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CONVERGENCE RATES OF SYMPLECTIC PONTRYAGIN APPROXIMATIONS
IN OPTIMAL CONTROL THEORY ∗

Mattias Sandberg
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Abstract. Many inverse problems for differential equations can be formulated as optimal control
problems. It is well known that inverse problems often need to be regularized to obtain good ap-
proximations. This work presents a systematic method to regularize and to establish error estimates
for approximations to some control problems in high dimension, based on symplectic approximation
of the Hamiltonian system for the control problem. In particular the work derives error estimates
and constructs regularizations for numerical approximations to optimally controlled ordinary differ-
ential equations in R

d, with non smooth control. Though optimal controls in general become non
smooth, viscosity solutions to the corresponding Hamilton-Jacobi-Bellman equation provide good the-
oretical foundation, but poor computational efficiency in high dimensions. The computational method
here uses the adjoint variable and works efficiently also for high dimensional problems with d � 1.
Controls can be discontinuous due to a lack of regularity in the Hamiltonian or due to colliding back-
ward paths, i.e. shocks. The error analysis, for both these cases, is based on consistency with the
Hamilton-Jacobi-Bellman equation, in the viscosity solution sense, and a discrete Pontryagin principle:
the bi-characteristic Hamiltonian ODE system is solved with a C2 approximate Hamiltonian. The error
analysis leads to estimates useful also in high dimensions since the bounds depend on the Lipschitz
norms of the Hamiltonian and the gradient of the value function but not on d explicitly. Applications to
inverse implied volatility estimation, in mathematical finance, and to a topology optimization problem
are presented. An advantage with the Pontryagin based method is that the Newton method can be
applied to efficiently solve the discrete nonlinear Hamiltonian system, with a sparse Jacobian that can
be calculated explicitly.
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1. The optimal control problem

Many inverse problems for differential equations can be formulated as optimal control problems. It is well
known that inverse problems often need to be regularized to obtain good approximations, cf. [13,29]. This work
presents a systematic method to regularize and to establish error estimates for approximations to some control
problems in high dimension, based on symplectic approximation of the Hamiltonian system for the control
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problem. We derive error estimates and construct regularizations for numerical approximations of the optimal
control problem to solve an ordinary differential equation

X ′(s) = f
(
X(s), α(s)

)
, 0 < s < T

X(0) = X0, (1.1)

with the state variable X : [0, T ] → R
d and the control α : [0, T ] → B ⊂ R

m, which is adjusted to minimize the
functional

g
(
X(T )

)
+
∫ T

0

h
(
X(s), α(s)

)
ds, (1.2)

for given data X0 ∈ R
d, f : R

d × B → R
d, h : R

d × B → R and g : R
d → R. Our study focuses on non smooth

controls and approximation methods with error analysis useful also for high dimensional problems, d � 1, e.g.
discretizations of controlled partial differential equations. We assume α ∈ A, where

A = {α : [0, T ] → B | B ⊂ R
m, α(·) is measurable}

is the set of admissible controls and B is compact.
The alternative to solve the minimum of (1.2), with the constraint (1.1), is to define the value function,

u(x, t) := inf
X(t)=x, α∈A

(
g
(
X(T )

)
+
∫ T

t

h
(
X(s), α(s)

)
ds

)
, (1.3)

and use dynamic programming: the value function, u : R
d × [0, T ] → R, is the bounded uniformly continuous

viscosity solution of the Hamilton–Jacobi–Bellman equation, cf. [14],

ut(x, t) + H(ux(x, t), x) = 0, (x, t) ∈ R
d × (0, T ),

u(x, T ) = g(x), x ∈ R
d, (1.4)

where ux denotes the gradient of u with respect to the spatial variable x ∈ R
d, ut = ∂u/∂t is the time derivative

and the Hamiltonian function H : R
d × R

d → R is defined by

H(λ, x) = min
α∈B

(
λ · f(x, α) + h(x, α)

)
. (1.5)

Assume temporarily that the Hamiltonian is differentiable. If ux(X(t), t) ∈ C1 along an optimal path X(t),
differentiation of (1.4) shows that the pair λ(t) ≡ ux

(
X(t), t

)
and X(t) satisfies the bi-characteristic Hamiltonian

boundary value system (cf. [16])

X ′(s) = Hλ

(
λ(s), X(s)

)
, X(0) = X0, 0 < s < T,

−λ′(s) = Hx

(
λ(s), X(s)

)
, λ(T ) = gx

(
X(T )

)
, 0 < s < T, (1.6)

where Hλ and Hx denote the gradients of H with respect to the λ-variable and x-variable, respectively. A
control α̂

(
λ(t), X(t)

)
determined by the Pontryagin principle

α̂ ∈ argmin
a∈B

(
λ(t) · f(X(t), a) + h(X(t), a)

)
(1.7)
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satisfies for differentiable H , f and h

f
(
x, α(λ, x)

)
= Hλ(λ, x),

h
(
x, α(λ, x)

)
= H(λ, x) − λHλ(λ, x),

λfx

(
x, α(λ, x)

)
+ hx

(
x, α(λ, x)

)
= Hx(λ, x), (1.8)

see [6] and Remark 3.1, which justifies to denote (1.6) the Pontryagin method, cf. [24]. The work [4] verifies that
the Pontryagin principle holds for (1.6), based on (1.8), by using that the value function is a viscosity solution
of the Hamilton-Jacobi equation (1.4).

We consider numerical approximations with the time steps

tn =
n

N
T, n = 0, 1, 2, . . . , N.

The most basic approximation is based on the minimization

min
ᾱ∈BN

(
g(X̄N ) +

N−1∑
n=0

h(X̄n, ᾱn)∆t

)
, (1.9)

where ∆t = tn+1 − tn, X̄0 = X0 and X̄n ≡ X̄(tn), for 1 ≤ n ≤ N , satisfy the forward Euler constraint

X̄n+1 = X̄n + ∆t f(X̄n, ᾱn). (1.10)

The existence of at least one minimum of (1.9) is clear since it is a minimization of a continuous function in the
compact set BN . We will focus on an alternative method based on the discrete Pontryagin principle

X̄n+1 = X̄n + ∆tHλ

(
λ̄n+1, X̄n

)
, X̄0 = X0,

λ̄n = λ̄n+1 + ∆tHx

(
λ̄n+1, X̄n

)
, λ̄N = gx(X̄N ). (1.11)

This method is called the symplectic Euler method for (1.6), cf. [19]. Section 4.4 presents a simple generalizations
to general higher order accurate symplectic approximations.

The theory of viscosity solutions for Hamilton-Jacobi-Bellman partial differential equations provides good
theoretical foundation also for non smooth controls. In particular this mathematical theory removes one of
Pontryagin’s two reasons1, but not the other, to favor the ODE approach (1.6) and (1.8): the mathematical
theory of viscosity solutions handles elegantly the inherent non smoothness in control problems; analogous the-
oretical convergence results for an ODE approach was developed later based on the so called minmax solutions,
see [28]. Finite difference or finite element approximations of the nonlinear partial differential equation (1.4) has
convergence proofs with minimal assumptions using the viscosity solution theory, cf. [3,10,15,20,27] for second
order equations. On the other hand, such finite difference or finite element computations only work efficiently
in low dimension, since the problem of finding the control of the ordinary differential equation (1.1) in R

d has
been transformed to solving a partial differential equation in R

d × [0, T ], while the Pontryagin approach based
on the solution of the two ordinary differential equations (1.15) with (1.8), for X̄ and the adjoint variable λ̄, is
computationally feasible even in very high dimension, d � 1, with application to distributed control of partial
differential equations cf. [17,18], optimal shape [21] and inverse problems [13,29], see Section 2. This work uses

1Citation from chapter one in [24] “This equation of Bellman’s yields an approach to the solution of the optimal control problem
which is closely connected with, but different from, the approach described in this book (see Chap. 9). It is worth mentioning
that the assumption regarding the continuous differentiability of the functional (9.8) [(1.3) in this paper] is not fulfilled in even the
simplest cases, so that Bellman’s arguments yield a good heuristic method rather than a mathematical solution of the problem.
The maximum principle, apart from its sound mathematical basis, also has the advantage that it leads to a system of ordinary
differential equations, whereas Bellman’s approach requires the solution of a partial differential equation.”
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the theory of viscosity solutions to Hamilton-Jacobi equations to construct regularized flux and cost functions
and to prove convergence for the Pontryagin method for non smooth controls.

