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ADAPTIVE MODELING FOR FREE-SURFACE FLOWS ∗

Simona Perotto
1

Abstract. This work represents a first step towards the simulation of the motion of water in a
complex hydrodynamic configuration, such as a channel network or a river delta, by means of a suitable
“combination” of different mathematical models. In this framework a wide spectrum of space and time
scales is involved due to the presence of physical phenomena of different nature. Ideally, moving from
a hierarchy of hydrodynamic models, one should solve throughout the whole domain the most complex
model (with solution ufine) to accurately describe all the physical features of the problem at hand.
In our approach instead, for a user-defined output functional F , we aim to approximate, within a
prescribed tolerance τ , the value F(ufine) by means of the quantity F(uadapted), uadapted being the
so-called adapted solution solving the simpler models on most of the computational domain while
confining the complex ones only on a restricted region. Moving from the simplified setting where
only two hydrodynamic models, fine and coarse, are considered, we provide an efficient tool able to
automatically select the regions of the domain where the coarse model rather than the fine one are to
be solved, while guaranteeing |F(ufine) −F(uadapted)| below the tolerance τ . This goal is achieved via
a suitable a posteriori modeling error analysis developed in the framework of a goal-oriented theory.
We extend the dual-based approach provided in [Braack and Ern, Multiscale Model Sim. 1 (2003)
221–238], for steady equations to the case of a generic time-dependent problem. Then this analysis is
specialized to the case we are interested in, i.e. the free-surface flows simulation, by emphasizing the
crucial issue of the time discretization for both the primal and the dual problems. Finally, in the last
part of the paper a widespread numerical validation is carried out.
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1. Introduction

The study of free-surface flows comprises a wide range of physical phenomena, from tidal flows, to water mo-
tion in large basins, river courses, channels, etc. Ideally, one should solve the full 3D Navier-Stokes equations to
capture all the physical features of the problem at hand. However, this approach requires a huge computational
effort. In order to reduce such a computational cost, a hierarchy of simplified hydrodynamic models has been
proposed in the literature (see, e.g., [33, 36, 37]).
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Non−hydrostatic pressure

2D (Boussinesq, Serre eqs.)

1D (Boussinesq eqs.)

3D (Navier−Stokes eqs.)

Hydrostatic pressure

1D (open channel eqs.)

2D (Saint Venant eqs.)

3D (shallow water eqs.)

Navier−Stokes equations

Figure 1. A possible classification of the most widespread hydrodynamic models.

Essentially we can distinguish among models of different dimension (1D, 2D and 3D) and models of different
physical nature, that is, derived under physical assumptions of various type. According to a dimensional
classification, for the 3D case we can consider the free-surface Navier-Stokes or the hydrostatic shallow water
equations; concerning the 2D situation, the Boussinesq, Serre or Saint-Venant equations can be adopted; finally,
in the one-dimensional case, the 1D counterparts of these latter models are usually employed. From a physical
viewpoint, non-hydrostatic models (Boussinesq and Serre equations) are generally opposed to the hydrostatic
ones (Saint-Venant equations) (see Fig. 1). The approach proposed in this paper consists of a suitable coupling of
some of the models mentioned above, by solving the most expensive one only in the regions of the domain where
it is strictly necessary. One can decide to couple free-surface models of different dimension or models of the same
dimension but different from a physical (or analytical) viewpoint. According to the model coupling classification
proposed in [26], the first choice coincides with a dimensionally heterogeneous-physically homogeneous coupling,
while in the second case a dimensionally homogeneous-physically heterogeneous coupling is performed.

Whatever approach is adopted, the crucial matter is: where are we allowed to use the simpler model and
where do we have to solve the more complex one? One can make this choice a priori, moving, for instance,
from physical considerations or, alternatively, driven by a suitable a posteriori modeling error estimator able
to automatically detect the regions where each model can be more conveniently employed. However, if the a
priori approach is rather widespread (just think about the classical domain decomposition theory [13,31,32], or
the geometrical multiscale approach investigated in [14, 15]), the a posteriori analysis represents a very recent
area of interest, so far essentially confined to dimensionally homogeneous couplings and to the modeling of
heterogeneous materials [1, 27–30,34].

Concerning our investigation in the free-surface flows framework, in [25,26] we exploit an a priori geometrical
multiscale strategy to couple the 2D and the 1D shallow water equations, suitable matching conditions between
the two models being derived. Moving from the corresponding numerical results we can state that if the
considered hydrodynamic configuration is simple (e.g., a straight channel or a river bifurcation) then this
approach turns out to be reliable. On the contrary, in the presence of a more complex configuration (for
instance, a channel with an obstacle), the accuracy of the approximate solution can be often preserved only by
solving the dimensionally higher model on a large portion of the domain.

On the other hand, this paper is meant as a first step in view of an automatic tool able to drive a realistic
simulation of the motion of water in a complex hydrodynamic system, by selecting the regions of the domain
where the different models have to be solved. Since this is a preliminary work, we limit the analysis to the
coupling of two-dimensional equations belonging to the same family of hydrodynamic models (Saint-Venant like
equations), i.e. to hyperbolic equations sharing the same functional space and boundary conditions. We also
aim to measure the influence of the model on a user-defined output functional F via the resolution of a proper
dual problem. This approach is a generalization to the modeling error analysis of the well-known dual-weighted
residual (DWR) method provided in [7] for the a posteriori discretization error control. In particular, we extend
the analysis in [9] for steady equations to the case of a generic time-dependent problem, while particularizing it
to the application we are interested in, that is the free-surface flows simulation. The main difficulty related to
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the unsteady setting is an efficient management of the time discretization of both the primal and dual problems,
the time scales reversing one another. The proposed analysis has been successfully tested on some standard
hydrodynamics configurations (channels and river bifurcations). As natural follow-up in view of a more thorough
simulation, a coupling among several hydrodynamic models is desirable (see also Sect. 6 for further research
hints).

The outline of the paper is as follows. In Section 2 we provide a modeling a posteriori error analysis moving
from a general unsteady setting. Then, in Section 3, this analysis is particularized to the free-surface flows
framework. Section 4 is devoted to the numerical discretization. In Section 5 a sound numerical validation of
the proposed analysis is carried out, first by introducing the adaptive procedure and then by assessing it on
some test cases. Finally some conclusions and perspectives are drawn in Section 6.

2. Modeling error analysis for unsteady problems

This analysis can be set in the framework of a goal-oriented adaptivity. Let F be the output functional
we are interested in, possibly nonlinear. Standard examples of meaningful functionals in computational fluid
dynamics (CFD) are the lift and drag around bodies in external flows or mean and local values. We aim to
measure the influence of the model on F by solving a suitable dual problem.

In more detail, let us assume we have at our disposal two time-dependent models, the fine model and the
coarse one, with solution ufine and ucoarse, respectively. Our goal is twofold. First we aim to approximate the
goal value F(ufine) by means of the quantity (cheaper to be computed) F(uadapted), uadapted being the solution
of an “intermediate” problem obtained by solving the fine model on a restricted area of the domain only. Second,
we look for an automatic tool able to detect, via a model adaption procedure, the regions of the domain where,
at each time, the two models, fine and coarse, have to be solved, so that the quantity |F(ufine) − F(uadapted)|
be under a prescribed tolerance, while minimizing the computational cost. This task is achieved via a suitable
a posteriori modeling error analysis, generalizing to the unsteady case the dual-based approach proposed in [9].
Let us detail now the derivation of this analysis.

Throughout we use a standard notation to denote the Sobolev spaces of functions with Lebesgue measurable
derivatives, and the corresponding norms [21].

Let Q = Ω × (0, T ] be the considered space-time domain, with Ω an open (regular) bounded set of R
2 and

T > 0. Let us introduce the following family of primal problems in variational formulation: find uα ∈ V such
that (∂uα

∂t
, ψ

)
+ a(uα)(ψ) + d(uα)(αψ) = (f, ψ), for any ψ ∈ V, (1)

with uα(0) = u0
α the initial datum, and with f ∈ L2(Q) a given function. Here V is a suitable space-time

functional space accounting for the boundary conditions associated with the problem at hand, while (·, ·) is the
standard L2(Q)-scalar product. The quantities a(uα)(·) and d(uα)(·) in (1) denote semilinear forms, i.e. they
are linear with respect to the second argument but may be nonlinear in uα. Moreover, let us assume the form
d(uα)(·) to be “trickier” than a(uα)(·) from an analytical viewpoint (for instance a nonlinear term with respect
to uα).

The parameter α = α(x, t) ∈ L∞(Q) in (1), with x = (x, y)T ∈ Ω and t ∈ (0, T ], is a function, piecewise
constant on a given partition of Q in subdomains Qi and taking on the values 0 and 1 only. In view of the
discrete formulation, the partition {Qi} of Q can be identified with the computational space-time grid.

In particular, the choice α = 1 everywhere yields the fine problem (i.e. the most expensive one to be
approximated), while for α identically equal to zero we switch to the coarse model (i.e. to the cheapest one). In
practice, at each time tj , according to the information provided by the modeling error estimator we are looking
for, we compute the solution of an intermediate primal problem (1) with the trickier part d(uα)(ψ) “active”
only in the subdomains Qi of Q where α(x, tj) = 1, with x ∈ Ω. Notice that, even if we get rid of the semilinear
form d(uα)(ψ) in some areas of the domain, we are neither changing the differential nature of problem (1) nor
the associated boundary conditions. Thus the functional space V is the same for each model of the family (1).
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Remark 2.1. The choice of the coarse model can be driven by different strategies. Ideally, a hierarchy of
models describing the phenomenon we are interested in should be available. Then, one can choose a coarse
model simpler, for instance, from an analytical point of view (a coarse linear problem instead of a fine nonlinear
one) or from a physical viewpoint (e.g., a mathematical model derived under simplifying physical hypotheses).
For instance, in the elasticity framework, the most recurrent choice consists of substituting the elasticity tensor
(usually a highly oscillatory function of the position) with a regularized elasticity tensor (see [27–30]). In
Section 3 we specify the criterion adopted in the free-surface flows setting.

