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A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST
ARBITRARY TWO-DIMENSIONAL GRIDS
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Abstract. We present a finite volume method based on the integration of the Laplace equation on
both the cells of a primal almost arbitrary two-dimensional mesh and those of a dual mesh obtained
by joining the centers of the cells of the primal mesh. The key ingredient is the definition of discrete
gradient and divergence operators verifying a discrete Green formula. This method generalizes an
existing finite volume method that requires “Voronoi-type” meshes. We show the equivalence of this
finite volume method with a non-conforming finite element method with basis functions being P 1 on the
cells, generally called “diamond-cells”, of a third mesh. Under geometrical conditions on these diamond-
cells, we prove a first-order convergence both in the H1

0 norm and in the L2 norm. Superconvergence
results are obtained on certain types of homothetically refined grids. Finally, numerical experiments
confirm these results and also show second-order convergence in the L2 norm on general grids. They
also indicate that this method performs particularly well for the approximation of the gradient of
the solution, and may be used on degenerating triangular grids. An example of application on non-
conforming locally refined grids is given.
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Introduction

In this paper, we consider a finite volume method for the approximation of the Laplace equation:

−∆φ = f (1)

on a bounded domain Ω, supplemented with adequate boundary conditions. Given a (primal) mesh covering Ω,
finite volume methods for this type of equation may be classified into two main distinct categories: “vertex-
centered” methods and “cell-centered” methods. Vertex-centered methods compute approximate values of φ
at the vertices of the primal mesh by integrating Equation (1) on dual cells associated to the vertices of the
primal mesh. On the opposite, cell-centered methods compute approximate values of φ at the centers of the
cells of the primal mesh by integrating Equation (1) on the primal cells. For a review of these methods, we
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refer to [9]. In both cases, after using Gauss’ formula, the values of ∇φ · n on the sides of the (primal or dual)
cells of the mesh have to be computed. If the line joining the centers of two adjacent cells is perpendicular
to the corresponding interface, then the value of ∇φ · n on this interface may simply be computed by a finite
difference. This is the case for the so-called “admissible meshes” described in [9] which include Voronoi-type
meshes (see also [20, 25]). But for other general meshes (in particular for non-conforming meshes which can
never be “admissible”), a possibility is to reconstruct the whole gradient, and not only its normal component
(one may find alternative approaches to the reconstruction of the whole gradient in [11, 19]). Several methods
exist for this, which are partially reviewed in [6, 7]. In these papers, the authors study the so-called “diamond-
cell” method to reconstruct the gradient. Each of these quadrilateral cells is associated with a side of the
primal mesh and is obtained by joining the two vertices of this side with the centers of the two elements of the
primal mesh which share this side. The mean-value of the gradient is defined with the help of the values of
the function at the centers and at the vertices of the primal cells. The discrete solution at the vertices of the
primal mesh is computed by a least-square linear interpolation of its values at the centers of the neighboring
cells. The advantage of this scheme is that it can be defined on almost arbitrary two-dimensional grids and
extends naturally to three dimensions. The main drawbacks are first, that the resulting numerical scheme is
not symmetric, and thus more expensive iterative methods have to be employed to compute the solution of the
associated linear system of equations; and second, that convergence of the discrete solution to the continuous
one is obtained if the discrete system is coercive, which is proved only if the meshes verify some geometrical
constraints (“almost-parallelogram” quadrangular meshes in the case of [6], and locally refined rectangular
meshes with a lower and an upper bound on the aspect-ratio of the rectangles in the case of [7]).

In the present paper, we start by adopting the diamond-mesh methodology to reconstruct the gradient.
But instead of interpolating the values of φ at the vertices of the primal mesh, we consider these values as
supplementary unknowns of the numerical scheme. Therefore, we also have to write an equivalent number of
supplementary equations. These are obtained by integrating the Laplace equation, not only on the cells of the
primal mesh, but also on the cells of the dual mesh. Moreover, by doing so, we are in a position to define
a discrete divergence operator (defined on the primal and dual meshes) which is the adjoint of the gradient
operator (defined on the diamond mesh), which means that these two operators verify a discrete Green formula.
Therefore, the scheme is by construction symmetric and coercive in the sense of [6] and belongs to the family of
“support-operator methods” developed by Hyman and Shashkov in [16,17]. It also displays a variational form,
which enables us to prove its equivalence with a non-standard non-conforming finite element method whose
functions are piecewise P 1 on the diamond-cells and continuous only at the midpoints of the interfaces of these
cells. It is also worth mentioning that if the sides of the primal and dual cells are orthogonal, then the scheme
fully decouples into two independent schemes: the first only involves unknowns at the centers of the primal
cells and the second only those at the vertices of the primal mesh and, in that case, both schemes are identical
to the above-mentioned cell-centered and cell-vertex schemes, respectively. Thus, the presented scheme may be
considered as a generalization of the schemes that use Voronoi-type meshes. We also remark that Hermeline
[15] used a finite volume method, that turns out to be equivalent to that presented here, to approach more
general linear and non-linear diffusion operators on distorted meshes. The originality of our approach is that the
definitions of the discrete gradient and divergence operators lead to a scheme which is, by construction, positive
definite, while this property had to be proved in [15]. Moreover, the equivalence with a non-conforming finite
element method and its use on non-conforming meshes are also original properties. Finally, error estimates for
this scheme are provided for the first time, assuming the diamond-cells of the mesh respect some geometrical
hypotheses. These hypotheses explain why this scheme is particularly adapted to very distorted or degenerating
grids. In the case of the traditional Lagrange finite elements, it is well-known that a quality criterion of the
grid is given by the so-called “maximum angle condition” (see [2, 18]): The optimal rate of convergence of the
numerical solution toward the solution of the continuous problem, on a family of grids whose step h tends to 0,
is obtained if, and only if, the maximum angle of the triangles is bounded away from π, uniformly in h. This
property was then extended by Acosta and Durán to the mixed finite elements of Raviart-Thomas type and
to the non-conforming finite elements of Crouzeix-Raviart type in [1]. As far as the scheme presented here is



A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION 1205

concerned, we obtain a sufficient condition of convergence related to the angles of the diamond-cells: each one of
these quadrangles can be split along one of its diagonals into two triangles. According to the diagonal we chose,
we obtain two couples of triangles (see Fig. 6). The convergence of the scheme with an order h in a discrete H1

0

norm, as well as in the L2 norm, is obtained if the maximum angle of the triangles of one of these two couples
is bounded away from π, uniformly in h. In addition, if the family of meshes is obtained through homothetic
refinement, then we can prove that the scheme is of order 1.5 − α in the H1

0 norm and of order 2 − α in the L2

norm (for all α > 0) if the data f is in H1(Ω). The presented numerical experiments confirm the theoretical
results in norm H1

0 and show in addition that a second-order convergence in the L2 norm takes place even if the
diamond-cells are not parallelograms.

The rest of the paper is organized as follows: in Section 1, we introduce our notations; in Section 2, we
define the discrete gradient operator on the diamond-cells and the corresponding adjoint discrete divergence
operator on the cells of the primal and dual meshes. In Section 3, we write down the finite volume scheme and
describe some of its properties. In Section 4, we prove its equivalence with a non-conforming finite element
scheme. In Section 5, we study the numerical error in a discrete H1

0 norm by distinguishing an approach close
to that presented in [9], which we name “finite volume approach” and a more standard finite element approach.
Further, in Section 6, we derive an estimate in the L2 norm, while in Section 7, we give superconvergence results
on homothetically refined triangular grids. We conclude this work by presenting in Section 8 convergence
curves in the discrete H1

0 and L2 norms on various types of grids: triangular, homothetically refined triangular,
degenerating triangular, and finally locally refined non-conforming meshes.

1. Definitions and notations

First, we shall denote by φ̂ the exact solution of Equation (1).
The following notations are summarized in Table 1:
Let Ω be a bounded connected polygon of R

2, whose boundary is denoted by Γ, covered by a mesh (named
primal mesh) composed of elements Ti, with i ∈ [1, I]. These elements are supposed to be convex polygons that
form a partition of Ω. With each element Ti of the mesh, we associate a node Gi located inside Ti. This point
may be the barycenter of Ti, but this is not necessary. The area of Ti is denoted by |Ti|. The characteristic
function of the cell Ti will be denoted by θT

i .
We shall denote by J the total number of sides of this mesh and by JΓ the number of these sides which are

located on the boundary Γ. The sides of the mesh are denoted by Aj and their lengths by |Aj |, with j ∈ [1, J ].
We further suppose that the set [1, J ] is ordered so that when Aj is not located on Γ, then j ∈ [1, J − JΓ] and
when Aj is on Γ, then j ∈ [J − JΓ + 1, J ]. With each of these boundary sides, we associate its midpoint, also
denoted by Gi with i ∈ [I + 1, I + JΓ]. For those i ∈ [I + 1, I + JΓ], we then denote by j(i) the subscript of the
associated side Aj .

Further, we denote by Sk, with k ∈ [1,K], the nodes of the polygons of the primal mesh. To each of these
points, we associate a polygon denoted by Pk, obtained by joining the points Gi associated to the elements of
the primal mesh (and possibly to the boundary sides) of which Sk is a node. The area of Pk is denoted by |Pk|.
We shall only consider in the following the cases where the dual cells Pk constitute a second partition of Ω,
which we name dual mesh1. Figure 1 displays an example of a non-conforming primal mesh and its associated
dual mesh. We further suppose that the set [1,K] is ordered so that when Sk is not on Γ, then k ∈ [1,K − JΓ]
and when Sk is on Γ, then k ∈ [K − JΓ + 1,K]. For those k ∈ [K − JΓ + 1,K], we define Ãk as the intersection
of the boundary Γ with the boundary of Pk (see Fig. 3) and ñk as the outgoing normal unit vector on Ãk. The
characteristic function of the cell Pk will be denoted by θP

k .
With each side of the primal mesh, we associate a quadrilateral named “diamond-cell” and denoted by Dj .

When Aj is not on the boundary, this cell is obtained by joining the points Sk1(j) and Sk2(j), which are the two
nodes of Aj , with the points Gi1(j) and Gi2(j) associated to the elements of the primal mesh which share this
side. When Aj is on the boundary Γ, the cell Dj is obtained by joining the two nodes of Aj with the point

1It may happen that the dual cells overlap, as shown in Figure 2.



1206 K. DOMELEVO AND P. OMNES

Table 1. List of notations.

Symbol Description Figure
I Number of cells in the primal mesh –
J Number of sides of the primal mesh –
JΓ Number of sides of the primal mesh located on the boundary Γ –

(by convention j ∈ [J − JΓ + 1, J ] if the side j is on Γ)
K Number of nodes of the primal mesh = Number of dual cells –

(by convention k ∈ [K − JΓ + 1,K] iff the node k is on Γ)
Ti, i ∈ [1, I] Cell of the primal mesh Fig. 1
|Ti| Area of Ti

θT
i , i ∈ [1, I] Characteristic function of the primal cell Ti –
Gi, i ∈ [1, I] Point associated to the primal cell Ti Fig. 1
Gi, i ∈ [I + 1, I + JΓ] Midpoint of a side located on Γ –
j(i), i ∈ [I + 1, I + JΓ] Subscript of the boundary side associated with the boundary point Gi –
Pk, k ∈ [1,K] Cell of the dual mesh Fig. 1
|Pk| Area of Pk –
θP

k , k ∈ [1,K] Characteristic function of the dual cell Pk –
Sk, k ∈ [1,K] Node of the primal mesh = Point associated to the dual cell Pk Fig. 1
Ãk, k ∈ [K − JΓ + 1,K] Intersection of Γ and of the boundary of the dual cell Pk Fig. 3
ñk, k ∈ [K − JΓ + 1,K] Outgoing unit normal vector on Ãk Fig. 3
Dj , j ∈ [1, J ] Cell of the diamond mesh Fig. 4
|Dj |, j ∈ [1, J ] Area of Dj –
i1(j), i2(j) Subscript of the primal cells which share Aj as a common edge Fig. 4
k1(j), k2(j) Subscript of the mesh nodes which are the vertices of the side Aj Fig. 4
Giα(j), (α, β) ∈ {1; 2}2 Vertices of the diamond cell Dj associated to the primal cells Tiα(j) Fig. 4
Skβ(j), (α, β) ∈ {1; 2}2 Vertices of the diamond cell Dj associated to the dual cells Pkβ(j) Fig. 4
Aj = [Sk1(j)Sk2(j)] Side of the primal mesh = Diagonal of the diamond cell Dj Fig. 5
|Aj | Length of Aj –
A′

j = [Gi1(j)Gi2(j)] Side of the dual mesh = Diagonal of the diamond cell Dj Fig. 5
|A′

j | Length of A′
j –

Miαkβ
, (α, β) ∈ {1; 2}2 Midpoint of the side [Giα(j)Skβ(j)] of the diamond cell Dj Fig. 5

nj , j ∈ [1, J ] Unit normal vector to Aj , oriented so that Gi1(j)Gi2(j) · nj ≥ 0 Fig. 5
n′

j , j ∈ [1, J ] Unit normal vector to A′
j , oriented so that Sk1(j)Sk2(j) · nj ≥ 0 Fig. 5

Dj,1, j ∈ [1, J ] The triangle Sk1(j)Gi1(j)Sk2(j) associated to the diamond cell Dj Fig. 6
Dj,2, j ∈ [1, J ] The triangle Sk2(j)Gi2(j)Sk1(j) associated to the diamond cell Dj Fig. 6
D′

j,1, j ∈ [1, J ] The triangle Gi2(j)Sk1(j)Gi1(j) associated to the diamond cell Dj Fig. 6
D′

j,2, j ∈ [1, J ] The triangle Gi1(j)Sk2(j)Gi2(j) associated to the diamond cell Dj Fig. 6
Tj,1, j ∈ [1, J ] Either Dj,1 or D′

j,1 according to the local splitting of Dj –
along one of its diagonal

Tj,2, j ∈ [1, J ] Either Dj,2 or D′
j,2 according to the local splitting of Dj –

V(i), i ∈ [1, I] Set of integers j ∈ [1, J ] such that Aj is a side of Ti –
E(k), k ∈ [1,K] Set of integers j ∈ [1, J ] such that Sk is a node of Aj . –
sji, i ∈ [1, I], j ∈ V(i) Equals +1 or −1 whether nj points outwards or inwards Ti –
nji, i ∈ [1, I], j ∈ V(i) Equals sjinj = unit normal vector to Aj pointing outwards Ti –
s′jk, k ∈ [1,K], j ∈ E(k) Equals +1 or −1 whether n′

j points outwards or inwards Pk –
n′

jk, k ∈ [1,K], j ∈ E(k) Equals s′jkn
′
j = unit normal vector to A′

j pointing outwards Pk –
Mj, j ∈ [1, J ] The intersection of the diagonals of Dj Fig. 10
Dj,αβ , (α, β) ∈ {1; 2}2 The triangle MjGiα(j)Skβ(j) Fig. 10
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Sk
Pk

Ti

Gi

Figure 1. An example of primal and associated dual mesh.