Our analysis is a kind of backward error analysis. The standard backward error analysis for Hamiltonian
systems (1.6) uses an analytic Hamiltonian and shows that symplectic one step schemes generate approximate
paths that solve a modified Hamiltonian system, with the perturbed Hamiltonian given by a series expansion
cf. [19]. Our backward error analysis is different and more related to the standard finite element analysis. We
first extend the approximate Euler solution to a continuous piecewise linear function in time and define a discrete
value function, ū : R

d× [0, T ] → R. This value function satisfies a perturbed Hamilton-Jacobi partial differential
equation, with a small residual error. A special case of our analysis shows that if the optimal α̂ in (1.7) is a
differentiable function of x and λ and if the optimal backward paths, X̄(s) for s < T , do not collide, more
about this later, the discrete value functions, ū, for the Pontryagin method (1.11) satisfies a Hamilton-Jacobi
equation:

ūt + H(ūx, ·) = O(∆t), as ∆t → 0+, (1.12)

where

ū(x, tm) ≡ min
ᾱ∈BN

(
g(X̄N ) +

N−1∑
n=m

h(X̄n, ᾱn)∆t

)
(1.13)

for solutions X̄ to with X̄(tm) ≡ X̄m = x. The minimum in (1.13)is taken over the solutions to the discrete
Pontryagin principle (1.6). The maximum principle for solutions of Hamilton–Jacobi equations and a comparison
between the two equations (1.4) and (1.12) show that

‖u − ū‖C = O(∆t). (1.14)

However, in general the optimal controls ᾱ and α in (1.10) and (1.1) are discontinuous functions of x, and λ̄ or
ux, respectively, and the backward paths do collide. There are two different reasons for discontinuous controls:

• The Hamiltonian is in general only Lipschitz continuous, even if f and h are smooth.
• The optimal backward paths may collide.

The standard error analysis for ordinary differential equations is directly applicable to control problems when the
time derivative of the control function is integrable. But general control problems with discontinuous controls
require alternative analysis. The first step in our error analysis is to construct regularizations of the functions
f and h, based on (1.8) applied to a C2(Rd ×R

d) approximate Hamiltonian Hδ which is λ-concave and satisfies

‖Hδ − H‖C = O(δ), as δ → 0+,

and to introduce the regularized paths

X̄n+1 = X̄n + ∆tHδ
λ

(
λ̄n+1, X̄n

)
, X̄0 = X0,

λ̄n = λ̄n+1 + ∆tHδ
x

(
λ̄n+1, X̄n

)
, λ̄N = gx(X̄N ). (1.15)

We will sometimes use the notation f δ ≡ Hδ
λ and hδ ≡ Hδ − λHδ

λ.
The next step is to estimate the residual of the discrete value function in the Hamilton-Jacobi-Bellman

equation (1.4). The maximum principle for viscosity solutions and the residual estimate imply then an estimate
for the error in the value function. An approximation of the form (1.15) may be viewed as a general symplectic
one step method for the Hamiltonian system (1.6), see Section 4.4.

There is a second reason to use Hamiltonians with smooth flux: in practice the nonlinear boundary value
problem (1.15) has to be solved by iterations. If the flux is not continuous it seems difficult to construct a
convergent iterative method, in any case iterations perform better with smoother solutions. An advantage
with the Pontryagin based method is that the Newton method can be applied to efficiently solve the discrete
nonlinear Hamiltonian system with a sparse Jacobian that often can be calculated explicitly.
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If the optimal discrete backward paths X̄(t) in (1.15) collide on a codimension one surface Γ in R
d × [0, T ],

the dual variable λ̄ = ūx may have a discontinuity at Γ, as a function of x. Theorems 4.1 and 4.5 prove, for ū
based on the Pontryagin method, that in the viscosity solution sense

ūt + H(ūx, ·) = O
(

∆t + δ +
(∆t)2

δ

)
, (1.16)

where the discrete value function, ū, in (1.13) has been modified to

ū(x, tm) = min
X̄m=x

(
g(X̄N) +

N−1∑
n=m

hδ(X̄n, λ̄n+1)∆t
)
. (1.17)

The regularizations make the right hand side in (1.16) a Lipschitz continuous function of
(
λ̄(t), X̄(t), t

)
, bounded

by C(∆t + δ + (∆t)2

δ ) where C depends only on the Lipschitz constants of f , h and λ̄. Therefore the maximum
principle can be used to prove ‖u − ū‖C = O(∆t), for δ = ∆t. Without the regularization, the corresponding
error term to in (1.16) is not well defined, even if ūx is smooth. A similar proof applies to the minimization
method for smooth Hamiltonians, see [25]. It is important to note that for non smooth control the solution
paths X̄ may not converge although the value function converges as ∆t and δ tend to zero. Therefore our
backward error analysis uses consistency with the Hamilton-Jacobi partial differential equation and not with
the Hamiltonian system. Convergence if the approximate path (X̄, λ̄) typically requires Lipschitz continuous
flux (Hλ, Hx), which we do not assume in this work.

Outline. Section 2 presents some simple examples how discontinuous control arise and applications to implied
volatility estimation and topology optimization. The error analysis in this work assumes that the Pontryagin
minimization (1.15) has been solved exactly. Section 3 recall standard iterative methods to solve these problems
approximately. Section 4 states and proves the error estimates with a non smooth Hamiltonian and colliding
paths, for the Pontryagin method. Section 4.4 considers general symplectic one step methods. The remaining
sections consider colliding shocks, a maximum principle for Hamilton-Jacobi equations and how to obtain the
controls.

2. Optimization examples

We give some examples when the Hamiltonian, H , is not a differentiable function, and difficulties associated
with this.

1a: Let B = {−1, 1}, f = α, h = x2/2 and g = 0. Here the continuous minimization problem (1.3)
has no minimizer among the measurable functions. A solution in discrete time using a nonregularized
Pontryagin method or discrete dynamic programming will behave as in Figure 2.1. First the solution
approaches the time axis, and then it oscillates back and forth. As ∆t becomes smaller these oscillations
do so as well. The infimum for the continuous problem corresponds to a solution X(t) that approaches
the time-axis, and then remains on it. However, this corresponds to α = 0, which is not in B, and hence
the infimum is not attained. A cure to always have an attained minimizing path for the continuous
problem is to use controls which are Young measures, see [22, 30]. We note that the Hamiltonian,
H(λ, x) = −|λ| + x2/2, in this example is not differentiable.

1b: Let B = [−1, 1], f = α, h = x2/2 and g = 0, which is similar to the previous example but now the set
of admissible controls, B, has been changed slightly. Since 0 ∈ B, the infimum in (1.3) is now obtained.
However, the Hamiltonian remains unchanged compared to the previous example, and a solution to the
discrete Pontryagin principle would still be oscillating as in Figure 2.1.

1c: Let B = [−1, 1], f = α, h = 0 and g = x2. The Hamiltonian is nondifferentiable: H = −|λ|. If T = 1
there are infinitely many solutions to the continuous minimization, the discrete minimization and the
unregularized discrete Pontryagin principle, when X0 ∈ (−1, 1), as depicted in Figure 2.2.
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x

t
T

Figure 2.1. Example (1a) where the continuous problem has no minimizer among the mea-
surable functions.

t

T=1

x

Figure 2.2. Example (1c) with g(x) = x2 gives infinitely many minimizing paths through the
same starting point.

The problems occurring in the previous examples are all cured by regularizing the Hamiltonian and using the
scheme (1.15). That is, the solution to (1.15) in the first two examples is a smooth curve that obtains a
increasingly sharp kink near the time-axis as the regularizing parameter, δ, decreases, see Figure 2.3. In the
last of the previous examples we, in contrast to the other methods, obtain a unique solution to (1.15).