Let us begin by analyzing the fine primal problem. The corresponding variational formulation is given by (1)
with α = 1, and reads as: find u1 ∈ V such that

(∂u1

∂t
, ψ

)
+ a(u1)(ψ) + d(u1)(ψ) = (f, ψ), for any ψ ∈ V, (2)

with u1(0) = u0
1 the initial datum.

Let us assume that the solution u1 of (2) exists unique in V . This hypothesis allows us to introduce the
following (trivial) constrained minimization problem, according to an optimal control approach [7]: find u1 ∈ V
such that

F(u1) = inf
v∈M

F(v), (3)

where

M =
{
v ∈ V :

(∂v
∂t
, ξ

)
+ a(v)(ξ) + d(v)(ξ) = (f, ξ), for any ξ ∈ V, and with v(0) = u0

1

}
,

and F : V → R is the chosen goal functional. The triviality of (3) is due to the fact that the space M consists of
one element only, that is M = {u1}, where u1 is the solution of (2). Thus solving (2) is equivalent to solving (3)
for the unknown u1. On the other hand, the reformulation of (2) as a constrained optimization problem allows
us to use the Lagrangian technique to impose the constraint. With this aim, we introduce the fine Lagrangian
L : V × V = X → R defined by

L(x1) = F(u1) + (f, z1) − a(u1)(z1) − d(u1)(z1) −
(∂u1

∂t
, z1

)
, (4)

with x1 = (u1, z1) ∈ X and where z1 is the so-called Lagrange multiplier (or influence function) associated with
the functional F . Notice that, due to its definition, the Lagrangian L turns out to be a semilinear form as
well as a(u1)(·) and d(u1)(·). By definition the minimum point of (3) coincides with the first component of the
saddle-point x1 of (4), so that we are interested in finding the critical points x1 ∈ X of L, satisfying

L′(x1)(y) = 0, for any y = (ϕ, ψ) ∈ X, (5)

where

L′(x1)(y) = F ′(u1)(ϕ)−a′(u1)(ϕ, z1)−d′(u1)(ϕ, z1)−
(∂ϕ
∂t
, z1

)
+(f, ψ)−a(u1)(ψ)−d(u1)(ψ)−

(∂u1

∂t
, ψ

)
(6)
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denotes the derivative of the fine Lagrangian L applied to the test function y. Notice that in (6) we resort to a
Gâteaux differentiation [23], so that the semilinear forms

F ′(u1)(ϕ) = lim
θ→0

1
θ
{F(u1 + θϕ) −F(u1)}, (7)

a′(u1)(ϕ, z1) = lim
θ→0

1
θ
{a(u1 + θϕ)(z1) − a(u1)(z1)}, (8)

d′(u1)(ϕ, z1) = lim
θ→0

1
θ
{d(u1 + θϕ)(z1) − d(u1)(z1)} (9)

are linear with respect to ϕ and z1 but preserve the (possible) nonlinearity in u1.
Due to the independence of the test functions ψ and ϕ and via (5)-(6), the minimization problem (3) reduces

to looking for x1 = (u1, z1) ∈ X such that

(∂u1

∂t
, ψ

)
+ a(u1)(ψ) + d(u1)(ψ) = (f, ψ), for any ψ ∈ V, (10)

(∂ϕ
∂t
, z1

)
+ a′(u1)(ϕ, z1) + d′(u1)(ϕ, z1) = F ′(u1)(ϕ), for any ϕ ∈ V. (11)

We recognize in (10) the variational formulation (2) of the fine primal problem, while equation (11) coincides
with the (fine) dual problem associated with (2), and corresponding to the choice F for the goal quantity. Notice
that the dual problem (11) is linear with respect to the influence function z1. Moreover it will be completed
with a suitable final condition, z1(T ) = zT

1 , the time scale being reverse in the dual setting.
Now, let us identify equation (1) with the variational formulation of the adapted primal problem.
The (trivial) constrained minimization problem (3) is thus replaced by the new one: find uα ∈ V such that

F(uα) = inf
v∈Mα

F(v), (12)

where

Mα =
{
v ∈ V :

(∂v
∂t
, ξ

)
+ a(v)(ξ) + d(v)(αξ) = (f, ξ), for any ξ ∈ V, and with v(0) = u0

α

}
.

By exactly mimicking the fine analysis, we introduce the adapted Lagrangian

Lα(xα) = F(uα) + (f, zα) − a(uα)(zα) − d(uα)(αzα) −
(∂uα

∂t
, zα

)
, (13)

xα = (uα, zα) ∈ X and zα being the saddle point of Lα and the Lagrange multiplier associated with the
functional F , respectively. Thus the minimization problem (12) leads us to the resolution of the adapted primal
problem (1) and of the adapted dual problem

(∂ϕ
∂t
, zα

)
+ a′(uα)(ϕ, zα) + d′(uα)(ϕ, αzα) = F ′(uα)(ϕ), for any ϕ ∈ V, (14)

zα(T ) = zT
α being the corresponding final datum.

Remark 2.2. The dual problems (11) and (14) have to be provided with suitable boundary conditions. In
the steady case and for an output functional F consisting of an integral over the whole domain Ω and of an
integral on the boundary ∂Ω of the domain, the dual boundary conditions can be rigorously identified according
to the analysis in [16]. In the model adaption framework, a first attempt in such a direction is performed in [11]
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for the simple case of the one-dimensional Helmholtz equation. As alternative approach, in the presence of a
time-dependent problem or for a more complex functional F , the boundary conditions to be associated with
the dual problem can be derived via the Lagrange identity [22]. The strategy pursued in the free-surface flows
framework is again different, due to the adopted constrained minimization setting via the Lagrange multipliers
(see Sect. 3.2).

In the sequel the notations are often shortened moving from the trivial relation between the fine L and the
adapted Lα Lagrangians, given by

L(x) = Lα(x) + δL(x), for any x = (u, z) ∈ X, (15)

with
δL(x) = −d(u)((1 − α)z). (16)

With the aim of keeping the quantity |F(u1) − F(uα)| below a prescribed tolerance, let us first remark that,
thanks to (2) and (1), relations (4) and (13) provide us with the exact values

F(u1) = L(x1) and F(uα) = Lα(xα), (17)

i.e. F(u1) and F(uα) coincide with the values of the fine and of the adapted Lagrangians at the stationary
points x1 and xα, respectively. On the other hand, we would like to skip the approximation of the fine problem:
thus we look for an approximation of the quantity F(u1) − F(uα) in terms of easily computable quantities,
i.e. of the problem data and of the adapted solutions uα and zα only. With this aim, let us define the
modeling residuals ρM (uα)(·) and ρM (uα)(·, zα) associated with the fine primal and with the fine dual problem,
respectively, given by

ρM (uα)(ψ) = (f, ψ) −
(∂uα

∂t
, ψ

)
− a(uα)(ψ) − d(uα)(ψ)

= −d(uα)((1 − α)ψ), for any ψ ∈ V,

(18)

ρM (uα)(ϕ, zα) = F ′(uα)(ϕ) −
(∂ϕ
∂t
, zα

)
− a′(uα)(ϕ, zα) − d′(uα)(ϕ, zα)

= −d′(uα)(ϕ, (1 − α)zα), for any ϕ ∈ V.

(19)

Notice that the residuals ρM (uα)(ψ) and ρM (uα)(ϕ, zα) measure the level to which the adapted solutions uα

and zα fail to satisfy the fine problems (10) and (11), respectively. In the sequel we will refer to them as primal
and dual modeling residual.

The modeling error analysis in [9] can be generalized to the case of non-stationary problems, as stated in the
following result:

Proposition 2.3. Let us assume that the semilinear forms a(uα)(·) and d(uα)(·) and the functional F are
sufficiently differentiable with respect to uα, for any α ∈ L∞(Q). Then we have

F(u1) − F(uα) = ρM (uα)(zα)︸ ︷︷ ︸
(I)

+
1
2
{
ρM (uα)(ez) + ρM (uα)(eu, zα)

}
︸ ︷︷ ︸

(II)

+ R︸︷︷︸
(III)

, (20)

where the modeling residuals are defined according to (18) and (19), eu = u1 − uα and ez = z1 − zα are the
primal and the dual error, respectively, while

R =
1
2

1∫
0

L′′′(xα + se)(e, e, e)s(s− 1) ds, (21)

is a remainder term, with e = (eu, ez) = x1 − xα.
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Proof. The proof of Theorem 2.1 in [9] can be extended to the unsteady problems (1) and (2). The time
derivatives in the definition of the Lagrangians are not troublesome for the proof: the explicit definitions of L
and Lα are never involved, relations (15) and (16) being essentially exploited. Thus we easily prove that

F(u1) −F(uα) = −d(uα)((1 − α)zα) − 1
2

{
d(uα)((1 − α)ez) + d′(uα)(eu, (1 − α)zα)

}
+R,

i.e. relation (20) after substituting the modeling residuals ρM (uα)(zα), ρM (uα)(ez) and ρM (uα)(eu, zα), ac-
cording to the definitions (18) and (19). �

For the reader’s ease we provide the complete proof of result (20) in the Appendix.
Notice that, at this stage, result (20) provides us with an exact expression for the quantity F(u1) −F(uα).

Nevertheless it involves quantities depending on the fine solutions, i.e. the primal and dual errors eu and ez.
Thus, after neglecting the remainder term R, error estimates for eu and ez, in terms of computable quantities,
should be found to make “operative” relation (20). This is the approach followed, for instance, in [27–30].
However estimates of this type cannot be easily derived for any differential problem. Saint-Venant equations
provide an example in such a direction. As alternative way to make the right-hand side of (20) useful in
practice, one can introduce suitable simplifying assumptions on the problem at hand (see [9]). We adopt this
second strategy. In more detail, we first demand for a stability property of the functional L′(x), by assuming
the existence of a constant β > 0 such that, for any xn and xm ∈ X ,

‖xn − xm‖X ≤ β ‖L′(xn) − L′(xm)‖X′ , (22)

‖ · ‖X and ‖ · ‖X′ denoting the norms associated with the space X and its dual X ′, respectively. Notice that
inequality (22) essentially guarantees the invertibility of L′(x).