S1

S2

Figure 2. The polygons associated to S1 and S2 overlap.

A k
~

S k Γn~k

Figure 3. Definition of Ãk and ñk for the boundary nodes.

Gi1(j) associated to the only element of the primal mesh of which Aj is a side and to the point Gi2(j) associated
to Aj (i.e. by convention i2(j) is element of [I + 1, I + JΓ] when Aj is located on Γ). The cells Dj constitute
a third partition of Ω, which we name “diamond-mesh”. The area of the cell Dj is denoted by |Dj |. Examples
of diamond-cells are displayed in Figure 4.

The following notations are summarized in Figure 5: We denote by Miα(j) kβ(j) the midpoint of the segment
[Giα(j)Skβ(j)], for each pair of integers (α, β) in {1; 2}2. The unit vector normal to Aj is denoted by nj and is
oriented so that Gi1(j)Gi2(j) ·nj ≥ 0. We further denote by A′

j the segment [Gi1(j)Gi2(j)] (whose length is |A′
j |)

and by n′
j the unit vector normal to A′

j oriented so that Sk1(j)Sk2(j) · n′
j ≥ 0.
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Sk1
Sk2

Gi1

Gi2

Dj

(a) Inner cell

Gi2
Sk2

Sk1

Gi1

Dj

(b) Boundary cell

Figure 4. Examples of diamond-cells.

Gi2

Gi1

Sk2

Mi2 1k Mi2 k2

Mi1k2

Sk1

Mi1 1k

Aj

jD
nj

n’j

A’j

Figure 5. Notations for the diamond-cell.

For j ∈ [1, J ], as indicated in Figure 6, we also denote by Dj,1 and Dj,2, the triangles Sk1(j)Gi1(j)Sk2(j)

and Sk2(j)Gi2(j)Sk1(j)). In the same way, we denote by D′
j,1 and D′

j,2, the triangles Gi2(j)Sk1(j)Gi1(j) and
Gi1(j)Sk2(j)Gi2(j).
Further, we define for each i ∈ [1, I] the set V(i) of integers j ∈ [1, J ] such that Aj is a side of Ti and for each
k ∈ [1,K] the set E(k) of integers j ∈ [1, J ] such that Sk is a node of Aj .

We define for each j ∈ [1, J ] and each k such that j ∈ E(k) (resp. each i such that j ∈ V(i)) the real-valued
number s′jk (resp. sji) whose value is +1 or −1 whether n′

j (resp. nj) points outwards or inwards Pk (resp. Ti).
We define n′

jk := s′jkn
′
j (resp. nji := sjinj) and remark that n′

jk (resp. nji) always points outwards Pk

(resp. Ti).
As will be seen in the following, we shall associate with each point Gi (i ∈ [1, I + JΓ]) and each vertex

Sk (k ∈ [1,K]) discrete unknowns respectively denoted by φT
i and φP

k . This leads us to the definition of the
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Gi1

Gi2

Gi2
Gi2

Gi1

Dj

Gi1

Gi2

D’j,1 D’j,2

Dj,2

Dj,1

Gi1

Sk2
Sk1

Sk1

Sk2

Sk2

Sk2

1
Sk

1
Sk

Figure 6. A diamond-cell may be split into two triangles in two distinct ways.

following discrete scalar product for all (φ, ψ) =
(
(φT

i , φ
P
k ), (ψT

i , ψ
P
k )
)
∈
(
R

I × R
K
)2.

(φ, ψ)T,P :=
1
2




∑

i∈[1,I]

|Ti|φT
i ψ

T
i +

∑

k∈[1,K]

|Pk|φP
k ψ

P
k



 · (2)

In the same way, we define a discrete scalar product on the diamond mesh for all (u, v) = ((uj), (vj)) ∈
(
R

J
)2

(u, v)D :=
∑

j∈[1,J]

|Dj |uj vj (3)

and a discrete scalar product for the traces of u ∈ R
J and φ ∈ R

I+JΓ × R
K on the boundary

(u, φ)Γ,h :=
∑

j∈[J−JΓ+1,J]

|Aj |uj ×
1
4

(
φP

k1(j) + 2φT
i2(j) + φP

k2(j)

)
. (4)

Finally, for any φ ∈ R
I+JΓ × R

K , we shall define a discrete H1 semi-norm on the diamond mesh with the help
of the discrete gradient operator to be defined below (see Eq. (6)):

|φ|1,D := (∇hφ,∇hφ)1/2
D .

We define the mesh step h by

h := sup
i∈[1,I]

diam(Ti) .

We shall denote by Lp(Ω) the space of functions whose p-th power is integrable on Ω, and by || · ||Lp,Ω the corre-
sponding norm. Further, Hm is the space of functions v of L2(Ω) whose partial derivatives (in the distributional
sense) ∂αv, with |α| ≤ m all belong to L2(Ω), while || · ||m,Ω is the associated norm, and | · |m,Ω the associated
semi-norm. Finally, the standard L2(Ω) inner product will be denoted by (·, ·)Ω.



1210 K. DOMELEVO AND P. OMNES

2. Construction of the discrete gradient and divergence operators

We define the discrete gradient of a function φ by its values on the diamond-cells of the mesh. We follow [6]
and compute the mean-value of the gradient of any function φ on such a cell Dj by the following formula:

|Dj |
〈
∇φ|Dj

〉
=
∫

Dj

∇φ(x) dx =
∫

∂ Dj

φ(ξ)n(ξ) dξ =
∑

(α,β)∈{1;2}2

∫

[GiαSkβ
]

φ(ξ) nGiαSkβ
dξ, (5)

where n(ξ) stands for the outward unit normal vector to Dj at point ξ. Its constant value on each of the sides
[GiαSkβ

] of Dj is denoted by nGiαSkβ
. The integrals in (5) can be approached by the following formula:

∫

[GS]

φ(ξ) dξ ≈ 	GS
[φ(G) + φ(S)]

2
,

where 	GS denotes the length of the segment [GS]. Summing the contributions of the different nodes of Dj and
using elementary geometrical equalities allows us to give the definition of the discrete gradient ∇h on Dj.

Definition 2.1. The discrete gradient ∇h is defined by its values over the diamond-cells Dj :

(∇hφ)j :=
1

2 |Dj |

{
[
φP

k2
− φP

k1

]
|A′

j |n′
j +

[
φT

i2 − φT
i1

]
|Aj |nj

}
, (6)

where we have set φP
kα

:= φ(Skα) and φT
iα

:= φ(Giα ), for α ∈ {1; 2}.

Note that formula (6) is exact for affine functions. Computing the discrete gradient only requires the values
of φ at the nodes of the primal and dual meshes. The operator ∇h thus acts from R

I+JΓ × R
K into

(
R

J
)2.

Next, we choose to define the discrete divergence of a vector field u by its values both on the primal and
dual cells of the mesh. A very natural way to do so on the primal cell Ti is to write

|Ti|
〈
∇ · u|Ti

〉
=
∫

Ti

∇ · u(x) dx =
∫

∂Ti

u(ξ) · n(ξ) =
∑

j∈V(i)

∫

Aj

u(ξ) · nji ,

where we recall that V(i) is the set of integers j ∈ [1, J ] such that Aj is a side of Ti and that nji is the unit
vector orthogonal to Aj pointing outward Ti. Supposing that the vector field u is given by its discrete values uj

on the cells Dj , and performing a similar computation over the cells Pk, we state the definition of the discrete
divergence ∇T

h · on each Ti and the discrete divergence ∇P
h · on each Pk.

Definition 2.2. The discrete divergence ∇h· := (∇T
h ·,∇P

h ·) is defined by its values over the primal cells Ti and
the dual cells Pk:

(∇T
h · u)i :=

1
|Ti|

∑

j∈V(i)

|Aj |uj · nji

(∇P
h · u)k :=

1
|Pk|




∑

j∈E(k)

|A′
j |uj · n′

jk +
∑

j∈E(k)∩[J−JΓ+1,J]

1
2
|Aj |uj · nj



 . (7)

For a given function u, it is straightforward to check that these formulæ are the exact mean-values of ∇·u over
Ti (respectively over an inner Pk) if uj · nji (resp. uj · n′

jk) represents the mean-value of u · nji over Aj (resp.

of u · n′
jk over A′

j). The operator ∇h· acts from
(
R

J
)2 into R

I × R
K .
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Proposition 2.3. The following discrete analogue of the Green formula holds:

(∇h · u, φ)T,P = −(u,∇hφ)D + (u · n, φ)Γ,h , (8)

for all u ∈
(
R

J
)2 and all φ = (φT , φP ) ∈ R

I+JΓ × R
K , where the definitions (2), (3) and (4) have been used.

Proof. Let u be a discrete vector field and ∇hφ the discrete gradient of a function φ, respectively defined by
the values uj and formula (6) on each of the diamond-cells Dj . There holds:

(u,∇hφ)D =
∑

j∈[1,J]

|Dj |uj · (∇hφ)j =
∑

j∈[1,J]

1
2
uj ·

[(
φP

k2(j) − φP
k1(j)

)
|A′

j |n′
j +

(
φT

i2(j) − φT
i1(j)

)
|Aj |nj

]
. (9)

For a given k ∈ [1,K], we sum in (9) the different contributions of φP
k , taking into account the orientation of the

vectors n′
j . We recall the definition of s′jk to be either +1 or −1 whether n′

j points outwards or inwards Pk. In (9),
the term φP

k appears each time that Sk belongs to a certain Aj and this term is multiplied by − 1
2s

′
jk |A′

j |uj ·n′
j .

Indeed, if for this given j there holds k = k1(j), then n′
j points outwards Pk (see Fig. 5), and if there holds

k = k2(j), then n′
j points inwards Pk. In the same way, for i ∈ [1, I], the term φT

i appears each time that Gi

belongs to a certain A′
j (i.e. each time that Aj is a side of Ti) and is multiplied by − 1

2sji |Aj |uj · nj . Finally,
for i ∈ [I + 1, I + JΓ], the term φT

i appears only once, namely for j(i), and by convention i = i2(j(i)), so that
φT

i is multiplied by 1
2 |Aj(i)|uj(i) · nj(i). As a result, we can rewrite (9) in the following way:

(u,∇hφ)D = −1
2

∑

k∈[1,K]

φP
k




∑

j∈E(k)

|A′
j |uj · s′jkn

′
j





−1
2

∑

i∈[1,I]

φT
i




∑

j∈V(i)

|Aj |uj · sjinj



+
1
2

∑

i∈[I+1,I+JΓ]

φ(Gi) |Aj(i)|uj(i) · nj(i) . (10)

We wish to compute −(u,∇hφ)D + (u · n, φ)Γ,h, where the boundary part is given by (4). In this sum,
the contribution of φT

i for i ∈ [I + 1, I + JΓ] in (u · n, φ)Γ,h exactly cancels that in (10). Moreover, for
k ∈ [K − JΓ + 1,K], the term φP

k appears twice in (u · n, φ)Γ,h, namely once for each j such that Aj belongs
to Γ and such that Sk belongs to Aj . This implies that

−(u,∇hφ)D + (u · n, φ)Γ =
1
2

∑

k∈[1,K]

φP
k




∑

j∈E(k)

|A′
j |uj · n′

jk





+
1
2

∑

k∈[K−JΓ+1,K]

φP
k

∑

j∈E(k)∩[J−JΓ+1,J]

1
2
|Aj |uj · nj

+
1
2

∑

i∈[1,I]

φT
i




∑

j∈V(i)

|Aj |uj · nji



 ,

which is exactly (∇h · u, φ)T,P according to (2) and (7). �
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3. The finite volume scheme

In this part, we use the above-defined discrete divergence and gradient operators to construct the finite
volume scheme in order to compute φ := ((φT

i ), (φP
k )) ∈ R

I+JΓ × R
K that would be a good approximation of

the exact solution φ̂ of Equation (1). Paragraphs 3.1 and subsequent are devoted to homogeneous Dirichlet
boundary conditions, while Section 3.4 considers the case of homogeneous Neumann boundary conditions.

3.1. Equations to be solved - The case of Dirichlet boundary conditions

On each primal cell Ti , i ∈ [1, I], and on each inner dual cell Pk, with k ∈ [1,K−JΓ], the equation −∆φ = f
is approximated by using the above-defined discrete divergence and gradient operators. We write:

−(∇T
h · (∇hφ))i = fT

i ∀i ∈ [1, I] (11)

−(∇P
h · (∇hφ))k = fP

k ∀k ∈ [1,K − JΓ] , (12)

where fT
i and fP

k are the mean-values of f over Ti and Pk defined by:

fT
i =

1
|Ti|

∫

Ti

f(x) dx and fP
k =

1
|Pk|

∫

Pk

f(x) dx . (13)

Homogeneous Dirichlet boundary conditions are discretized by:

φT
i = 0 ∀i ∈ [I + 1, I + JΓ] and φP

k = 0 ∀k ∈ [K − JΓ + 1,K] . (14)

Thus, we seek φ in the set V defined by:

V :=
{
φ =

(
(φT

i ), (φP
k )
)
∈ R

I+JΓ
× R

K/ s.t. (15)

φT
i = 0 ∀i ∈ [I + 1, I + JΓ] and φP

k = 0 ∀k ∈ [K − JΓ + 1,K]
}
.

The linear system has I + JΓ +K unknowns and as many equations given by (11), (12) and (14).

Remark 3.1. If, for each diamond-cell Dj , the segments Aj and A′
j are orthogonal (e.g. in the case of

Voronoi meshes or “admissible meshes” in the sense of [9]), the scheme decouples into two disjoint subsys-

tems and reduces to the usual schemes presented in [9]. Indeed, as nj · n′
j = 0 and |Dj | =

|Aj | |A′
j |

2 , then

(∇hφ)j · nji =
φT

ij−φT
i

|A′
j|

(where φT
ij is the unknown associated to the neighbouring primal cell), which is simply

a finite difference evaluation of the normal component of the gradient on Aj .

3.2. Symmetry, existence and uniqueness

Proposition 3.2. The matrix associated to the linear system (11), (12) and (14) is symmetrical with respect
to the scalar product (·, ·)T,P . The scheme possesses a unique solution.

