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Abstract. We consider models based on conservation laws. For the optimization of
such systems, a sensitivity analysis is essential to determine how changes in the decision
variables influence the objective function. Here we study the sensitivity with respect
to the initial data of objective functions that depend upon the solution of Riemann
problems with piecewise linear flux functions. We present representations for the one–
sided directional derivatives of the objective functions. The results can be used in the
numerical method called Front-Tracking.
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1. Introduction

Conservation laws play an important role in physics and engineering. They appear for example
as a model of traffic flow [1, 8, 12, 17], in two phase flow problems [16], in water flows [6, 7] and
gas dynamics [4, 16, 18]. Usually, certain system parameters can be controlled and therefore, the
necessity arises to deal with problems of optimal control. In general the optimal control problem
is driven by nonlinear conservation laws and to obtain gradient information we need a sensitivity
calculus that incorporates those nonlinear hyperbolic equations.

We consider a sensitivity calculus for scalar nonlinear hyperbolic conservation laws with piece-
wise linear flux and piecewise constant initial data. This setting was introduced by Dafermos in [3].
Later different authors extended the introduced ideas and developed a scheme, called front- [13]
or wave-tracking [2] which is at one hand an analytical tool for proving existence and uniqueness
of solutions, and at the other hand an efficient numerical method. For further references, see
[2, 11, 13, 14].

For effective numerical computations we derive a sensitivity calculus for nonlinear hyperbolic
equations in the front-tracking setting. The numerical method computes the state and a con-
sistent gradient. In terms of the Front-Tracking method, the additional effort for the gradient
computation is neglectable. In a forthcoming publication we will present numerical examples us-
ing the theoretical results developed here. Also the theoretical results are valid for non-convex
and non-concave flux functions.

Related work on sensitivity analysis for networked hyperbolic systems within the framework
of continuously differentiable solutions has been given in [5]. A sensitivity analysis for nonlinear
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hyperbolic conservation laws with source term has been given by Ulbrich in [19, 20]. We perform
this analysis in the framework of front-tracking, since this yields explicit representations of the
derivatives that can be used numerically.

In Section 2 we recall the existence result for a scalar conservation law with piecewise linear flux
function due to Dafermos [3], since the subsequent analysis is based on this result. In Section 3 we
introduce the optimization problem under consideration and state the main result of the discussion,
namely, the cost functional allows for a first-order expansion. In Section 4 we show how the main
result of the previous section can be incorporated in the Front-Tracking algorithm for numerically
solving the optimization problem, see also the example in Section 9. The proof of the main result is
split among Sections 5 to 8. Therein, Section 5 is devoted to estimate the change in breakpoints of
the flux function for sufficiently small changes in the initial value. Section 6 contains the first-order
expansion of piecewise linear functions. This results are used to proof the first-order expansion
in the state variable in Section 7. Finally, in Section 8 we combine the previous results and proof
the main result. In Section 9 we apply the derived result to two simple examples related to traffic
flow and Burger’s equation, before we conclude our presentation with a summary and an outlook
in Section 10.

2. Cauchy problem

We consider Cauchy problems on the real line. Due to Dafermos [3] we have

Lemma 2.1. Assume f is piecewise linear, Lipschitz continuous on [m, M ] and

u0(x) =
{

ul x ≤ 0
ur x > 0 (1)

where ul, ur ∈ [m, M ] are constants. Then there exists an entropic weak solution of

yt(x, t) + f(y(x, t))x = 0 (2)

and

y(x, 0) = u0(x) (3)

which consists of a finite number of constants states separated by shocks centered at the origin.

We consider entropy weak solutions in the sense of Kruzkov, see [15]. An introduction to this
type of solutions is given in [13].

The solution can be given explicitly by

y(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ul, −∞ < x/t < f(y1)−f(ul)
y1−ul

,

y1, f(y1)−f(ul)
y1−ul

< x/t < f(y2)−f(y1)
y2−y1 ,

...
yk, f(yk)−f(yk−1)

yk−yk−1 < x/t < f(ur)−f(yk)
ur−yk ,

ur,
f(ur)−f(yk)

ur−yk < x/t < ∞

(4)

where the points yk are determined as follows. In the case ul < ur the boundary of the convex
hull of the set

{(y, v) : ul ≤ y ≤ ur, v ≥ f(y)} (5)

is a polygonal line with vertices at (ul, f(ul)), (y1, f(y1)), . . . , (yk, f(yk)), (ur, f(ur)) for ul < y1 <
· · · < yk < ur. Herein (yi, f(yi)), i = 1, . . . , k are also vertices of the graph of f. The construction
is similar for the case ur < ul.
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Let h = min{|yi+1 − yi| : i = 1, . . . , k − 1}, δ = (δ1, δ2) with ‖δ‖∞ < h. We consider disturbed
initial data

uδ
0(x) =

{
ul + δ1 x ≤ 0
ur + δ2 x > 0 (6)

and the weak admissible solution yδ to (2), see Section 4 for a description of the Front-Tracking
algorithm based on the previous results.

3. Main result: sensitivity calculus for the objective function

We introduce the general optimal control problems for our discussion. We assume the objective
functions of the following form, i.e., terminal measurement on a (sub-)set of the real line. Let
x1 < 0 < x2 and T > 0 be given. Let g be a continuously differentiable real-valued function on R

with compact support. Define

I(u0) =
∫ x2

x1

g(y(x, T )) dx (7)

where y is the solution of the Cauchy problem (2),(3). We derive a sensitivity calculus for I in
Theorem 3.2 below. The corresponding optimization problem is

min
u0

I(u0). (8)

For the solution of (8), a sensitivity calculus for the objective function I is essential. In general
only the one-sided directional derivatives of I exist.

Definition 3.1. For δ ∈ R
2 with

m < ul + δ1 < ur + δ2 < M

let f δ
u denote the lower convex envelope of f in the interval [ul + δ1, ur + δ2]. In particular, f0

u is
the lower convex envelope of f in the interval [ul, ur].

Theorem 3.2. Let I be as in (7). Let u0 be as in (1) and y0(x, t) be the solution to the Cauchy
problem (2),(3). Let uδ

0 be as in (6).
Assume that ul, ur ∈ (m, M), ul < ur. Assume that k ≥ 1.
For δ ∈ R

2, define
h(δ) = I(uδ

0).

Then the following expansion holds:

I(uδ
0) = I(u0) + δ1∂δ1±h(0) + δ2∂δ2±h(0) + O(‖δ‖2) (9)

where the right-hand side derivatives ∂δ1+, ∂δ2+ or the left-hand side derivatives ∂δ1−, ∂δ2− are
chosen according to the sign of δ1, δ2 respectively. The one-sided partial derivatives of h are given
below.

Let

Dl =
f(y1) − f(ul)

y1 − ul
, Dr =

f(ur) − f(yk)
ur − yk

·
Let χ[x1,x2) denote the characteristic function of the interval [x1, x2) that is

χ[x1,x2)(x) =
{

0 if x �∈ [x1, x2)
1 if x ∈ [x1, x2).