Another problem that has not to do with nondifferentiability of the Hamiltonian is shown in the following
example:

2: Let B = [−1, 1], f = α, h = 0 and g = −|x|. Although H is discontinuous here, this is not what causes
problem. The problem is that optimal paths collide backwards, see Figure 2.4. When X0 = 0 there are
two solutions, one going to the left, and one to the right. The left solution has λ = 1 and the right
solution has λ = −1, so on the time-axis λ is discontinuous. For these values of λ, the Hamiltonian is
differentiable, therefore the nonsmoothness of the Hamiltonian is not the issue here. It is rather the
global properties of the problem that play a role. This problem is difficult to regularize, and it will not
be done here. However, we still can show convergence of the scheme (1.15). This is done in Section 4.3.

When using (1.15) to solve the minimization problem (1.3) it is assumed that the Hamiltonian is exactly
known. Is this an unrealistic assumption in practice? In the following two examples we indicate that there exist
interesting examples where we know the Hamiltonian. The first has to do with volatility estimation in finance,
and the latter with optimization of an electric contact.
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Figure 2.3. Solution of the discrete optimization problem (1.15) in Example (1a) and (1b)
for δ = ∆t = 1/N and Hδ

λ(λ, x) = − tanh(λ/δ), using the Newton method with five iterations.

t

T=1

x

Figure 2.4. Solution of the optimization problem in Example (2), where g(x) = −|x|, f = α,
h = 0 and B = [−1, 1], for four different starting points.

2.1. Implied volatility

Black-Scholes equation for pricing general options uses the volatility of the underlying asset. This parameter,
however, is difficult to estimate. One way of estimation is to use measured market values of options on the
considered asset for standard European contracts. This way of implicitly determining the volatility is called
implied volatility.

We assume that the financial asset obeys the following Ito stochastic differential equation,

dS(t) = µS(t)dt + σ
(
t, S(t)

)
S(t)dW (t), (2.1)

where S(t) is the price of the asset at time t, µ is a drift term, σ is the volatility and W : R+ → R is the Wiener
process. If the volatility is a sufficiently regular function of S, t, the strike level K and the maturity date T ,
the so called Dupire equation holds for the option price C(T, K) as a function of T and K, with the present
time t = 0 and stock price S(0) = S fixed,

CT − σ̃CKK = 0, T ∈ (0,∞), K > 0,

C(0, K) = max{S − K, 0} K > 0, (2.2)
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where

σ̃(T, K) ≡ σ2(T, K)K2

2
·

Here the contract is an European call option with payoff function max{S(T ) − K, 0}. We have for simplicity
assumed the bank rate to be zero. The derivation of Dupire’s equation (2.2) is given in [12] and [1].

The optimization problem now consists of finding σ(T, K) such that

∫ T̂

0

∫
R+

(C − Ĉ)2(T, K)w(T, K)dKdT (2.3)

is minimized, where Ĉ are the measured market values on option prices for different strike prices and strike
times and w is a non negative weight function. In practice, Ĉ is not known everywhere, but for the sake of
simplicity, we assume it is and set w ≡ 1, i.e. there exists a future time T̂ such that Ĉ is defined in R+× [0, T̂ ]. If
the geometric Brownian motion would be a perfect model for the evolution of the price of the asset, the function
σ(T, K) would be constant, but as this is not the case, the σ that minimizes (2.3) (if a minimizer exists) varies
with T and K.

It is possible to use (1.6) and (1.15) to perform the minimization of (2.3) over the solutions to a finite
difference discretization of (2.2)

min
σ̃

∫ T̂

0

∆K
∑

i

(C − Ĉ)2i dT

subject to
∂Ci(T )

∂T
= σ̃D2Ci(T ),

Ci(0) = max(S − i∆K, 0), (2.4)

where we now let Ci(T ) ≈ C(T, i∆K) denote the discretized prize function, for strike time T and strike price
i∆K, and D2 is the standard three point difference approximation of the second order partial derivative in K. In
order to have a finite dimensional problem we restrict to a compact interval (0, M∆K) in K with the boundary
conditions

C0 = S, CM = 0.

The Hamiltonian for this problem is

H(λ, C) = ∆K min
σ̃

M−1∑
i=1

(
λiσ̃i(D2C)i + (C − Ĉ)2i

)

= ∆K

M−1∑
i=1

(
min
σ̃i

λiσ̃(D2C)i + (C − Ĉ)2i
)

where λ is the adjoint associated to the constraint (2.4). We have used that the components of the flux, f , in this
problem is σ̃i(D2C)i, that the running cost, h, is ∆K

∑
i(C−Ĉ)2i , and further that each σ̃i minimizes λiσ̃i(D2C)i

separately, so that the minimum can be moved inside the sum. If we make the simplifying assumption that
0 ≤ σ− ≤ σ̃ ≤ σ+ < ∞ we may introduce a function s : R → R as

s(y) ≡ min
σ̃

y σ̃ =

{
yσ−, y > 0
yσ+, y < 0.
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Using s, it is possible to write the Hamiltonian as

H(λ, C) = ∆K

M−1∑
i=1

(
s
(
λi(D2C)i

)
+
(
C − Ĉ

)2
i

)
.

Since s is nondifferentiable, so is H . However, s may easily be regularized, and it is possible to obtain the regu-
larization in closed form, e.g. as in Example 1. Using a regularized version sδ of s, the regularized Hamiltonian
becomes

Hδ(λ, C) = ∆K
M−1∑
i=1

(
sδ

(
λi(D2C)i

)
+
(
C − Ĉ

)2
i

)
,

which using Gateaux derivatives gives the Hamiltonian system

∂Ci(T )
∂T

= s′δ
(
λi(D2C)i

)
D2Ci(T ), C0 = S CM = 0,

−∂λi(T )
∂T

= D2
(
s′δ
(
λi(D2C)i

)
λ
)

+ 2(C − Ĉ)i,

λ0 = λM = 0, (2.5)

with data
Ci(0) = max(S − i∆K, 0), λ(T̂ ) = 0.

The corresponding Hamilton-Jacobi equation for the value function

u(C, τ) =
∫ T̂

τ

M−1∑
i=1

(C − Ĉ)2i ∆KdT

is

uT + H(uC , C) = 0, T < T̂ ,

u(T̂ , ·) = 0,

where uC is the Gateaux derivative with respect to C in the scalar product (x, y) ≡ ∆K
∑

i xi, yi. With this
scalar product the Hamiltonian system (2.5) takes the form

(CT , v) = (Hδ
λ, v), ∀v ∈ R

M−1

(λT , v) = −(Hδ
C , v), ∀v ∈ R

M−1

where Hδ
λ and Hδ

C are the Gateaux derivatives.
A choice of the regularization parameter δ, depending also on data error, can be obtained e.g. by the

discrepancy principle, cf. [13, 29]. The Newton method described in Section 3 works well to solve the discrete
equations for d = 10. Higher dimensions may require other regularization. The results of one trial volatility
estimation is given in Figure 2.5.

2.2. Topology optimization of electric conduction

The problem is to place a given amount of conducting material in a given domain Ω ⊂ R
d in order to minimize

the power loss for a given surface current q, satisfying
∫

∂Ω qds = 0: let η ∈ R be a given constant, associated
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Figure 2.5. Results of a computer experiment where the volatility σ in the picture to the
left is used to obtain the “measured” Ĉ. Uniform noise of amplitude 10−4 is also added to Ĉ.
The error ‖C − Ĉ‖L2 is plotted versus δ in the picture to the right. In the middle picture the
approximate volatility, s′δ is shown for the value of δ (= 3 × 10−6) that minimizes ‖s′δ − σ‖L2 .
In this experiment, M = 9 and N = 100.

to the given amount of material, and find an optimal conduction distribution σ : Ω → {σ−, σ+}, where σ± > 0,
such that

div
(
σ∇ϕ(x)

)
= 0, x ∈ Ω, σ

∂ϕ

∂n

∣∣∣
∂Ω

= q

min
σ

(∫
∂Ω

qϕds + η

∫
Ω

σdx

)
, (2.6)

where ∂/∂n denotes the normal derivative and ds is the surface measure on ∂Ω. Note that (2.6) implies that
the power loss satisfies ∫

∂Ω

qϕds = −
∫

Ω

div(σ∇ϕ)ϕdx +
∫

∂Ω

σ
∂ϕ

∂n
ϕds

=
∫

Ω

σ∇ϕ · ∇ϕdx.