Proof. For all (φ, ψ) ∈ V 2, applying formula (8) twice proves the symmetry:

−(∇h · (∇hφ), ψ)T,P = (∇hφ,∇hψ)D = −(φ,∇h · (∇hψ))T,P

Further, existence and uniqueness are equivalent for this square linear system. Choosing fT
i = fP

k = 0, we have:

−(∇T
h · (∇hφ))i = 0 ∀i ∈ [1, I] and − (∇P

h · (∇hφ))k = 0 ∀k ∈ [1,K − JΓ]
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as well as
φP

k = 0 ∀k ∈ [K − JΓ + 1,K] .
Thus,

−(∇T
h · (∇hφ))iφ

T
i = 0 ∀i ∈ [1, I] and − (∇P

h · (∇hφ))kφ
P
k = 0 ∀k ∈ [1,K] .

As a consequence, there holds:

−(∇h · (∇hφ), φ)T,P = (∇hφ,∇hφ)D =
∑

j∈[1,J]

|Dj | |(∇hφ)j |2 = 0 ,

which implies that (∇hφ)j vanishes for all j. Consequently, there exists two constants cT and cP such that:

∀i ∈ [1, I + JΓ] φT
i = cT and ∀k ∈ [1,K] φP

k = cP .

Taking into account the boundary conditions (14), we have cT = cP = 0. Therefore, uniqueness, and thus
existence, of the solution of the system (11), (12), (14) is proved. �

3.3. Interpretation under a variational formulation

Let us start by the following definition

Definition 3.3. Let φ̂ be the exact solution of Equation (1), together with homogeneous Dirichlet boundary
conditions. On each diamond-cell Dj , we define the constant vector (δφ̂)j by the following scalar products:

(δφ̂)j · nj =
1

|Aj |

∫

Aj

∇φ̂ · nj dξ and (δφ̂)j · n′
j =

1
|A′

j |

∫

A′
j

∇φ̂ · n′
j dξ .

We can prove the following proposition:

Proposition 3.4. The solution φ ∈ V of the system (11), (12), (14) is such that ∀ψ ∈ V ,

(∇hφ,∇hψ)D = (δφ̂,∇hψ)D.

Proof. Let ψ =
(
(ψT

i ), (ψP
k )
)
∈ V . Let us denote by ψ∗

h the following function:

ψ∗
h(x) :=

1
2




∑

i∈[1,I]

ψT
i θ

T
i (x) +

∑

k∈[1,K]

ψP
k θ

P
k (x)



 . (16)

We have

(∆φ̂, ψ∗
h)Ω =

1
2




∑

i∈[1,I]

∫

Ti

∆φ̂ dxψT
i +

∑

k∈[1,K]

∫

Pk

∆φ̂ dxψP
k



 .

But we can write
∑

i∈[1,I]

∫

Ti

∆φ̂dxψT
i =

∑

i∈[1,I]




∑

j∈V(i)

∫

Aj

∇φ̂ · nji dξ



 ψT
i . (17)

As ψT
i = 0 ∀i ∈ [I + 1, I + JΓ], Equation (17) can also be written

∑

i∈[1,I]

∫

Ti

∆φ̂dxψT
i =

∑

i∈[1,I]




∑

j∈V(i)

∫

Aj

∇φ̂ · nji dξ



 ψT
i −

∑

i∈[I+1,I+JΓ]

∫

Aj(i)

∇φ̂ · nj(i) dξ ψT
i . (18)
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Moreover, recalling that Ãk is the intersection of Γ and ∂Pk for the boundary dual cell Pk and ñk the outgoing
normal unit vector on Ãk, there holds

∑

k∈[1,K]

∫

Pk

∆φ̂ dxψP
k =

∑

k∈[1,K]




∑

j∈E(k)

∫

A′
j

∇φ̂ · n′
jk dξ



 ψP
k +

∑

k∈[K−JΓ+1,K]

∫

Ãk

∇φ̂ · ñk dξ ψP
k

=
∑

k∈[1,K]




∑

j∈E(k)

∫

A′
j

∇φ̂ · n′
jk dξ



 ψP
k (19)

because ψP
k = 0 when k ∈ [K − JΓ + 1,K].

Then, summing (18) and (19) and rewriting the sums over i and k into a sum over j, we obtain:

−(∆φ̂, ψ∗
h)Ω =

∑

j∈[1,J]

−1
2

(∫

Aj

∇φ̂ · nj dξ (ψT
i1(j) − ψT

i2(j)) +
∫

A′
j

∇φ̂ · n′
j dξ (ψP

k1(j) − ψP
k2(j))

)

.

Because of Definitions 2.1 and 3.3, we have the following equality:

(δφ̂)j · (∇hψ)j = − 1
2|Dj|

(ψP
k1(j) − ψP

k2(j))|A′
j |(δφ̂)j · n′

j −
1

2|Dj|
(ψT

i1(j) − ψT
i2(j))|Aj |(δφ̂)j · nj

= − 1
2|Dj|

[

(ψP
k1(j) − ψP

k2(j)
)
∫

A′
j

∇φ̂ · n′
j dξ + (ψT

i1(j) − ψT
i2(j))

∫

Aj

∇φ̂ · nj dξ

]

and thus,

−(∆φ̂, ψ∗
h)Ω =

∑

j∈[1,J]

|Dj | (δφ̂)j · (∇hψ)j = (δφ̂,∇hψ)D . (20)

But on the other hand, as −∆φ̂ = f , and with the definition (13),

−(∆φ̂, ψ∗
h)Ω =

1
2




∑

i∈[1,I]

∫

Ti

f(x) dxψT
i +

∑

k∈[1,K]

∫

Pk

f(x) dxψP
k





=
1
2




∑

i∈[1,I]

|Ti|fT
i ψT

i +
∑

k∈[1,K]

|Pk|fP
k ψP

k



 .

Taking into account the scheme defined by (11)–(12), we have the following equality, for all ψ ∈ V :

−(∆φ̂, ψ∗
h)Ω = −(∇h · (∇hφ), ψ)T,P = (∇hφ,∇hψ)D ,

which, thanks to (20), ends the proof. Then, φ is the element in V which minimizes (∇hψ−δφ̂,∇hψ−δφ̂)D. �
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3.4. The case of Neumann boundary conditions

In this section, we consider Equation (1) supplemented with homogeneous Neumann boundary conditions:

∇φ · n = 0 , (21)

where n is the exterior unit normal vector on Γ. Note that the mean value of the right-hand side f of (1) is
required to vanish: ∫

Ω

f(x) dx = 0 . (22)

Additionally, φ is defined up to a constant which may be imposed through
∫

Ω

φ(x) dx = 0 . (23)

Equation (21) is approximated on each boundary side with the help of the discrete gradient operator. We write:

(∇hφ)j · nj = 0 ∀j ∈ [J − JΓ + 1, J ] . (24)

Thus, Equation (24) provides for JΓ boundary conditions, while Equation (14) provides for 2JΓ boundary
conditions. Consequently, we extend Equation (12) to all k ∈ [1,K]. We thus write:

−(∇T
h · (∇hφ))i = fT

i ∀i ∈ [1, I] (25)

−(∇P
h · (∇hφ))k = fP

k ∀k ∈ [1,K] . (26)

Finally, the following two equations
∑

i∈[1,I]

|Ti|φT
i =

∑

k∈[1,K]

|Pk|φP
k = 0 (27)

are obvious discrete versions of (23). Now the set (24), (25), (26) and (27) provides for I+K+JΓ +2 equations,
while there are only I +K + JΓ unknowns. But this is no matter, since we may prove the following proposition

Proposition 3.5. Equations (24), (25) and (26) provide only for I + K + JΓ − 2 independent equations and
the set (24), (25), (26) and (27) has a unique solution.

Proof. Multiplying (25) by |Ti| and summing over i ∈ [1, I] leads to

−
∑

i∈[1,I]

|Ti|(∇T
h · (∇hφ))i =

∑

i∈[1,I]

|Ti|fT
i . (28)

Defining ψ := ((ψT
i ), (ψP

k )) such that ψT
i = 1 ∀i ∈ [1, I + JΓ] and ψP

k = 0 ∀k ∈ [1,K], the left-hand side of
(28) is equal to −2 (∇h · (∇hφ), ψ)T,P (see Eq. (2)). Thanks to (6), there holds ∇hψ = 0, and thus, thanks to
the discrete Green formula (8), the left-hand side of (28) is equal to

∑

j∈[J−JΓ+1,J]

|Aj |(∇hφ)j · nj .

Thanks to boundary conditions (24), the left-hand side of (28) thus vanishes. On the other hand, the right-hand
side of (28) can be evaluated thanks to (13) and is equal to

∑

i∈[1,I]

∫

Ti

f(x) dx =
∫

Ω

f(x) dx .
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Thus thanks to (22), the right-hand side of (28) also vanishes and thus the set (24) and (25) is redundant. In the
same way, multiplying (26) by |Pk| and summing over k ∈ [1,K] leads to the conclusion that the set (24) and
(26) is redundant. Now in the set (24)–(27), there are as many independent equations as unknowns, thus we
only have to prove injectivity. Setting fT

i = fP
k = 0, multiplying (25) by |Ti|φT

i , (26) by |Pk|φP
k and summing

over i ∈ [1, I] and k ∈ [1,K] leads to

−(∇h · (∇hφ), φ)T,P = (∇hφ,∇hφ)D =
∑

j∈[1,J]

|Dj | |(∇hφ)j |2 = 0, (29)

by application of Equation (8) and taking into account boundary conditions (24). Equation (29) implies that
(∇hφ)j vanishes for all j. Consequently, there exists two constants cT and cP such that:

∀i ∈ [1, I + JΓ] φT
i = cT and ∀k ∈ [1,K] φP

k = cP .

Taking into account Equation (27), we have cT = cP = 0, which completes the proof. �

Remark 3.6. In practice, it may very well happen that

∑

i∈[1,I]

|Ti|fT
i �= 0 and/or

∑

k∈[1,K]

|Pk|fP
k �= 0.

This may be the case for example when fi and/or fk are not computed exactly, but rather by means of a
quadrature formula. In this case, in order to maintain the solubility of the linear system, we have to project
((fT

i ), (fP
k )) onto the adequate subspace by defining a new right-hand side ((f̃T

i ), (f̃P
k )) through

f̃T
i = fT

i −
∑

i∈[1,I] |Ti|fT
i

|Ω| and f̃P
k = fP

k −
∑

k∈[1,K] |Pk|fP
k

|Ω| ·

4. Equivalence with a finite element method

The variational formulation obtained at the end of Section 3.3 induces us to look for a finite element space,
the functions of which have a piecewise-constant gradient on each diamond-cell, equal to the discrete gradient
of a certain element of V . We start by the following result:

Proposition 4.1. Given an element φ ∈ V , there exists a unique function φh defined by

(φh)|Dj
∈ P 1(Dj) ∀j ∈ [1, J ] (30)

φh(Miα(j) kβ(j)) =
1
2
(φT

iα(j) + φP
kβ(j)) ∀j ∈ [1, J ] ∀(α , β) ∈ {1; 2}2

. (31)

Moreover, we have the following essential property:

(∇φh)|Dj
= (∇hφ)j . (32)

Proof. In the cell Dj , one can always find three Miα kβ
, with (α, β) ∈ {1; 2}2 that are not aligned. Let us

suppose, without loss of generality, that they correspond to (α , β) in {(1, 1), (1, 2), (2, 1)}. Then, there exists
a unique function, still denoted by φh, defined by (30) and (31) applied to all (α , β) in {(1, 1), (1, 2), (2, 1)}.
Then, because φh is a first-order polynomial, we may write:

φh(Mi2k2) = φh(Mi2k1) + Mi2k1Mi2k2 · ∇φh and φh(Mi1k2) = φh(Mi1k1) + Mi1k1Mi1k2 · ∇φh .
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As (Mi1k1Mi1k2Mi2k2Mi2k1) is a parallelogram, the equality Mi2k1Mi2k2 = Mi1k1Mi1k2 holds and thus

φh(Mi2k2) = φh(Mi1k2) + φh(Mi2k1) − φh(Mi1k1) .

But with the definitions (31), this value is exactly 1
2 (φT

i2(j) + φP
k2(j)), which ensures the existence of φh defined

by (30) and (31) applied to all (α , β) in {1; 2}2.
Moreover, as φh ∈ Vh is P 1 over Dj, its gradient is a constant. Then,

(∇φh)|Dj
=

1
|Dj |

∫

Dj

∇φh dx.

By Green’s formula, this quantity is also equal to

(∇φh)|Dj
=

1
|Dj |

∫

∂Dj

φh(ξ)n(ξ) dξ . (33)

But ∂Dj is composed of the four segments [GiαSkβ
], on which the restriction of φh is also P1. Thus the four

integrals in (33) can be evaluated exactly by the midpoint rule. The midpoint of [GiαSkβ
] is by definition

Miα kβ
, where the value of φh is given by (31). Thus, we can sum the contributions of φT

iα
and φP

kβ
just like in

Section 2 to obtain
(∇φh)|Dj

=
1

2 |Dj |
[(
φP

k2
− φP

k1

)
|A′

j |n′
j +

(
φT

i2 − φT
i1

)
|Aj |nj

]
,

which is exactly (∇hφ)j . �

Definition 4.2. We define an operator L on V by associating to any φ ∈ V the function φh defined in
Proposition 4.1: φh = L(φ). Moreover, we set Vh := L(V ). We note that Vh is not included in H1

0(Ω).

Remark 4.3. The operator L is injective.

Indeed, let a function ψh ∈ Vh be such that ψh(Mik) = 0 ∀(i, k). Then, of course, (∇ψh)|Dj
= 0, which

implies, as seen in Section 3.2, that ψ vanishes in V .
Thanks to Proposition 4.1, we are able to state:

Proposition 4.4. The proposed finite volume method is equivalent to the following non-conforming finite ele-
ment method:

Find φh ∈ Vh such that ∀ψh ∈ Vh,
ah(φh, ψh) = 	(ψh), (34)

with

ah(φh, ψh) :=
∑

j∈[1,J]

∫

Dj

∇φh · ∇ψh (x)dx and 	(ψh) :=
∫

Ω

fψ∗
h(x)dx, (35)

where ψ∗
h is defined by (16).

Proof. Let us consider ψh ∈ Vh. Then, there exists one and only one ψ ∈ V such that ψh = L(ψ). Taking into
account (11) and (12), we may write

−|Ti| (∇T
h · (∇hφ))i ψ

T
i = |Ti| fT

i ψ
T
i ∀i ∈ [1, I]

−|Pk| (∇P
h · (∇hφ))k ψ

P
k = |Pk| fP

k ψ
P
k ∀k ∈ [1,K − JΓ] .

