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A SECOND-ORDER FINITE VOLUME ELEMENT METHOD
ON QUADRILATERAL MESHES FOR ELLIPTIC EQUATIONS
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Abstract. In this paper, by use of affine biquadratic elements, we construct and analyze a finite
volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be
of second-order in H1-norm, provided that each quadrilateral in partition is almost a parallelogram.
Numerical experiments are presented to confirm the usefulness and efficiency of the method.
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1. Introduction

Consider the following elliptic boundary value problem:

−∇ · (p(X)∇u) = f(X), X ∈ Ω,

u(X) = 0, X ∈ ∂Ω, (1)

where Ω is a bounded polygonal domain in R2 with boundary ∂Ω and X = (x, y). Assume that f(X) ∈ L2(Ω),
p(X) is Lipschitz continuous with the Lipschitz constant L, and 0 < p∗ ≤ p(X) ≤ p∗. Here p∗ and p∗ are
positive constants.

Finite volume element (FVE) methods [3,6,7,16,17], also named as generalized difference methods [13,14,19,
22] or box methods [1,11], have been widely used in several engineering fields, such as fluid mechanics, heat and
mass transfer or petroleum engineering. The FVE methods involve two spaces. One is the solution space Sh of
piecewise polynomial functions over the primal partition, and another is the test space S∗

h of piecewise constant
functions over the dual partition. Similar as the finite element methods the unknowns are approximated by a
Galerkin expansion. FVE procedures are usually easier to implement than finite element procedures and offer
most of the advantages of flexibility for handling complicated domain geometries. More important, the test
space S∗

h ensures the local conservation property of the methods, which is highly desirable in computational
conservation laws.

But an undesirable property of the FVE methods is that multidimensional FVE schemes are usually only
first-order accurate. For some details we refer to the articles on triangular meshes [3, 16] or on quadrilateral
meshes [6, 13]. In present time, one approach to obtain higher order schemes is using uniform or symmetric
meshes to obtain superconvergence. The FVE approximations for elliptic and integro differential equations on
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such meshes have been considered in [4,7,9,10]. However, for complex geometries, it seems difficult to generate
these meshes. Another approach is choosing higher order finite elements as solution space. This approach seems
more suitable to handle complex geometries. FVE discretization for Poisson equations, with quadratic basis on
different dual partitions, was developed in [15, 19]. Then the method was extended to analyze some nonlinear
convection diffusion problems in [23]. In [20, 21], such approach is adopted to construct more general higher
order schemes on unstructured grids, but no theoretical analysis was presented. By use of Gauss integration and
approximation replacement of the weak forms, analysis of a discrete biquadratic FVE scheme on rectangular
meshes was presented for elliptic problems in [22]. In this paper, we will put forward a second order FVE method
for elliptic problems on more general quadrilateral meshes. By use of the properties of affine mapping, we obtain
the optimal error estimates in H1 norm of the scheme under some “almost parallelogram” assumptions about
the meshes.

The rest of the paper is organized as follows. In the next section we introduce some necessary notations and
obtain a discrete FVE scheme for problem (1). In Section 3, some auxiliary results about the grids and the FVE
weak form are proved. Then we prove an optimal H1-error estimates of second-order under some regularity
condition. In the last section, numerical examples are presented on uniform and nonuniform quadrilateral
meshes to show the efficiency of the method.

Throughout this paper we use C to denote a generic positive constant independent of discretization param-
eters.

2. Meshes and notation

Let Th = {Q} be a quadrilateral partition of Ω , which is named primal partition, where the intersection of
any two closed quadrilaterals is either an entire side or a common vertex. Let hQ denote the diameter of the
element Q and ρQ denote the maximum diameter of circles contained in Q. We denote by m(Q) the measure
of Q.

The primal partition Th is assumed to be regular, i.e., there exists a positive constant C∗ such that

hQ

ρQ
≤ C∗, ∀Q ∈ Th. (2)

We also assume that each quadrilateral Q in Th is close to a parallelogram, i.e., (see Fig. 1)

|−−−→P1P4 +
−−−→
P3P2| = O(h2), (3)

where h = max{hQ|Q ∈ Th}.
Remark 2.1. We can obtain a family of almost parallelograms satisfying the condition (3) by recursively
refining each quadrilateral in any reasonable coarser grid into four smaller quadrilaterals by connecting the
opposite midpoints.