The Lagrangian takes the form ∫
∂Ω

q(ϕ + λ)ds +
∫

Ω

σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸
v

dx

and the Hamiltonian becomes

H(λ, ϕ) = min
σ

∫
Ω

σvdx +
∫

∂Ω

q(ϕ + λ)ds =
∫

Ω

min
σ

σv︸ ︷︷ ︸
s(v)

dx +
∫

∂Ω

q(ϕ + λ)ds

with the regularization

Hδ(λ, ϕ) =
∫

Ω

sδ(η −∇ϕ · ∇λ)dx +
∫

∂Ω

q(ϕ + λ)ds,

depending on the concave regularization sδ ∈ C2(R) as in Section 2.1. The value function

u(ϕ, τ) =
∫ T

τ

(∫
∂Ω

qϕds + η

∫
Ω

σdx

)
dt
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for the parabolic variant of (2.6), i.e.

ϕt = div
(
σ∇ϕ(x)

)
,

yields the infinite dimensional Hamilton-Jacobi equation

∂tu + H(∂ϕu, ϕ) = 0 t < T, u(·, T ) = 0,

using the Gateaux derivative ∂ϕu = λ of the functional u(ϕ, t) in L2(Ω). The regularized Hamiltonian generates
the following parabolic Hamiltonian system for ϕ and λ∫

Ω

(
∂tϕw + s′(η −∇ϕ · ∇λ)∇ϕ · ∇w

)
dx =

∫
∂Ω

qwds∫
Ω

(− ∂tλv + s′(η −∇ϕ · ∇λ)∇λ · ∇v
)
dx =

∫
∂Ω

qvds

for all test functions v, w ∈ V ≡ {v ∈ H1(Ω)
∣∣ ∫

Ω vdx = 0}. Time independent solutions satisfy λ = ϕ by
symmetry. Therefore the electric potential satisfies the nonlinear elliptic partial differential equation

div
(
s′δ(η − |∇ϕ|2)∇ϕ(x)

)
= 0 x ∈ Ω, s′δ

∂ϕ

∂n
|∂Ω = q, (2.7)

which can be formulated as the convex minimization problem: ϕ ∈ V is the unique minimizer (up to a con-
stant) of

−
(∫

Ω

sδ(η − |∇ϕ(x)|2)dx + 2
∫

∂Ω

qϕds

)
. (2.8)

In [8] we study convergence of

lim
T→∞

u(ϕ, t) − ū(ϕ, t)
T

,

where ū is the value function associated to finite element approximations of the minimization (2.8).
The Newton method in Section 3 works well to solve the finite element version of (2.7) by successively de-

creasing δ, also for large d, see [8], where also the corresponding inverse problem to use measured approximations
of ϕ to determine the domain where σ = σ− and σ = σ+ is studied. A numerical solution to (2.7) can be seen
in Figure 2.6.

In this paper we use the standard Euclidean norm in R
d to measure X and λ. Optimal control of partial

differential equations with X and λ belonging to infinite dimensional function spaces requires a choice of an
appropriate norm. In [26] the analysis here is extended to optimal control of some parabolic partial differential
equations, by replacing the Euclidean R

d norm with the H1
0 Sobolev norm, using also that the theory of viscosity

solutions remains valid with this replacement.

3. Solution of the discrete problem

We assume in the theorems that the Pontryagin minimization (1.15) has been solved exactly. In practice (1.15)
can only be solved approximately by iterations. The simplest iteration method to solve the boundary value
problem (1.15) is the shooting method: start with an initial guess of λ̄[0] and compute, for all time steps n, the
iterates

X̄n+1 = X̄n + ∆tHδ
λ

(
λ̄n+1[i], X̄n

)
, n = 0, . . . , N − 1, X̄0 = X0

λ̄n[i + 1] = λ̄n+1[i] + ∆tHδ
x

(
λ̄n+1[i], X̄n

)
, n = N − 1, . . . , 0, λ̄N = gx(X̄N ). (3.1)
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Figure 2.6. Contour plot of s′δ as an approximation of the conductivity σ. As seen, Ω is in
this example a square with two circles cut out. Electrical current enters Ω at two positions on
the top of the square and leaves at one position on the bottom. The contours represent the
levels 0.2, 0.4, 0.6 and 0.8. A piecewise linear FEM was used with 31440 elements, maximum
element diameter 0.01, σ− = 0.001, σ+ = 1, η = 0.15 and δ = 10−5.

An alternative method, better suited for many boundary value problems, is to use Newton iterations for the
nonlinear system F (X̄, λ̄) = 0 where F : R

Nd × R
Nd → R

2Nd and

F (X̄, λ̄)2n = X̄n+1 − X̄n − ∆tHδ
λ

(
λ̄n+1, X̄n

)
,

F (X̄, λ̄)2n+1 = λ̄n − λ̄n+1 − ∆tHδ
x

(
λ̄n+1, X̄n

)
. (3.2)

An advantage with the Pontryagin based method (3.2) is that the Jacobian of F can be calculated explicitly
and it is sparse. The Newton method can be used to solve the volatility and topology optimization examples
in Section 2, where the parameter δ is successively decreasing as the nonlinear equation (3.2) is solved more
accurately.

Let us use dynamic programming to show that the system (1.15) has a solution in the case that λ̄ is a
Lipschitz continuous function of (x, t), with Lipschitz norm independent of ∆t, and δ > C∆t. One step

x = y + ∆tHδ
λ

(
λ(x), y

)
(3.3)

for fixed y ∈ R
d has a solution x(y) since the iterations

x[i + 1] = y + ∆tHδ
λ

(
λ(x[i]), y

)
yield a contraction for the error e[i] = x[i + m] − x[i]

e[i + 1] = ∆t
(
Hδ

λ

(
λ(x[i + m]), y

)− Hδ
λ

(
λ(x[i]), y

))
= ∆tHδ

λλλxe[i].
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Conversely, for all x ∈ R
d equation (3.3) has a solution y(x) for each step since the iterations

y[i + 1] = x − ∆tHδ
λ

(
λ(x), y[i]

)
generate a contraction for the error. The dynamic programming principle then shows that there are unique
paths through all points X̄n+1 leading to all X̄n for all n.

Remark 3.1 (Proof of (1.8) following [6, 16]). A control α̂ such that

λ · f(x, α̂) + h(x, α̂) = H(λ, x)

satisfies for all small perturbations w, v ∈ R
d

H(λ + w, x + v) − H(λ, x)

≤ (λ + w) · f(x + v, α̂) + h(x + v, α̂) − (λ · f(x, α̂) + h(x, α̂)
)

= f(x, α̂) · w +
∑

i

(
λ · fxi(x, α̂) + hxi(x, α̂)

)
vi + o(|v| + |w|),

which implies (1.8).

4. Convergence of Euler Pontryagin approximations

Theorem 4.1. Assume that the Hamiltonian H, defined in (1.5), is Lipschitz continuous on R
d × R

d and
that (1.15) has a solution (X̄, λ̄), where λ̄n+1 has uniformly bounded first variation with respect to X̄n for all n
and all ∆t, i.e. there is a constant K such that

|∂X̄n
λ̄n+1| ≤ K. (4.1)

Then the optimal solution, (X̄, λ̄), of the Pontryagin method (1.15) satisfies the error estimate

∣∣∣∣∣ inf
α∈A

(
g (X(T )) +

∫ T

0

h (X(s), α(s)) ds

)
−
(

g(X̄N ) + ∆t

N−1∑
n=0

hδ(X̄n, λ̄n+1)

)∣∣∣∣∣
= O

(
∆t + δ +

(∆t)2

δ

)
= O (∆t) , for δ = ∆t. (4.2)

The bound O(∆t) in (4.2) depends on the dimension d through the Lipschitz norms of the Hamiltonian H and
the constant K in (4.1).