Moreover, as ψP
k = 0 ∀k ∈ [K − JΓ + 1,K], there holds

−|Pk| (∇P
h · (∇hφ))kψ

P
k = |Pk| fP

k ψ
P
k ∀k ∈ [1,K];
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which implies that

−(∇h · (∇hφ), ψ)T,P = (f, ψ)T,P . (36)

Thanks to (8) and to the boundary conditions of the elements of V , the left-hand side of (36) is equal to:

(∇hφ,∇hψ)D,

which can also be written, thanks to (32):

∑

j∈[1,J]

∫

Dj

∇φh · ∇ψh (x)dx.

By Equation (13), and because ψT
i θ

T
i (x)|Ti

= ψT
i and ψP

k θ
P
k (x)|Pk

= ψP
k , the right-hand side of (36) is equal to:

∫

Ω

f(x)
1
2




∑

i∈[1,I]

ψT
i θ

T
i (x) +

∑

k∈[1,K]

ψP
k θ

P
k (x)



 dx,

which ends this part of the proof.
Conversely, let φh ∈ Vh check (34) for all ψh ∈ Vh; then φ = L−1(φh) checks the boundary conditions (14)

by definition. Let us consider i0 ∈ [1, I] and let ψ be defined by

∀i ∈ [1, I + JΓ] ψT
i = δi0

i and ∀k ∈ [1,K] ψP
k = 0.

We have

∑

j∈[1,J]

∫

Dj

∇φh · ∇ψh (x)dx = (∇hφ,∇hψ)D = −(∇h · (∇hφ), ψ)T,P = −1
2
|Ti0 | (∇T

h · (∇hφ))i0

and
∫

Ω

fψ∗
h(x)dx =

1
2




∑

i∈[1,I]

|Ti| fT
i ψ

T
i +

∑

k∈[1,K]

|Pk| fP
k ψ

P
k



 =
1
2
|Ti0 | fT

i0 .

Thus, for this i0, the equality

−(∇T
h · (∇hφ))i0 = fT

i0

holds. For k0 ∈ [1,K − JΓ], we obtain in the same way

−(∇P
h · (∇hφ))k0 = fP

k0

by using ψ ∈ V defined by

∀i ∈ [1, I + JΓ] ψT
i = 0 and ∀k ∈ [1,K] ψP

k = δk0
k ,

which concludes the proof. �

We note that this finite element method is a generalization to non-Voronoi meshes of that considered in [25].
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5. Error estimates in the H1
0 norm

In the literature, two main approaches are used to obtain error estimates for finite volume methods for elliptic
equations. In the first, one starts directly from the finite volume formulation and obtains an error estimation
in a discrete norm thanks to the consistency of the fluxes along the edges of the mesh; we refer for example
to [6, 9, 20]. In the second, the finite volume method is shown to be related to some finite element method for
which standard interpolation and consistency errors yield the error estimate for the finite volume method; we
refer for example to [3, 25].

In the present study, we shall follow both approaches and exhibit some links between them. In the finite
volume approach, the fact that the consistency of the discrete gradient operator implies convergence is given by
Equation (58) below. The consistency error is then estimated by splitting it into two terms, one of which is the
interpolation error of the classical P 1 interpolant on sub-triangles of the cells Dj (see Lem. 5.11). Moreover,
the error in the finite volume setting may easily be bounded by the sum of the error in the finite element sense
and of the interpolation error between the exact solution and the space Vh (see Sect. 5.4).

The advantage of the finite element approach is that it yields a convergence result with a weaker hypothesis.
On the other hand, we found it more convenient to treat the case of non-convex diamond cells with the finite
volume approach.

We start with a result that will be used throughout the sequel of this article.

Proposition 5.1. The diameters of the diamond-cells are bounded by 2h.

∀j ∈ [1, J ], diam(Dj) ≤ 2h.

Proof. Consider the partition Dj = Dj,1 ∪Dj,2 (see Fig. 6). As Gi ∈ Ti ∀i ∈ [1, I], we have Dj,α ⊂ Tiα(j) for
α ∈ {1; 2}. �

To obtain error estimates, it is traditional to suppose that the exact solution φ̂ of the continuous problem
is regular. The computational domain being polygonal and convex, a sufficient condition is that the data f is
itself regular. We thus make the following assumption

Hypothesis 5.2. The right-hand side f belongs to L2(Ω).

Then, we know that the solution φ̂ is in H1
0(Ω) ∩ H2(Ω), and that there exists a constant K such that

||φ̂||2,Ω ≤ K||f ||0,Ω. (37)

We shall see in the following paragraphs that this assumption is sufficient to obtain an optimal error estimate
in the H1

0 norm. But by supposing more regularity on f , and thus also on the solution φ̂, we shall be able
to specify the dependence of this error with respect to the geometry of the diamond-cells, and in addition to
obtain refined estimates in certain particular cases. We thus state the following assumption:

Hypothesis 5.3. The right-hand side f belongs to H1(Ω).

Then, we know that the solution φ̂ is in H1
0(Ω) ∩ H3(Ω), and that there exists a constant K such that

||φ̂||3,Ω ≤ K||f ||1,Ω . (38)

Since the functions of H2(Ω) are continuous, we can consider the values of φ̂ at the points Gi and Sk and
compare them with the values φT

i and φP
k resulting from the numerical scheme.

Definition 5.4. We thus define, for any continuous function v, the following element Πv, by

∀i ∈ [1, I + JΓ], (Πv)T
i = v(Gi) (39)

∀k ∈ [1,K], (Πv)P
k = v(Sk). (40)
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β 2

β 1
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M j

Figure 7. Notations for Section 5.1

Note that since φ̂ ∈ H1
0(Ω), then (Πφ̂)T

i = 0 for i ∈ [I + 1, I + JΓ] and (Πφ̂)P
k = 0 for k ∈ [K − JΓ + 1,K], and

thus Πφ̂ belongs to the space V defined in (15).
We shall suppose in parts 5.2 and 5.3 that all diamond-cells are convex so that we can split each interior

diamond-cell Dj into two triangles in two ways (see Fig. 6). On the one hand Dj = Dj,1 ∪ Dj,2 and on the
other hand Dj = D′

j,1 ∪ D′
j,2. In order to simplify our notations, we shall write Tj,α to represent Dj,α or

D′
j,α, according to the choice carried out. For diamond-cells located on the boundary, let us note that we have

Dj,1 = Dj and Dj,2 = ∅. The case of non-convex diamond-cells is treated in Sect. 5.5.

5.1. Geometrical hypotheses on the diamond-cells

When obtaining error estimates, we will use the following assumptions concerning the diamond-cells.

Hypothesis 5.5. The angles between the diagonals of the diamond-cells are greater than an angle θ∗ which is
strictly positive and independent of the mesh (see Fig. 7 for the notations):

∃ θ∗, 0 < θ∗ ≤ π

2
s.t. θ ≥ θ∗. (41)

Hypothesis 5.6. For any diamond-cell Dj, the smallest in the maximum angle of the couple of triangles
(Dj,1, Dj,2) or in the maximum angle of the couple of triangles (D′

j,1, D
′
j,2) is bounded by an angle τ∗ which is

strictly lower than π and independent of the mesh:

∃ τ∗ < π, s.t. τ := min (max(α1, β1, µ1 + µ2, α2, β2, ν1 + ν2),max(µ1, ν1, α1 + α2, µ2, ν2, β1 + β2)) ≤ τ∗. (42)

Proposition 5.7. Hypotheses 5.5 and 5.6 are not equivalent, and, for convex diamond-cells, the second is a
consequence of the first.

Proof. Let us consider the diamond-cell represented in Figure 7; let us suppose that it checks assumption (41).
Considering the triangle Sk1Gi1Mj, we have

α1 ≤ π − θ ≤ π − θ∗ ≤ π − θ∗

2
· (43)
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In the same way,

µ1 ≤ π − θ∗

2
· (44)

By considering the triangle Gi1Sk2Mj , we can write

β1 ≤ θ ≤ π

2
≤ π − θ∗

2
· (45)

In the same way,

µ2 ≤ π − θ∗

2
· (46)

We have in the same way,

β2 ≤ π − θ ≤ π − θ∗ ≤ π − θ∗

2
, (47)

and
ν2 ≤ π − θ∗

2
· (48)

And finally,

α2 ≤ θ ≤ π

2
≤ π − θ∗

2
, (49)

and
ν1 ≤ π − θ∗

2
· (50)

Then, we have the following alternative. Either the following two inequalities are true

ν1 + ν2 ≤ π − θ∗

2
and (51)

µ1 + µ2 ≤ π − θ∗

2
, (52)

and the maximum angle of the couple of triangles (Dj,1, Dj,2), which is equal to max(α1, β1, µ1 + µ2, α2, β2,

ν1 + ν2), is bounded by π − θ∗
2 , thanks to (43), (45), (52), (49), (47) and (51), or at least one of the two

inequalities (51) or (52) is false. In this case, let us suppose for example that µ1 + µ2 ≥ π − θ∗
2 . Then, we have

α1 + β1 = π − µ1 − µ2 ≤ θ∗

2
·

Because α1 and β1 are both positive, there holds

α1 ≤ θ∗

2
and β1 ≤ θ∗

2
·

So that, taking into account the second inequality in (49),

α1 + α2 ≤ π

2
+
θ∗

2
≤ π − θ∗

2

(
because θ∗ ≤ π

2

)
(53)

and, taking into account (47),

β1 + β2 ≤ π − θ∗

2
· (54)

Thus, thanks to (44), (50), (53), (46), (48) and (54), the maximum angle of the couple of triangles (D′
j,1, D

′
j,2),

which is equal to max(µ1, ν1, α1 + α2, µ2, ν2, β1 + β2), is bounded by π − θ∗
2 . Thus, we have proved that the

condition (42) is indeed a consequence of (41) by choosing τ∗ = π − θ∗
2 .
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On the other hand, to show that (42) may be checked even if (41) is not, let us consider a rectangular
diamond-cell, with length a and width b. If a is fixed while we let b tend to 0, then the angle θ between the
diagonals of this rectangle will tend to 0, while the angle τ defined by (42) obviously remains equal to π

2 . �

Remark 5.8. Of course, Hypotheses 5.5 and 5.6 have to be considered when one deals with families of in-
creasingly fine meshes. Indeed, for a single mesh, (41) is checked for θ∗ = minj∈[1,J] θj , where θj is the angle
between the diagonals of the diamond-cell Dj . A way to construct families of meshes that a priori verify these
hypotheses is beyond the scope of this article; on the other hand, it is an easy matter to compute a posteriori the
angles θ∗ and τ∗ for a given mesh. We note that the family of non-conforming meshes considered in Section 8
satisfies Hypothesis 5.5 with an angle θ∗ = π

4 .

5.2. Finite volume approach

Like in [9], we estimate the discrete norm of the error between φ, the element of V solution of the system
(11)–(14) and the projection of the exact solution Πφ̂ (see Def. 5.4). Let us note ε := φ− Πφ̂.

Let us define on each diamond-cell Dj the quantity ej(x) := (δφ̂)j − ∇φ̂(x). Further, let us split Dj into
Tj,1 ∪ Tj,2 (let us recall that these notations are defined just before the beginning of Section 5.1; the way this
splitting is performed is local to Dj). Let ωj,1 (respectively ωj,2) be the traditional P 1 interpolant of φ̂ on the
triangle Tj,1 (resp. Tj,2) whose value at each of the three nodes of Tj,1 (resp. Tj,2) is equal to the value of the
function φ̂ at this point.

Lemma 5.9. For convex diamond-cells, we have the following inequality (recalling that |ε|1,D = (∇hε,∇hε)
1/2
D )

|ε|1,D ≤




∑

j∈[1,J]

∫

Dj

|ej |2(x) dx





1/2

+




∑

j∈[1,J]

2∑

α=1

∫

Tj,α

|∇φ̂(x) −∇ωj,α|2 dx





1/2

. (55)

Proof. By Equation (11), we have

(∇T
h · (∇hφ))i = − 1

|Ti|

∫

Ti

f dx =
1
|Ti|

∫

Ti

∆φ̂ dx.

Then, we can write for all i ∈ [1, I]

(∇T
h · (∇hε))i =

1
|Ti|

∫

Ti

∆φ̂ dx − (∇T
h · (∇hΠφ̂))i .

And thus

(∇T
h · (∇hε))i ε

T
i =

[
1
|Ti|

∫

Ti

∆φ̂ dx − (∇T
h · (∇hΠφ̂))i

]
εT

i . (56)

In the same way, for all k ∈ [1,K − JΓ],

(∇P
h · (∇hε))k ε

P
k =

[
1

|Pk|

∫

Pk

∆φ̂dx − (∇P
h · (∇hΠφ̂))k

]
εP

k . (57)

This equality is also true for all k ∈ [K − JΓ + 1,K] since then εP
k = 0. Summing (56) and (57), we can write

|ε|21,D = −(∇h · (∇hε), ε)T,P

= −(∆φ̂, ε∗h)Ω + (∇h · (∇hΠφ̂), ε)T,P = −(∆φ̂, ε∗h)Ω − (∇hΠφ̂,∇hε)D

= (δφ̂−∇hΠφ̂,∇hε)D , (58)



A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION 1223

the last equality in (58) being obtained thanks to (20). Thus,

|ε|21,D = (δφ̂−∇hΠφ̂,∇hε)D =
∑

j∈[1,J]

|Dj |(δφ̂−∇hΠφ̂)j · (∇hε)j =
∑

j∈[1,J]

∫

Dj

(δφ̂−∇hΠφ̂)j · (∇hε)j dx

=
∑

j∈[1,J]

∫

Dj

ej(x) · (∇hε)j dx +
∑

j∈[1,J]

∫

Dj

(∇φ̂(x) − (∇hΠφ̂)j) · (∇hε)j dx . (59)

Let us first bound the first term in (59). By the Cauchy-Schwarz inequality, and then the discrete Cauchy-
Schwarz inequality, we may write

∑

j∈[1,J]

∫

Dj

ej(x) · (∇hε)j dx ≤
∑

j∈[1,J]

(∫

Dj

|ej|2(x) dx

)1/2(∫

Dj

|(∇hε)j |2 dx

)1/2

≤




∑

j∈[1,J]

∫

Dj

|ej |2(x) dx





1/2


∑

j∈[1,J]

∫

Dj

|(∇hε)j |2 dx





1/2

≤




∑

j∈[1,J]

∫

Dj

|ej |2(x) dx





1/2

|ε|1,D. (60)

Moreover, an elementary calculation proves that, on each convex diamond-cell Dj ,

∫

Dj

(∇hΠφ̂)j dx =
∫

Tj,1

∇ωj,1 (x) dx +
∫

Tj,2

∇ωj,2 (x) dx. (61)

Thus, (∇hε)j being a constant on each cell Dj ,

∫

Dj

(∇φ̂(x) − (∇hΠφ̂)j) · (∇hε)j dx =
2∑

α=1

∫

Tj,α

(∇φ̂(x) −∇ωj,α) · (∇hε)j (x) dx .