Let Q̂ = [0, 1]× [0, 1] in the x̂ŷ-plane be a reference element with the vertices

P̂1 = (0, 0), P̂2 = (1, 0), P̂3 = (1, 1), P̂4 = (0, 1).

For any quadrilateral Q ∈ Th, where Pi = (xi, yi), there exists a unique invertible bilinear transformation FQ

which maps Q̂ onto Q such that

FQ :
{

x = x1 + (x2 − x1)x̂ + (x4 − x1)ŷ + (x1 − x2 + x3 − x4)x̂ŷ,
y = y1 + (y2 − y1)x̂ + (y4 − y1)ŷ + (y1 − y2 + y3 − y4)x̂ŷ.

(4)

Let JFQ denote the Jacobian matrix of FQ at X̂ and JFQ = detJFQ . Let JF−1
Q

denote the Jacobian matrix of

F−1
Q at X and JF−1

Q
= detJF−1

Q
.
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Figure 1. The bilinear mapping FQ : Q̂ → Q.
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Figure 2. Control volumes in a quadrilateral element.

The approximate solution of (1) will be sought in the discrete space Sh defined below. Let Sh(Q̂) be the
standard biquadratic polynomial space on the reference element Q̂. Then set

Sh = {uh ∈ H1
0 (Ω) : uh|Q = ûh ◦ F−1

Q , ûh ∈ Sh(Q̂), Q ∈ Th}.

In order to establish the FVE scheme, we shall introduce a dual partition T ∗
h of Th, whose elements are called

control volumes. For any element Q ∈ Th (see Fig. 2) with vertices Pi, 1 ≤ i ≤ 4, let Mi denote the midpoints
of four edges and O denote the averaging center. On each edge, a point Pij is chosen such that

|PiPij | =
1
4
|PiPj |.

Let i + 1 = 1 if i = 4 and let i − 1 = 4 if i = 1. Then the control volume in Q of a vertex Pi is the subregion
PiPi(i+1)P

′
iPi(i−1). The control volume in Q of a midpoint Mi is the subregion Pi(i+1)P(i+1)iP

′
i+1P

′
i .

Then for each vertex P , we associate a control volume Q∗
P , which is built by the union of the above subregions,

sharing the vertex P . For each midpoint M on an element edge, we associate a control volume Q∗
M , which is

built by the union of the above subregions, sharing a common edge including M . For each averaging center O,
we associate a control volume Q∗

O, which is built by the subregion P ′
1P

′
2P

′
3P

′
4 (see Fig. 2). The collection of

these control volumes makes the dual partition T ∗
h .
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Now for any control volume Q∗ ∈ T ∗
h , integrating (1) over Q∗ and using the Green’s formula, we obtain

−
∫

∂Q∗
p(X)∇u · nds =

∫
Q∗

f(X) dX, (5)

where n denotes the unit outer normal vector to ∂Q∗.
Let S∗

h be a piecewise constant space associated with the dual partition T ∗
h . Multiply (5) by a test function

v ∈ S∗
h and sum the result over T ∗

h to yield

−
∑

Q∗∈T∗
h

(
v

∫
∂Q∗

p∇u · nds

)
=

∑
Q∗∈T∗

h

v

∫
Q∗

fdX. (6)

Reordering by elements, we have (see Fig. 2)

∑
Q∗∈T∗

h

v

∫
∂Q∗

p∇u · nds =
∑

Q∈Th

{ 4∑
i=1

[
v(Pi)

∫
∂Q∗

Pi
∩Q

p∇u · nPids

+ v(Mi)
∫

∂Q∗
Mi

∩Q

p∇u · nMids

]
+ v(O)

∫
∂Q∗

O

p∇u · nOds

}
,

where nPi , nMi and nO denote the unit outer normal vectors of the involved integral domain.
So for u ∈ H1

0 (Ω) and v ∈ S∗
h, we define two bilinear forms aQ(u, v) and āQ(u, v) as follows:

aQ(u, v) = −
4∑

i=1

[
v(Pi)

∫
∂Q∗

Pi
∩Q

p∇u · nPids

+ v(Mi)
∫

∂Q∗
Mi

∩Q

p∇u · nMids

]
− v(O)