Then we assume that, for any u ∈ V , the semilinear form d(u)(·) and its derivatives are sufficiently small.
This last request, combined with (22) and thanks to (5), (15) and the relation L′

α(xα)(y) = 0, for any y ∈ X ,
guarantees that

‖e‖X = ‖x1 − xα‖X ≤ β ‖L′(x1) − L′(xα)‖X′ = β ‖δL′(xα)‖X′ ≤ β C(d)‖xα‖X ,

with C(d) � 1, i.e. that e = O(C(d)). By studying the order of magnitude of the quantities (I), (II) and
(III) in (20) in terms of C(d), we get that (I) = O(C(d)), while (II) = O([C(d)]2), and (III) = O([C(d)]3).
These considerations allow us to neglect the terms (II) and (III) in (20), i.e. to estimate the goal quantity
F(u1) −F(uα) as

F(u1) −F(uα) � ηα = ρM (uα)(zα) = −d(uα)((1 − α)zα).
The quantity ηα represents the desired a posteriori modeling error estimator, being expressed in terms of
computable quantities only. It will suggest us where the fine problem rather than the coarse one has to be
solved on the computational domain to guarantee the quantity |F(u1)−F(uα)| below a prescribed tolerance τ .
In Section 5 we detail the procedure pursued with this aim.

Remark 2.4. In Section 5.2 we verify numerically the considerations made above on the order of magnitude
of the terms (I) and (II), moving from some hydrodynamic configurations of interest. This will partially
strengthen the requirements made above on the functional L′(x) and on the semilinear form d(u)(·) together
with its derivatives.

Remark 2.5. A third approach, alternative to the ones proposed in [9,27–30], to make the quantity (I) + (II)
in (20) computable, is now under investigation, even if it sounds not generalizable in a straightforward way to
any differential problem, as well as the analysis in [27–30] (see also Sect. 6).

Remark 2.6. The analysis above holds also if Ω ⊂ R
3. The choice of the two-dimensional framework is only

dictated by the software available for our numerical tests.
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3. Free-surface flows simulation

In this section we aim to specialize the a posteriori modeling error analysis provided in Section 2 to the
application we are interested in, that is the free-surface flows simulation. As already pointed out, due to the
preliminary character of this work, we choose the simple setting where two hyperbolic models, sharing the same
functional space and boundary conditions, are coupled. The idea is to generalize the analysis below to the
coupling among several hydrodynamics models, in view of realistic simulations [24].

Let us consider the hierarchy of free-surface flows models

⎧⎪⎨
⎪⎩
∂uα

∂t
+ α (uα · ∇)uα + g∇hα = 0 with (x, t) ∈ Q,

∂hα

∂t
+ ∇ · (hαuα) = 0 with (x, t) ∈ Q,

(23)

with uα(0) = u0
α, hα(0) = h0

α the initial data, g the gravity acceleration and where the unknowns uα and hα

denote the mean velocity and the total water depth, respectively, while Q and the function α are defined as
in Section 2. As α takes on the values 0 and 1 only, at each time tj , the nonlinear convective term in the
momentum equation will be “switched-on” only in the regions Qi of Q where α(x, tj) = 1, with x ∈ Ω, that is,
ideally, only where the nonlinear advective features of the problem at hand significatively influence the target
functional F . Moreover, proper boundary conditions will be supplied to the hyperbolic system (23), depending
on the hydrodynamic problem at hand (see Sect. 5.2 for more details).

According to the nomenclature of the previous section, we will refer to (23) as to the adapted model, i.e. the
system solved in practice.

The choice α = 1, for any (x, t) ∈ Q, provides us with the fine model, that is with the Saint-Venant equations
[36, 37], written in the non-conservative form:

⎧⎪⎨
⎪⎩
∂u1

∂t
+ (u1 · ∇)u1 + g∇h1 = 0 with (x, t) ∈ Q,

∂h1

∂t
+ ∇ · (h1u1) = 0 with (x, t) ∈ Q,

(24)

with u1(0) = u0
1, h1(0) = h0

1 the initial data. The absence of the forcing term in the momentum equation is due
to the choice of considering only hydrodynamic configurations characterized by flat bottom and of neglecting
the wind stress, the Coriolis force and the bottom friction.

From a computational viewpoint, system (24) is the most expensive one, the nonlinear term in the momentum
equation being active on the whole domain. The expectation is to never solve the fine model everywhere but
only on a reduced portion of Ω. This will be confirmed by the numerical validation in Section 5.2.

On the other hand, if α is identically equal to zero in Q, the adapted model reduces to the coarse problem

⎧⎪⎨
⎪⎩
∂u0

∂t
+ g∇h0 = 0 with (x, t) ∈ Q,

∂h0

∂t
+ ∇ · (h0u0) = 0 with (x, t) ∈ Q.

(25)

Typically, also problem (25) will be never solved on the whole Ω. Were this the case, it could mean that the
hydrodynamics involved in the problem at hand is simpler than what expected a priori, and the coarse model
would suffice to reasonably describe the phenomenon.

To summarize, at each time tj , neither the fine problem (24) nor the coarse one (25) will be solved on the
whole Ω. The problem to be discretized will be the adapted model (23), according to the value of α(x, tj), for
any (x, tj) ∈ Q.
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Remark 3.1. The suppression of the nonlinear term in the momentum equation does not modify the hyperbolic
character of the coarse model (25) as can be easily checked via a suitable characteristic analysis.

3.1. A modeling error estimator for shallow water equations

To derive a modeling error estimator working on the Saint-Venant like family of models (23), let us first fit
these equations into the general framework of Section 2.

Let us move from the weak form associated with the fine problem (24): let us sum up the momentum and
the continuity equations after multiplication by suitable test functions v and q, respectively. This leads to the
following formulation: find (u1, h1) ∈ W = V × Z such that

(∂u1

∂t
, v

)
+

(∂h1

∂t
, q

)
+

(
(u1 · ∇)u1, v

)
+ g (∇h1, v) +

(
∇ · (h1u1), q

)
= 0, for any (v, q) ∈ W , (26)

with u1(0) = u0
1 and h1(0) = h0

1 the initial data. To simplify the weak form (26), we introduce the “global”
unknown U1 = (u1, h1) ∈ W and test function Ψ = (v, q) ∈ W , so that we get: find U1 ∈ W such that

(∂U1

∂t
, Ψ

)
+ a(U1)(Ψ) + d(U1)(Ψ) = 0, for any Ψ ∈ W , (27)

with U1(0) = U0
1 = (u0

1, h
0
1) the initial data vector, and where

(∂U1

∂t
, Ψ

)
=

(∂u1

∂t
, v

)
+

(∂h1

∂t
, q

)
while

a(U1)(Ψ) = g (∇h1, v) +
(
∇ · (h1u1), q

)
and d(U1)(Ψ) =

(
(u1 · ∇)u1, v

)
are semilinear forms, linear with respect to Ψ but nonlinear in U1. Notice that, in this case, the forcing term
in (2) is identically equal to zero.

Remark 3.2. The spaces V and Z depend on the boundary conditions associated with system (24), i.e. on
the test case under examination. At this stage, we do not choose any specific boundary condition so that we
can only state that V and Z are suitable subspaces of [H1(Ω)]2 and of H1(Ω), respectively.

Now let F be the goal functional we are interested in. In the numerical results of Section 5.2 we identify F with
the kinetic energy and with the drag of the flow on the whole or on a subregion of the computational domain Ω
or with the more challenging case of pointwise values. Following the constrained minimization procedure of
Section 2, we first introduce the fine Lagrangian

L(x̃1) = F(U1) − a(U1)(Z1) − d(U1)(Z1) −
(∂U1

∂t
, Z1

)
, (28)

with x̃1 = (U1, Z1) ∈ X̃ = W ×W , and where Z1 = (w1, κ1) ∈ W is the vector of the Lagrange multipliers (or
influence functions) associated with the functional F . Thus, when looking for the stationary point x̃1 of the
Lagrangian L in (28), we are led to solving the fine primal problem (27) together with the corresponding dual
one: find Z1 ∈ W such that

(∂Φ
∂t
, Z1

)
+ a′(U1)(Φ, Z1) + d′(U1)(Φ, Z1) = F ′(U1)(Φ), for any Φ ∈ W , (29)

with Z1(T ) = ZT
1 = (wT

1 , κ
T
1 ) the final data vector, and Φ = (ϕ, ϑ) the test functions pair.
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According to the Gâteaux derivative definition, we have that, for any Φ ∈ W ,

a′(U1)(Φ, Z1) = g(∇ϑ,w1) +
(
∇ · (h1ϕ), κ1

)
+

(
∇ · (ϑu1), κ1

)
,

d′(U1)(Φ, Z1) =
(
(u1 · ∇)ϕ,w1

)
+

(
(ϕ · ∇)u1,w1

)
.

Moreover, we remark that the components w1 and κ1 of the dual solution Z1 identify the dual mean velocity
and the dual total water depth, respectively.