(10)

For an interval [a, b], let µ([a, b]) = b − a denote the length of the interval.
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Computation of ∂δ1−h(0).
If Dl − f ′

−(ul) ≤ 0 holds, then

∂δ1−h(0) = g′(ul) µ([x1, x2] ∩ (−∞, TDl]) − g(y1) − g(ul)
y1 − ul

T [Dl − f ′
−(ul)] χ[x1,x2)(TDl). (11)

If Dl − f ′
−(ul) > 0 then

∂δ1−h(0) = g′(ul) µ([x1, x2] ∩ (−∞, T f ′
−(ul)]). (12)

Computation of ∂δ1+h(0).
If {Dl = f ′

+(ul) or for all u ∈ (ul, y1) : f(u) > f0
u(u)} holds, then

∂δ1+h(0) = g′(ul) µ([x1, x2] ∩ (−∞, TDl]) − g(y1) − g(ul)
y1 − ul

T [Dl − f ′
+(ul)] χ(x1,x2](TDl). (13)

If {Dl �= f ′
+(ul) and there exists u ∈ (ul, y1) : f(u) = f0

u(u)},
let u = inf{u ∈ (ul, y1) : f(u) = f0

u(u)}. Then

∂δ1+h(0) = g′(ul) µ([x1, x2] ∩ (−∞, TDl]) − g(u) − g(ul)
u − ul

T [Dl − f ′
+(ul)] χ(x1,x2](TDl). (14)

Computation of ∂δ2−h(0).
If {Dr = f ′

−(ur) or for all u ∈ (yk, ur) : f(u) > f0
u(u)} holds, then

∂δ2−h(0) = g′(ur)µ([x1, x2] ∩ [TDr,∞)) +
g(yk) − g(ur)

yk − ur
T [Dr − f ′

−(ur)]χ[x1,x2)(TDr). (15)

If {Dr �= f ′−(ur) and there exists u ∈ (yk, ur) : f(u) = f0
u(u)},

let u = sup{u ∈ (yk, ur) : f(u) = f0
u(u)}. Then

∂δ2−h(0) = g′(ur)µ([x1, x2] ∩ [TDr,∞)) +
g(u) − g(ur)

u − ur
T [Dr − f ′

−(ur)]χ[x1,x2)(TDr). (16)

Computation of ∂δ2+h(0).
If f ′

+(ur) ≤ Dr holds, then

∂δ2+h(0) = g′(ur) µ([x1, x2] ∩ [TDr,∞)) +
g(ur) − g(yk)

ur − yk
T [Dr − f ′

+(ur)] χ(x1,x2](TDr). (17)

If f ′
+(ur) > Dr then

∂δ2+h(0) = g′(ur) µ([x1, x2] ∩ [Tf ′
+(ur),∞)). (18)

Remark 3.3. Theorem 3.2 holds true even for a non-convex objective function. In the case k = 0
the assertion of the theorem is true, once we replace yk = ul and y1 = ur at the appropriate places.

Although our objective function is of integral type, in the derivative integrals do not appear
explicitly. However, the terms where measures µ appear can obviously be interpreted as integrals.
This is not the case for the additional shift-terms where the characteristic functions and the shock
speeds appear.
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4. Front-Tracking for the Cauchy problem

The main result is based on the Front-Tracking algorithm for solving conservation
laws. A detailed description of this method with analysis of convergence rates and dis-
cussion of properties can be found e.g. in [2, 3, 13] and in particular in publications
of the Norwegian school [10, 11, 14]. For convenience we recall the Front-Tracking
method as presented in Chapter 2 of [13] (see also the internet page of K.-A. Lie:
http://www.math.ntnu.no/∼andreas/fronttrack/ftrack/implement.html): Given a scalar one-
dimensional conservation law as in (2) and initial data u0(x) piecewise constant and the flux
function y → f(y) being continuous, piecewise linear (as in the assertion of Lem. 2.1). Assume
that f(y) has breakpoints {yi}, i = 1, 2, . . . and that u0 takes values in the set {yi}. Then, the
Front-Tracking algorithm can be stated as follows:

WHILE T < ∞
(1) Solve Riemann problems and compute possible collisions between fronts;
(2) T = first.collision.time;
(3) remove colliding fronts;
(4) solve corresponding Riemann problem;
(5) insert new fronts;
(6) compute possible new collisions;
(7) T = next.collision.time;

END

Some remarks on the scheme are in order. First, the scheme is grid-free and only the traveling
fronts have to be tracked throughout the simulation. Second, the scheme is first-order only.
Third, at each time t the solution y(x, t) consists of finite number of traveling discontinuities.
Last, comparing with the result on sensitivity, we see that the sensitivities for cost functional
as given by (7) can be computed from the Front-Tracking approximation: indeed, consider the
equations (11)–(16) for ∂δ±

1,2
h(0). Therein, only the objective function, the approximate derivative

Dl,rf and the one-sided derivatives f ′± appear. All the values are known at each time t > 0
for the piecewise constant solution y(x, t) of the Front-Tracking procedure. Hence, there are no
additional equations to solve for computing sensitivities beyond the standard Front-Tracking code.
In particular, this sensitivity calculus is then also grid-free.

5. Convex envelope of piecewise linear functions

For our analysis, we need a sensitivity Lemma about the behavior of the lower convex envelope
of piecewise linear functions if the interval where the convex envelope is changed. It turns out
that if the changes of the boundary points of the interval are small enough, the resulting changes
in the convex hull are easy to describe: first, changes on the left-hand side are independent of
changes on the right-hand side. Moreover, on each side either the number of breakpoints remains
constant (in this case the first breakpoint is moved), or one additional breakpoint appears. As a
breakpoint of a function f we understand a vertex of the lower convex envelope of f. To be more
precise, we define:

Definition 5.1. Let f : R → [m, M ] be a given piecewise linear function.
u ∈ R is called a breakpoint of f , if (u, f(u)) is a vertex of the lower convex envelope of f.

Lemma 5.2. Let real numbers m, M be given such that m < M . Let ul, ur ∈ (m, M) be given
such that ul < ur. Consider a piecewise linear function f that is defined on [m, M ].

Then f δ
u is piecewise linear and the set of breakpoints of f δ

u is contained in the set of breakpoints
of f . Assume that f0

u has at least one breakpoint in (ul, ur). Let y1 denote the smallest breakpoint
of f0

u that is larger than ul. Let yk denote the largest breakpoint of f0
u that is smaller than ur.

If |δ1|+|δ2| is sufficiently small, then between y1 and yk the function f δ
u has the same breakpoints

as f0
u.
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Figure 1. Example for the case δ1 < 0. Top part corresponds to the case where
condition (19) is satisfied. Bottom part shows a case where condition (19) is
violated and where we obtain an additional breakpoint.

Case: The first breakpoint is moved. If

δ1 < 0 and f ′
−(ul) ≥ (f0

u)′+(ul), (19)

then ul+δ1 is the only breakpoint of f δ
u that is smaller than y1. This is also the case if δ1 > 0 and

{f ′
+(ul) = (f0

u)′+(ul) or for all u ∈ (ul, y1) we have f(u) > f0
u(u)}. (20)

Case: Additional breakpoint in (−∞, y1]. Otherwise f δ
u has two breakpoints ul + δ1, u that

are smaller than y1. If δ1 < 0, u = ul. If δ1 > 0, the point u is the smallest breakpoint of f in
(ul, y1) such that on [u, y1] we have f0

u = f .