∫
∂Q∗

O

p∇u · nOds, (7)

and

āQ(u, v) = −p(O)
{ 4∑

i=1

[
v(Pi)

∫
∂Q∗

Pi
∩Q

∇u · nPids

+ v(Mi)
∫

∂Q∗
Mi

∩Q

∇u · nMids

]
+ v(O)

∫
∂Q∗

O

∇u · nOds

}
. (8)

Let a(u, v) =
∑

Q∈Th

aQ(u, v) and ā(u, v) =
∑

Q∈Th

āQ(u, v). We can rewrite (6) in the following FVE weak form

a(u, v) = (f, v), v ∈ S∗
h. (9)

Now we introduce two interpolation operators Π and Π∗, where Π : H1
0 (Ω) → Sh satisfying [8]

‖u − Πu‖Hr ≤ Ch3−r‖u‖H3 , r ≤ 3, (10)

and Π∗ : Sh → S∗
h is a piecewise constant interpolation operator.

Then the finite volume element scheme of (1) is defined by: find uh ∈ Sh satisfying

a(uh, Π∗vh) = (f, Π∗vh), vh ∈ Sh. (11)
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Figure 3. Figure for Lemmas 3.1, 3.2 and 3.4.

3. Convergence analysis

In this section, we first investigate several properties of the quadrilateral meshes used in this paper. We will
use PQ to denote a line segment, |PQ| to denote its length, and

−−→
PQ to denote a vector from a point P to a

point Q.

Lemma 3.1. Suppose that the quadrilateral P1P2P3P4 (see Fig. 3) satisfies the almost parallelogram condi-
tion (3) and P5 ∈ [P1, P2] and P6 ∈ [P3, P4] such that

|P2P5|
|P2P1| =

|P3P6|
|P3P4| = d,

where 0 ≤ d ≤ 1 is a constant. Then

|−−−→P6P5 +
−−−→
P1P4| = O(h2). (12)

Proof. In Figure 3, we draw the auxiliary line P3P7 parallel to P4P1 so that P1P7 is parallel to P4P3, and draw
the auxiliary line P6P8 parallel to P3P7.

Since in the parallelogram P1P7P3P4, the line P6P8 is parallel to P3P7, then

|P7P8|
|P7P1| =

|P3P6|
|P3P4| = d =

|P2P5|
|P2P1| ·

Therefore,

|−−−→P6P5 +
−−−→
P1P4| = |−−−→P6P5 +

−−−→
P8P6|

= |P8P5| = (1 − d)|P7P2| = (1 − d)|−−−→P7P3 +
−−−→
P3P2|

= (1 − d)|−−−→P1P4 +
−−−→
P3P2| = (1 − d)O(h2) = O(h2).

Thus, the proof of Lemma 3.1 is completed. �

Lemma 3.2. For any quadrilateral P1P2P3P4 (see Fig. 3), let O1 and O2 denote the midpoints of the two
diagonals of P1P2P3P4 respectively. Then the condition (3) is equivalent to the following midpoints-distance
condition

|O1O2| = O(h2). (13)
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Proof. If the point P7 falls on the line P2P4, then

|O1O2| =
1
2
(|P4P2| − |P4P7|) =

1
2
|P7P2| =

1
2
|−−−→P1P4 +

−−−→
P3P2|.

Otherwise, consider �P2P7P4. Since the quadrilateral P1P7P3P4 is a parallelogram, then O1 and O2 are the
midpoints of P2P4 and P7P4. Hence, O1O2 is parallel to the line P7P2, and

|O1O2| =
1
2
|P7P2| =

1
2
|−−−→P1P4 +

−−−→
P3P2|.

Therefore, if the condition (3) holds, then (13) is true. On the other hand, (13) also implies condition (3). �
According to the results in [5], we have the following lemma.

Lemma 3.3. For any quadrilateral P1P2P3P4, we denote by θ the acute angle between the two normals to
any two opposite sides. Then the midpoints-distance condition (13) is equivalent to the following small angles
condition

θ = O(h). (14)

Lemma 3.4. Consider the same assumptions as in Lemma 3.2. Then

|∠P5P6P4 − ∠P4P1P5| = O(h), (15)

and

∠P5P6P4 + ∠P6P4P1 = π + O(h). (16)

Proof. From Lemma 3.2 and Lemma 3.3, we know that the condition (3) is equivalent to the small angles
condition (14). Then, by Lemma 3.1, we know that the quadrilateral P1P5P6P4 satisfies the small angles
condition (14).