Now, let us move to the adapted model (23). By repeating the fine analysis, we introduce the adapted weak
form: find Uα = (uα, hα) ∈ W such that

(∂Uα

∂t
, Ψ

)
+ a(Uα)(Ψ) + d(Uα)(αΨ) = 0, for any Ψ = (v, q) ∈ W , (30)

with Uα(0) = U0
α = (u0

α, h
0
α) the initial data vector, and where the scalar product (∂Uα/∂t,Ψ) and the semilinear

forms a(Uα)(·) and d(Uα)(·) are defined as

(∂Uα

∂t
, Ψ

)
=

(∂uα

∂t
, v

)
+

(∂hα

∂t
, q

)
(31)

and
a(Uα)(Ψ) = g (∇hα, v) +

(
∇ · (hαuα), q

)
and d(Uα)(αΨ) =

(
(uα · ∇)uα, αv

)
respectively. Via a minimization procedure, we are led to looking for the critical point x̃α = (Uα, Zα) ∈ X̃ of
the adapted Lagrangian

Lα(x̃α) = F(Uα) − a(Uα)(Zα) − d(Uα)(αZα) −
(∂Uα

∂t
, Zα

)
,

i.e., to finding the solution Uα ∈ W of the adapted primal problem (30) together with the solution Zα =
(wα, κα) ∈ W of the associated dual problem: find Zα ∈ W such that

(∂Φ
∂t
, Zα

)
+ a′(Uα)(Φ, Zα) + d′(Uα)(Φ, αZα) = F ′(Uα)(Φ), for any Φ ∈ W , (32)

with Zα(T ) = ZT
α = (wT

α , κ
T
α) the final data vector, Φ = (ϕ, ϑ) the test functions pair, and where the scalar

product (∂Φ/∂t, Zα) is defined according to (31) while the semilinear forms a′(Uα)(·, Zα) and d′(Uα)(·, αZα)
are given by

a′(Uα)(Φ, Zα) = g(∇ϑ,wα) +
(
∇ · (hαϕ), κα

)
+

(
∇ · (ϑuα), κα

)
,

d′(Uα)(Φ, αZα) =
(
(uα · ∇)ϕ, αwα

)
+

(
(ϕ · ∇)uα, αwα

)
.

Remark 3.3. Suitable boundary conditions have to be supplied to the dual problems (29) and (32). We
refer to Section 3.2 for some general considerations about the choice of the dual boundary conditions and to
Sections 5.2.1, 5.2.2 and 5.2.3 of the considered test cases for the corresponding specific choices.

We are now in a position to reformulate the result in Proposition 2.3 in the case of the hierarchy (23) of
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free-surface flows models. With this aim, let us introduce the primal and the dual modeling residuals involved
in (20):

ρM (Uα)(Zα) = −d(Uα)
(
(1 − α)Zα

)
= −

(
(uα · ∇)uα, (1 − α)wα

)
,

ρM (Uα)(EZ ) = −d(Uα)
(
(1 − α)EZ

)
= −

(
(uα · ∇)uα, (1 − α)(w1 − wα)

)
,

ρM (Uα)(EU , Zα) = −d′(Uα)
(
EU , (1 − α)Zα

)
(33)

= −
(
(uα · ∇)(u1 − uα), (1 − α)wα

)
−

((
(u1 − uα) · ∇

)
uα, (1 − α)wα

)
,

where EU = (u1 − uα, h1 − hα) and EZ = (w1 − wα, κ1 − κα) are the primal and dual error, respectively.
Proposition 2.3 thus reads as

Proposition 3.4. If the functional F is sufficiently differentiable with respect to Uα, for any α ∈ L∞(Q), then
it holds that

F(U1) −F(Uα) = ρM (Uα)(Zα)︸ ︷︷ ︸
(I)

+
1
2
{
ρM (Uα)(EZ) + ρM (Uα)(EU , Zα)

}
︸ ︷︷ ︸

(II)

+ R︸︷︷︸
(III)

, (34)

the modeling residuals ρM (Uα)(Zα), ρM (Uα)(EZ) and ρM (Uα)(EU , Zα) and the remainder term R being defined
according to (33) and (21), with L given by (28), respectively.

To make result (34) effective from a computational viewpoint, we introduce the simplifying hypotheses of
Section 2, by demanding the stability property (22) for the functional L′(x), for any x ∈ X̃ , together with
proper regularity assumptions on d(U)(·) and on its derivatives, for any U ∈ W . The desired shallow water
modeling error estimator for the goal quantity F(U1) −F(Uα) thus reads as

F(U1) −F(Uα) � ηα = ρM (Uα)(Zα) = −
(
(uα · ∇)uα, (1 − α)wα

)
. (35)

Remark 3.5. As pointed out for the general unsteady setting, we could take advantage in (34) of suitable
bounds for the errors EU and EZ , in terms of the adapted quantities Uα and Zα, rather than resorting to the
hypotheses above (see [27–30]). However, this task turns out to be not trivial for the shallow water equations,
unless one moves from a conservative or viscous formulation of the shallow water system [3].

3.2. The dual problem: the boundary conditions matter

Let us move from the adapted dual problem, the fine analysis being recovered simply by choosing α identically
equal to one. Looking for the dual boundary conditions we are obliged to move from the weak form (32)
associated with the adopted constrained minimization approach. The strategy pursued in the sequel consists
of deriving the differential form of the dual problem by suitably integrating by parts the corresponding weak
form. Then the boundary terms yielded by this procedure are partially erased via the boundary conditions of
the primal problem and in part exploited to get the desired dual boundary conditions. The idea is to get rid
of all the boundary terms by suitably choosing the primal and the dual boundary conditions, as no boundary
term appears in the weak form (32). Since this last step is strictly related to the considered test case, we refer
to the Sections 5.2.1, 5.2.2 and 5.2.3 for the choice of the specific boundary conditions, while providing here the
general analysis leading to the differential adapted dual problem.

As we aim to identify the differential form of both the momentum and the continuity dual equations, let us
begin by highlighting the corresponding contribution in the weak form (32): the momentum equation is given by

(∂ϕ

∂t
, wα

)
+

(
∇ · (hαϕ), κα

)
+

(
(uα · ∇)ϕ, αwα

)
+

(
(ϕ · ∇)uα, αwα

)
=

(
g1,ϕ

)
, (36)
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while the continuity one turns out to be

(∂ϑ
∂t
, κα

)
+ g(∇ϑ,wα) +

(
∇ · (ϑuα), κα

)
=

(
g2, ϑ

)
, (37)

g1 = g1(uα, hα) and g2 = g2(uα, hα) being the densities associated with the functional F ′(Uα)(Φ). Let us move
from the momentum equation and let us write out the primal and the dual velocity uα and wα, together with
the test function ϕ, in terms of their x- and y-components, as uα = (uα,1, uα,2)T , wα = (wα,1, wα,2)T and
ϕ = (ϕ1, ϕ2)T , respectively. Equation (36) can thus be rewritten as

(∂ϕ1

∂t
, wα,1

)
+

(∂ϕ2

∂t
, wα,2

)
+

( ∂

∂x

(
hα ϕ1

)
, κα

)
+

( ∂

∂y

(
hα ϕ2

)
, κα

)
+

(
uα,1

∂ϕ1

∂x
, αwα,1

)
+

(
uα,2

∂ϕ1

∂y
, αwα,1

)
+

(
uα,1

∂ϕ2

∂x
, αwα,2

)
+

(
uα,2

∂ϕ2

∂y
, αwα,2

)
+

(
ϕ1

∂uα,1

∂x
, αwα,1

)
+

(
ϕ2

∂uα,1

∂y
, αwα,1

)
+

(
ϕ1

∂uα,2

∂x
, αwα,2

)
+

(
ϕ2

∂uα,2

∂y
, αwα,2

)
= (g1,1, ϕ1) + (g1,2, ϕ2),

g1,1 and g1,2 denoting the x- and y-components of the density g1. The dual momentum equation can now
be obtained by suitably integrating by parts all the terms involving a time or a space derivative of ϕ and by
collecting the terms involving ϕ1 and ϕ2, respectively. We get

(
− ∂wα,1

∂t
− hα

∂κα

∂x
− ∂

∂x

(
αuα,1 wα,1

)
− ∂

∂y

(
αuα,2 wα,1

)
+ α

∂uα,1

∂x
wα,1 + α

∂uα,2

∂x
wα,2, ϕ1

)

+
∫
Ω

(
ϕ1 wα,1

)∣∣∣T
0

dΩ +
([
hα κα + αuα,1wα,1

]
n1 + αuα,2 wα,1 n2, ϕ1

)
∂Ω

= (g1,1, ϕ1), (38)

and

(
− ∂wα,2

∂t
− hα

∂κα

∂y
− ∂

∂x

(
αuα,1 wα,2

)
− ∂

∂y

(
αuα,2 wα,2

)
+ α

∂uα,1

∂y
wα,1 + α

∂uα,2

∂y
wα,2, ϕ2

)

+
∫
Ω

(
ϕ2 wα,2

)∣∣∣T
0

dΩ +
(
αuα,1wα,2 n1 +

[
hα κα + αuα,2wα,2

]
n2, ϕ2

)
∂Ω

= (g1,2, ϕ2), (39)

where n = (n1, n2)T is the unit outward normal to the boundary ∂Ω and (·, ·)∂Ω denotes the integral on
∂Ω× (0, T ]. Equations (38) and (39) can be compacted in a single equation via suitable differential operators as

(
− ∂wα

∂t
− hα∇κα −∇

(
αwα

)
uα − α

(
∇ · uα

)
wα + α

(
∇uα)T wα,ϕ

)
+

∫
Ω

(
ϕ · wα

)∣∣∣T
0

dΩ

+
([
hα κα + αuα,1 wα,1

]
n1 + αuα,2 wα,1 n2, ϕ1

)
∂Ω

+
(
αuα,1 wα,2 n1 +

[
hα κα + αuα,2 wα,2

]
n2, ϕ2

)
∂Ω

=
(
g1,ϕ

)
. (40)

Integrating by parts the continuity equation (37) with the same spirit, we get

(
− ∂κα

∂t
− g∇ · wα − uα · ∇κα, ϑ

)
+

∫
Ω

(
κα ϑ

)∣∣∣T
0

dΩ +
(
gwα · n + uα · nκα, ϑ

)
∂Ω

=
(
g2, ϑ

)
. (41)
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Thus the differential form of the adapted dual problem turns out to be given by

⎧⎪⎨
⎪⎩

−∂wα

∂t
− hα∇κα −∇

(
αwα

)
uα − α

(
∇ · uα

)
wα + α

(
∇uα)T wα = g1, with (x, t) ∈ Ω × [0, T ),

−∂κα

∂t
− g∇ · wα − uα · ∇κα = g2, with (x, t) ∈ Ω × [0, T ).

Concerning the neglected terms, the time dependent ones are known due to the initial and final conditions
associated with the primal and the dual problem, respectively. In particular, the final condition for the dual
problem will be always given by wα = 0, κα = 0. On the other hand, since we recognize in (36)–(37) the
dual weak form dictated by the DWR approach, we should choose the primal and dual boundary conditions
so that all the boundary terms in (40) and (41) are identically equal to zero. Moreover, notice that the weak
formulation (36)–(37) is more appropriate than (40)–(41) in view of the numerical validation, no derivative of
the L∞-function α being involved.