Case: The last breakpoint is moved. If

δ2 > 0 and f ′
+(ur) ≤ (f0

u)′−(ur), (21)

then ur + δ2 is the only breakpoint of f δ
u that is larger than yk. This is also the case if δ2 < 0 and

{f ′
−(ur) = (f0

u)′−(ur) or for all u ∈ (yk, ur) we have f(u) > f0
u(u)}. (22)

Case: Additional breakpoint in [yk,∞). Otherwise f δ
u has two breakpoints u, ur + δ2 that are

larger than yk. If δ2 > 0, u = ur. If δ2 < 0, the point u is the largest breakpoint of f in (yk, ur)
such that on [yk, ur] we have f0

u = f .

Before we start with the proof of the Lemma we provide two pictures, that should motivate
the discussion below. The notation in Figures 1 and 2 are as in the above lemma.

Proof. The epigraph of f δ
u is the convex hull of the epigraph of f . Since f is piecewise linear, the

convex hull of the epigraph of f has a finite number of vertices. These vertices are breakpoints of
f . This implies that f δ

u is also piecewise linear and the set of breakpoints of f δ
u is contained in the

set of breakpoints of f .
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Figure 2. Example for the case δ1 > 0. Top part of the figure shows a case where
(20) holds and the bottom part gives an example for a case where we obtain an
additional breakpoint ū of f.

Choose |δ1| > 0 so small that f is linear between ul and ul + δ1. Choose |δ2| > 0 so small that
f is linear between ur and ur + δ2.

We have
f(y1) − f(ul)

y1 − ul
= (f0

u)′+(ul) = (f0
u)′−(y1) < (f0

u)′+(y1).

Thus we can choose |δ1| so small that we have

f(y1) − f(ul + δ1)
y1 − ul − δ1

< (f0
u)′+(y1).

We have
f(ur) − f(yk)

ur − yk
= (f0

u)′−(ur) = (f0
u)′+(yk) > (f0

u)′−(yk).

Thus we can choose |δ2| so small that we have

f(ur + δ2) − f(yk)
ur + δ2 − yk

> (f0
u)′−(yk).

Since (f0
u)′+(ul) < (f0

u)′−(ur), we can choose |δ1| + |δ2| so small that

f(y1) − f(ul + δ1)
y1 − ul − δ1

<
f(ur + δ2) − f(yk)

ur + δ2 − yk
· (23)

�

5.1. The case δ1 < 0, δ2 > 0

Now we consider the case δ1 < 0, δ2 > 0 where [ul, ur] ⊂ [ul + δ1, ur + δ2].
Consider the polygonal line through the points

(ul + δ1, f(ul + δ1)), (ul, f(ul)), (y1, f(y1)). (24)

If it is the graph of a convex function, then the polygonal line through

(ul + δ1, f(ul + δ1)), (ul, f(ul)), (y1, f(y1)), ..., (yk, f(yk))
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is also the graph of a convex function g1. Moreover, g1 ≤ f on [ul + δ1, yk].
If the polygonal line through the points (24) is not the graph of a convex function (this is the

case if (19) holds), then the polygonal line through the points

(ul + δ1, f(ul + δ1)), (y1, f(y1)), ..., (yk, f(yk))

is the graph of a convex function g1. Moreover, g1 ≤ f on [ul + δ1, yk].
Now consider the polygonal line through

(yk, f(yk)), (ur, f(ur)), (ur + δ2, f(ur + δ2)). (25)

If it is the graph of a convex function, then also the polygonal line through

(y1, f(y1)), ..., (yk, f(yk)), (ur, f(ur)), (ur + δ2, f(ur + δ2))

is the graph of a convex function g2. Moreover, g2 ≤ f on [y1, ur + δ2].
If the polygonal line through the points (25) is not the graph of a convex function (this is the

case if (21) holds), then the polygonal line through the points

(y1, f(y1)), ..., (yk, f(yk)), (ur + δ2, f(ur + δ2))

is the graph of a convex function g2 with g2 ≤ f on [y1, ur + δ2].
Thus we have constructed convex functions g1, g2 with g1 = g2 on [y1, yk].
Define the function g on [ul + δ1, ur + δ2] by g(u) = g1(u) for u ∈ [ul + δ1, y1] and g(u) = g2(u)

for u > y1.
Then g is convex on [ul + δ1, ur + δ2]. (If y1 = yk, this is due to (23).) Moreover, g ≤ f on

[ul + δ1, ur + δ2]. By our construction, at the breakpoints of g we have f(u) = g(u). This implies
that g = f δ

u.

5.2. The case δ1 > 0, δ2 > 0

Now we consider the case δ1 > 0, δ2 > 0.
Assume that (20) holds. If f ′

+(ul) = (f0
u)′+(ul), we define the convex function g3(u) = f0

u on
[u + δ1, ..., yk]. Then g3(u) ≤ f on [u + δ1, ..., yk] and g3(u + δ1) = f(u + δ1).

If f ′
+(ul) > (f0

u)′+(ul), condition (20) implies that for all u ∈ (ul, y1), we have f(u) > f0
u(u).

Hence if δ1 is sufficiently small, the line through (ul + δ1, f(ul + δ1)), (y1, f(y1)) is below the graph
of f . Thus for the convex function g3 whose graph is the polygonal line through (ul+δ1, f(ul+δ1)),
(y1, f(y1)), ..., (yk, f(yk)) we have g3(u) ≤ f on [u + δ1, ..., yk].

If (20) is violated, then
f ′
+(ul) > (f0

u)′+(ul) (26)

and there exist breakpoints of f in (ul, y1) such that on [u, y1] we have f0
u = f . Let u be the

smallest breakpoint of this type. Consider the polygonal line through the points

(ul + δ1), f(ul + δ1)), (u, f(u)), (y1, f(y1)). (27)

Since f is linear on the interval [ul, ul + δ1], condition (26) implies that we have

f(u) − f(ul + δ1)
u − u1 − δ1

<
f(u) − f(ul)

u − ul
= (f0

u)′+(ul). (28)

Since

(f0
u)′+(ul) =

f(y1) − f(u)
y1 − u

,

(28) shows that the polygonal line through the points (27) is the graph of a convex function h.
Moreover, we can choose |δ1| so small that on the interval [ul + δ1, y1] we have h ≤ f . Thus we
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can define the convex function g3 on [ul + δ1, yk] as the function whose graph is the polygonal line
through the points

(ul + δ1), f(ul + δ1)), (u, f(u)), (y1, f(y1)), ..., (yk, f(yk)).

Then we have g3(u) ≤ f on [u + δ1, ..., yk].
Now define the function g2 as in Section 5.1. Then we define the function g on [ul + δ1, ur + δ2]

by g(u) = g3(u) for u ∈ [ul + δ1, y1] and g(u) = g2(u) for u > y1. As in Section 5.1, we see that g
is a convex function and g = f δ

u.

5.3. Other cases

The other two cases (δ1 > 0, δ2 < 0) and (δ1 < 0, δ2 < 0) are treated analogously by
constructing convex function on [ul + δ1, yk] and [y1, ur + δ2] that are the lower convex envelope
of f on these intervals. In fact, these two functions are equal to the lower convex envelope of f on
[ul + δ1, ur + δ2] on their respective domains.