Applying as above Cauchy-Schwarz inequalities, we can write

∑

j∈[1,J]

∫

Dj

(∇φ̂(x) − (∇hΠφ̂)j) · (∇hε)j dx ≤




∑

j∈[1,J]

2∑

α=1

∫

Tj,α

|∇φ̂(x) −∇ωj,α|2 dx





1/2

|ε|1,D . (62)

The result follows from (59), (60) and (62). �

An estimation of the first term in Equation (55) is given by the following lemma

Lemma 5.10. If all diamond-cells are convex and under Hypothesis 5.5, there exists a constant C independent
of the grid, such that the following inequality holds




∑

j∈[1,J]

∫

Dj

|ej|2(x) dx





1/2

≤ C
h

sin θ∗
||f ||0,Ω . (63)
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Proof. We can bound the term |ej |2 (x) using the respective scalar products of ej with nj and n′
j . An elementary

calculation proves that

|ej|2 ≤ 2
1 − (nj · n′

j)2
[
(ej · nj)

2 +
(
ej · n′

j

)2]
.

And we have
∫

Dj

(ej · nj)
2 (x) dx =

2∑

α=1

‖ej · nj‖2
0,Dj,α

.

Then, we remark that the function ej · nj(x) = ((δφ̂)j −∇φ̂(x)) · nj is in H1(Dj,α) and that, by construction
of (δφ̂)j , its average vanishes on Aj , which is an edge of Dj,α. Thanks to [1], lemma 2.2, we know that there
exists a constant C, independent of j, α and h, such that

‖ej · nj‖0,Dj,α
≤ Cdiam(Dj,α) |ej · nj |1,Dj,α

≤ Ch
∣∣
∣φ̂
∣∣
∣
2,Dj,α

since the gradient of (δφ̂)j · nj vanishes. Thus,

∫

Dj

(ej · nj)
2 (x) dx ≤ Ch2

∣
∣
∣φ̂
∣
∣
∣
2

2,Dj

. (64)

In the same way, since the cell Dj is convex, we can carry out the same operations for the other component of
ej and we obtain ∫

Dj

(
ej · n′

j

)2 (x) dx ≤ Ch2
∣
∣∣φ̂
∣
∣∣
2

2,Dj

. (65)

Finally, since 1 − (nj · n′
j)

2 is the square of the sine of the angle between the diagonals of the diamond-cell Dj ,
and under assumption 5.5, we can prove the existence of a constant C, independent of the grid, such that

∫

Dj

|ej|2(x) dx ≤ C
h2

(sin θ∗)2

∣
∣∣φ̂
∣
∣∣
2

2,Dj

.

Summing this inequality over the diamond-cells, and thanks to (37), we obtain the result. �

An estimation of the second term in Equation (55) is given by the following lemma:

Lemma 5.11. If all diamond-cells are convex and under assumptions 5.2 and 5.6, there exists a constant C
independent of the grid such that




∑

j∈[1,J]

2∑

α=1

∫

Tj,α

|∇φ̂(x) −∇ωj,α|2 dx





1/2

≤ C(τ∗)h ||f ||0,Ω . (66)

Moreover, under assumptions 5.3 and 5.6, there exists a constant C independent of the grid such that




∑

j∈[1,J]

2∑

α=1

∫

Tj,α

|∇φ̂(x) −∇ωj,α|2 dx





1/2

≤ C
h

cos τ∗
2

(||f ||0,Ω + h||f ||1,Ω) . (67)

Proof. When Dj is convex and under Assumption 5.6, it is possible to choose the splitting of Dj so that all
triangles Tj,α check the assumption known as the maximum angle condition: the maximum angle of these
triangles is bounded by an angle τ∗ which is strictly lower than π. Under Hypothesis 5.2, the solution φ̂ is
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D j D j,2

D j,1

D’j,1 D’j,2

D j

Figure 8. Two diamond-cells for which the error estimate is favorable.

in H2(Ω) and we use the error estimate obtained in [2], Theorem 2.3, to state that there exists a constant C
independent of j, α and h such that

|φ̂− ωj,α|1,Tj,α ≤ C(τ∗) diam(Tj,α) |φ̂|2,Tj,α ≤ C(τ∗)h |φ̂|2,Tj,α . (68)

If Hypothesis 5.3 is checked, then the solution φ̂ is in H3(Ω) and we can specify the dependence of the constant
C(τ∗), thanks to [18], Theorem 3.1-ii:

|φ̂− ωj,α|1,Tj,α ≤ C
h

cos τ∗
2

(
|φ̂|2,Tj,α + h|φ̂|3,Tj,α

)
, (69)

where the constant C does not depend any more on τ∗.
The results follow by summing (68) or (69) over the diamond-cells, and by (37) and (38). �

Remark 5.12. It seems very important to insist on the fact that since the cell Dj is convex, we can write

∣∣
∣
∣
∣

∫

Dj

(∇φ̂ − (∇hΠφ̂)j) · (∇hε)j

∣∣
∣
∣
∣

2

≤ inf

(
2∑

α=1

|φ̂− ωj,α|21,Dj,α
,

2∑

α=1

|φ̂− ωj,α|21,D′
j,α

)

|Dj | |∇hε|2j ,

and that it is thus sufficient that one of the two couples of triangles (Dj,1,Dj,2) or (D′
j,1,D

′
j,2) does not have an

angle too close to π for the error estimate to be good. In particular, diamond-cells having two opposite angles
close to π but four sides of similar lengths do not cause any problem (see Fig. 8). We represent in addition in
Figure 9 two examples of cells whose shape will cause the error estimate to be bad.

To conclude, we can state the following result:

Theorem 5.13. If all diamond-cells are convex and under Hypotheses 5.2 and 5.5, there exists a constant
C(θ∗), independent of h, such that

|ε|1,D ≤ C(θ∗)h||f ||0,Ω . (70)

Moreover, under Hypotheses 5.3 and 5.5, there exists a constant C, independent of h and θ∗, such that

|ε|1,D ≤ C
h

sin θ∗
(||f ||0,Ω + h||f ||1,Ω) . (71)
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(a) Almost flat quadrangle

(b) Two consecutive angles close to π

Figure 9. Examples of diamond-cells for which the error estimate is not favorable.

Proof. This result follows from the discussion held in Section 5.1 and taking into account (55), (63) and (66)
for (70) and (55), (63) and (67) for (71). �
Remark 5.14. Contrary to [9], Definition 9.4, we do not need to consider a “restricted” class of meshes to
obtain uniform error estimates, that is to say the ratio |Aj|

|A′
j|

need not be bounded.

5.3. Finite element approach

Thanks to the equivalence of the finite volume scheme with a finite element scheme, we can attack the error
estimation through a more traditional approach, which extends the proof of [25] (given for Voronoi meshes) to
arbitrary meshes.

According to formula (34), the proposed scheme amounts to finding φh ∈ Vh such that for all ψh ∈ Vh,

ah(φh, ψh) = 	(ψh) . (72)

The error estimate is derived in a traditional way by noting that ah acts on H1
0 + Vh, on which we define

|x|1,h :=
√
ah(x, x), and by using the so-called “ Strang second lemma” [24]:

|φ̂− φh|1,h ≤ 2 inf
ωh∈Vh

|φ̂− ωh|1,h + sup
ωh∈Vh

|ah(φ̂, ωh) − 	(ωh)|
|ωh|1,h

· (73)

The first of these two terms is named “interpolation error” and measures the way in which Vh approaches H1
0,

while the second is called “consistency error” and appears only in non-conforming approximations.

5.3.1. Interpolation error

Proposition 5.15. If all diamond-cells are convex and under Hypotheses 5.2 and 5.6, there exists a constant
C(τ∗) depending only on τ∗ such that

inf
ωh∈Vh

|φ̂− ωh|1,h ≤ C(τ∗)h ||f ||0,Ω . (74)

Moreover, under Hypotheses 5.3 and 5.6, we can be more specific: there exists a constant C, independent of the
grid, such that

inf
ωh∈Vh

|φ̂− ωh|1,h ≤ C
h

cos τ∗
2

(||f ||0,Ω + h||f ||1,Ω) . (75)

Proof. As a particular element of Vh, we choose the interpolation ωh of the exact solution φ̂

ωh := L(Πφ̂)
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where the element Πφ̂ of V is defined through (39)–(40). We have, thanks to (32),

|φ̂− ωh|21,h =
∑

j∈[1,J]

∫

Dj

|∇φ̂−∇ωh|2(x) dx =
∑

j∈[1,J]

∫

Dj

|∇φ̂ − (∇hΠφ̂)j |2(x) dx .

Let us note
〈
∇φ̂
〉

j
the average value of ∇φ̂ on Dj , defined by

〈
∇φ̂
〉

j
:=

1
|Dj |

∫

Dj

∇φ̂(x) dx .

We have
∫

Dj

|∇φ̂− (∇hΠφ̂)j |2(x) dx =
∫

Dj

∣
∣
∣
∣∇φ̂−

〈
∇φ̂
〉

j
+
〈
∇φ̂
〉

j
− (∇hΠφ̂)j

∣
∣
∣
∣

2

(x) dx

≤ 2
∫

Dj

∣
∣∣
∣∇φ̂ −

〈
∇φ̂
〉

j

∣
∣∣
∣

2

(x) dx + 2
∫

Dj

∣
∣∣
∣
〈
∇φ̂
〉

j
− (∇hΠφ̂)j

∣
∣∣
∣

2

(x) dx . (76)

The first of the two terms of the right-hand side of (76) is easily bounded. Indeed, the function ∇φ̂ −
〈
∇φ̂
〉

j

has a vanishing average on Dj , and, Dj being convex, Payne and Weinberger [21] indicate that there exists a
constant C, independent of j and of h such that

∫

Dj

∣
∣∣
∣∇φ̂−

〈
∇φ̂
〉

j

∣
∣∣
∣

2

(x) dx ≤ Cdiam(Dj)2|φ̂|22,Dj
≤ Ch2|φ̂|22,Dj

. (77)

The integrand of the second term in the right-hand side of (76) being a constant for each j, we have

∫

Dj

∣∣
∣
∣
〈
∇φ̂
〉

j
− (∇hΠφ̂)j

∣∣
∣
∣

2

(x) dx =
1

|Dj |

∣
∣∣
∣
∣

∫

Dj

(〈
∇φ̂
〉

j
− (∇hΠφ̂)j

)
(x) dx

∣
∣∣
∣
∣

2

=
1

|Dj |

∣
∣
∣∣
∣

∫

Dj

(
∇φ̂− (∇hΠφ̂)j

)
(x) dx

∣
∣
∣∣
∣

2

=
1

|Dj |

∣
∣
∣
∣
∣

2∑

α=1

∫

Tj,α

(
∇φ̂−∇ωj,α

)
(x) dx

∣
∣
∣
∣
∣

2

according to (61). By applying the Cauchy-Schwarz inequality, we obtain

∫

Dj

∣
∣∣
∣
〈
∇φ̂
〉

j
− (∇hΠφ̂)j

∣
∣∣
∣

2

(x) dx ≤ 2
|Dj |

2∑

α=1

|Tj,α| |φ̂− ωj,α|21,Tj,α
.

As the diamond-cells are convex, we have |Tj,α| ≤ |Dj | and thanks to (68), under Hypotheses 5.2 and 5.6

∫

Dj

∣
∣∣
∣
〈
∇φ̂
〉

j
− (∇hΠφ̂)j

∣
∣∣
∣

2

(x) dx ≤ C(τ∗)h2|φ̂|22,Dj
. (78)

Thanks to (76), (77) and (78) we obtain the existence of a constant C(τ∗) independent of j and h such that
∫

Dj

|∇φ̂ −∇hΠφ̂|2(x) dx ≤ C(τ∗)h2|φ̂|22,Dj
. (79)
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Moreover, under Hypotheses 5.3 and 5.6, and thanks to (69), there holds

∫

Dj

∣
∣
∣
∣
〈
∇φ̂
〉

j
− (∇hΠφ̂)j

∣
∣
∣
∣

2

(x) dx ≤ C
h2

(
cos τ∗

2

)2
(
|φ̂|2,Dj + h|φ̂|3,Dj

)2

. (80)

Thanks to (76), (77) and (80), we obtain the existence of a constant C independent of the grid such that
∫

Dj

|∇φ̂−∇hΠφ̂|2(x) dx ≤ C
h2

(
cos τ∗

2

)2
(
|φ̂|2,Dj + h|φ̂|3,Dj

)2

. (81)

By summation of (79) or (81) over the diamond-cells, and taking into account (37) or (38), we obtain the desired
error estimate for the interpolation error. �
5.3.2. Consistency error

Let ωh ∈ Vh. Thanks to (35), we start by writing

ah(φ̂, ωh) − 	(ωh) = [ah(φ̂, ωh) − (f, ωh)Ω] + (f, ωh − ω∗
h)Ω. (82)

The last term in (82) can be bounded by the following lemma:

Lemma 5.16. If all diamond-cells are convex, there exists a constant C independent of the grid such that

|(f, ωh − ω∗
h)Ω| ≤ Ch||f ||0,Ω|ωh|1,h . (83)

Proof. First, on each cell Dj ,
∣
∣
∣
∣∣

∫

Dj

f(ωh − ω∗
h)(x) dx

∣
∣
∣
∣∣
≤ ||f ||0,Dj ||ωh − ω∗

h||0,Dj .

By definition, the function ω∗
h is a constant over each domain Ti ∩ Pk, for i ∈ [1, I] and k ∈ [1,K], and is equal

to 1
2

(
ωT

i + ωP
k

)
. Since interior diamond-cells are convex, each one of them can be split in the following way

(see Fig. 10):
Dj =

⋃

(α,β)∈{1;2}2

Dj,αβ

with the definition
Dj,αβ := Dj ∩ (Tiα(j) ∩ Pkβ(j)) . (84)

We will note Dαβ instead of Dj,αβ when no confusion is possible.
By definition of ωh, we have for each of the four couples (α, β),

ωh(Miαkβ
) =

1
2

(
ωT

iα
+ ωP

kβ

)
= (ω∗

h)|Dαβ
.

