations of the eigenvalue and the normalized eigenfunction (in
L2([0, 1]× [−1/2, 0])):

αapp = nπ + η2 (2p+ 1)2

2n
π +O(η3) (n ∈ N∗, p ∈ N) (6.17)

w
(1)
0 (ν, s) = 2

√
2 sin(nπν) sin[(2p+ 1)π s], w

(2)
0 (x, y) = 0. (6.18)

These approximations are periodic and depend on two integers.
At order η1, (6.10) involves that, for s = 0, C(1)

1 and dC(1)
0 /ds are equal and we get:

C
(1)
1 (0) = 2

√
2(2p+ 1)π. (6.19)

We can specify the function C(1)
1 (s) if we continue the research of the approximations in Ω(1). From the term η3

in (6.1), we obtain, after a projection on sin(nπν) as in Section 3:

d2C
(1)
1

ds2
+ 2α0α2 C

(1)
1 = −2α0α3 C

(1)
0 . (6.20)

The solution of (6.20), (6.8) is, with (6.19):

α3 = 4α2; C
(1)
1 (s) = A

(1)
1 sin[(2p+ 1)π s] + C

(1)
1 (0) (1 + 2s) cos[(2p+ 1)π s]. (6.21)

The constant A(1)
1 is determined from the normalization of the eigenfunction, what amounts choosing w

(1)
1

orthogonal to w(1)
0 : A(1)

1 = 2
√

2.
To exhibit an explicit approximation of w(2)

1 , we make the assumption that (6.9-1) is satisfied, whereas (6.9-2)
is globally satisfied thanks to the fundamental relation (6.10). And we have:

w
(2)
1 (x, y) = C

(1)
1 (0) [(1 − y) sin(nπx) + (1 − x) sin(nπy)]. (6.22)

The next approximation can be obtained in a similar way.
• For n2 = q2 + r2, w(2)

0 is one of the eigenfunction k0wq,r of (6.16) (k0 constant). We choose wq,r for test
function in a variational form of the problem in Ω(2). From the structure (6.6-1) of the solution in Ω(1), we
obtain that w(2)

η is orthogonal to wq,r. So w(2)
0 = 0 and the previous approximations are still valid.

b) Case of a symmetrical field compared to (CD) and antisymmetrical compared to (OA)
For the problem in Ω(2), to the condition (6.4-2) we have to substitute: w(2)

η (x, x) = 0.
With a method similar to that of a), we consider here the test function: ψn(x, y) = −(1− y) sin(nπx) + (1−

x) sin(nπy). We obtain that the approximations (6.17), (6.18) and (6.21-2) are still valid. But C(1)
1 (0) and α3

are different:
C

(1)
1 (0) = −2

3

√
2 (2p+ 1)π; α3 = −4

3
α2.

Table 3 shows the agreement of these results with the computations.
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Table 3. Approximations and computed eigenvalues.

n = 1
m = 1

n = 1
m = 2

n = 1
m = 3

n = 1
m = 4

n = 1
m = 5

n = 2
m = 1

n = 2
m = 2

n = 2
m = 3

η−1αapp 62.91 63.15 63.54 64.09 64.79 125.70 125.82 126.02

η−1α
(a)
fem 62.92 63.15 63.52 64.03 64.69 125.81 125.94 125.94

η−1α
(s)
fem 62.93 63.20 63.62 64.22 64.95 125.83 125.95 126.13

 

Figure 6. Corner mode η−1αfem = 59.60.
Figure 7. Symmetrical field /
(CD) (n = 1, m = 3), antisymmet-
rical field / (OA) η−1α

(a)
fem = 63.52.

c) Case of an antisymmetrical field compared to the lines (CD) and (OA)
The boundary conditions along these lines are now respectively:

w(1)
η

(
ν,−1

2

)
= 0; w(2)

η (x, x) = 0.

In the same way as previously, we obtain the system for the determination of C(1)
0 (s):

d2C
(1)
0

ds2
+ 2α0α2 C

(1)
0 = 0

(
0 < s <

1
2

)
; C

(1)
0

(
−1

2

)
= 0, C

(1)
0 (0) = 0.

So, an approximation of the eigenelements is:

αapp = nπ + η2 (2p)2

2n
π +O(η3) (n ∈ N∗, p ∈ N∗) (6.23)

w
(1)
0 (ν, s) = 2

√
2 sin(nπν) sin(2pπs), w

(2)
0 (x, y) = 0. (6.24)

These results (6.23) and (6.24) still hold true in the case of an antisymmetrical field compared to (CD) and
symmetrical to (OA).
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Figure 8. Antisymmetrical field /
(CD) (n = 1, m = 4) , symmetrical
field / (OA) η−1α

(s)
fem = 64.22.

Figure 9. Antisymmetrical field /
(CD) (n = 2, m = 2) , symmetrical
field / (OA) η−1α

(s)
fem = 125.95.

To summarize, the first approximation which is found for a TM wave is:

η−1αapp =
nπ

η
+ η

m2

2n
π (n ∈ N∗, m ∈ N∗) (6.25)

w
(1)
0 (ν, s) = 2

√
2 sin(nπν) sin(mπs), w

(2)
0 (x, y) = 0. (6.26)

6.2. Comparison with computed results

Table 3 shows results which are obtained, with η = 0.05, for fields which propagate in the sides of the section.
η−1αapp denotes the analytical approximation (6.25) and η−1αfem is the value obtained from a finite elements
method (code ASTER, 67281 nodes, with linear finite elements approximation, for a quarter of the section).
The two values η−1α

(a)
fem (a), η

−1α
(a)
fem (s) are respectively related to antisymmetrical and symmetrical modes in

the corners, i.e. along (OA).
The finite elements method also provide the corner modes (Fig. 6). The first eigenvalue of these modes is

lower than all the preceding ones: η−1αfem = 59.603.
A visualisation of other modes shows the agreement with the expression (6.26), both for symmetrical modes

(Fig. 7) and for antisymmetrical ones (Figs. 8 and 9).
One can observe that the values are close, the difference between them being less than 1%. The asymptotic

approximations seem to be less expensive. They provide values which are obtained by finite elements method
with fine meshes. Moreover, the asymptotic method proposes continuous expression of the field.
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