6. Second order expansion of piecewise linear functions

We also need the following Lemma about piecewise differentiable functions, is a statement about
their first derivative.

Lemma 6.1. Let f be a piecewise linear function. Let u, y ∈ R, u �= y be given. Define

D =
f(y) − f(u)

y − u
·

Assume that |δ| is such that f is linear between u + δ and u.
If δ < 0, we have

f(y) − f(u + δ)
y − u − δ

= D + δ
D − f ′

−(u)
y − u

+
δ2

(y − u)(y − u − δ)
[D − f ′

−(u)]. (29)

If δ > 0, we have

f(y) − f(u + δ)
y − u − δ

= D + δ
D − f ′

+(u)
y − u

+
δ2

(y − u)(y − u − δ)
[D − f ′

+(u)]. (30)

Proof. Let δ < 0.

f(y) − f(u + δ)
y − u − δ

− D =
f(y) − f(u + δ)

y − u − δ
− f(y) − f(u)

y − u

=
[f(y) − f(u + δ)][y − u] − [f(y) − f(u)][y − u − δ]

[y − u − δ] [y − u]

=
[f(y) − f(u)]δ + [f(u) − f(u + δ)] [y − u]

[y − u − δ] [y − u]

= δ
D

y − u − δ
− δ

f(u) − f(u + δ)
−δ

1
y − u − δ

= δ [D − f ′
−(u)]

1
y − u − δ

= δ
D − f ′

−(u)
y − u

[
1 +

δ

y − u − δ

]
.

The proof for δ > 0 works analogously. �
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7. Approximation of the derivative of the state

Here we derive an approximation of the derivative of y with respect to u0.
We want to prove that a first-order expansion of uδ with respect to δ exists.

Theorem 7.1. Assume that ul, ur ∈ (m, M), ul < ur. Assume that k ≥ 1. There exists a
function Hδ(x, t) of δ, x, t and such that for ‖δ‖ sufficiently small

‖yδ − (y + Hδ)‖L1((0,T )×R) = O(‖δ‖2) (31)

and Hδ can be computed in the following way:

Hδ = Hδ
l− + Hδ

r+ if δ1 ≤ 0 and δ2 ≥ 0,

Hδ = Hδ
l+ + Hδ

r+ if δ1 ≥ 0 and δ2 ≥ 0,

etc., with Hδ
l−, Hδ

l+, Hδ
r−, Hδ

r+ defined in the following way:

If f ′
−(ul) ≥ (f0

u)′+(ul), (32)
we have

Hδ
l−(x, t) =

⎧⎪⎨
⎪⎩

δ1, −∞ < x/t < f(y1)−f(ul)
y1−ul

ul − y1,
f(y1)−f(ul)

y1−ul
< x/t < f(y1)−f(ul+δ1)

y1−ul−δ1

0, f(y1)−f(ul+δ1)
y1−ul−δ1

< x/t < ∞.

If (32) is violated, we have

Hδ
l−(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

δ1, −∞ < x/t < f(ul)−f(ul+δ1)
−δ1

0, f(ul)−f(ul+δ1)
−δ1

< x/t < f(y1)−f(ul)
y1−ul

0, f(y1)−f(ul)
y1−ul < x/t < ∞.

If {f ′
+(ul) = (f0

u)′+(ul) or for all u ∈ (ul, y1) we have f(u) > f0
u(u)} (33)

then

Hδ
l+(x, t) =

⎧⎪⎨
⎪⎩

δ1, −∞ < x/t < f(y1)−f(ul+δ1)
y1−ul−δ1

y1 − ul,
f(y1)−f(ul+δ1)

y1−ul−δ1
< x/t < f(y1)−f(ul)

y1−ul

0, f(y1)−f(ul)
y1−ul

< x/t < ∞.

If (33) is violated, we have

Hδ
l+(x, t) =

⎧⎪⎨
⎪⎩

δ1, −∞ < x/t < f(u)−f(ul+δ1)
u−ul−δ1

u − ul,
f(u)−f(ul+δ1)

u−ul−δ1
< x/t < f(y1)−f(ul)

y1−ul

0, f(y1)−f(ul)
y1−ul

< x/t < ∞.

If f ′
+(ur) ≤ (f0

u)′−(ur), (34)
we have

Hδ
r+(x, t) =

⎧⎪⎨
⎪⎩

0, −∞ < x/t < f(ur+δ2)−f(yk)
ur+δ2−yk

ur − yk, f(ur+δ2)−f(yk)
ur+δ2−yk

< x/t < f(ur)−f(yk)
ur−yk

δ2,
f(ur)−f(yk)

ur−yk
< x/t < ∞.

If (34) is violated, we have

Hδ
r+(x, t) =

⎧⎪⎨
⎪⎩

0, −∞ < x/t < f(ur)−f(yk)
ur−yk

0, f(ur)−f(yk)
ur−yk

< x/t < f(ur+δ2)−f(ur)
δ2

δ2,
f(ur+δ2)−f(ur)

δ2
< x/t < ∞.
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If {f ′
−(ur) = (f0

u)′−(ur) or for all u ∈ (yk, ur) we have f(u) > f0
u(u)} (35)

we have

Hδ
r−(x, t) =

⎧⎪⎨
⎪⎩

0, −∞ < x/t < f(ur)−f(yk)
ur−yk

yk − ur,
f(ur)−f(yk)

ur−yk
< x/t < f(ur+δ2)−f(yk)

ur+δ2−yk

δ2,
f(ur+δ2)−f(yk)

ur+δ2−yk
< x/t < ∞.

If (35) is violated, we have

Hδ
r−(x, t) =

⎧⎪⎨
⎪⎩

0, −∞ < x/t < f(ur)−f(yk)
ur−yk

u − ur,
f(ur)−f(yk)

ur−yk
< x/t < f(ur+δ2)−f(u)

ur+δ2−u

δ2,
f(ur+δ2)−f(u)

ur+δ2−u < x/t < ∞.

Proof. First we compute yδ. The change from ul to ul + δ1 causes a shift of the first vertex in the
polygonal line that is the boundary of the convex hull of the set

{(y, v) : ul + δ1 ≤ y ≤ ur + δ2, v ≥ f(y)}. (36)

Moreover, if |δ1| is sufficiently small, at most one additional vertex compared with the set (5)
appears between the first and the second vertex.

The change from ur to ur + δ2 causes a shift of the last vertex. Moreover, if |δ2| is sufficiently
small, at most one additional vertex compared with the set (5) appears between the last and the
second to last vertex.

7.0.1. Case 1: Assume that δ1 < 0

Subcase 1a. Lemma 5.2 implies that if |δ1| + |δ2| is sufficiently small, and (32) holds, the first
vertex in the convex hull of the set (5) is shifted to (ul + δ1, f(ul + δ1)) and no additional vertices
are generated.

In this case we have

yδ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ul + δ1, −∞ < x/t < f(y1)−f(ul+δ1)
y1−ul−δ1

y1, f(y1)−f(ul+δ1)
y1−ul−δ1

< x/t < f(y2)−f(y1)
y2−y1

...