In other words, the piecewise constant function ω∗
h interpolates ωh at the points Mik. Then, there exists a

constant C independent of the grid (see for example [5], Theorem 15.3) such that

||ωh − ω∗
h||0,Dαβ

≤ C diam(Dαβ) ||∇ωh||0,Dαβ
≤ C h ||∇ωh||0,Dαβ

.

Thus, we have
||ωh − ω∗

h||0,Dj ≤ Ch||∇ωh||0,Dj . (85)
The same reasoning can be held to bound ||ωh − ω∗

h||0,Dj on boundary diamond-cells by splitting Dj into
D′

j,1 ∪D′
j,2. The result is obtained by summing (85) over the diamond-cells. �
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Figure 10. Partition of diamond-cells.

We proceed then like in [1]. We again divide each diamond-cell Dj either into Dj,1∪Dj,2, or into D′
j,1∪D′

j,2.
Note that this choice is local to Dj and does not influence the choice which can be made for the division of Dj′ ,
for j′ �= j. We adopt to simplify the writing Tj,α to represent Dj,α or D′

j,α. Further, we define RT (∇φ̂), the
Raviart-Thomas interpolation of ∇φ̂ on each Tj,α (see [22]) by

RT (∇φ̂)|Tj,α
∈ (P0(Tj,α))2 ⊕

(
x
y

)
P0(Tj,α)

and ∫

s

RT (∇φ̂) · n dξ =
∫

s

∇φ̂.n dξ

for any side s of Tj,α. We can state the following lemma:

Lemma 5.17. Let κ ∈ H1
0(Ω)∩H2(Ω), µ := −∆κ and let λ ∈ H1

0(Ω)+Vh. Then if all diamond-cells are convex

ah(κ, λ) − (µ, λ)Ω =
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

[
(∇κ−RT (∇κ)) · ∇λ+ µ

(
〈λ〉j,α − λ

)]
dx , (86)

where 〈λ〉j,α is the average value of λ over Tj,α.

Proof. By definition, RT (∇κ) · n is a constant on each side of Tj,α. In addition, on two neighboring triangles
Tj,α, the values of RT (∇κ) · n on both sides of their common face are opposite one to the other, because of the
orientation of the normal vector n. By noting S the set of all the sides of all the Tj,α and ns the normal unit
vector to a side s in S, and [λ]s the jump of λ through s, then

∑

j∈[1,J]

2∑

α=1

∫

∂Tj,α

RT (∇κ) · nλdξ =
∑

s∈S, s�⊂Γ

RT (∇κ) · n
∫

s

[λ]s dξ +
∑

s∈S, s⊂Γ

RT (∇κ) · n
∫

s

λdξ .

If λ is in H1
0(Ω), then [λ]s = 0, ∀s ∈ S, s �⊂ Γ and λ vanishes on Γ. Therefore,

∑

j∈[1,J]

2∑

α=1

∫

∂Tj,α

RT (∇κ) · nλdξ = 0 . (87)
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In addition, if λ is in Vh, then [λ]s is a polynomial of degree one, which vanishes at the midpoint of s (by
construction of the functions of Vh). Its integral on s is thus null. In addition, λ vanishes on Γ. Thus, equality
(87) remains true if λ ∈ Vh. But we can also write equality (87) in the following way

∑

j∈[1,J]

2∑

α=1

(∫

Tj,α

∇ · (RT (∇κ))λdx +
∫

Tj,α

RT (∇κ) · ∇λdx

)

= 0 .

By subtracting this equality from ah(κ, λ), we obtain

ah(κ, λ) =
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

(∇κ−RT (∇κ)) · ∇λdx −
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

∇ · (RT (∇κ))λdx . (88)

Let us note 〈λ〉j,α the mean value of λ on Tj,α. Since ∇ · (RT (∇κ)) is by construction a constant on Tj,α, we
may write the following series of equalities:

∫

Tj,α

∇ · (RT (∇κ))λdx = 〈λ〉j,α
∫

Tj,α

∇ · (RT (∇κ)) dx = 〈λ〉j,α
∫

∂Tj,α

RT (∇κ) · n dξ

= 〈λ〉j,α
∫

∂Tj,α

∇κ · n dξ = 〈λ〉j,α
∫

Tj,α

∆κ dx = −〈λ〉j,α
∫

Tj,α

µ dx . (89)

Equality (86) follows from (88) and (89). �
The first term in the right-hand side of (82) can be bounded by the following lemma

Lemma 5.18. If all diamond-cells are convex and under Hypotheses 5.2 and 5.6, there exists a constant C
independent of the grid such that

∣
∣
∣ah(φ̂, ωh) − (f, ωh)Ω

∣
∣
∣ ≤ C

h

sin τ∗
|ωh|1,h||f ||0,Ω . (90)

Proof. We apply Lemma 5.17 to κ = φ̂, µ = f and λ = ωh to evaluate:

ah(φ̂, ωh) − (f, ωh)Ω =
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

(∇φ̂−RT (∇φ̂)) · ∇ωh dx +
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

f
(
〈ωh〉j,α − ωh

)
dx . (91)

According to [1], Lemmas 4.1 and 4.2, we can state that under Hypothesis 5.6, there exists a constant C,
independent of the grid such that

∥
∥∥∇φ̂−RT (∇φ̂)

∥
∥∥

0,Tj,α

≤ C
h

sin τ∗
|φ̂|2,Tj,α . (92)

Then, by a discrete Cauchy-Schwarz inequality, we have

∑

j∈[1,J]

2∑

α=1

∫

Tj,α

(∇φ̂−RT (∇φ̂)) · ∇ωh dx ≤ C
h

sin τ∗
|ωh|1,h|φ̂|2,Ω , (93)

where the constant C does not depend on h. Then, as the function 〈ωh〉j,α −ωh has a vanishing mean-value on
Tj,α, there exists a constant C, independent of j, α and h such that

|| 〈ωh〉j,α − ωh||0,Tj,α ≤ Ch|ωh|1,Tj,α .
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Thus, we can write
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

f
(
〈ωh〉j,α − ωh

)
dx ≤ Ch|ωh|1,h||f ||0,Ω , (94)

where the constant C does not depend on h. The result follows from (91), (93), (37) and (94). �
We end the consistency error estimation with

Proposition 5.19. If all diamond-cells are convex and under Hypotheses 5.2 and 5.6, there exists a constant C,
independent of the grid such that

sup
ωh∈Vh

|ah(φ, ωh) − 	(ωh)|
|ωh|1,h

≤ C
h

sin τ∗
||f ||0,Ω . (95)

Proof. The result follows from (82), (83) and (90). �
In conclusion of Section 5.3, estimates (73), (74) or (75), and (95) allow us to state the following theorem:

Theorem 5.20. If all diamond-cells are convex and under Hypotheses 5.2 and 5.6, there exists a constant
C(τ∗) independent of the grid such that

|φ̂− φh|1,h ≤ C(τ∗)h||f ||0,Ω . (96)

Moreover, under Hypotheses 5.3 and 5.6, there exists a constant C independent of the grid such that

|φ̂− φh|1,h ≤ C
h

sin τ∗
(||f ||0,Ω + h||f ||1,Ω) . (97)

Remark 5.21. In the case of Neumann homogeneous boundary conditions, a similar theorem holds. The key
is that both (72) (with a modified definition of Vh) and Lemma 5.17 (with κ ∈ H1(Ω) ∩H2(Ω),∇κ · n = 0 on Γ
and λ ∈ H1(Ω) + Vh) remain true. The cases of non-homogeneous and of Robin boundary conditions present
some additional error terms linked to the boundary and are not considered here.

5.4. Discussion

In Section 5.2, we obtained an order h error estimate independently of the grid, under Hypothesis 5.5, while
in Section 5.3, we obtained the same type of estimate under the weaker Hypothesis 5.6. However, an elementary
calculation proves that these two estimates are true under the weakest hypothesis. Indeed,

|ε|1,D = ||∇h(φ− Πφ̂)||0,D = |φh − (Πφ̂)h|1,h ≤ |φh − φ̂|1,h + |φ̂− (Πφ̂)h|1,h .

Estimates (74) and (96) (respectively (75) and (97)), which were all obtained under the weakest hypothesis
(Hypothesis 5.6) allow to conclude that finite volume error estimates (70) (resp. (71)) are in fact true under
this hypothesis (and replacing θ∗ by τ∗). It thus seems that the estimates obtained in Section 5.2 are not
optimal with respect to the geometry of the diamond-cells.

5.5. The case of non-convex diamond-cells

When a diamond-cell Dj is not convex, we can always divide it into Dj,1∪Dj,2. On the other hand, splitting
it into D′

j,1 ∪D′
j,2 is not possible any more. On the contrary, we have

Dj = D′
j,α1

\D′
j,α2

(98)

with (α1, α2) = (1, 2) or (α1, α2) = (2, 1). In other words, D′
j,α1

is the convex hull of the cell Dj , and D′
j,α2

is the part of this convex hull that is not included in Dj . Such a diamond-cell is displayed in Figure 11 in
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Figure 11. Non-convex diamond-cell.

the case (α1, α2) = (2, 1). Moreover, if the diamond-cell is not convex, Hypothesis 5.6 is not a consequence of
Hypothesis 5.5 any more.

In order to obtain error estimates, we shall make the following supplementary hypotheses.

Hypothesis 5.22. There exists a constant C, independent of the mesh, such that

∑

j∈[1,J]

∣
∣
∣φ̂
∣
∣
∣
2

2,D′
j,α2

≤ C . (99)

Hypothesis 5.23. There exists a constant C, independent of the grid such that for any non-convex diamond-
cell Dj, and for α ∈ {1; 2}, ∣

∣D′
j,α

∣
∣

|Dj |
≤ C .

Remark 5.24. The condition (99) is trivially checked if the cells D′
j,α2

do not overlap because in this case

∑

j∈[1,J]

∣
∣
∣φ̂
∣
∣
∣
2

2,D′
j,α2

≤
∣
∣
∣φ̂
∣
∣
∣
2

2,Ω
≤ ||f ||0,Ω .

On the other hand, this condition may be violated if the grid is refined so that the same open set (dependent
on h) is included in a growing (with h) number of D′

j,α2
.

We state the following result

Proposition 5.25. Under Hypotheses 5.2, 5.5, 5.6, 5.22 and 5.23, there exists a constant C, independent of
the grid such that

|ε|1,D ≤ Ch .
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Proof. Let us reconsider the finite volume approach for the error estimate (Sect. 5.2). As regards the first term
in (59), the bounds (60) and (64) remain valid, but we explicitly used the convexity of the diamond-cells in the
estimate (65). Calculations are then modified in the following way:

∫

Dj

(
ej · n′

j

)2 dx =
∥
∥ej · n′

j

∥
∥2

0,D′
j,α1

−
∥
∥ej · n′

j

∥
∥2

0,D′
j,α2

≤
∥
∥ej · n′

j

∥
∥2

0,D′
j,α1

.

Just like in Section 5.2, we know that there exists a constant C, independent of j, α and h, such that

∥
∥ej · n′

j

∥
∥2

0,D′
j,α1

≤ Ch2
∣
∣ej · n′

j

∣
∣2
1,D′

j,α1

≤ Ch2
∣
∣
∣φ̂
∣
∣
∣
2

2,D′
j,α1

= Ch2

(∣
∣
∣φ̂
∣
∣
∣
2

2,Dj

+
∣
∣
∣φ̂
∣
∣
∣
2

2,D′
j,α2

)
·

Thus, by summation over the diamond-cells, and under Hypothesis 5.22, there exists a constant C, independent
of the grid such that

∑

j∈[1,J]

∫

Dj

(
ej · n′

j

)2 ≤ Ch2(||f ||0,Ω + C) .

Finally, under Hypothesis 5.5, we can prove the existence of a constant C, independent of the grid, such that




∑

j∈[1,J]

∫

Dj

|ej |2(x) dx





1/2

≤ Ch |ε|1,D . (100)

As regards the second term in (59), the splitting ofDj into Dj,1∪Dj,2 is always possible, which makes it possible
to leave this part of demonstration unchanged. Nevertheless, if the maximum angle of this couple of triangles
approaches π, it can be judicious to reconsider the calculations by considering the splitting (98). Then, because
(∇hε)j is a constant, we obtain

∫

Dj

(∇φ̂ − (∇hΠφ̂)j) · (∇hε)j dx =

(∫

D′
j,α1

(∇φ̂−∇ωj,α1) (x) dx −
∫

D′
j,α2

(∇φ̂ −∇ωj,α2) (x) dx

)

· (∇hε)j .

By application of the Cauchy-Schwarz inequality on D′
j,α1

and D′
j,α2

∣∣
∣
∣
∣

∫

Dj

(∇φ̂− (∇hΠφ̂)j) · (∇hε)j dx

∣∣
∣
∣
∣
≤




2∑

α=1

(∣
∣D′

j,α

∣
∣

|Dj |

)1/2

|φ̂− ωj,α|1,D′
j,α



 |Dj|1/2 |∇hε|j .

As previously, under Hypothesis 5.6, there exists a constant C independent of j, α and h such that

|φ̂− ωj,α|1,D′
j,α

≤ Ch|φ̂|2,D′
j,α
.

Then, thanks to Hypothesis 5.23,
∣
∣
∣
∣
∣

∫

Dj

(∇φ̂ − (∇hΠφ̂)j) · (∇hε)j dx

∣
∣
∣
∣
∣
≤ Ch

(∣
∣
∣φ̂
∣
∣
∣
2,D′

j,α1

+
∣
∣
∣φ̂
∣
∣
∣
2,D′

j,α2

)
|Dj |1/2 |∇hε|j .

By application of the discrete Cauchy-Schwarz inequality, and under Hypothesis 5.22, the estimate

∑

j∈[1,J]

∫

Dj

(∇φ̂ − (∇hΠφ̂)j) · (∇hε)j dx ≤ Ch|ε|1,D (101)
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remains valid with a constant C which does not depend on the grid.
The result of the proposition follows from (59), (100) and (101). �

Remark 5.26. Finding a criterion to check that a given family of meshes verifies Hypotheses 5.22 and 5.23 is
beyond the scope of this paper.

6. Error estimates in the L2
norm

In this part, we study the error in the L2 norm between the exact solution φ̂ and the function φh = L(φ)
built from the element φ ∈ V which is solution of the system (11)–(14). For the sake of simplicity, we shall
suppose in this part that all diamond-cells are convex. Although the study was not performed for non-convex
diamond-cells, the numerical results given in [15] for very distorted meshes which contain non-convex diamond
cells show that convergence in the L2 norm also takes place for such meshes.