We consider the parallelogram P1P8P6P4 to see that

|∠P5P6P4 − ∠P4P1P5| = |∠P5P6P8 − ∠P8P1P5| ≤ ∠P5P6P8 + ∠P8P1P5 = θ1 + θ2 = 2O(h) = O(h),

where θ1 is the acute angle between the two normals to the P1P4 and P5P6, and θ2 is the acute angle between
the two normals to opposite sides the P1P5 and P4P6.

Similarly, we have

∠P5P6P4 + ∠P6P4P1 = π + ∠P5P6P8 = π + O(h).

Thus, the proof is completed. �
Now we define a discrete H1 semi-norm on Sh (see Fig. 2):

|uh|1,h =

⎛⎝∑
Q∈Th

|uh|21,h,Q

⎞⎠
1
2

, (17)

where

|uh|21,h,Q =
4∑

i=1

[
(uh(Mi) − uh(Pi))2 + (uh(Pi+1) − uh(Mi))2 + (uh(O) − uh(Mi))2

]
.
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Here Pi+1 = P1 if i = 4. The following lemma gives the equivalence of the normal H1 semi-norm and the
discrete one.

Lemma 3.5. Assume that the partition Th satisfies the conditions (3) and (4). Then for any uh ∈ Sh, there
exist positive constants C0 and C1 independent of h such that

C0|uh|1,h ≤ |uh|H1 ≤ C1|uh|1,h. (18)

Proof. According to Lemma 3.2 and [8, 18], we have

|ûh|H1(Q̂) ≤ C‖JF−1
Q

‖1/2
L∞(Q)|FQ|W 1∞(Q̂)|uh|H1(Q),

|uh|H1(Q) ≤ C‖JFQ‖1/2

L∞(Q̂)
|F−1

Q |W 1∞(Q)|ûh|H1(Q̂),

where

‖JF−1
Q

‖L∞(Q) ≤ Ch−2
Q , ‖JFQ‖L∞(Q̂) ≤ Ch2

Q,

|FQ|W 1∞(Q̂) ≤ ChQ, |F−1
Q |W 1∞(Q) ≤ Ch−1

Q .

Hence,

C0|ûh|H1(Q̂) ≤ |uh|H1(Q) ≤ C1|ûh|H1(Q̂). (19)

Let Yuh,Q and Zuh,Q denote two vectors related to uh on Q satisfying (see Fig. 2)

Yuh,Q =
[
uh(M1) − uh(P1), uh(O) − uh(M4), uh(M3) − uh(P4),

uh(P2) − uh(M1), uh(M2) − uh(O), uh(P3) − uh(M3)
]
,

Zuh,Q =
[
uh(M4) − uh(P1), uh(P4) − uh(M4), uh(O) − uh(M1),

uh(M3) − uh(O), uh(M2) − uh(P2), uh(P3) − uh(M2)
]
.

Let

G =
1
30

⎡⎣ 4 2 −1
2 16 2
−1 2 4

⎤⎦ , H =
1
3

[
7 −1
−1 7

]
.

Here G is the element mass matrix and H is produced from the element stiffness matrix of one dimensional
quadratic basis. So that by using a computer algebra system (CAS) like maple one can verify the following
equality

|ûh|2H1(Q̂)
= Yuh,QH⊗ GYT

uh,Q + Zuh,QG ⊗HZT
uh,Q.

From the properties of tensor product [2,12], maximum and minimum eigenvalues of H ⊗G and G⊗H can be
evaluated by the products of the eigenvalues of the matrices H and G:

λmax(G ⊗H) = λmax(H⊗ G) =
38 + 2

√
201

45
< 1.48,

λmin(G ⊗H) = λmin(H⊗ G) =
19 −√

201
30

> 0.16.
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So using maximum and minimum eigenvalues and equality

|uh|21,h,Q = Yuh,QYT
uh,Q + Zuh,QZT

uh,Q,

we obtain the following estimates immediately

1
λmax(G ⊗ H)

|ûh|2H1(Q̂)
≤ |uh|21,h,Q ≤ 1

λmin(G ⊗H)
|ûh|2H1(Q̂)

.