(37)

Subcase 1b. Lemma 5.2 implies that if |δ1| + |δ2| is sufficiently small, and (32) is violated, the
first vertex in the convex hull of the set (5) is shifted to (ul+δ1, f(ul+δ1)) and the point (ul, f(ul))
appears as an additional vertex.

In this case we have

yδ(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ul + δ1, −∞ < x/t < f(ul)−f(ul+δ1)
−δ1

ul, f(ul)−f(ul+δ1)
−δ1

< x/t < f(y1)−f(ul)
y1−ul

y1, f(y1)−f(ul)
y1−ul < x/t < f(y2)−f(y1)

y2−y1

...

(38)

Detection of Subcase 1a/Subcase 1b. How can we detect the Subcase 1a/Subcase 1b respec-
tively numerically?

Let p be the largest breakpoint of f that is less than ul if such a breakpoint exists, and p = u1−1
otherwise.

If

f ′
−(ul) =

f(ul) − f(p)
ul − p

≥ f(y1) − f(ul)
y1 − ul

(39)

we are in Subcase 1a, otherwise we are in Subcase 1b. Note that the last differential quotient
in (39) gives the right-hand side derivative in the point ul of the function that is defined by the
boundary of the convex hull of the epigraph of f .
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7.0.2. Case 2: Assume that δ1 > 0

Subcase 2a. Lemma 5.2 implies that if |δ1| + |δ2| is sufficiently small, and (33) holds, the first
vertex in the convex hull of the set (5) is shifted to (ul + δ1, f(ul + δ1)) and no additional vertices
are generated.

In this case we have

yδ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ul + δ1, −∞ < x/t < f(y1)−f(ul+δ1)
y1−ul−δ1

y1, f(y1)−f(ul+δ1)
y1−ul−δ1

< x/t < f(y2)−f(y1)
y2−y1

...

(40)

Note that yδ(x, t) has the same form as in Subcase 1a.

Subcase 2b. Lemma 5.2 implies that if |δ1| + |δ2| is sufficiently small, and (33) is violated, the
first vertex in the convex hull of the set (5) is shifted to (ul +δ1, f(ul +δ1)) and the point (u, f(u))
appears as an additional vertex.

In this case we have

yδ(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ul + δ1, −∞ < x/t < f(u)−f(ul+δ1)
u−ul−δ1

u, f(u)−f(ul+δ1)
u−ul−δ1

< x/t < f(y1)−f(u)
y1−u

y1, f(y1)−f(u)
y1−u < x/t < f(y2)−f(yl)

y2−yl

...

(41)

Detection of Subcase 2a/Subcase 2b. In order to check wether we are in Subcase 2b, we have
to verify wether the following condition holds:

f ′
+(ul) >

f(y1) − f(ul)
y1 − ul

(42)

and there exists a breakpoint u of f in the open interval (ul, y1) such that

u = λul + (1 − λ)y1, f(u) = λf(ul) + (1 − λ)f(y1). (43)

If (42) and (43) hold, we are in Subcase 2b, otherwise we are in Subcase 2a.
In Subcase 2b we have to determine the smallest u satisfying (43). This is in fact a finite

optimization problem since we only have to compare the values of f and the lower convex envelope
of f on (ul, y1) at the breakpoints of f in (ul, y1).

Now we analyze analogously the changes that can occur as a result of the shift from ur to
ur + δ2 if |δ2| is sufficiently small. Again we have overall four cases.

7.0.3. Case 1: Assume that δ2 > 0

Subcase 1a. Lemma 5.2 implies that if |δ1| + |δ2| is sufficiently small, and (34) holds, the last
vertex in the convex hull of the set (5) is shifted to (ur + δ2, f(ur + δ2)) and no additional vertices
are generated.

In this case we have

yδ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

...
yk, f(yk)−f(yk−1)

yk−yk−1 < x/t < f(ur+δ2)−f(yk)
ur+δ2−yk

ur + δ2,
f(ur+δ2)−f(yk)

ur+δ2−yk
< x/t < ∞.

(44)

Subcase 1b. Lemma 5.2 implies that if |δ1|+ |δ2| is sufficiently small, and (34) is violated, the last
vertex in the convex hull of the set (5) is shifted to (ur + δ2, f(ur + δ2)) and the point (ur, f(ur))
appears as an additional vertex.
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In this case we have

yδ(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

...
yk, f(yk)−f(yk−1)

yk−yk−1 < x/t < f(ur)−f(yk)
ur−yk

ur,
f(ur)−f(yk)

ur−yk
< x/t < f(ur+δ2)−f(ur)

δ2

ur + δ2,
f(ur+δ2)−f(ur)

δ2
< x/t < ∞.

(45)

Detection of Subcase 1a/Subcase 1b. If

f ′
+(ur) =

f(ur + δ2) − f(ur)
δ2

≤ f(ur) − f(yk)
ur − yk

(46)

we are in Subcase 1a, otherwise we are in Subcase 1b. Note that the last differential quotient in
(46) gives the left-hand side derivative in the point ur of the lower convex envelope of f on [ur, ul].

7.0.4. Case 2: Assume that δ2 < 0

Subcase 2a. Lemma 5.2 implies that if |δ1| + |δ2| is sufficiently small, and (35) holds, the last
vertex in the convex hull of the set (5) is shifted to (ur + δ2, f(ur + δ2)) and no additional vertices
are generated.

In this case we have

yδ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

...
yk, f(yk)−f(yk−1)

yk−yk−1 < x/t < f(ur+δ2)−f(yk)
ur+δ2−yk

ur + δ2,
f(ur+δ2)−f(yk)

ur+δ2−yk
< x/t < ∞.

(47)

Note that yδ(x, t) has the same form as in Subcase 1a.

Subcase 2b. Lemma 5.2 implies that if |δ1| + |δ2| is sufficiently small, and (35) is violated, the
last vertex in the convex hull of the set (5) is shifted to (ur + δ2, f(ur + δ2)) and a point (u, f(u))
appears as an additional vertex. This point u is a breakpoint of f that can be found as follows:

There exists λ ∈ (0, 1) such that

f(λyk + (1 − λ)ur) = λf(yk) + (1 − λ)f(ur).

Choose the largest λ of this type; in fact this λ is less than one. Define

u = λyk + (1 − λ)ur.

In this case we have

yδ(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

...
yk, f(yk)−f(yk−1)

yk−yk−1 < x/t < f(u)−f(yk)
u−yk

u, f(u)−f(yk)
u−yk

< x/t < f(ur+δ2)−f(u)
ur+δ2−u

ur + δ2,
f(ur+δ2)−f(u)

ur+δ2−u < x/t < ∞.

Detection of Subcase 2a/Subcase 2b. If

f ′
−(ur) <

f(ur) − f(yk)
ur − yk

(48)

and there exists a breakpoint u of f in the open interval (yk, ur) such that

u = λyk + (1 − λ)ur, and f(u) = λf(yk) + (1 − λ)f(ur), (49)
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then we are in Subcase 2b.
If (48) or (49) is violated, we are in Subcase 2a.

7.0.5. The expansion of yδ

The above considerations show that in the expansion

yδ = y + Hδ

we can decompose Hδ in the form
Hδ = Hδ

l + Hδ
r ,

where Hδ
l gives the sensitivity with respect to ul and Hδ

r contains the sensitivity information for
ur. Moreover, we have to consider one-sided sensitivities Hδ

l+, Hδ
l−, Hδ

r+, Hδ
r− corresponding to

the cases δ1 > 0, δ1 < 0, δ2 > 0, δ2 < 0 respectively.
Define

Gδ(x, t) = yδ(x, t) − y(x, t).