Remark 3.6. Among the main drawbacks of the adopted DWR approach, we underline the constraint to employ
the same space W for both the primal and the dual problems. This limitation becomes particularly cumbersome
in the presence of hyperbolic problems (namely, in our case) due to the involved characteristic analysis (see
Sect. 5 for further details). Such a bound can be overcome by suitably combining a Petrov-Galerkin approach
together with the constrained optimization strategy characterizing the DWR theory [24]. This makes the primal
and the dual spaces independent one from the other.

4. The discretization scheme

At this stage, we are interested in the modeling error control only, i.e. we are assuming to replace in (35)
the quantities uα and wα with sufficiently accurate approximations uh,α and wh,α, respectively.

The time discretization of the shallow water equations turns out to be tricky. Several approaches have been
proposed in the literature: from ADI-schemes [35], to explicit, semi-implicit and implicit methods [2, 36], from
fractional step techniques [2, 8], to stabilized Runge-Kutta approaches [38].

In the sequel we move from the linearized form of system (23)

⎧⎪⎨
⎪⎩
∂uα

∂t
+ α (Uα · ∇)uα + g∇hα = 0 with (x, t) ∈ Q,

∂hα

∂t
+Hα ∇ · uα + Uα · ∇hα = 0 with (x, t) ∈ Q,

(42)

Uα and Hα being suitable values for the mean velocity and the total water depth, respectively [36]. Then the
Crank-Nicolson discretization scheme is applied to (42) to get the coupled system

⎧⎪⎨
⎪⎩

un+1
α − un

α +
∆t
2

(
α (Uα · ∇)un+1

α + g∇hn+1
α

)
+

∆t
2

(
α (Uα · ∇)un

α + g∇hn
α

)
= 0 with x ∈ Ω,

hn+1
α − hn

α +
∆t
2

(
Hα ∇ · un+1

α + Uα · ∇hn+1
α

)
+

∆t
2

(
Hα ∇ · un

α + Uα · ∇hn
α

)
= 0 with x ∈ Ω,

with ∆t the time discretization parameter. The linearization (42) is performed about the values Uα = un
α

and Hα = hn
α. The choice of the Crank-Nicolson scheme is essentially dictated by the good non-dissipative

features of such a method, i.e. by its energy conservation property. As alternative approach, one could skip
the linearization step by directly applying the Crank-Nicolson scheme to the nonlinear system (23). However
this would unavoidably lead to a further increase of the computational cost of the already expensive DWR
procedure.

On the other hand, for the space discretization of the primal problem (30) we use a finite element scheme
based on continuous affine functions [10], moving from a computational grid reasonably fine.
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The same space-time scheme is adopted to discretize the dual problem (32). Notice that no linearization is
required in such a case as the dual problem is, by definition, linear.

It is evident that the computational cost associated with the modeling error estimator (35) is high. This is
essentially due to the reverse time scale characterizing the dual framework. This disease becomes more evident
in the presence of a large time interval or when a small time step is employed. In more detail, according to the
adaptive procedure pursued in the numerical validation, the whole time interval should be spanned four times,
twice forward and twice backward, to get the value ηα in (35) (see Sect. 5.1 for further details). This suggests
for a non-cheap numerical procedure, on the other hand coherent with the “philosophy” of an unsteady DWR
approach.

Finally, one could be interested in combining the model adaption together with a suitable mesh adaptivity.
An example of analysis taking into account both the discretization and the modeling errors is provided in [9].
Nevertheless only stationary problems are considered in such a case. The addition of a time-dependent mesh
adaptivity, allowing for grid refinement moving with the wave field, would undoubtedly lead to a prohibitive
computational cost as well as to the development of spurious reflected waves caused by the jump of the mesh
size [5, 6, 20]. This justifies our interest in modeling error control only.

5. Numerical assessment

The aim of this section is twofold. Moving from the modeling error estimator ηα in (35), we first sketch the
algorithm used to decide which model of the hierarchy (23) has to be solved at each time and on each mesh
element K, so that a prescribed tolerance τ is guaranteed on the goal quantity |F(U1) − F(Uα)|. Then we
validate this algorithm on some numerical test cases related to standard hydrodynamic configurations such as
a closed basin, a channel with an obstacle or a river bifurcation.

5.1. The adaptive procedure

Let us consider a fixed space-time partition of the computational domain Q. With this aim, let us introduce
a conforming triangulation Th of Ω into Nh triangles K, and divide the time interval (0, T ) into Nt uniform
subintervals Ij .

To start the model adaption procedure we need a reference primal and dual solution. In order to confine the
total computational cost, we begin by discretizing the coarse primal and the coarse dual problems, represented
by equations (30) and (32), respectively, for α identically equal to zero. An initial guess ηα = η0 is thus yielded
for the following adaptive procedure: for any Ij ,

1) evaluate the estimator ηα on each triangle K of Th via a suitable localization strategy, thus yielding the
local modeling error estimator ηj

α,K = ηα

∣∣
K×Ij

;
2) then:

a) if
∣∣ηj

α,K

∣∣ > τ

NhNt
, set α

∣∣
K×Ij

= 1, i.e. associate the fine model (24) with the element K of the

space-time slab Sj = Ω × Ij ;
b) if

∣∣ηj
α,K

∣∣ ≤ τ

NhNt
, set α

∣∣
K×Ij

= 0, i.e. discretize the coarse model (25) on the triangle K of Sj ;

3) discretize the adapted primal and dual problems (30) and (32), whose corresponding function α is the
one identified at point 2);

4) evaluate the quantity ηα.
Notice that more loops 1)–4) are likely required in view of guaranteeing the global error |F(U1) − F(Uα)| to
be actually under the prescribed tolerance τ , in spite of the localization procedure. Moreover the check at the
points 2a) and 2b) entails a space-time equidistribution of the modeling error on the elements of the mesh Th

and for any time interval Ij .
The adaptive approach 1)–4) turns out to be reliable, even if very straightforward, as confirmed by the good

quality of the numerical results in the next section.
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Remark 5.1. The localization procedure used at point 1) simply exploits the additive property of the space-
time integral understood by the scalar product (·, ·) in the definition of ηα. We anticipate that such an approach
will make the error estimator ηα a reliable but non-efficient adaptive tool (see Sect. 5).

We remark that the procedure 1)–4) above requires the whole time interval (0, T ) to be spanned four times,
twice forward (coarse and adapted primal problem) and twice backward (coarse and adapted dual problem).
This leads to an unavoidable memory requirement, the primal solution being actually stored at each time as
providing the coefficients to the dual problem. This drawback is so far confined as the numerical tests deal with
simple and 2D hydrodynamic configurations. Of course in view of more complex 3D simulations, we are aware
that the memory storage is certainly an issue. The check-pointing technique suggested in [19] could be a useful
alternative.

As first attempt to reduce the memory storage and the computational cost characterizing the approach 1)–4),
we replace the estimator ηα by the new one

η̃α = ρM (Uα)(Z0) = −
(
(uα · ∇)uα, (1 − α)w0

)
, (43)

the time interval being spanned now only three times. From a theoretical viewpoint, this strategy finds a
justification as, according to a DWR approach, the dual problem essentially weights how the error propagates,
while the quantitative information is provided by the primal problem.

5.2. The numerical test cases

We validate the adaptive procedure 1)–4) of the previous section moving from three different hydrodynamic
configurations. The first one deals with the evolution of a Gaussian hill in a closed basin. In the second test
case a solitary wave moving along a straight channel with an obstacle is simulated. Finally, in the last test case,
we consider the motion of a solitary wave along a river bifurcation. The numerical code is based on MATLAB
and employs a direct method to solve all the linear systems involved.

5.2.1. The Gaussian hill test case

A well-known instance of a Gaussian hill is provided by the shape taken by the water surface after a stone
has been thrown into the water at rest.

Let the computational domain Ω = (−20, 20)2 ⊂ R
2 be a closed squared basin with a side of 40. The

reference water level is chosen equal to 5. As the Coriolis force is neglected, the Gaussian breaks and gives rise
to a circular wave propagating from the point (0, 0) towards the boundary of the domain. Then, as the basin
is closed, the wave is reflected backward to the center of the domain. On the other hand, the dual solution
coincides with the Gaussian hill rewound in time.

The adapted model (23) is completed with suitable initial and boundary conditions. In more detail, at the
initial time t = 0, the profile of elevation

hα(x, y, 0) = e−0.25(x2+y2),

describing the Gaussian centered at (0, 0) and with unitary height, is assumed together with a velocity identically
equal to zero. Concerning the boundary conditions, as we are in the presence of a solid boundary, we assign, on
the whole ∂Ω, the usual slip condition uα · n = 0, which means that the flow does not cross the boundary but
may move tangentially only [18]. The space W in (30) is thus identified by the following choices: V ≡ H1

∗ (Ω) =
{v ∈ [H1(Ω)]2 : v · n = 0 on ∂Ω}, Z = H1(Ω). This means that the boundary condition associated with the
dual problem is still a slip condition for the velocity, i.e. wα · n = 0 on the whole boundary ∂Ω. Moreover,
after suitably rewriting the boundary terms in the dual momentum and continuity equations (40) and (41) as

(
hα κα,ϕ · n

)
∂Ω

+
(
αuα · n,wα · ϕ

)
∂Ω

+
(
gwα · n + uα · nκα, ϑ

)
∂Ω
,
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we notice that the choice made for the primal and the dual boundary conditions makes this quantity identically
equal to zero.