Combining this estimate with (19) and summing the result over Th, we get the desired result. �
The following trace theorem [8] will be used in Lemma 3.6 about the continuity of a(·, Π∗·): for any domain

Ω with a Lipschitz boundary, we have

‖u‖L2(∂Ω) ≤ C‖u‖ 1
2
L2(Ω)‖u‖

1
2
H1(Ω), ∀u ∈ H1(Ω).

Lemma 3.6. If u ∈ H3(Ω), for any vh ∈ Sh, we have∣∣a(u − Πu, Π∗vh)
∣∣ ≤ Ch2‖u‖H3‖vh‖H1 . (20)

Proof. In view of (7), we reorder by edges to get

|aQ(u − Πu, Π∗vh)| =
∣∣∣∣ 4∑

i=1

(vh(Mi) − vh(Pi))
∫

∂Q∗
Mi

∩∂Q∗
Pi

p∇(u − Πu) · nPids

+
4∑

i=1

(vh(Pi+1) − vh(Mi))
∫

∂Q∗
Pi+1

∩∂Q∗
Mi

p∇(u − Πu) · nMids

+
4∑

i=1

(vh(O) − vh(Mi))
∫

∂Q∗
O∩∂Q∗

Ml

p∇(u − Πu) · nMids

∣∣∣∣.
It follows from the Cauchy-Schwartz inequality, trace theorem and (10) that∣∣∣∣ ∫

∂Q∗
Mi

∩∂Q∗
Pi

p∇(u − Πu) · nPids

∣∣∣∣ ≤ Cp∗h1/2(‖u − Πu‖H1(∂Q∗
Mi

∩∂Q∗
Pi

)

≤ Ch1/2(‖u − Πu‖1/2
H1(Q)‖u − Πu‖1/2

H2(Q)) ≤ Ch2‖u‖H3(Q).

According to the definition of the discrete H1 semi-norm, it is obvious that

|vh(Mi) − vh(Pi)| ≤ |vh|1,h,Q.

So we estimate the rest terms similarly and combine the results to obtain

|aQ(u − Πu, Π∗vh)| ≤ Ch2‖u‖H3(Q)|vh|1,h,Q.

Gathering over all elements and using Lemma 3.5 gives∣∣a(u − Πu, Π∗vh)
∣∣ ≤ Ch2‖u‖H3|vh|1,h ≤ Ch2‖u‖H3‖vh‖H1 .

Thus, we get the desired result. �
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To obtain the coercivity of the bilinear form a(·, Π∗·), we will have to use the following two lemmas about
partitioned matrix.

Lemma 3.7. Let A and B be two n × n matrices. The constant κ �= 0. Then the matrix
[ A κB

κBT κ2A
]

is

positive definite if and only if the matrices A± B + BT

2
are positive definite.

Proof. First, suppose that the matrix
[ A κB

κBT κ2A
]

is positive definite. Since κ �= 0, for any α ∈ R1×n, we

note that

(κα,±α)
[ A κB

κBT κ2A
](

καT

±αT

)
= 2κ2α

(
A± B + BT

2

)
αT > 0, ∀α �= 0.

So the matrices (A± B + BT

2
) are positive definite.

Second, suppose that the matrices A ± B + BT

2
are positive definite. For any α = (α1, α2) ∈ R1×2n, where

αi ∈ R1×n, we have

α

[ A κB
κBT κ2A

]
αT =

1
2
(α1 + κα2)

(
A +

B + BT

2

)
(α1 + κα2)T

+
1
2
(α1 − κα2)

(
A− B + BT

2

)
(α1 − κα2)T

≥ 0.

Note that (α1 + κα2) = (α1 − κα2) = 0 only when α = 0. So the above inequality becomes an equality only

when α = 0. Therefore, the matrix
[ A κB

κBT κ2A
]

is positive definite. �

As a direct deduction of Lemma 3.7, we have the following result.

Lemma 3.8. Let A and B be two partitioned matrices such that A =
[ A1 A2

AT
2 A1

]
and B =

[ B1 B2

B2 B1

]
,

where Ai and Bi, i = 1, 2 are n×n matrices. The constant κ �= 0 . Then, the matrix
[ A κB

κBT κ2A
]

is positive

definite if and only if the matrices
[
A1 +

B1 + BT
1

2

]
± 1

2
[(A2 + A2)T + (B2 + BT

2 )] and
[
A1 − B1 + BT

1

2

]
±

1
2
[(A2 + A2)T − (B2 + BT

2 )] are positive definite.