Section 4.3 presents a convergence result for the case when backward paths X̄(t) collide on a C1 codimension
one surface in R

d × [0, T ]. The next subsections give a construction of a regularization Hδ and the proof of
Theorem 4.1.

4.1. Construction of a regularization

A possible regularization of H is to let Hδ be a standard convolution mollification of H

Hδ(λ, x) =
∫

Rd

∫
Rd

H(z, y)ωδ(z − λ)ωδ(y − x)dzdy,
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with ωδ : R
d → R+ a C2 function compactly supported in the ball {y ∈ R

d : |y| ≤ δ} and with integral one∫
Rd ωδ(y)dy = 1. This regularization remains concave in λ. Our analysis is not dependent of this specific

regularization, but uses that
‖H − Hδ‖C + δ‖Hδ‖C1 + δ2‖Hδ‖C2 = O(δ),

and that Hδ remains a concave function of λ.

4.2. Convergence without shocks and colliding paths

The proof of the theorem is based on four lemmas. In all of those we suppose that the assumptions of
Theorem 4.1 are valid.

Lemma 4.2. The discrete dual function is the gradient of the value function, i.e.

ūx(X̄n, t̄n) = λ̄n. (4.3)

Proof. The relation (4.3) holds for tn = T . Use the induction assumption that (4.3) holds true for
tN ≡ T , tN−1, . . . , tn+1. Then the definitions of f δ and hδ imply

∂ū

∂X̄n
(X̄n, tn) = ∂X̄n

(
ū(X̄n+1, tn+1) + ∆thδ(λ̄n+1, X̄n)

)
= ∂X̄n

X̄n+1
∂ū

∂X̄n+1
(X̄n+1, tn+1) + ∆t∂X̄n

hδ(λ̄n+1, X̄n)

=
(
I + ∆t∂X̄n

Hδ
λ(λ̄n+1, X̄n)

)
λ̄n+1 + ∆t∂X̄n

hδ(λ̄n+1, X̄n)

= λ̄n+1 + ∆t∂X̄n
(Hδ

λλ + hδ)(λ̄n+1, X̄n)

− ∆tHδ
λ(λ̄n+1, X̄n)∂X̄n

λ̄n+1

= λ̄n+1 + ∆tHδ
x(λ̄n+1, X̄n)

= λ̄n. �

Section 4.4 shows that (4.3) holds precisely for symplectic methods.
We now extend ū to be a function defined for all t. First extend the solution X̄ to all time as a continuous

piecewise linear function

X̄(t) =
tn+1 − t

∆t
X̄n +

t − tn
∆t

X̄n+1, for tn ≤ t < tn+1, (4.4)

so that

X̄ ′(t) = Hδ
λ(λ̄n+1, X̄n). (4.5)

The following lemma shows that two different solutions can not collide for suitable small ∆t.

Lemma 4.3. There is a positive constant c such that if ∆t ≤ cδ two different solutions (X̄1, λ̄1) and (X̄2, λ̄2)
of (1.15) do not intersect.

Proof. Assume there exist two optimal paths (X̄1, λ̄1) and (X̄2, λ̄2) that intersect at time t, where t̄n < t ≤ t̄n+1,
then

X̄1
n + (t − t̄n)Hδ

λ(λ̄1
n+1, X̄

1
n) = X̄2

n + (t − t̄n)Hδ
λ(λ̄2

n+1, X̄
2
n)

which can be written
X̄1

n − X̄2
n = (t − tn)

(
Hδ

λ(λ̄2
n+1, X̄

2
n) − Hδ

λ(λ̄1
n+1), X̄

1
n)
)
. (4.6)
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To obtain an estimate of the size of the right hand side in (4.6) integrate along the line

X̄(s) = X̄1
n + s(X̄2

n − X̄1
n),

with λ̄i
n+1 a function of X̄ i

n. The difference in the right hand side of (4.6) is

Hδ
λ(λ̄2

n+1, X̄
2
n) − Hδ

λ(λ̄1
n+1, X̄

1
n) =

∫ 1

0

dHδ
λ

ds
ds

=
∫ 1

0

(
Hδ

λx + Hδ
λλ∂X̄n

λ̄n+1

)
ds(X̄2

n − X̄1
n).

By assumption it holds that ‖Hδ
λx +Hδ

λλ∂X̄n
λ̄n+1‖C = O((Cλ(1+K)/δ

)
. Hence the norm of the right hand side

in (4.6) is O(δ−1∆t)‖X̄1
n− X̄2

n‖. Therefore there is a positive constant c such that if ∆t < cδ, the equation (4.6)
has only the solution X̄1

n = X̄2
n. �

Since the optimal paths X̄ do not collide, for suitable small ∆t, the value function ū is uniquely defined along
the optimal paths, by (1.17) and

ū
(
X̄(t), t

)
= ū(X̄n+1, tn+1) + (tn+1 − t)hδ(X̄n, λ̄n+1), tn < t < tn+1 (4.7)

and we are ready for the main lemma.

Lemma 4.4. The value function for the Pontryagin method satisfies a Hamilton-Jacobi equation close to (1.4),
more precisely there holds

ūt + H(ūx, ·) = O
(

δ + ∆t +
(∆t)2

δ

)
in R

d × (0, T ),

ū = g on R
d. (4.8)

The error term O(δ + ∆t + (∆t)2

δ ) in (4.8) is a Lipschitz continuous function of ūx(x, t), x and t satisfying

∣∣∣∣O
(

δ + ∆t +
(∆t)2

δ

)∣∣∣∣ ≤ CCλ

(
δ + Cx∆t + CxCλ(1 + K)

(∆t)2

δ

)
,

where Cx and Cλ are the Lipschitz constants of H in the x and λ variable, respectively, and C ∼ 1 does not
depend on the data.

Proof. The proof starts with the observation

0 =
d
dt

ū(X̄(t), t) + hδ(λ̄n+1, X̄n)

= ūt(X̄(t), t) + ūx(X̄(t), t) · f δ(λ̄n+1, X̄n) + hδ(λ̄n+1, X̄n). (4.9)

The idea is now to use that the dual function λ̄ is the gradient of ū at the time levels tn, by Lemma 4.2, (and
a good approximation at times in between) and that the modified discrete Pontryagin method shows that the
right hand side in (4.9) is consistent with the correct Hamiltonian H .

We will first derive an estimate of |ūx(X̄(t), t) − λ̄n+1| for tn < t < tn+1. We have that

ū(X̄(t), t) = ū(X̄n+1, t̄n+1) + (t̄n+1 − t)hδ(λ̄n+1, X̄n).
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Therefore ūx(X̄(t), t) can be written as

ūx(X̄(t), t) =
∂X̄n

∂X̄t

(
∂X̄n+1

∂X̄n
ūx(X̄n+1, tn+1) + (tn+1 − t)∂X̄n

hδ
(
λ̄n+1, X̄n

))

=
∂X̄n

∂X̄t

(
∂X̄n+1

∂X̄n
λ̄n+1 + (tn+1 − t)∂X̄n

hδ
(
λ̄n+1, X̄n

))
.