To discretize both the primal and the dual problems (30) and (32), we adopt the scheme of Section 4, moving
from a quasi-uniform mesh of Nh = 5536 elements. The time step ∆t is chosen equal to 0.1 while the final time
is T = 18. Finally we identify the goal functional F with the quantity

F(U1) = Fkin, Ω
GH (U1) =

1
2

T∫
0

∫
Ω

|u1|2 dΩ dt,

that is with the kinetic energy of the fluid on the whole domain Q. A tolerance τ = 10−1 is demanded on the
approximating value Fkin, Ω

GH (Uα). This choice is dictated by the value Fkin, Ω
GH (U1) = 5.0411, which is of the

order of unity.
Let us analyze the numerical results. Figure 2 shows the distribution of the areas corresponding to the fine

model (dark zones) and to the coarse one (light zones) at eight different times. In more detail, at each time
the adapted free-surface model (23) is solved on the whole domain Ω, the piecewise constant function α being
identically equal to 1 in correspondence of the dark areas and equal to 0 in the light zones. In particular,
both the breaking of the initial Gaussian hill and the generation of the reflected wave are detected by the error
estimator η̃α.

The percentage of the mesh elements where the fine model is discretized is plotted in Figure 3 (left) as a
function of time. The three maxima are reached at about t = 7.5, 12.5 and 16.5, namely when the reflection of
the wave, massive due to the restricted dimension of the basin, is more intense. Nevertheless, notice that the
mean percentage of the fine triangles is circa 47%. As expected, if a larger domain is considered, the values of
the maxima diminish, the reflection phase being less strong (see Fig. 3 (right), where a domain Ω = (−30, 30)2

is considered along with T = 20).
In Figure 4 the distribution of the local modeling error estimator η̃ j

α,K , basic tool for the adaptive procedure
of Section 5.1, is represented in correspondence with the times t = 8, 12.5 and 16.5. A comparison between the
plots of Figures 2 and 4 associated with the same times, shows that, as expected, the largest values of η̃α are
associated with the areas of the domain where the fine model is solved.

We can also verify the good non-dissipative features of the Crank-Nicolson scheme simply by analyzing the
plot of the mean total water depth hα =

∫
Ω hα dΩ/

∣∣Ω∣∣ as a function of time,
∣∣Ω∣∣ denoting the measure of

the computational domain (see Fig. 5). No dissipation is practically present, the corresponding percentage
reduction being of 0.028%. Moreover, it can be checked that, while the percentage error between the fine total
water depth h1 and the adapted one hα is about 0.001%, the percentage error between h1 and the coarse total
water depth h0 is about 0.1%.

Due to the academic nature of this test case, we use it to make some assessment on the adopted numerical
procedure. We first compare the value of the “original” estimator ηα in (35), derived via the rigorous error
analysis of Section 3.1, together with the result provided by the estimator η̃α defined in (43) in view of the
numerical validation. The two values are very similar, being ηα = −1.3986×10−4 and η̃α = −1.3719×10−4 with
a corresponding percentage error equal about to 1.94%. This result supports the employment of the estimator
η̃α in the numerical validation.

As second goal, we analyze the sensitivity of the error estimator (43) with respect to the time step ∆t. We
compute the estimator η̃α for two different values of ∆t (= 0.1 and 0.05) and by making three different choices
for the tolerance τ (= 10−1, 0.5 × 10−1, 10−2). The corresponding results are summarized in Tables 1 (left and
right), where the values of the corresponding effectivity index, calculated as E.I. = η̃α/

(
F(U1) − F(Uα)

)
, are

also provided.
The values tabulated for η̃α are largely below the prescribed tolerance: three orders of magnitude are gained

with respect to the demanded accuracy τ . This means that the error estimator (43) is reliable but not efficient.
However, since the effectivity index is always around one, the procedure turns out to be almost optimal with
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Figure 2. Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the Gaussian hill test case. Left-right, top-bottom:
t= 1, 5, 8, 12.5, 15, 16.5, 17.7 and 18.

respect to reliability. Moreover, the employment of a smaller time step does not guarantee an actual improvement
of the performances of the adaptive procedure, though an increase of the computational cost is involved.

5.2.2. The channel with an obstacle test case

Let us consider the motion of a solitary wave moving rightward along a straight channel with an obstacle. We
identify the computational domain Ω ⊂ R

2 with a channel 100 units long and 20 units wide, with a cylindrical
pylon centered at (x, y) = (30, 10) and with a radius r = 4. The horizontal sides together with the boundary
of the obstacle are identified with the rigid walls of the channel. The reference water level is chosen equal to 5.
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Figure 3. Time evolution of the percentage of mesh triangles associated with the fine model
for the Gaussian hill test case: Ω = (−20, 20)2 on the left, Ω = (−30, 30)2 on the right.
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Figure 4. Distribution of the local modeling error estimator η̃ j
α,K at the times t = 8 (left),

t = 12.5 (middle) and t = 16.5 (right) for the Gaussian hill test case.
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Figure 5. Time evolution of the mean total water depth hα for the Gaussian hill test case.

Table 1. Sensitivity of the error estimator η̃α with respect to the time step ∆t for the Gaussian
hill test case: ∆t = 0.1 on the left, ∆t = 0.05 on the right.

τ η̃α E.I.

10−1 −1.3719× 10−4 1.05

0.5 × 10−1 −7.9063× 10−5 0.99

10−2 −1.6686× 10−5 1.34

τ η̃α E.I.

10−1 −1.0275× 10−4 1.15

0.5 × 10−1 −5.1425× 10−5 1.11

10−2 −1.4216× 10−5 1.18
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Figure 6. Channel with an obstacle test case: the quasi-uniform computational grid, where
the control area γ is highlighted (on the left); the computational mesh locally refined around
the pylon (on the right).

When the solitary wave strikes the obstacle, it breaks giving rise to a small reflected wave and to a large
recirculation area, just behind the pylon itself [37]. On the contrary, the dual wave moves leftward, similar to
the primal wave rewound in time.

The initial conditions associated with the adapted model (23) are

uα,1(x, y, 0) =
√

11.76
0.2 sech2(

√
0.15(x − 10))

5 + 0.2 sech2(
√

0.15(x− 10))
, uα,2(x, y, 0) = 0,

hα(x, y, 0) = 0.2 sech2(
√

0.15(x− 10)) + 5,

(44)

i.e. the velocity and the elevation profile of a solitary wave centered along the line x = 10 and with height
equal to 0.2. Concerning the boundary conditions, we are strictly bonded by the two following requirements:
the functional space W should be the same for both the primal and the dual problems; all the boundary terms
in (40) and (41) have to be identically equal to zero (see Rem. 3.6).

The most practical choice to satisfy simultaneously these two constraints consists of imposing a slip condition
on the whole boundary ∂Ω, i.e. of handling the channel as a closed basin. This setting can be justified if we
consider a channel, sufficiently long, so that the primal and the reflected wave do not have time enough to
reach the open boundaries of the channel. This does not represent, maybe, the only possible choice but, no
doubt, it is a reasonable compromise to guarantee the two requirements above while allowing for a physically
sound numerical simulation. Thus the spaces V and Z identifying the functional space W in (30) coincide with
the ones adopted for the Gaussian hill test case, the dual problem also being provided with the slip condition
wα · n = 0 on the whole boundary ∂Ω. To deal with a more realistic hydrodynamic configuration, a suitable
extension of the DWR approach involving different functional spaces for the primal and the dual setting is
highly desirable (see Rem. 3.6).

The space-time discretization scheme of Section 4 is used to approximate both the primal and the dual
adapted problems. With this aim, we employ the quasi-uniform grid of Nh = 5482 triangles in Figure 6 (left)
and a time step ∆t = 0.1, T = 17 being the final time. For this test case, we make different choices for the goal
functional F . To assess the actual reliability of the provided a posteriori analysis, we first identify F with a
local (in space) functional. In more detail we select

F(U1) = Fkin, γ
Cyl (U1) =

1
2

T∫
0

∫
γ

|u1|2 dΩ dt,

that is we are interested in controlling the kinetic energy of the fluid in an annular region γ ⊂ Ω, of thickness 2,
around the obstacle (see the highlighted area in Fig. 6, on the left). The tolerance τ is set to 10−1, the value of
Fkin, γ

Cyl (U1) being 7.7048× 10−1.
The corresponding distribution of the fine and of the coarse areas at the times t = 4.8, 8, 9.4, 11, 15 and 17

is provided in Figure 7. The fine model is activated essentially in the zones surrounding the obstacle. During
the first five times, the forward solitary wave together with a small backward wave are detected by the error
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Figure 7. Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the channel with an obstacle test case and for the choices
F = Fkin, γ

Cyl and ∆t = 0.1. Left-right, top-bottom: t = 4.8, 8, 9.4, 11, 15 and 17.
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Figure 8. Time evolution of the percentage of mesh triangles associated with the fine model
for the channel with an obstacle test case and for the choice F = Fkin, γ

Cyl : ∆t = 0.1 on the left,
∆t = 0.05 on the right.

estimator η̃α as “carriers” of information to the target functional Fkin, γ
Cyl . Then, for a small time interval, also

the reflected wave, caused by the interaction of the primal wave with the pylon, is recognized by η̃α (see the
dark arch shaped area in front of the obstacle at t = 11). Finally, after t = 15, i.e. when the forward wave
is sufficiently far from the pylon, a very reduced portion of the domain, confined around the obstacle, is still
associated with the fine model. We remark that the first backward wave is not yielded by any interaction of
the primal wave with the pylon (it would be present also without the obstacle!). The initial datum (44) is
responsible for this feature, as allowing for both a forward and a backward wave.

In Figure 8 (left) we provide the time evolution of the percentage of the mesh elements where the fine model is
solved: even when the global maximum is reached (during the interaction of the solitary wave with the obstacle),
at most the 20% of triangles is associated with the fine model. In spite of this small number of fine elements,
the approximation Fkin, γ

Cyl (Uα) = 7.7053 × 10−1 provides us with a value very close to the corresponding fine
one Fkin, γ

Cyl (U1).
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Figure 10. Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the channel with an obstacle test case and for the choices
F = Fkin, γ

Cyl and ∆t = 0.05. Left-right, top-bottom: t = 4.8, 8, 9.4, 11, 15 and 17.

The time evolution of the kinetic energy associated with the fine model together with the corresponding
adapted and coarse quantities are plotted in Figure 9 (left). The solid line is adopted for the fine values while
the dashed line displays the coarse kinetic energy. The plot associated with the adapted model is completely
overlapped with the fine one. As expected, the adapted model provides us with an approximation more reliable
with respect to what predicted by the coarse model.