Variations of δ1. First we consider the effect of the variations of δ1. In Subcase 1a we have

Gδ
l−(x, t) =

⎧⎪⎨
⎪⎩

δ1, −∞ < x/t < f(y1)−f(ul)
y1−ul

ul + δ1 − y1,
f(y1)−f(ul)

y1−ul
< x/t < f(y1)−f(ul+δ1)

y1−ul−δ1

0, f(y1)−f(ul+δ1)
y1−ul−δ1

< x/t < ∞.

(50)

Note that
f(y1) − f(ul)

y1 − ul
≤ f(y1) − f(ul + δ1)

y1 − ul − δ1

since ul ∈ [ul + δ1, y1] is not a breakpoint of the lower convex envelope of f on [ul + δ1, y1].
To obtain a first order approximation of Gδ

l− we define

Hδ
l−(x, t) =

⎧⎪⎨
⎪⎩

δ1, −∞ < x/t < f(y1)−f(ul)
y1−ul

ul − y1,
f(y1)−f(ul)

y1−ul
< x/t < f(y1)−f(ul+δ1)

y1−ul−δ1

0, f(y1)−f(ul+δ1)
y1−ul−δ1

< x/t < ∞.

(51)

In Subcase 1b we have

Gδ
l−(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

δ1, −∞ < x/t < f(ul)−f(ul+δ1)
−δ1

0, f(ul)−f(ul+δ1)
−δ1

< x/t < f(y1)−f(ul)
y1−ul

0, f(y1)−f(ul)
y1−ul < x/t < ∞.

(52)

To obtain a first order approximation of Gδ
l− we define

Hδ
l−(x, t) = Gδ

l−(x, t). (53)

In Subcase 2a we have

Gδ
l+(x, t) =

⎧⎪⎨
⎪⎩

δ1, −∞ < x/t < f(y1)−f(ul+δ1)
y1−ul−δ1

y1 − ul,
f(y1)−f(ul+δ1)

y1−ul−δ1
< x/t < f(y1)−f(ul)

y1−ul

0, f(y1)−f(ul)
y1−ul

< x/t < ∞.

(54)

To obtain a first order approximation of Gδ
l+ we define

Hδ
l+(x, t) = Gδ

l+(x, t). (55)
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In Subcase 2b we have

Gδ
l+(x, t) =

⎧⎪⎨
⎪⎩

δ1, −∞ < x/t < f(u)−f(ul+δ1)
u−ul−δ1

u − ul,
f(u)−f(ul+δ1)

u−ul−δ1
< x/t < f(y1)−f(ul)

y1−ul

0, f(y1)−f(ul)
y1−ul

< x/t < ∞.

(56)

To obtain a first order approximation of Gδ
l+ we define

Hδ
l+(x, t) = Gδ

l+(x, t). (57)

Variations of δ2. Now we consider the effect of the variations of δ2.
In Subcase 1a we have

Gδ
r+(x, t) =

⎧⎪⎨
⎪⎩

0, −∞ < x/t < f(ur+δ2)−f(yk)
ur+δ2−yk

ur + δ2 − yk, f(ur+δ2)−f(yk)
ur+δ2−yk

< x/t < f(ur)−f(yk)
ur−yk

δ2,
f(ur)−f(yk)

ur−yk
< x/t < ∞.

(58)

To obtain a first order approximation of Gδ
r+, we define

Hδ
r+(x, t) =

⎧⎪⎨
⎪⎩

0, −∞ < x/t < f(ur+δ2)−f(yk)
ur+δ2−yk

ur − yk, f(ur+δ2)−f(yk)
ur+δ2−yk

< x/t < f(ur)−f(yk)
ur−yk

δ2,
f(ur)−f(yk)

ur−yk
< x/t < ∞.

(59)

In Subcase 1b we have

Gδ
r+(x, t) =

⎧⎪⎨
⎪⎩

0, −∞ < x/t < f(ur)−f(yk)
ur−yk

0, f(ur)−f(yk)
ur−yk

< x/t < f(ur+δ2)−f(ur)
δ2

δ2,
f(ur+δ2)−f(ur)

δ2
< x/t < ∞.

(60)

To obtain a first order approximation of Gδ
r+, we define

Hδ
r+(x, t) = Gδ

r+(x, t). (61)

In Subcase 2a we have

Gδ
r−(x, t) =

⎧⎪⎨
⎪⎩

0, −∞ < x/t < f(ur)−f(yk)
ur−yk

yk − ur,
f(ur)−f(yk)

ur−yk
< x/t < f(ur+δ2)−f(yk)

ur+δ2−yk

δ2,
f(ur+δ2)−f(yk)

ur+δ2−yk
< x/t < ∞.

(62)

To obtain a first order approximation of Gδ
r−, we define

Hδ
r−(x, t) = Gδ

r−(x, t). (63)

In Subcase 2b we have

Gδ
r−(x, t) =

⎧⎪⎨
⎪⎩

0, −∞ < x/t < f(ur)−f(yk)
ur−yk

u − ur,
f(ur)−f(yk)

ur−yk
< x/t < f(ur+δ2)−f(u)

ur+δ2−u

δ2,
f(ur+δ2)−f(u)

ur+δ2−u < x/t < ∞.

(64)

To obtain a first order approximation of Gδ
r−, we define

Hδ
r−(x, t) = Gδ

r−(x, t). (65)
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Figure 3. Structure of Hδ in x − t−plane. The states ξ1 = 0 if (19) is satisfied
and the value of the state ξ2 depends on the condition (21).

7.0.6. Convergence of the expansion of yδ

Let

l(δ) = max
{

f(y1) − f(ul + δ1)
y1 − ul − δ1

,
f(y1) − f(ul)

y1 − ul

}
and

r(δ) = min
{

f(ur + δ2) − f(yk)
ur + δ2 − yk

,
f(ur) − f(yk)

ur − yk

}
.

Then we have

‖yδ − (y + Hδ)‖L1((0,T )×R) =
∫ T

0

∫
R

|yδ(x, t) − y(x, t) − Hδ(x, t)| dx dt

=
∫ T

0

∫ l(δ)t

−∞
|Gδ(x, t) − Hδ(x, t)| dx dt +

∫ T

0

∫ ∞

r(δ)t

|Gδ(x, t) − Hδ(x, t)| dx dt

≤
∫ T

0

δ1t

∣∣∣∣f(y1) − f(ul + δ1)
y1 − ul − δ1

− f(y1) − f(ul)
y1 − ul

∣∣∣∣ dt

+
∫ T

0

δ2t

∣∣∣∣f(ur + δ2) − f(yk)
ur + δ2 − yk

− f(ur) − f(yk)
ur − yk

∣∣∣∣ dt

≤ T 2

2
[
δ2
1 h1(ul, y1, f) + δ2

2 h2(yk, ur, f)
]

with real numbers h1(ul, y1, f), h2(yk, ur, f). Note that for δ1 only in Subcase 1a we have a
contribution for x/t ≤ l(δ) and for δ2 only in Subcase 1a we have a contribution for x/t ≥ r(δ).