Now we make another assumption about the quadrilateral elements in Th. Let θQ denote any interior angle
of Q ∈ Th. Assume that

| cos θQ| ≤ τ, ∀Q ∈ Th, (21)

where τ ≥ 0 is a constant to be determined later.

Lemma 3.9. Suppose that the partition Th satisfies the conditions (2), (3) and (21). Then for sufficiently
small h, there exists a constant C0 > 0 such that

a(uh, Π∗uh) ≥ C0‖uh‖2
H1 , uh ∈ Sh. (22)
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Proof. According to the definition (8), reordering by edges gives

1
p(O)

āQ(uh, Π∗vh) =
4∑

i=1

(vh(Mi) − vh(Pi))
∫

∂Q∗
Mi

∩∂Q∗
Pi

∇uh · nPids

+
4∑

i=1

(vh(Pi+1) − vh(Mi))
∫

∂Q∗
Pi+1

∩∂Q∗
Mi

∇uh · nMids

+
4∑

i=1

(vh(O) − vh(Mi))
∫

∂Q∗
Q∩∂Q∗

Ml

∇uh · nMids.

Let α = (Yuh,Q,Zuh,Q) be a composite line vector, where Yuh,Q and Zuh,Q are the vectors defined in Lemma 3.5.
Denote by

ϕ1(t) = (t − 1)(2t − 1), ϕ2(t) = 4t(1 − t), ϕ3(t) = t(2t − 1),

the quadratic basis in one dimension. After the the geometry transformation, we integrate the above equation
along the reference element edges with respect to tensor product to give that

1
p(O)

āQ(uh, Π∗uh) = αAαT =
1
2
α(A + AT )αT ,

where the partition matrix

A =
[ A1 A2

A2 A1

]
.

Here the matrices (A1)6×6 and (A1)6×6 reflect the contraction distortion, while the matrices (A2)6×6 and
(A2)6×6 reflect the rotational distortion. The entries of these matrices are specified as follows

(A1)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∫

Ii

ϕj(ŷ)
JFQ(1

4 , ŷ)
|P12P34|2, 1 ≤ i, j ≤ 3,

2
∫

Ii−3

ϕj−3(ŷ)
JFQ(1

4 , ŷ)
|P21P43|2, 4 ≤ i, j ≤ 6,

0, else,
and

(A2)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cj

∫
Ii

(4ŷ − 3)(1 − ŷ)
JFQ(1

4 , ŷ)
−−−→
P1P2 · −−−−→P12P43 +

(4ŷ − 3)ŷ
JFQ(1

4 , ŷ)
−−−→
P4P3 · −−−−→P12P43, 1 ≤ i, j ≤ 3,

−Cj−3

∫
Ii

(4ŷ − 1)(1 − ŷ)
JFQ(1

4 , ŷ)
−−−→
P1P2 · −−−−→P12P43 +

(4ŷ − 1)ŷ
JFQ(1

4 , ŷ)
−−−→
P4P3 · −−−−→P12P43, 1 ≤ i, j − 3 ≤ 3,

−Cj

∫
Ii−3

(4ŷ − 1)(1 − ŷ)
JFQ(3

4 , ŷ)
−−−→
P1P2 · −−−−→P21P34 +

(4ŷ − 1)ŷ
JFQ(3

4 , ŷ)
−−−→
P4P3 · −−−−→P21P34, 1 ≤ i − 3, j ≤ 3,

Cj−3

∫
Ii−3

(4ŷ − 3)(1 − ŷ)
JFQ(3

4 , ŷ)
−−−→
P1P2 · −−−−→P21P34 +

(4ŷ − 3)ŷ
JFQ(3

4 , ŷ)
−−−→
P4P3 · −−−−→P21P34, 4 ≤ i, j ≤ 6,

0, else.
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Here C1 = 3/8, C2 = 3/4 and C3 = −1/8 and the integral domain I1 = [0, 1/4], I2 = [1/4, 3/4] and I3 = [3/4, 1].
The matrices A1 and A2 take a similar form as above. In order to study the properties of the matrix A, we
shall first introduce an auxiliary matrix Ã. Since the grids considered in this paper are almost parallelograms,

we assume that Q is a parallelogram first, then set Ã =
1
2
(A + AT ). Without loss of generality, choose