The non-dissipativity of the Crank-Nicolson scheme is supported by the plot of the mean total water depth
hα in Figure 9 (right), the percentage reduction being of 0.01%.

We exploit this test case to assess the sensitivity of the error estimator in (43) with respect to either the time
step ∆t or the computational mesh. First we analyze the behaviour of the estimator η̃α by using two different
time steps (∆t = 0.1 and ∆t = 0.05), the computational grid, the target functional and the tolerance being
the same as above. Figure 10 provides us with the distribution of the fine and coarse areas associated with the
choice ∆t = 0.05, at the same times collected in Figure 7 for ∆t = 0.1.
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Table 2. Sensitivity of the error estimator η̃α with respect to the time step ∆t for the channel
with an obstacle test case and for the choice F = Fkin, γ

Cyl .

∆t = 0.1 ∆t = 0.05
η̃α −4.0699× 10−5 −5.9273× 10−6

F(U1) 7.7048× 10−1 7.7889× 10−1

F(Uα) 7.7053× 10−1 7.7890× 10−1

E.I. 0.94 0.57

Table 3. Sensitivity of the error estimator η̃α with respect to the choice of the computational
mesh for the channel with an obstacle test case and for the choice F = Fkin, γ

Cyl : quasi-uniform
grid (on the left), locally refined grid (on the right).

τ F(Uα) η̃α E.I.
10−1 7.7053× 10−1 −4.0699× 10−5 0.94

0.5 × 10−1 7.7051× 10−1 −1.4195× 10−5 0.65
10−2 7.7048× 10−1 1.1396× 10−6 0.46

τ F(Uα) η̃α E.I.
10−1 7.5468× 10−1 −7.5231× 10−6 2.53

0.5 × 10−1 7.5467× 10−1 4.0702× 10−6 2.08
10−2 7.5466× 10−1 −1.5949× 10−6 0.88

The distribution of the triangles associated with the two models is very similar for the two time steps, even if
a thickening, almost uniform, of the fine areas characterizes the choice ∆t = 0.05. The same trend is derivable by
comparing the time evolution of the percentage of the fine elements (see Fig. 8, right). The two plots essentially
differ by a small shift factor, the mean percentage being slightly larger in the case ∆t = 0.05. As already
inferred from the Gaussian hill test case, the choice of a small time step seems a non-convenient strategy. The
increase of the computational effort associated with a smaller ∆t does not correspond to a reduced number of
fine triangles.

The values of the estimator η̃α, of the target functional evaluated on the fine and on the adapted solution
Fkin, γ

Cyl (U1), Fkin, γ
Cyl (Uα) and of the corresponding effectivity index E.I. are gathered in Table 2 for both the

time steps. Notice that the different time step yields a change on the third significant digit of the goal value
Fkin, γ

Cyl (U1). The reliability and the non-efficiency of the estimator are confirmed by the values of η̃α itself. As
for the Gaussian hill test case we can again state that a smaller time step actually does not improve significantly
the performances of our adaptive procedure.

To assess the effects of the computational mesh on the proposed modeling error analysis, we compute the
error estimator η̃α together with the approximate value Fkin, γ

Cyl (Uα) and the corresponding effectivity index,
moving from two different grids: the initial quasi-uniform mesh on the left of Figure 6 and a grid, of Nh = 7185
elements, refined only locally, i.e. in the region around the pylon where the kinetic energy has to be controlled
(see Fig. 6 on the right). Three different choices are made for the tolerance τ , namely τ = 10−1, 0.5× 10−1 and
10−2, while the values ∆t = 0.1 and T = 17 are preserved for the time step and the final time, respectively.
The reference goal value for the locally refined mesh is Fkin, γ

Cyl (U1) = 7.5466 × 10−1.
The corresponding results are collected in Tables 3. The non-efficiency of the error estimator η̃α is still more

evident in the presence of the locally refined grid. Also the values of the effectivity index get worse. A first
explanation can be identified in neglecting the contribution of the discretization error. On the other hand, as
already pointed out, it is a well-known phenomenon that waves suffer spurious reflections in correspondence of
discontinuities of the mesh-size (see, for example, [5, 6, 20]).

To stress the dependence of the “area-to-model” correspondence on the selected goal functional, we compare
the distribution of the fine and coarse regions identified by three different functionals F at the same times.
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Table 4. Main quantities characterizing the model adaption driven by the three target func-
tionals (45)–(47) for the channel with an obstacle test case.

F = Fkin, Ω
Cyl F = Fdrag, ∂P

Cyl F = Fkin, T
Cyl

η̃α −6.7385× 10−5 2.5580× 10−5 −5.4908× 10−5

F(U1) 7.4769 8.0522 3.7737× 10−1

F(Uα) 7.4770 8.0517 3.7741× 10−1

E.I. 1.33 0.47 1.48

In more detail, we select as goal quantity a global value

F(U1) = Fkin, Ω
Cyl (U1) =

1
2

T∫
0

∫
Ω

|u1|2 dΩ dt, (45)

a value localized on a portion of the boundary ∂Ω

F(U1) = Fdrag, ∂P
Cyl (U1) =

T∫
0

∫
∂P

g h n1 dγ dt, (46)

∂P denoting the contour of the pylon, and a quantity involving a point-wise value in time

F(U1) = Fkin, T
Cyl (U1) =

1
2

∫
Ω

|u1(x, T )|2 dΩ. (47)

In the first case we aim to control the kinetic energy of the fluid on the whole space-time domain; the choice (46)
leads to control the so-called drag, that is the resultant force on the surface of the obstacle acting in the
x-direction; the functional in (47) provides us with the value of the kinetic energy on the whole domain at
the final time T . While the global functional (45) is a rather standard benchmark in view of a goal oriented
analysis, the choice of a local (in space and/or time) functional represents, no doubt, the most challenging aim.
Notice that, for numerical purposes, the functional Fdrag, ∂P

Cyl is computed by rewriting it as an integral over Ω
via a suitable Poisson problem (see, e.g., [17]).

For all the three functionals the tolerance is chosen equal to 10−1. The computational grid is represented
by the uniform one in Figure 6, the time step is ∆t = 0.1 and the final time is T = 17. Table 4 collects the
associated values of the estimator η̃α, of the target quantities F(U1) and F(Uα), and of the associated effectivity
index, while in Figures 11–13 the corresponding distributions of the fine and of the coarse areas are shown.

The non-efficiency of the error estimator is again evident from the values of η̃α. On the other hand, the
approximations F(Uα), obtained via the adapted solutions Uα, are very close to the corresponding target
quantities F(U1) in spite of a small value for the effectivity index associated with the functional Fdrag, ∂P

Cyl .
Notice that the control of an integral over a curve as well as of a pointwise value is never an easy task and that
our a posteriori analysis completely neglects the discretization error.

Concerning Figures 11–13, as expected the distribution of the mesh elements associated with the fine or
with the coarse models changes according to the goal functional we are interested in. In more detail, both the
controls of the kinetic energy detect the forward and the two backward waves as leading information to the
functionals Fkin, Ω

Cyl and Fkin, T
Cyl , even if they are differently “tuned” (compare the thickness of the corresponding

dark areas). The major difference is related to the time t = 17. The fine area is wider for the pointwise
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Figure 11. Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the channel with an obstacle test case and for the choice
F = Fkin, Ω

Cyl . Left-right, top-bottom: t = 7.6, 10.7, 15.6 and 17.
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Figure 12. Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the channel with an obstacle test case and for the choice
F = Fdrag, ∂P

Cyl . Left-right, top-bottom: t = 7.6, 10.7, 15.6 and 17.
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Figure 13. Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the channel with an obstacle test case and for the choice
F = Fkin, T

Cyl . Left-right, top-bottom: t = 7.6, 10.7, 15.6 and 17.

functional Fkin, T
Cyl . This is probably related to the cancellation of the contribution of certain space-time cells

implied by the integration over the whole space-time domain. On the contrary, the complex configuration where
the two reflected waves coexist with the primal one and with other smaller waves reflected by the horizontal
boundaries of the channel is wholly captured by the functional Fkin, T

Cyl (compare the distribution of the fine
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Figure 14. Distribution of the local “fine” kinetic energy at time T for the channel with an
obstacle test case.
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Figure 15. Time evolution of the percentage of mesh elements associated with the fine model
for the channel with an obstacle test case: F = Fkin, Ω

Cyl (left), F = Fdrag, ∂P
Cyl (middle), F =

Fkin, T
Cyl (right).

areas in Figure 13, at time t = 17, with the plot of the local “fine” kinetic energy in Figure 14 associated with
the final time T . The colormap is modified on purpose to emphasize the details of the wave dynamics).

The displacement of the fine and of the coarse areas dictated by the target functional Fdrag, ∂P
Cyl is rather

different. The forward and the first backward waves are initially identified by η̃α, even if the distribution of
the fine triangles is quite scattered. After the primal wave strikes the pylon, all the region around the obstacle
is uniformly marked for the fine model, so that neither the primal wave nor the reflected one are plainly
distinguishable. When the interaction of the forward wave with the pylon reduces (approximately at t = 15.5),
the fine region becomes smaller and smaller so that, at the final time T , very few elements are associated with
model (24).

Overall, the fine problem is never solved on more than the 50% of the computational domain for all the three
functionals (45)–(47) (see Fig. 15).

5.2.3. The river bifurcation test case

As last benchmark, let us consider the propagation of a solitary wave along a river bifurcation. The reference
computational domain Ω is sketched in Figure 16. It represents a non-symmetric bifurcation with a length of
100 and a width, at the inflow, equal to 20. The curved horizontal boundaries are described by the equations

y = 5
(

1 +
(x− 20

50

)2 (
3 − 2 |x− 20|

50

))
+ 2 (bottom boundary),

y = 5
(
− 1 −

(x− 20
50

)2 (
3 − 2 |x− 20|

50

))
+ 2 (top boundary),
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Figure 16. The river bifurcation test case: the quasi-uniform computational grid.
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Figure 17. Distribution of the areas associated with the fine model (dark zones) and with the
coarse model (light zones) for the river bifurcation test case and for the choice F = Fkin, Ω

Bif .
Left-right, top-bottom: t = 6, 9.1, 12.9 and 15.8.

while the bifurcation is identified by a semi-ellipse centered at (20, 11.25) and with semi-axes equal to 2.5 and
1.25 along the x and y direction, respectively. The non-symmetric shape of the bifurcation provides us with an
actual two-dimensional phenomenon, unlike the channel with an obstacle test case. The reference water level is
assumed equal to 5.