Introduce the notation

A ≡ ∂X̄n
Hδ

λ(λ̄n+1, X̄n) = Hδ
λx(λ̄n+1, X̄n) + Hδ

λλ(λ̄n+1, X̄n)∂X̄n
λ̄n+1

= O(Cλ(1 + K)/δ
)
. (4.10)

We have

∂X̄n+1

∂X̄n
= I + ∆tA = I + (t − tn)A + (tn+1 − t)A

∂X̄n

∂X̄t
=
(
I + (t − tn)A

)−1
,

therefore as in Lemma 4.2

ūx(X̄(t), t) = λ̄n+1 + (tn+1 − t)
(
I + (t − tn)A

)−1(
Aλ̄n+1 + ∂X̄n

hδ(λ̄n+1, X̄n)
)

= λ̄n+1 + (tn+1 − t)
(
I + (t − tn)A

)−1
Hδ

x(λ̄n+1, X̄n)

= λ̄n+1 + O(Cx∆t + CxCλ(K + 1)(∆t)2/δ
)
. (4.11)

Introduce the notation λ̃ ≡ ūx(X̄(t), t) and split the Hamiltonian term in (4.9) into three error parts:

r(λ̃, X̄(t), t) ≡ λ̃f δ(λ̄n+1, X̄n) + hδ(λ̄n+1, X̄n) − H
(
λ̃, X̄(t)

)
= λ̃f δ(λ̄n+1, X̄n) + hδ(λ̄n+1, X̄n) − Hδ(λ̃, X̄n)

+ Hδ(λ̃, X̄n) − Hδ
(
λ̃, X̄(t)

)
+ Hδ

(
λ̃, X̄(t)

)− H
(
λ̃, X̄(t)

)
≡ I + II + III. (4.12)

Taylor expansion of Hδ to second order and (4.11) show

|I| = |Hδ(λ̄n+1, X̄n) + (λ̃ − λ̄n+1)Hδ
λ(λ̄n+1, X̄n) − Hδ(λ̃, X̄n)|

≤ min
(
2Cλ|λ̃ − λ̄n+1|, |(λ̃ − λ̄n+1)Hδ

λλ(ξ, X̄n)(λ̃ − λ̄n+1)|/2
)

≤ CCλ

(
Cx∆t + CxCλ(K + 1)(∆t)2/δ

)
;

the Lipschitz continuity of Hδ implies

|II| ≤ |Hδ
x||X̄(t) − X̄n| ≤ |Hδ

x||Hδ
λ|∆t;

and the approximation Hδ satisfies
|III| ≤ CCλδ.

The combination of these three estimates proves (4.8).
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To finish the proof of the lemma we show that the error function r can be extended to a Lipschitz function in
R

d×R
d×[0, T ]. We note that by (4.1), (4.4) and (4.11) λ̃ is a Lipschitz function of Xt and t, and r(λ̃(Xt, t), Xt, t)

is Lipschitz in Xt and t. By
r(λ, X, t) ≡ r(λ̃(X, t), X, t)

we obtain a Lipschitz function r in R
d × R

d × [0, T ]. �

The results in these lemmas finishes the proof of Theorem 4.1: the combination of the residual estimates in
Lemma 4.4 and the C-stability estimate of viscosity solutions in Lemma 6.1 proves the theorem.

4.3. Convergence with shocks and colliding paths

This section uses that the assumptions in Theorem 4.1 hold with the exception that the set of backward
optimal paths {(X̄(t), t) : t < T }, solving (1.15) and (4.4) , may collide into a codimension one surface Γ in
space-time R

d × [0, T ]. In this section we assume that

ū(x, tm) = min
X̄m=x

(
g(X̄N ) +

N−1∑
n=m

hδ(X̄n, λ̄n+1)∆t
)

(4.13)

is attained by precisely one path for (x, tn) ∈ R
d × [0, T ] \ Γ and that the minimum is attained by precisely

two paths at (x, tn) ∈ Γ; in Section 5 we consider the minimum attained by several paths. Colliding backward
paths (or characteristics) X in general lead to a discontinuity in the gradient of the value function, λ = ux,
on the surface of collision, which means that the surface is a shock wave for the multidimensional system of
conservation laws

∂tλ
i(x, t) +

d
dxi

H
(
λ(x, t), x

)
= 0 (x, t) ∈ R

d × [0, T ], i = 1, . . . , d.

The properties concave Hamiltonian H(·, x); uniformly differentiable f with respect to x; Lipschitz continuous
and semiconcave g; imply that the value function, u, is Lipschitz continuous and semiconcave, cf. [2,5,6], so that
u is twice differentiable almost everywhere and the derivative has bounded variation. When the Hamiltonian
H(·, x) is strictly concave the second derivative of u becomes a measure with no Cantor part, see [7].

Theorem 4.5. Suppose that the assumptions in Theorem 4.1 hold with the exception that there is a codimension
one Lipschitz surface Γ in R

d × [0, T ], where λ̄ may be discontinuous, and the minimum in (4.13) is attained
by precisely two paths, X̄+ and X̄−, for (x, t) ∈ Γ and one path for (x, t) ∈ R

d × [0, T ] \ Γ. Assume also that

|∂X̄n
λ̄n+1|

∣∣
{X̄n∈Rd\Γn} ≤ K, for all n,

and
dX̄+

dt
· n ≥ 0,

dX̄−

dt
· n ≤ 0,

where n is the normal to Γ at (x, t). Then the error estimate of Theorem 4.1 remains true, provided δ > C∆t
for a certain positive constant C.

Let us first explain some assumptions for a construction of the surface Γ. Assume that at time tn there is a
codimension one surface Γn, in R

d, where λ̄n may be discontinuous and the minimum in (4.13) is attained by
precisely two paths for x ∈ Γn and one path for x ∈ R

d \Γn. The paths (4.4) starting on either side of Γn with
ū defined by (1.17) and (4.7) define ū outside a cone in R

d × [tn, tn+1], see Figure 4.1. In the union of these
cones in R

d × [0, T ], we assume that a codimension one surface Γ, intersecting Γn for all n, can be constructed
as follows. A point (x, t), where tn < t < tn+1, lies on Γ if there are two solutions starting in (x, t) to (1.15)
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n+1Γ

nΓ

n+1t

nt

t

x

Figure 4.1. The cone in which backward paths collide at the surface Γ.

where the first time step is tn+1 − t, and the corresponding values of ū are equal. With this artificial time node
at Γ, the backward paths are stopped at (x, t) = (X̄(t), t) ∈ Γ and defined for tn ≤ t < s < tn+1 by

X̄(s) = x + (s − t)Hδ
λ(λ̄n+1, x),

with the value function

ū(X̄(s), s) = g(X̄N) + hδ(X̄(t), λ̄n+1)(tn+1 − s) +
N−1∑

m=n+1

hδ(X̄m, λ̄m+1)∆t.

Since by assumption there are no collisions outside Γ the value function ū(x, t) is well defined everywhere as
before. Denote the jump, for fixed t, of a function w at Γ by [w]. To have two colliding paths at a point on
Γ requires that λ̄ has a jump [λ̄] �= 0 there, since [λ̄] = 0 yields only one path. The implicit function theorem
shows that for fixed t any compact subset of the set Γ(t) ≡ Γ ∩ (Rd × {t}) is a C1 surface: the surface Γ(t)
is defined by the value functions, ū1 and ū2 for the two paths colliding on Γ, being equal on Γ and there are
directions n̂ ∈ R

d so that the Jacobian determinant n̂ · ∇(ū1 − ū2) = n̂ · [λ̄] �= 0. Therefore compact subsets of
the surface Γ(t) has a well defined unit normal n. We assume that Γ(t) has a normal everywhere.

Proof. The proof, to show that the estimate (4.8) in Lemma 4.4 holds in viscosity solution sense, is divided into
the two steps: establishing that the subdifferential of ū is empty on Γ; and verifying that the superdifferential
of ū is a subsolution to the Hamilton-Jacobi equation (4.8). We state the definition of the unique viscosity
solution, based on sub and superdifferentials, in Definition 4.6 below.

The first step is to verify the claim [λ̄] · n ≤ 0, which implies that the subdifferential of ū is empty. By
assumption

Hδ
λ(λ̄+

n+1, x) · n ≥ 0, Hδ
λ(λ̄−

n+1, x) · n ≤ 0,

which yields

Hδ
λλ(λ̄+

n+1 − λ̄−
n+1) · n ≥ 0 (4.14)

where Hδ
λλ ≡ ∫ 1

0 Hδ
λλ(λ̂(s), x)ds and λ̂(s) ≡ sλ̄+

n+1 + (1 − s)λ̄−
n+1. The equation (1.15) implies

[λ̄] =
(
I + (tn+1 − t)Hδ

xλ

)
(λ̄+

n+1 − λ̄−
n+1)
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and consequently
λ̄+

n+1 − λ̄−
n+1 =

(
I + (tn+1 − t)Hδ

xλ

)−1[λ̄]. (4.15)
We know that ū is continuous also around Γ, therefore the jump of the gradient, [ūx], has to be parallel to the
normal, n, of the surface Γ. Lemma 4.2 shows that [ūx] = [λ̄] and we conclude that this jump [λ̄] is parallel to
n so that [λ̄] = [λ̄ · n]n, which combined with (4.14) and (4.15) shows that

0 ≤ [λ̄ · n]Hδ
λλ

(
I + (tn+1 − t)Hδ

xλ

)−1
n · n.