We use the traditional Aubin-Nitsche duality argument to write

||φh − φ̂||0,Ω = sup
v∈L2(Ω)

|(φh − φ̂, v)Ω|
||v||0,Ω

· (102)

For a given v ∈ L2(Ω) let us consider ψ, solution of the problem

−∆ψ = v in Ω
ψ = 0 on Γ.

The domain Ω being polygonal convex, we know that ψ belongs to H1
0(Ω) ∩ H2(Ω), and that there exists a

constant K such that
||ψ||2,Ω ≤ K||v||0,Ω . (103)

In order to evaluate (φh − φ̂, v)Ω, we start by proving a useful lemma:

Lemma 6.1. Let κ ∈ H1
0(Ω) ∩ H2(Ω) and µ := −∆κ; let ω ∈ H1

0(Ω) ∩ H2(Ω) and let ωh ∈ Vh. Then, if all
diamond-cells are convex,

ah(κ, ωh)−(µ, ωh)Ω =
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

{
(∇κ−RT (∇κ)) · ∇(ωh − ω) + µ

[
(ω − ωh) − 〈ω − ωh〉j,α

]}
dx . (104)

Proof. Applying lemma 5.17 to κ and ωh on the one hand and to κ and ω on the other hand, we obtain
respectively

ah(κ, ωh) − (µ, ωh)Ω =
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

[
(∇κ−RT (∇κ)) · ∇ωh + µ

(
〈ωh〉j,α − ωh

)]
dx (105)

and

ah(κ, ω) − (µ, ω)Ω =
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

(∇κ−RT (∇κ)) · ∇ω dx +
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

µ
(
〈ω〉j,α − ω

)
dx . (106)

But of course

ah(κ, ω) − (µ, ω)Ω =
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

(∇κ · ∇ω − µω) dx =
∫

Ω

(∇κ · ∇ω − µω) dx = 0 .
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The result (104) is obtained by subtracting (106) to (105). �

Proposition 6.2. Let ψh ∈ Vh. The following equality holds if all diamond-cells are convex

(φh − φ̂, v)Ω = ah(φh − φ̂, ψ − ψh)

−
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

(∇φ̂ −RT (∇φ̂)) · ∇(ψh − ψ) dx

−
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

f
[
(ψ − ψh) − 〈ψ − ψh〉j,α

]
dx (107)

−
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

(∇ψ −RT (∇ψ)) · ∇(φh − φ̂) dx

−
∑

j∈[1,J]

2∑

α=1

∫

Tj,α

v

[(
φ̂− φh

)
−
〈
φ̂− φh

〉

j,α

]
dx

+
∑

j

∫

Dj

f(ψ∗
h − ψh) dx .

Proof. For any ψh ∈ Vh, there holds

(φh − φ̂, v)Ω =
∑

j

∫

Dj

(φh − φ̂) (−∆ψ) dx = ah(φh − φ̂, ψ) −
∑

j

∫

∂Dj

φh∇ψ · n dξ

= ah(φh − φ̂, ψ − ψh) + ah(φh − φ̂, ψh) −
∑

j

∫

∂Dj

φh∇ψ · n dξ . (108)

Thanks to (34), we have

ah(φh − φ̂, ψh) = 	(ψh) − ah(φ̂, ψh) = (f, ψ∗
h)Ω − ah(φ̂, ψh) = (f, ψ∗

h − ψh)Ω −
[
ah(φ̂, ψh) − (f, ψh)Ω

]
.

In addition, the last term in (108) can be evaluated in the following way

∑

j

∫

∂Dj

φh∇ψ · n dξ =
∑

j

∫

Dj

[∇φh · ∇ψ − (−∆ψ)φh] dx = ah(ψ, φh) − (v, φh)Ω .

We thus have

(φh − φ̂, v)Ω = ah(φh − φ̂, ψ − ψh) −
[
ah(φ̂, ψh) − (f, ψh)Ω

]
− [ah(ψ, φh) − (v, φh)Ω] + (f, ψ∗

h − ψh)Ω .

Applying lemma 6.1 for κ = φ̂, µ = f , ω = ψ and ωh = ψh on the one hand and for κ = ψ, µ = ν, ω = φ̂ and
ωh = φh on the other hand leads to the announced result. �

This leads to the following result:

Theorem 6.3. If all diamond-cells are convex and under Hypotheses 5.2 and 5.6, there exists a constant C,
depending only on τ∗, such that

||φh − φ̂||0,Ω ≤ C(τ∗)h||f ||0,Ω .



1236 K. DOMELEVO AND P. OMNES

Proof. The first term in the right-hand side of (107) can be bounded by

|φh − φ̂|1,h |ψ − ψh|1,h .

Then, thanks to estimate (92), the second term in the right-hand side of (107) can be bounded by

Ch|φ̂|2,Ω |ψ − ψh|1,h

where, under Hypothese 5.6, the constant C depends only on τ∗. Similarly, the fourth term can be bounded by

Ch|ψ|2,Ω |φ̂− φh|1,h .

In addition, on each triangle Tj,α, the function (ψ − ψh)−〈ψ − ψh〉j,α has a vanishing mean-value, which implies
the existence of a constant C, independent of the grid, such that

∥
∥
∥(ψ − ψh) − 〈ψ − ψh〉j,α

∥
∥
∥

0,Tj,α

≤ Cdiam(Tj,α) |ψ − ψh|1,Tj,α
≤ Ch |ψ − ψh|1,Tj,α

.

From this, we deduce that the third term in the right-hand side of (107) is bounded by

Ch|ψ − ψh|1,h ‖f‖0,Ω .

In the same way, the fifth term in the right-hand side of (107) can be bounded by

Ch|φ̂− φh|1,h ‖v‖0,Ω .

Taking into account these various results, we obtain
∣
∣
∣(φh − φ̂, v)

∣
∣
∣ ≤ Ch|φh − φ̂|1,h

(
|ψ|2,Ω + ‖v‖0,Ω

)

+ |ψ − ψh|1,h

[
|φh − φ̂|1,h + Ch

(
|φ̂|2,Ω + ‖f‖0,Ω

)]
+

∣∣
∣
∣
∣
∣

∑

j

∫

Dj

f(ψ∗
h − ψh) dx

∣∣
∣
∣
∣
∣
, (109)

where the constants depend only on τ∗.
Inequality (96) allows to bound the first term in the right-hand side of (109). In addition, if we choose

ψh := L(Πψ) (see Defs. 4.2 and 5.4), we can write, thanks to the calculations carried out in Section 5.3.1,

|ψ − ψh|1,h ≤ Ch|ψ|2,Ω

with a constant C which, under Hypothesis 5.6, depends only on τ∗. Then, thanks to (103) and (37)

∣∣
∣(φh − φ̂, v)

∣∣
∣ ≤ Ch2 ‖f‖0,Ω ‖v‖0,Ω +

∣
∣
∣∣
∣
∣

∑

j

∫

Dj

f(ψ∗
h − ψh) dx

∣
∣
∣∣
∣
∣
. (110)

A bound of the second term in the right-hand side of (110) was obtained in Section 5.3.2, (formula (83)). We
can transform this inequality into

|(f, ψ∗
h − ψh)Ω| ≤ Ch||f ||0,Ω(|ψ|1,Ω + |ψ − ψh|1,h) ≤ Ch||f ||0,Ω(||ψ||2,Ω(1 + Ch)) ≤ Ch||f ||0,Ω||v||0,Ω (111)

with a constant C depending only on τ∗. The result of the theorem follows from (102), (110) and (111). �
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Remark 6.4. The result stated by Theorem 6.3 is only first order, like that obtained through a discrete
Poincaré inequality in [9]. Whether our result could have been obtained through this type of technique is an
open question. The first-order term is linked to the finite element formulation (34)-(35) which displays in the
definition of 	 the non-traditional term (f, ψ∗

h)Ω instead of the more traditional term (f, ψh)Ω. On the other
hand, the numerical results presented in Section 8 tend to show that this error is in fact second-order. Moreover,
we can prove (almost) second-order in the L2 norm in the situation of the next section.

7. Error estimates on homothetically refined meshes

In this section, we consider a family of meshes refined in the following way. We choose a coarse triangular
grid of the domain Ω. Then, each one of the coarse triangles is divided into four similar sub-triangles, which
are obtained by joining the midpoints of the sides of the coarse triangle, as indicated in Figure 12. Then, this
process is repeated to obtain finer and finer grids. On such families, we always choose the points Gi to be the
barycenters of the cells Ti. These meshes will be called homothetically refined. We only sketch the proofs of
the results; details can be found in [8]. We shall further suppose that f ∈ H1 (Hyp. 5.3), so that φ̂ ∈ H3.

Going back to (58) and applying a discrete Cauchy-Schwarz inequality leads to

|ε|21,D ≤
∑

j

|Dj ||dj(φ̂)|2 with dj(φ̂) =
(
δφ̂−∇hΠφ̂

)

j
.

The refined estimates are based on the distinction between two types of diamond-cells, whether they are asso-
ciated to a side Aj which is included in the boundaries of the triangles of the initial coarse mesh (we shall write
that j ∈ J ) or not (we shall write j /∈ J ). If j ∈ J , then the local estimates presented in Sections 5.2 remain
valid for the associated diamond-cell Dj so that |Dj | |dj(φ̂)|2 ≤ Ch2|φ̂|22,Dj

. As the total area of these cells is
bounded by Ch, it can be shown that for all α > 0, there exists a constant Cα such that

∑

j∈J
|Dj | |dj(φ̂)|2 ≤ Cαh

3−2α||f ||21,Ω . (112)

Now if the side Aj is not included in the boundaries of the triangles of the initial coarse mesh, then it is easily
seen that the corresponding diamond-cell is a parallelogram. But if Dj is a parallelogram, then the term dj(p)
vanishes for any second-order polynomial p and standard results of numerical analysis lead us to the conclusion
that for these cells, |Dj | |dj(φ̂)|2 ≤ Ch4|φ̂|23,Dj

, so that

∑

j /∈J
|Dj | |dj(φ̂)|2 ≤ Ch4|φ̂|23,Ω ≤ Ch4||f ||21,Ω . (113)

Summing (112) and (113) gives the superconvergence result:

Theorem 7.1. On a homothetically refined family of meshes, and under Hypothesis 5.3, and for all α (with
1/2 ≥ α > 0), there exists a constant C depending only on α and on the initial coarse mesh such that

|ε|1,D ≤ Ch3/2−α||f ||1,Ω .

As far as the error in the L2 norm is concerned, going back to Section 6, the bound of the second term in
(110) can be refined. There holds

∫

Dj

f(ψ∗
h − ψh) dx =

∫

Dj

(
f − 〈f〉j

)
(ψ∗

h − ψh) dx + 〈f〉j
∫

Dj

(ψ∗
h − ψh) dx , (114)
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(a) coarse triangle (b) refined triangle

Figure 12. Refinement of a triangle into four similar sub-triangles.

where for all j, 〈f〉j denotes the average value of f over Dj. As f belongs to H1, and thanks to results obtained
in Section 5.3, the first term in the right-hand-side of (114) can be shown to be bounded by Ch2 ‖f‖1,Dj

‖ψ‖2,Dj
.

On the other hand, the second term in the right-hand-side of (114) vanishes if the diamond-cell Dj is a par-
allelogram and is bounded by Ch|Dj | | 〈f〉j | |∇ψh|j if not. As the total area of diamond-cells which are not
parallelograms is bounded by Ch, the following result holds:

Theorem 7.2. On a homothetically refined family of meshes, and under Hypothesis 5.3, for all 1 ≥ α > 0,
there exists a constant C, depending only on α and on the initial coarse mesh, such that

||φh − φ̂||0,Ω ≤ C h2−α ‖f‖1,Ω .

8. Numerical results

In all but last of the following tests, the computational domain is the unit square: Ω = [0; 1]× [0; 1] and the
right-hand-side and boundary conditions are chosen so that the exact solution φ̂ is given by

φ̂(x, y) = xy exp(x) cos(πy).

We test the finite volume method on various types of grids and we define two types of discrete error in the H1
0

norm, corresponding respectively to the finite volume approach (Sect. 5.2) and to the finite element approach
(Sect. 5.3):

e12
FV (h) :=

∑
j |Dj |

∣
∣
∣∇h(φ− Πφ̂)

∣
∣
∣
2

j

∑
j |Dj |

∣∣
∣∇h(Πφ̂)

∣∣
∣
2

j

and e12
FE(h) :=

∑
j |Dj |

∣
∣
∣(∇φh)j −∇φ̂(Bj)

∣
∣
∣
2

∑
j |Dj |

∣∣
∣∇φ̂(Bj)

∣∣
∣
2 ,

where Πφ̂ is defined through (39)–(40) and where ∇φ̂(Bj) is the value of the gradient of the exact solution at
the barycenter of Dj (denoted by Bj). In addition, we define an error in the discrete L2 norm by

e02(h) :=
1
2

(∑
i |Ti|(φT

i − (Πφ̂)T
i )2 +

∑
k |Pk|(φP

k − (Πφ̂)P
k )2

)

1
2

(∑
i |Ti|((Πφ̂)T

i )2 +
∑

k |Pk|((Πφ̂)P
k )2

) ·
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Figure 13. Unstructured triangular meshes.