When the solitary wave reaches the bifurcation, it splits into two waves of different height, while a reflected
wave moves backward. Nevertheless the interaction of the forward wave with the bifurcation is less strong than
the one with the obstacle, no recirculation occurring in such a case. On the contrary, the dual wave consists, at
the beginning, of two leftward waves of different height, merging each other after the bifurcation.

Both the initial and the boundary conditions are chosen coinciding with the ones adopted for the previous
test case. The discretization of the primal and of the dual problems (30) and (32) is performed via the scheme
proposed in Section 4, moving from the computational grid in Figure 16, consisting of Nh = 4105 elements, and
from a time step ∆t = 0.1, T = 17 being the final time.

The target quantity F is first identified with the value of the kinetic energy on the whole space-time do-
main, i.e.

F(U1) = Fkin, Ω
Bif (U1) =

1
2

T∫
0

∫
Ω

|u1|2 dΩ dt.

The tolerance τ is set to 10−1.
Figure 17 provides us with the distribution of the areas where the fine and the coarse models are solved in

correspondence of the times t = 6, 9.1, 12.9 and 15.8. The results are rather similar to the ones associated with
the channel with the obstacle test case for the same choice of the goal functional F . Till about t = 7, the primal
wave and the first backward one are highlighted by the estimator η̃α. Then, while the forward wave is splitting
along the branches of the bifurcation, the reflected wave begins moving backward (see the two forward and the
two backward waves at t = 12.9). Finally, after t = 14.5, the modeling estimator slowly loses the information
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Figure 18. Time evolution of the percentage of mesh elements associated with the fine model
for the river bifurcation test case: F = Fkin, Ω

Bif (left), F = Fkin, T
Bif (right).
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Figure 19. Time evolution of the mean total water depth hα for the river bifurcation test
case and for the choice F = Fkin, Ω

Bif .

provided by the backward waves, the waves along the branches remaining the only ones associated with the fine
model.

The trend of the percentage of mesh elements associated with the fine model (24) is provided in Figure 18
(left) as a function of time. Notice that the fine problem is never solved on more than the 30% of triangles.

The non-dissipative property of the Crank-Nicolson scheme is corroborated by the trend of the mean total
water depth hα (see Fig. 19). The percentage reduction is actually of 0.006% only.

To assess the sensitivity of η̃α with respect to the tolerance τ , we repeat the same simulation by making
different requirements on τ , chosen equal to 2 × 10−1, 10−1 and 0.5 × 10−1, respectively. These tolerances
are selected taking into account the fine value Fkin, Ω

Bif (U1) = 4.3192, which is of the order of unity. The
corresponding values of the estimator η̃α, of the target functional evaluated on the adapted model and of the
associated effectivity index are collected in Table 5. The quantities Fkin, Ω

Bif (Uα) represent a good approximation
for the target value Fkin, Ω

Bif (U1) in spite of the non-efficiency of the modeling estimator (43) (again, about three
orders of magnitude separate η̃α and τ). On the other hand, the optimal values obtained for the effectivity
index E.I. underline the reliability of the proposed error analysis.

To test the reliability of the estimator η̃α with respect to the control of local quantities and in the presence
of an actual 2D hydrodynamic configuration, we identify the target functional F with the point-wise value in
time

F(U1) = Fkin, T
Bif (U1) =

1
2

∫
Ω

|u1(x, T )|2 dΩ.
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Table 5. Sensitivity of the error estimator η̃α with respect to the tolerance τ for the river
bifurcation test case and for the choice F = Fkin, Ω

Bif .

τ F(Uα) η̃α E.I.
2 × 10−1 4.3194 −1.6031× 10−4 1.02

10−1 4.3193 −8.0588× 10−5 0.95
0.5 × 10−1 4.3192 −2.0127× 10−5 1.07
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Figure 20. Distribution of the areas associated with the fine model (dark zones) and with
the coarse model (light zones) for the river bifurcation test case for the choice F = Fkin, T

Bif .
Left-right, top-bottom: t = 6, 9.1, 12.9 and 15.8.

The choices made above for the tolerance τ , the computational grid, the time step ∆t and the final time T are
preserved.

The value predicted by the fine model for the goal quantity is Fkin, T
Bif (U1) = 2.4317×10−1, while the adapted

model yields the approximation Fkin, T
Bif (Uα) = 2.4333 × 10−1. The estimator (43) still turns out to be reliable

but non-efficient, η̃α and E.I. being equal to −1.4851×10−4 and 0.92, respectively. Concerning the distribution
of the fine and coarse areas provided in Figure 20 (at the same times as Fig. 17), we essentially remark that
now both the backward waves are weakly detected by the modeling estimator. This likely finds a justification
into the wave dynamics characterizing the river bifurcation, simpler compared with the one of the channel with
an obstacle. For the local functional Fkin, T

Bif , the percentage of triangles associated with the fine model (24) is
never higher than 15% (see Fig. 18, right).

Remark 5.2. A heuristic check of the regularity assumptions made to deduce the modeling error estimator (35)
from the exact relation (34) is performed in correspondence of all the three hydrodynamic configurations consid-
ered above. In more detail, in Figure 21 we compare the terms (I) and (II) in (34), the following common choice
for the data being performed: F = Fkin, Ω, τ = 10−1, ∆t = 0.1, T = 17. An order of magnitude separates the
two terms in the worst case, (I) being greater than (II) by two-three orders through the majority of time. We
also remark that in all the test case considered the remainder term R in (21) is identically zero.

6. A look behind. . . and a look ahead

Moving from a hierarchy of Saint-Venant like models sharing the same functional space and boundary con-
ditions, we have provided a reliable tool to estimate the target quantity F(ufine), ufine being the solution of
the most complex model of the hierarchy and F the output functional of interest (e.g., kinetic energy, drag, a
pointwise value). The idea is to evaluate F(ufine) within a prescribed accuracy by means of the computable
quantity F(uadapted), i.e. via the so-called adapted solution which confines the approximation of the most
complex model only to the areas of the domain largely influencing the goal quantity.
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Figure 21. Comparison between the terms (I) and (II) in (34) for the Gaussian hill (left), the
channel with an obstacle (middle) and the river bifurcation (right) test case as a function of
time.

This aim has been achieved via a suitable a posteriori modeling error analysis developed in the DWR frame-
work. In more detail, we have extended the approach in [9] to the (time-dependent) free-surface flows setting.
Nevertheless, while in [9] only two models, the one at hand and the so-called reduced one, are considered, in our
analysis, thanks to the introduction of a suitable piece-wise constant function α, we deal with the whole hierar-
chy of models, ranging from the fine to the coarse one. Moreover while in [9] the goal quantity is approximated
by the reduced (coarse) solution, our approach exploits the adapted model.

A first issue associated with the unsteady setting is the time discretization of the dual problem, cumbersome
as the time scale is reversed. This unavoidably demands for a memory requirement, the primal solution being
actually stored at each time as providing the coefficients to the dual problem. This drawback remains confined
till we limit our analysis to simple 2D hydrodynamic configurations, as in this paper. On the other hand, also
the high computational cost of the whole adaptive procedure proposed in Section 5.1 can be pointed out as a
limit of the proposed analysis. However, we underline that, when one is interested in approximating a functional
of the solution, it sounds compulsory to resort to a suitable dual problem. Notice that the dual problem is
always linear, namely cheaper to be approximated with respect to the primal one.

Several issues are left to be investigated in future works. First, we aim to move to the coupling of more than
two and more heterogeneous models in view of the simulation of realistic hydrodynamic configurations [24].
In this respect, this paper is meant to found the bases for a more flexible and general analysis. Second, the
matter of the memory storage is, no doubt, an issue in view of more complex (and possibly 3D) simulations.
The check-pointing technique suggested in [19] looks as a reasonable remedy. Third, the choice of the boundary
conditions for the dual problem represents another critical and scarcely addressed matter, especially in the
presence of hyperbolic problems. This certainly deserves and will be subject of a thorough investigation [24].
Fourth, a clearer relationship between modeling and mesh adaptivity would be desirable too. Finally, the idea
of an a posteriori modeling estimator can be undoubtly made more incisive when dimensionally heterogeneous
models are coupled. A first attempt in such direction has been provided in [4] and will be object of a forthcoming
paper [12].
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me to improve the paper.



498 S. PEROTTO

Appendix – Proof of Proposition 2.3

Let us consider the error on the goal quantity F(u1)−F(uα). Thanks to the relations (17) and (15) and by
using the definition (16) of δL, we can rewrite it as

F(u1) −F(uα) = L(x1) − Lα(xα) = L(x1) − L(xα) + δL(xα)

= −d(uα)((1 − α)zα) +

1∫
0

L′(xα + λe)(e) dλ.
(48)

The trapezoidal rule applied to the integral in (48) yields

1∫
0

L′(xα + λe)(e) dλ =
1
2

{
L′(x1)(e) + L′(xα)(e)

}
+R,

R being the remainder term defined in (21). Now, moving from equalities (5) and (15), and by exploiting the
relation L′

α(xα)(y) = 0, for any y ∈ X , we get

L′(x1)(e) + L′(xα)(e) = L′(xα)(e) = L′
α(xα)(e) + δL′(xα)(e)

= δL′(xα)(e) = −d(uα)((1 − α)ez) − d′(uα)(eu, (1 − α)zα),

from which result (20) follows, after introducing the definitions (18) and (19) for the modeling residuals
ρM (uα)(zα), ρM (uα)(ez) and ρM (uα)(eu, zα). �
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