The facts that the matrix Hδ
λλ is symmetric negative semi definite and that the matrix

(
I + (tn+1 − t)Hδ

xλ

)−1

is positive definite for δ > C∆t imply that

Hδ
λλ

(
I + (tn+1 − t)Hδ

xλ

)−1
n · n ≤ 0, (4.16)

which proves the claim [λ̄] ·n ≤ 0, if we can exclude equality in (4.16). Equality in (4.16) means that Hδ
λλn = 0

and implies Hδ
λ(λ̄+(t), x) = Hδ

λ(λ̄−(t), x) which is not compatible with two outgoing backward paths. Hence
equality in (4.16) is ruled out.

From the first step we know that the subdifferential of ū is empty, if ū is not differentiable. In order to show
that the error estimate from Theorem 4.1 holds it is sufficient to prove that ū is a viscosity solution to

ut + H(ux, x) − q(ux, x, t) = 0,

where q is a Lipschitz function such that q(λ̄(x, t), x, t) = r(λ̄(x, t), x, t) for all (x, t), and sup |q| = sup |r|, where
r is the remainder function O(δ + ∆t + ∆t2/δ) derived in (4.8). Let D+ū denote the superdifferential of ū at Γ.
We know that ū is a classical solution in R

d × [0, T ] \Γ. To prove that ū is a viscosity solution means therefore
to verify that

pt + H(px, x) − q(px, x, t) ≥ 0, (4.17)
for all (px, pt) ∈ D+ū(x, t) and all (x, t) ∈ Γ. We know that D+ū is the convex set {sp+ +(1− s)p− : s ∈ [0, 1]},
where p± denotes the two right and left limits of the differential of ū at Γ satisfying

p±t ∂tū + H(p±x , x) − r(p±x , x, t) = 0.

Denote by λ̄± the boundary values of λ̄ at Γ. Let q(λ, x, t) satisfy

q(λ̄(x, t), x, t) = r(λ̄(x, t), x, t), for (x, t) ∈ R
d × [0, T ] \ Γ

and for (x, t) ∈ Γ,
q(λ, x, t) = sr(λ̄+, x, t) + (1 − s)r(λ̄−, x, t), if 0 ≤ s ≤ 1,

where

s =
(λ − λ̄−) · (λ̄+ − λ̄−)

|λ̄+ − λ̄−|2 ·
With this choice q becomes a linear function of the variable λ, for fixed x, t, and since the Hamiltonian H(·, x)
is a concave function it is clear that equation (4.17) holds.

We now give the construction of q, which by no means is unique. For (x, t) ∈ R
d×[0, T ] with dist

(
(x, t), Γ

)
> 1

we let q(λ, x, t) = r
(
λ(x, t), x, t

)
, for all λ. What is left are two Lipschitz domains with given values on the

boundaries. We may for instance let q be the harmonic function in these domains with the given boundary
values, see Figure 4.2. The function q will be a Lipschitz function since for (x, t) ∈ Γ, |r(λ̄+, x, t)− r(λ̄−, x, t)| =
O(|λ̄+ − λ̄−|). The domain is made compact by the dashed lines, but as these can be put arbitrarily far away
it is clear that q can be extended to infinity without becoming greater than sup‖r‖. �
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IV

III

II

I

λ

x

(x,t)λ

(x,t)λ

Figure 4.2. Construction of the function q. The shock surface is assumed to be located at
x = 0. In the regions I and IV, q has the same value for all λ. In regions II and III, q is the
solution to the Dirichlet problem with given values on λ(x, t), the λ axis between λ̄+ and λ̄−,
the surfaces {(x, t) : dist

(
(x, t), Γ

)
= 1} and the dashed lines where λ is given by a linear

interpolation.

Definition 4.6. The subdifferential of v : R
d × [0, T ] → R is the set

D−v(y) ≡
{

p ∈ R
d+1

∣∣ lim inf
z→0

v(y + z) − v(y) − p · z
|z| ≥ 0

}

and, similarly, the superdifferential of v : R
d × [0, T ] → R is the set

D+v(y) ≡
{

p ∈ R
d+1

∣∣ lim sup
z→0

v(y + z) − v(y) − p · z
|z| ≤ 0

}
.

The unique bounded and uniformly continuous viscosity solution, u, to the Hamilton-Jacobi equation (1.4),
established in [11], is defined by u(·, T ) = g and that for all (x, t) ∈ R

d × (0, T )

pt + H(px, x) ≤ 0 ∀(px, pt) ∈ D−u(x, t) (4.18)

and
pt + H(px, x) ≥ 0 ∀(px, pt) ∈ D+u(x, t). (4.19)

Similarly a bounded uniformly continuous u is called a supersolution (respectively subsolution) of (1.4) if (4.18)
(respectively (4.19)) holds.

4.4. General approximations

The essential property of the symplectic Euler method we have used is that ūx(X̄n, tn) = λ̄n. This relation
holds precisely for symplectic approximations (cf. Rem. 4.8):

Theorem 4.7. Consider a general one step method

X̄n+1 = A(λ̄n+1, X̄n)

λ̄n = C(λ̄n+1, X̄n) (4.20)
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with

ū(X̄n, tn) = g(X̄N ) +
N−1∑
m=n

B(λ̄n+1, X̄n)∆t.

Then ūx(X̄n, tn) = λ̄n, for all n, implies that the mapping φ : (X̄n, λ̄n) �→ (X̄n+1, λ̄n+1) is symplectic. If φ is
symplectic it is possible to choose the function B so that ūx(X̄n, tn) = λ̄n, for all n.

Proof. As in Lemma 4.2 we have

ūx(X̄n, tn) =
dA
(
X̄n, λ̄n+1(X̄n)

)
dX̄n

ūx(X̄n+1, tn+1) +
dB
(
X̄n, λ̄n+1(X̄n)

)
dX̄n

·

Therefore the relation
ūx(X̄n, tn) = λ̄n

holds if and only if λAλ + Bλ = 0 and λAx + Bx = C. Let S ≡ λA + B. Then λAλ + Bλ = 0 is equivalent to
Sλ = A, but Sλ = A implies B = S −λSλ so that λAx + Bx = Sx. Therefore λAλ + Bλ = 0 and λAx + Bx = C
is equivalent to A = Sλ and C = Sx.

Let S ≡ λ̄n+1 · X̄n + ∆tH̃(λ̄n+1, X̄n). Then (4.20), with A = Sλ and C = Sx, becomes

X̄n+1 = X̄n + ∆tH̃λ(X̄n, λ̄n+1)

λ̄n = λ̄n+1 + ∆tH̃x(X̄n, λ̄n+1), (4.21)

which by Remark 4.8 is equivalent to symplecticity of the mapping (X̄n, λ̄n) �→ (X̄n+1, λ̄n+1). �

Remark 4.8. A one step method (4.20), interpreted as

(X̄n, λ̄n) �→ (X̄n+1, λ̄n+1),

is called symplectic if there exists a function H̃(λ̄n+1, X̄n) such that (4.21) holds, see Theorem 5.1, Lemma 5.2
and (5.5) in Chapter VI of [19], where a thorough study on symplectic methods can be found.