This finishes the proof. �

Note that the shock structure of Hδ is similar to y and yδ, respectively, except for at most two
additional intervals. This allows an effective computation of Hδ. In Figure 3 we give an example
for the shock structure of Hδ in the x − t−plane. The value of the state ξ1 depends whether the
conditions (19) for δ1 < 0 and (20) for δ1 > 0 are satisfied or not. Similarly the state ξ2 depends
on the conditions (21) and (22) for δ2 > 0 and δ2 < 0, respectively.

By the above theorem we obtain that Hδ can be seen as surrogate for the first derivative of yδ

and hence can be used in optimization methods to compute the gradient.
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8. Proof of Theorem 3.2

In this section, we present the proof of Theorem 3.2.
Proof. If Dl−f ′

−(ul) ≤ 0, since Dl = (f0
u)′+(ul), condition (32) holds. Hence we have for δ = (δ1, 0)

with δ1 < 0

h(δ) − h(0) =
∫ DlT

−∞
g′(ul)δ1χ[x1,x2](x) dx

+
∫ f(y1)−f(ul+δ1)

y1−ul−δ1
T

DlT

[g(ul + δ1) − g(y1)]χ[x1,x2](x) dx + O(δ2
1)

=
∫ DlT

−∞
g′(ul)δ1χ[x1,x2](x) dx

+
∫ f(y1)−f(ul+δ1)

y1−ul−δ1
T

DlT

[g(ul) + g′(ul)δ1 − g(y1)]χ[x1,x2](x) dx + O(δ2
1)

= g′(ul) δ1 µ([x1, x2] ∩ (−∞, TDl])

+[g(ul) − g(y1) + g′(ul)δ1] µ

(
[x1, x2] ∩

[
DlT,

f(y1) − f(ul + δ1)
y1 − ul − δ1

T

])
+ O(δ2

1).

On account of (29) we have

µ

(
[x1, x2] ∩

[
DlT,

f(y1) − f(ul + δ1)
y1 − ul − δ1

T

])

= µ

(
[x1, x2] ∩

[
DlT, DlT + δ1

Dl − f ′−(ul)
y1 − ul

T + O(δ2
1)

])

= δ1
Dl − f ′

−(ul)
y1 − ul

Tχ[x1,x2)(DlT ) + O(δ2
1)

and this implies (11).
If (32) is violated, we have for δ = (δ1, 0) with δ1 < 0

h(δ) − h(0) =
∫ f(ul)−f(ul+δ1)

−δ1
T

−∞
g′(ul)δ1χ[x1,x2](x) dx

= g′(ul)δ1µ

(
[x1, x2] ∩

(
−∞,

f(ul) − f(ul + δ1)
−δ1

T

])

= g′(ul)δ1µ([x1, x2] ∩ (−∞, f ′
−(ul)T ]) + O(δ2

1).

This implies (12).
If {Dl = f ′

+(ul) or for all u ∈ (ul, y1) : f(u) > f0
u(u)}, then (33) holds and we have for δ = (δ1, 0)

with δ1 > 0

h(δ) − h(0) =
∫ f(y1)−f(ul+δ1)

y1−ul−δ1
T

−∞
g′(ul)δ1χ[x1,x2](x) dx

+
∫ DlT

f(y1)−f(ul+δ1)
y1−ul−δ1

T

[g(y1) − g(ul)]χ[x1,x2](x) dx + O(δ2
1)

= g′(ul) δ1 µ([x1, x2] ∩ (−∞, TDl])

+[g(y1) − g(ul)] µ

(
[x1, x2] ∩

[
DlT + δ1

Dl − f ′
+(ul)

y1 − ul
T, DlT

])
+ O(δ2

1)

where for the last step we have used (30). This implies (13).
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If (33) is violated, then
f(u) − f(ul)

u − ul
= Dl,

and for δ = (δ1, 0) with δ1 > 0 we have

h(δ) − h(0) =
∫ f(u)−f(ul+δ1)

u−ul−δ1
T

−∞
g′(ul)δ1χ[x1,x2](x) dx

+
∫ DlT

f(u)−f(ul+δ1)
u−ul−δ1

T

[g(u) − g(ul)] χ[x1,x2](x) dx + O(δ2
1)

= g′(ul) δ1 µ([x1, x2] ∩ (−∞, TDl])

+[g(u) − g(ul)] µ

(
[x1, x2] ∩

[
DlT + δ1

Dl − f ′
+(ul)

u − ul
T, DlT

])
+ O(δ2

1).

where for the last step we have used (30). This implies (13).
If f ′

+(ur) ≤ Dr since Dr = (f0
u)′−(ur) condition (34) holds. Hence for δ = (0, δ2) with δ2 > 0

we have

h(δ) − h(0) =
∫ DrT

f(ur+δ2)−f(yk)
ur+δ2−yk

T

[g(ur + δ2) − g(yk)]χ[x1,x2](x) dx

+
∫ ∞

DrT

g′(ur)δ2χ[x1,x2](x) dx + O(δ2
2)

=
∫ DrT

f(ur+δ2)−f(yk)
ur+δ2−yk

T

[g(ur) + g′(ur)δ2 − g(yk)]χ[x1,x2](x) dx

+
∫ ∞

DrT

g′(ur)δ2χ[x1,x2](x) dx + O(δ2
2)

= g′(ur) δ2 µ([x1, x2] ∩ (TDr,∞])

+[g(ur) − g(yk) + g′(ur)δ2] µ

(
[x1, x2] ∩

[
f(yk) − f(ur + δ2)

yk − ur − δ2
T, DrT

])
+ O(δ2

2).

On account of (30) we have

µ

(
[x1, x2] ∩

[
f(yk) − f(ur + δ2)

yk − ur − δ2
T, DrT

])

= µ

(
[x1, x2] ∩

[
DrT + δ2

Dr − f ′
+(ur)

yk − ur
T + O(δ2

2), DrT

])

= −δ2
Dr − f ′

+(ur)
yk − ur

Tχ(x1,x2](DrT ) + O(δ2
2)

and this implies (17).
If (34) is violated, we have for δ = (0, δ2) with δ2 > 0

h(δ) − h(0) =
∫ ∞

f(ur+δ2)−f(ur )
δ2

T

g′(ur)δ2χ[x1,x2](x) dx + O(δ2
2)

= g′(ur)δ2µ

(
[x1, x2] ∩

[
f(ur + δ2) − f(ur)

δ2
T, ∞

))

= g′(ur)δ2µ([x1, x2] ∩ [f ′
+(ur)T,∞)) + O(δ2

2).

This implies (18).
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If {Dr = f ′
−(ur) or for all u ∈ (yk, ur) : f(u) > f0

u(u)}, condition (35) holds and we have for
δ = (0, δ2) with δ2 < 0

h(δ) − h(0) =
∫ f(ur+δ2)−f(yk)

ur+δ2−yk
T

DrT

[g(yk) − g(ur)]χ[x1,x2](x) dx

+
∫ ∞

f(ur+δ2)−f(yk)
ur+δ2−yk

T

g′(ur)δ2χ[x1,x2](x) dx + O(δ2
2)

= g′(ur) δ2 µ

(
[x1, x2] ∩

[
f(ur + δ2) − f(yk)

ur + δ2 − yk
T,∞

))

+[g(yk) − g(ur)] µ

(
[x1, x2] ∩

[
DrT,

f(ur + δ2) − f(yk)
ur + δ2 − yk

T

])
+ O(δ2

2).