We compare these errors with the errors obtained by using the standard P 1 Lagrange finite element method:

e12
P1 :=

∑
i |Ti|

∣
∣
∣∇φP1

h −∇φ̂(Gi)
∣
∣
∣
2

i

∑
i |Ti|

∣
∣∣∇φ̂(Gi)

∣
∣∣
2

i

and e02
P1 :=

∑
k |Pk|

∣
∣
∣φP1

h (Sk) − (Πφ̂)P
k

∣
∣
∣
2

∑
k |Pk|

∣
∣∣(Πφ̂)P

k

∣
∣∣
2 ,

where φP1
h is the solution of the associated finite element problem. We also compare them with the errors

obtained by using the standard four-point finite volume scheme (nicknamed “VF4”) which was first studied in
[14] in the case of triangles, and then extended to more general meshes and boundary conditions in [12]. Note
that this scheme is well defined on triangular meshes fulfilling the strict Delaunay condition (see [9], Ex. 9.1)
if one chooses the intersection of orthogonal bisectors (IOB) of the triangle edges as control points associated
to the triangles. For triangular meshes that do not meet this condition, the VF4 scheme was extended and
numerically studied in [4]. In that case, the matrix of the resulting linear system is not necessarily definite
positive. This has the drawbacks that one cannot prove that the linear system has a unique solution, and that
solving it by an iterative method is then more expensive than in the definite positive case. For the VF4 scheme,
the discrete errors are defined by

e12
V F4(h) :=

∑
j

|Aj |
|A′

j |

[
(φ− Πφ̂)i1(j) − (φ− Πφ̂)i2(j)

]2

∑
j

|Aj |
|A′

j |

[
(Πφ̂)i1(j) − (Πφ̂)i2(j)

]2 and e02
V F4(h) :=

∑
i |Ti|((φ − Πφ̂)i)2
∑

i |Ti|((Πφ̂)i)2
·

Initially, we consider a family of six unstructured grids made up of increasingly small triangles. The first two
of these grids are represented in Figure 13. The numerical errors in the H1

0 norms and in the L2 norms are
presented in logarithmic scale respectively in Figures 14 and 15, on which we also respectively plotted a straight
line of slope 1 and a line of slope 2. We remark, as proved previously, a first-order convergence of the presented
scheme, with the e1FE error eight to ten times weaker than the e1P1 error on a given grid, and twice weaker
than the e1FV 4 error. Of course, on a given grid, the computation is longer by the scheme suggested here
because it involves more unknowns than the Lagrange P 1 finite element method, or the VF4 scheme. As far as
the P 1 finite element method is concerned, this matter was quantified in [8], where it was concluded that a fair
comparison of the two methods for a fixed CPU time is obtained by comparing the error due to the finite volume
approximation on a given grid, with that due to the Lagrange P 1 finite element approximation on the grid of
higher refinement. The finite volume scheme thus obtains a precision four to five times better in the discrete
H1

0 norm for a fixed CPU time. On the contrary, as the error curves in the discrete L2 norm almost overlap and
are parallel to a line of slope 2, it is possible to conclude that the precision obtained is approximately 4 times
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Figure 14. Convergence in the H1
0 norm on the family of unstructured triangular grids.
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Figure 15. Convergence in the L2 norm on the family of unstructured triangular grids.

better in the L2 norm by the Lagrange finite element method than by the finite volume scheme presented here,
for a fixed CPU time.

As far as the FV4 scheme is concerned, the comparison for a fixed CPU time greatly depends on the quality
of the triangular mesh. Indeed, for the first three meshes of the family considered in the present example, only
very few pairs of triangles did not meet the Delaunay condition, and the resolution by the conjugate gradient
method of the linear system associated to the scheme was quite easy and led to a resolution around three times
faster on a given mesh for the VF4 scheme than for the scheme presented in this paper; on the other hand, the
situation became worse and worse for the last three meshes of the family (around a hundred pairs of triangles
did not meet the Delaunay condition in the finest mesh), which led to resolutions of the linear systems which
were more expensive for the VF4 scheme than for the scheme presented here, up to ten times longer on the
finest mesh (however, in that case, the conjugate gradient was probably not the most efficient method to solve
the linear system, but the comparison was performed for a given resolution method).
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(a) Coarse mesh (b) Refined mesh

Figure 16. Triangular meshes refined by subdivision.

Another point should be mentioned here: the method presented here computes both components of the
gradients at the interfaces of the cells, and not only the normal component. There are cases where this is
an important feature, although they are not considered in the present report. Anisotropic and/or non-linear
diffusion is for example treated in [15]. We may also cite the case of groundwater flow, where the velocity u,
defined by u = −K∇φ (with K the permeability tensor), is a coefficient in the convection diffusion equation
of the concentration of some chemical species. Models for this application usually consider diffusion tensors
that require both components of u. We refer for example to [26] for a recent benchmark for the special case of
radio-elements. An alternative to the computation of both components of the gradient is the method described
in [10], which reconstructs the whole gradient from the knowledge of the normal components at the interfaces.

We conclude that on this type of grids, the method suggested here is useful if one is in fact interested in an
accurate approximation of both components of the gradients of the solution at the interfaces of the cells.

As a second test, we consider a family of homothetically refined grids (see Sect. 7 for the definition). The
first two of these grids are represented in Figure 16. The numerical errors in the H1

0 and L2 norms are presented
in logarithmic scale respectively in Figures 17 and 18. In Figure 17 we also plotted two straight lines, one
whose slope is 1 and the other whose slope is 1.5, and in Figure 18 a line whose slope is 2. We observe the
superconvergence in the H1

0 norm predicted in Section 7 (order 1.5 whereas the polynomials are of order 1),
whereas P 1 Lagrange finite elements continue to converge with the order 1. We conclude that, as far as possible,
the refinement of triangular grids should be performed by splitting the triangles into four similar sub-triangles.
In the discrete L2 norm, the conclusions stated on the previous family of grids remain valid.

The third family is made up of grids of increasingly flat triangles built in the following way. Let n be a
non-zero integer. We divide Ω into 4n horizontal stripes of the same height and we divide each one of these
stripes into similar triangles (except those at both ends) so that there are 2n bases of triangles in the width of
a stripe and we choose n ∈ [1; 6]N. Figure 19 represents the first two of these grids. There holds h = 1/2n and
the greatest angle θm at the top of the triangles is such that tan (θm/2) = 2n−1. The numerical errors in the
H1

0 and L2 norms are presented in logarithmic scale respectively in Figures 22 and 23. In Figure 22, we also
displayed the curve h/ sin θm (named “P1 theor”) which corresponds to the higher bound (up to a multiplicative
constant) of the error estimates obtained by Jamet in [18]. We observe that this curve properly reproduces the
behavior of the e1P1 (the curves are almost parallel). We also plotted a straight line of slope 0.5 to which e1FV

is parallel and a line of slope 1.5 to which e1FE is parallel.
For this type of grids, the diamond-cells are of several types, according to whether they are associated with

interior diamond-cells (see Fig. 20) or they have a node located on the boundary (Fig. 21). In Figure 20, the cell
associated with the horizontal edge has orthogonal diagonals (nj · n′

j = 0); it thus checks the geometrical
Hypotheses 5.5 and 5.6. As regards the diamond-cell associated with the oblique edge, its splitting into
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Figure 17. Discrete H1
0 convergence on the family of triangular grids refined by subdivision.
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Figure 18. Discrete L2 convergence on the family of triangular grids refined by subdivision.

(Dj,1, Dj,2) gives a maximum angle τ1 = τ2 which tends to π
2 , which implies that this diamond-cell checks

the geometrical Hypothesis 5.6 although the angle between its diagonals tends to 0. In Figure 21, the cells asso-
ciated with the horizontal and vertical edges also check Hypothesis 5.6. On the other hand, the cell associated
with the oblique edge is such that sin τ1 ∼ 3/2n and sin τ2 ∼ 5/2n. These two angles thus tend toward π when
n grows, and this diamond-cell thus does not check Hypothesis 5.6. In addition, h/ sin τ2 ≤ C, where C does
not depend on the grid. If one reconsiders the error estimates obtained in (81) and (92), and if one denotes by
Dh the union of the diamond-cells on which this problem is encountered, we obtain

|φ̂− φh|1,h ≤ C
(
h||f ||0,Ω + |φ̂|2,Dh

)
.
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(a) mesh with flat triangles, n = 1 (b) mesh with flat triangles, n = 2

Figure 19. Meshes with degenerating flat triangles.

nj n’j

τ 1 τ 2

Dj,2

Dj,1

Figure 20. Interior diamond-cells associated with the degenerating grids.

But since φ̂ is in this example of class C2(Ω̄), and since the area ofDh is of order Ch, with a constant independent
of h, we can bound |φ̂|2,Dh

by C
√
h, which explains the order 0.5 observed in Figure 22. On the other hand,

the order 1.5 remains unexplained.
As far as the VF4 scheme is concerned, we remark the non-convergence of the scheme. This may be related

to the fact that, when switching from a refinement level n to a level n+ 1, the distance |A′
j | between the IOBs

of two adjacent triangles Ti1(j) and Ti2(j) remains approximatively constant, due to the degeneracy of the grids.

Thus the difference quotient φi1(j)−φi2(j)

|A′
j |

never converges toward ∇φ̂ · n.

We observe in Figure 23 a second-order convergence of the proposed finite volume method in the L2 norm.
Finally, we consider two applications on non-conforming meshes. First, we consider the non-conforming family

of meshes constructed in the following way. Let n be a non-zero integer. We split Ω into (2n + 1) × (2n + 1)
identical squares. Then, we refine this mesh locally “in a chess-board way”; this means that every other square
is itself divided into 2n × 2n identical sub-squares. We choose here n ∈ [1; 5]N. Figure 24 displays the first two
of these meshes. Of course, this family of meshes is not of practical use, but constitutes in our opinion a good
choice to test the applicability of the presented method on arbitrarily locally refined non-conforming meshes.
The quantity e1(h) is displayed in logarithmic scale in Figure 25, as well as a reference straight line with a
slope equal to one. The quantity e0(h) is displayed in logarithmic scale in Figure 26, as well as a reference
straight line with a slope equal to two. We observe, on this family of non-conforming, locally refined meshes, a
first-order convergence in the discrete H1

0 norm and a second-order convergence in the discrete L2 norm.
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Figure 21. Diamond-cells close to the edge associated with the degenerating grids.

 0.0001

 0.001

 0.01

 0.1

 1

 0.01  0.1  1

e1
(h

)

h

P1 theor
P1

VF4
slope=0.5

FV
EF

slope=1.5

Figure 22. Convergence in the discrete H1
0 norm on the family of degenerating triangular grids.

As a second and more realistic application, we consider an example inspired from [13], where the authors
consider the following “multi-scale” problem. Let Ω = [−1, 1]2 and let us choose the following data (together
with homogeneous boundary conditions):

f = 2k2π2 cos(kπx) cos(kπy) − 4ηχ(r) exp(1/ε2) exp[−1/(ε2 − r2)]
r2 + r4 − ε4

(ε2 − r2)4

with r =
√
x2 + y2 and χ(r) = 1 if r ≤ ε while χ(r) = 0 if r > ε. We fix k = 1/2, η = 10 and ε = 1/4.

The exact solution φ̂ of this problem is given by

φ̂ = cos(kπx) cos(kπy) + ηχ(r) exp(1/ε2) exp[−1/(ε2 − r2)] ,

thus it is smooth away from the origin and displays a strong peak in the neighbourhood of (0, 0). Like in
[13], we consider the subdomain ω = [−1/4, 1/4]2 and Ω \ ω is uniformly meshed with squares of size S, while
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Figure 23. Convergence in the discrete L2 norm on the family of degenerating triangular grids.

(a) non-conforming mesh, n = 1 (b) non-conforming mesh, n = 2

Figure 24. Non conforming locally refined meshes.

ω is uniformly meshed with squares of size s = S/2p. Thus, for p ≥ 1 the mesh is non-conforming. The
mesh corresponding to S = 1/8 and S/s = 4 is displayed in Figure 27. First, we try to find what could be
the optimal ratio S/s by two tests. We first fix S = 1/16 and let s tend to 0 as long as e1FE significantly
decreases. Figure 28 shows that it is worth refining the mesh covering ω until the ratio S/s = 16, and that
further refinements are less efficient. Second, we fix s = 1/256 and coarsen the mesh covering Ω \ ω until the
error e1FE starts to increase significantly. There again, as seen in Figure 28, it seems that coarsening up to
S/s = 16 does not increase the error much, and that further coarsening starts to deteriorate the solution. So we
choose to fix S/s = 16 and then let S and s tend to 0. The only diamond-cells which are not parallelograms are
located at the boundaries of Ω and ω and are thus included in a region whose area is bounded by Ch, where the
constant C does not depend on h. Thus, the expected rate of convergence in the H1

0 norm is 1.5, which seems to
be (at least asymptotically) the case in Figure 29. As far as the L2 norm is concerned, Figure 30 shows a second
order convergence. We think this example shows that the method proposed here allows to deal in a particularly
simple way with non-conforming locally refined meshes, while maintaining the optimal order of convergence.
Indeed, for this type of meshes, it is known (see e.g. [23] and the references therein in the context of domain



1246 K. DOMELEVO AND P. OMNES

0.01

0.1

0.1
h

e1
slope=1

Figure 25. Convergence in the discrete H1
0 norm on the family of locally refined non-

conforming meshes.
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Figure 26. Convergence in the discrete L2 norm on the family of locally refined non-
conforming meshes.

decomposition on non-matching grids) that the standard two point flux approximation at the interface between
the coarse and fine meshes leads to a deterioration of the order of convergence (0.5 in the H1 norm).

9. Conclusion

In this article, we have presented a finite volume method based on the integration of the Laplace equation on
both a primal, almost arbitrary, two-dimensional mesh and on a dual mesh. For this, we have defined a discrete
gradient operator on the diamond-cells of the mesh and a discrete divergence operator on the primal and dual
cells, such that these two discrete operators are linked by a discrete Green formula. Thanks to this property,
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Figure 27. Non conforming mesh for the multi-scale problem with S = 1/8 and S/s = 4.
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Figure 28. H1
0 norm of the error for the multi-scale problem with respect to the local refine-

ment ratio.

the finite volume method may be interpreted under a variational form. We proved its equivalence with a finite
element method whose basis functions are P 1 over each diamond cell, and continuous at the midpoints of the
interfaces between the diamond cells. Then, we have proved error estimates in two discrete H1

0 norms, using
either a finite volume approach or a finite element approach. We obtain a convergence of order one under the
hypothesis that the maximum angle of one of the two couples of triangles obtained by partition of a diamond-cell
according to one or the other of its diagonals is bounded uniformly by an angle strictly lower than π. A first
order convergence in the L2 norm is proved under this same hypothesis in the general case. Better estimates
can be obtained on families of homothetically refined meshes, under the hypothesis of an additional regularity
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Figure 29. Convergence in the discrete H1
0 norm for the multi-scale problem with fixed S/s.
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Figure 30. Convergence in discrete L2 norm for the multi-scale problem with fixed S/s.

of the data. Indeed, we obtain a superconvergence at the order 1.5 − α in the H1
0 norm, while a 2 − α order

is proved in the L2 norm, for any α > 0. The numerical tests carried out show that in general one cannot
hope for better than first-order convergence in the discrete H1

0 norm, but confirm the superconvergence on
homothetically refined grids. Convergence with the order two in the discrete L2 norm is also observed for very
general grids; this phenomenon remains to be studied. Another point worth mentioning is that the gradients of
the solution are particularly well approximated by the method, even on degenerating grids. Finally, a numerical
example has shown that this method behaves particularly well on non-conforming locally refined meshes. The
next step in this direction is the construction of an a posteriori error estimator well adapted to the method,
in order to efficiently refine meshes for a given problem. More general anisotropic and/or non-linear diffusion
operators were studied numerically in [15]; the setting of these problems into the formalism of discrete operators
on general grids, as well as the coupling with convection terms is the subject of current investigations.
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