To generalize the error estimate of Theorems 4.1 and 4.5 to general symplectic one step approximations
(4.21), e.g. the second order symplectic Runge-Kutta method

H̃ =
1
2

(
H(λ̄n+1, X̄n) + H

(
λ̄n+1 + ∆tHx(λ̄n+1, X̄n), X̄n + ∆tHλ(λ̄n+1, X̄n)

))
requires first an extension of X̄n and ū to all time, by approximations (f̄ , h̄) of (f δ, hδ) with

dX̄

dt
= f̄ and

dū

dt
= −h̄,

and then an estimate of the residual error r as in (4.12). In practice we need more regularity of Hδ to take
advantage of higher order methods. Since we only have Lipschitz bounds of H the estimate of r is not smaller
than the error hδ−h̄, which is O(‖Hδ‖Cp)(∆t)p = O((∆t)p/δp−1) for a pth order accurate method. Consequently
the residual error is not smaller than O(δ + (∆t)p/δp−1) = O(∆t) for δ � ∆t, so that our error estimate does
not improve for higher order schemes, without additional assumptions. On the other hand by extending X̄ as a
piecewise linear function, as before, the only change of the analysis in Sections 4.2 and 4.3 to other symplectic
methods (4.21) is to replace Hδ(λ̄n+1, X̄n) by H̃(λ̄n+1, X̄n) and since

‖Hδ − H̃‖C + δ‖Hδ − H̃‖C1 + δ2‖Hδ − H̃‖C2 = O(∆t)
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the estimate (4.8) holds for all symplectic methods which are at least first order accurate.
Similarly, by considering (X̄n+1, λ̄n), instead of (X̄n, λ̄n+1), as independent variables the scheme

X̄n = A(X̄n+1, λ̄n)

λ̄n+1 = C(X̄n+1, λ̄n),

is symplectic if and only if

X̄n = X̄n+1 − ∆tĤλ(X̄n+1, λ̄n)

λ̄n+1 = λ̄n − ∆tĤx(X̄n+1, λ̄n), (4.22)

and the error analysis of the methods (4.21) applies with

H̃(X̄n, λ̄n+1) = (X̄n+1 − X̄n) · (λ̄n+1 − λ̄n) + Ĥ(X̄n+1, λ̄n).

An example of a method (4.22) is the Euler method Ĥ = H , which is backward Euler for X̄ forwards in time
and backward Euler for λ̄ backwards in time, in contrast to (1.15) which is forward Euler for X̄ forwards in
time and forward Euler for λ̄ backwards in time.

5. Colliding shocks

This section describes when the minimum of ū in (1.17) is attained by up to d+1 paths in R
d. We perform the

discussion with three paths, X̄+, X̄− and X̄0, which yields a collision of three shock waves. The generalization
to d + 1 paths is then straightforward.

The codimension one surface Γ in space-time consists now of three parts which intersect where the minimum
is attained by the three paths. The three parts are generated, as in Section 4.3, by the minimum attained by two
paths X̄+&X̄−, X̄+&X̄0, and X̄−&X̄0, respectively, see Figure 5.1. Section 4.3 showed that the subdifferential
of ū is empty on the three parts where the minimum is attained by two paths. The subdifferential is then also
empty on the subset of Γ where the minimum is attained by three paths and the superdifferential becomes the
convex combination

px = s+λ̄+ + s−λ̄− + s0λ̄
0

where 0 ≤ s+, s−, s0 ≤ 1 and
s+ + s− + s0 = 1.

Here λ̄+, λ̄−, λ̄0 are the three limits of λ̄ along the paths X̄+, X̄− and X̄0, respectively. A construction of
the remainder q, which is linear in λ on Γ, is still possible and we conclude that ū is a viscosity solution to the
Hamilton-Jacobi equation (4.8) with the same estimate of the remainder as in Section 4.

This derivation generalizes to a minimum attained by several paths, but the case with d + 1 paths in R
d is

special since this configuration is stable in the following sense. Here also the argument is for three paths, with
easy generalization. We note that a piecewise smooth exact solution u to the Hamilton-Jacobi equation (1.4)
satisfies the Rankine-Hugoniot condition

−s[λ] + [H ]n = 0. (5.1)
The collision of three planar shock waves, cf. Figure 5.2, given by three states λ0, λ− and λ+ intersecting at
x = 0 at t = 0, is stable since the position ∆x ∈ R

d of the intersection of the shock fronts at time ∆t described
by the three equations

(∆x − ∆tsini) · ni = 0, i = 0,−, +
can be written

∆x · ni = ∆tsi
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X0

X+

X+

X+

X−

X−

X−

0

X0

X

Figure 5.1. Collision of three backward paths X+, X− and X0 yields three colliding shocks.

λ=λ0

λ=λ− λ=λ+

Figure 5.2. Collision of three planar shocks.

which by (5.1) takes the form

∆x

∆t
· (λ+ − λ−) = H+ − H−,

∆x

∆t
· (λ+ − λ0) = H+ − H0,

∆x

∆t
· (λ− − λ0) = H− − H0.

Note that this system of three equations is in fact given by two linearly independent equations, with the
intersection solution of a codimension 2 hyperplane in R

d, so that the picture of three constant states λ0, λ+

and λ− separated by three colliding shock waves remains a solution. The same line of reasoning gives that a
collision of d + 1 shocks in R

d is stable.

6. C Stability for Hamilton-Jacobi equations

The seminal construction of viscosity solutions by Crandall and Lions [9] also includes C stability results
formulated in a general setting. We restate a variant adapted to the convergence results in this paper.

Lemma 6.1. Suppose H : R
d ×R

d → R is a Lipschitz continuous Hamiltonian satisfying for a constant C and
for all x, x̂, λ, λ̂ ∈ R

d

|H(λ, x) − H(λ, x̂)| ≤ Cx|x − x̂|(1 + |λ|),
|H(λ, x) − H(λ̂, x)| ≤ Cλ|λ − λ̂|.
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Suppose also that e : R
d × [0, T ] → R and g : R

d → R are Lipschitz continuous. Then, the bounded uniformly
continuous viscosity solutions u and û of the Hamilton-Jacobi equations

ut + H(ux, ·) = 0 in R
d × (0, T ), u|Rd×{T} = g, (6.1)

ût + H(ûx, ·) = e in R
d × (0, T ), û|Rd×{T} = g, (6.2)

satisfy the C-stability estimate
‖u − û‖C(Rd×[0,T ]) ≤ T ‖e‖C(Rd×[0,T ]). (6.3)

The comparison principle, cf. [5], for a subsolution, u−, and a supersolution, u+, of a Hamilton-Jacobi
equation says that

sup
Rd×[0,T ]

(u− − u+) ≤ sup
Rd×{T}

(u− − u+),

which can be proved with the usual doubling of variables technique for the uniqueness, cf. [14]. Since u is a
viscosity solution of (6.1), we see by Definition 4.6 that u± ≡ u±(T−t)‖e‖C(Rd×[0,T ]) are super and subsolutions,
respectively, of (6.2), and since û is both a sub and a supersolution to (6.2), the comparison principle yields

u− ≤ û ≤ u+,

which implies (6.3).

7. How to obtain the controls

The optimal control for the exact problem (1.4) is determined by the value function through the Pontryagin
principle

α(x, t) ∈ argmin
a∈B

(
ux(x, t) · f(x, a) + h(x, a)

)
.

Assume we have solved a discrete approximating optimal control problem and obtained the approximations X̄,
λ̄ and ū. Can they be used to determine an approximation of the control α? Even in the case that the optimal
control S(λ, x) ≡ argmina

(
λ · f(x, a)+h(x, a)

)
is a function, it is in general not continuous as function of x and

λ but only piecewise Lipschitz continuous. Therefore the approximate control S(λ̄(t), x) cannot be accurate
in maximum norm. However, weaker measures of the control can converge; for instance the value function is
accurately approximated in Theorems 4.1 and 4.5. At the points where S is Lipschitz continuous the error in the
control is proportional to the error |λ̄(x, t) − ux(x, t)|, for fixed x. If we assume that the error ū(·, t) − u(·, t) is
bounded by ε in a

√
ε-neighborhood of x and that ūxx and uxx also are bounded there, we obtain, for difference

quotients ∆u/∆x and |∆x| =
√

ε, the error estimate

λ̄ − ux = λ̄ − ∆ū

∆x
+

∆ū

∆x
− ∆u

∆x
+

∆u

∆x
− ux = O(∆x + ε/∆x) = O(

√
ε).

Convergence of the approximate path (X̄, λ̄) typically requires Lipschitz continuous flux (Hλ, Hx), which we do
not assume in this work.
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