On account of (29) we have

f(ur + δ2) − f(yk)
ur + δ2 − yk

= Dr + δ2
Dr − f ′

−(ur)
yk − ur

+ O(δ2
2).

Thus

h(δ)−h(0) = g′(ur)δ2µ([x1, x2]∩ [DrT,∞))+[g(yk)−g(ur)]δ2χ[x1,x2)(TDr)(Dr−f ′
−(ur)]+O(δ2

2).

This implies (15).
If (35) is violated, we have for δ = (0, δ2) with δ2 < 0

h(δ) − h(0) =
∫ f(ur+δ2)−f(u)

ur+δ2−u T

DrT

[g(u) − g(ur)]χ[x1,x2](x) dx

+
∫ ∞

f(ur+δ2)−f(u)
ur+δ2−u T

g′(ur)δ2χ[x1,x2](x) dx + O(δ2
2)

= g′(ur) δ2 µ

(
[x1, x2] ∩

[
f(ur + δ2) − f(u)

ur + δ2 − u
T,∞

))

+[g(yk) − g(ur)] µ

(
[x1, x2] ∩

[
DrT,

f(ur + δ2) − f(u)
ur + δ2 − u

T

])
+ O(δ2

2).

On account of (29) and since Dr = [f(u) − f(ur)]/[u − ur] and we have

f(ur + δ2) − f(u)
ur + δ2 − u

= Dr + δ2
Dr − f ′−(ur)

yk − ur
+ O(δ2

2).

Thus

h(δ)−h(0) = g′(ur)δ2µ([x1, x2]∩ [DrT,∞))+ [g(u)− g(ur)]δ2χ[x1,x2)(TDr)(Dr − f ′
−(ur)]+O(δ2

2).

This implies (16). �

9. Examples

The example presented are academic and should only illustrate the possible application of the
derived calculus. The main advantage of the calculus is the application as a numerical method
and as already mentioned we will present numerical results in a forthcoming publication.
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9.1. Application to traffic flow problems

We consider an (simplified) example related to traffic flow. A typical flux-function f(ρ) in
traffic flow applications is concave with a single maximum [9]. We normalize the maximal density
to ρmax = 1 and use in the following a piecewise linear approximation on [0, 1] of

f(ρ) = ρ(1 − ρ).

It is well-known that for Riemann initial data such that ul ≤ argmaxf(·) = 1
2 and ur ≥ 1 − ul,

the solution to (2),(3) is a shock wave travelling with non-positive velocity. We show that this
information is also obtained by considering an optimal control problem and by discussing the
necessary and sufficient optimality conditions derived by Theorem 3.2.

We fix ul < 1
2 and denote by y the solution to (2),(3) and (1). We consider the objective

function given by

I(u0) =
1
2

∫ 0

−1

(y(x, T ) − a)2 dx (66)

for T suitable large and a constant a > 0. We can control ur, i.e., a part of the initial data for u0

for x ≥ 0. To be in the setting of the Theorem 3.2 we assume ur ≥ ul.
A necessary condition for ur to be a minimizer is that the left-hand sided derivative ∂δ2−h(0) ≤ 0

and the right-hand sided derivative ∂δ2+h(0) ≥ 0.
Then, ∂δ2+h(0) ≥ 0 implies ur ≥ 1 − ul. Indeed, we distinguish the cases (A) and (B).

(A) f ′
+(ur) = 1 − 2ur ≤ Dr = 1 − (ur + yk).

This implies ur ≥ yk and due to the concavity of f we obtain yk ≡ ul. For T sufficiently large we
obtain by (17) and ∂δ2+h(0) ≥ 0, Dr ≤ 0 and ur ≥ a.

(B) f ′
+(ur) > Dr.

Then ur < yk and by construction ur < yk · · · ≤ ul < 1
2 , which contradicts the assumption ur ≥ ul.

By 0 ≥ ∂δ2−h(0) we obtain similarly 0 ≥ ur − a by (15) and Dr < 0, which finally yields the
expected, necessary optimality conditions for ur : ur = a and ur > 1 − ul. This also shows, that
the above is controllable, if and only if a > 1 − ul and T sufficiently large.

Note that in this particularly simple situation, i.e., ul < 1
2 and ur > 1− ul, the Front-Tracking

solution consists of a single discontinuity traveling with the Rankine-Hugoniot speed s = 1− (ul +
ur). Hence, at each time t > 0 we have the quantities Dr,l, f

′± arising in main result (3.2) at hand
without additional computational effort. This holds true not only in this particular case, but for all
Front-Tracking approximations. In the setting of the previous example we have f ′

±(ur) < Dr < 0
and f(u) > f0

u(u) for all u ∈ (ul, ur). Therefore, the sensitivities with respect to δ2 are given by
equations (17) and (15) and therefore we obtain up to order O(‖δ2‖) and for T sufficiently large

I(uδ
0) = I(u0) + δ2∂δ2±h(0) = I(u0) + δ2(ur − a).

9.2. Application to Burger’s equation

We consider Burger’s equation

∂ty + ∂x
1
2
y2 = 0 (67)

with Riemann data u0(x) =
(

ul x < 0
ur x > 0

)
. To apply the Front-Tracking algorithm (see Sect. 4) we

approximate the flux function 1
2y2 by a continuous piecewise linear function f(y) with breakpoints

{yk}. To keep the presentation simple, we assume that ul < 0 < ur < 1 and f(u) has the
breakpoints {y1 ≡ ul, y2 ≡ 0, y3 ≡ ur}. Hence, the Front-Tracking solution to

∂ty + ∂xf(y) = 0, y(x, 0) = u0(x) (68)
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consists of two discontinuities moving with the Rankine-Hugoniot speed s1 = 1
2ul and s2 = 1

2ur,
respectively.

Let us consider an objective functional of similar type as before with T = 1:

I(u0) =
1
2

∫ 1

0

(y(x, 1) − a)2 dx.

Having the Front-Tracking solution with two discontinuities at hand, we immediately calculate
Dr = f(ur)−f(0)

ur−0 = 1
2ur and f ′−(ur) = Dr, f ′

+(ur) = ur > Dr. Theorem 3.2 yields up to order
O(‖δ‖2) the sensitivities with respect to δ1 and δ2 as

I(uδ
0) = I(u0) + δ2(ur − a)(1 − ur).

Note that ∂δ1±h(0) = 0 since the wave-front [ul, 0] moves with negative velocity and therefore has
no influence on the objective functional.

10. Summary

We derived a sensitivity calculus for the optimal control problem governed by nonlinear con-
servation laws with initial Riemann data. The calculus is valid also for non-convex, piecewise
linear flux functions and general objective functionals. The generalization to piecewise constant
control functions is straightforward and will be considered in a forthcoming paper containing
also numerical results. The introduced calculus is easy to implement as numerical method for
gradient computation due to the explicit formulas. Further it can be incorporated in existing
Front-Tracking codes due to the similar structure of solutions.
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