θQ = ∠P4P1P2 (see Fig. 2). Let κ = |P1P4|/|P1P2|. Therefore,

Ã =
|P1P2|2
m(Q)

⎡⎢⎢⎣ Ã1 κ
Ã2 + Ã2

T

2

κ
Ã2 + Ã2

T

2
κ2Ã1

⎤⎥⎥⎦
with

Ã1 =
[Ã11 0

0 Ã11

]
, Ã2 =

[Ã21 Ã22

Ã22 Ã21

]
.

Here

Ã11 =
1
24

⎡⎣ 8 3 −1
3 22 3
−1 3 8

⎤⎦ , Ã21 =
cos θQ

64

⎡⎣−15 −30 5
−12 −24 4
3 6 −1

⎤⎦ , Ã22 =
cos θQ

64

⎡⎣ 3 6 −1
−12 −24 4
−15 −30 5

⎤⎦ .

We can calculate that the minimum principal minor determinant of the matrices

(
Ã11 +

Ã21 + Ã2
T

1

2

)
±

1
2
(Ã22 + Ã2

T

2 ) and

(
Ã11 −

Ã21 + Ã2
T

1

2

)
± 1

2
(Ã22 + Ã2

T

2 ) is

17
192

− 1465
18 432

| cos(θQ)| − 3
64

| cos2(θQ)| − 81
32 768

| cos3(θQ)|.

Let

F (t) =
17
192

− 1465
18 432

t − 3
64

t2 − 81
32 768

t3.

It is easy to verify that the function F (t) is monotone decreasing for t ∈ [0, 1] and there exists a root t0 ∈ (0, 1)
(this root ≈ 0.7598). So we can choose τ < t0 in (21) such that F (| cos(θQ)|) > 0. Then the principal minor
determinants of the above matrices are all positive. Thus these matrices are positive definite. Now by Lemma 3.8
we know that the matrix ⎡⎢⎢⎣ Ã1 κ

Ã2 + Ã2
T

2

κ
Ã2 + Ã2

T

2
κ2Ã1

⎤⎥⎥⎦
is positive definite too with its minimum eigenvalue λτ > 0, which is depending on the constant τ . Then using
the regularity condition (2), Lemma 3.2 and ([18], Lem. 1), we have

λmin(Ã) ≥ λτ
|P1P2|2
m(Q)

≥ Cλτ , (23)

where λmin(Ã) denotes the minimum eigenvalue of Ã.
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We now should consider the difference between the matrix Ã on a parallelogram and the matrix
1
2
(A+AT )

on a almost parallelogram. Let D =
1
2
(A + AT ) − Ã. Under the condition (3), we see from [13] that

lim
h→0

JFQ(x̂, ŷ)
m(Q)

= 1. (24)

Using Lemma 3.1 and Lemma 3.4, we see that

|P12P43| = |P21P34| = |P1P4| + O(h2), |P14P23| = |P41P32| = |P1P2| + O(h2), (25)

and

−−−→
P1P2 · −−−−→P12P43 =

−−−→
P4P3 · −−−−→P12P43 =

−−−→
P1P2 · −−−−→P21P34 =

−−−→
P4P3 · −−−−→P21P34

=
−−−→
P1P4 · −−−−→P14P23 =

−−−→
P2P3 · −−−−→P14P43 =

−−−→
P1P4 · −−−−→P41P32 =

−−−→
P2P3 · −−−−→P41P32

= |P1P2||P1P4| cos θQ cosh + O(h3). (26)

Thus by (24)–(26), we can verify that when h is small enough,

|(D)ij | ≤ C
(1 − cosh)h2 + h3

m(Q)
, 1 ≤ i, j ≤ 12.

Since the partition is regular, then
h2

m(Q)
≤ C. Therefore,

|(D)ij | ≤ C(1 − cosh + h), 1 ≤ i, j ≤ 12.

So

λmax(D) ≤ ‖D‖∞ ≤ 12C(1 − cosh + h),

where λmax(D) denotes the maximum eigenvalue of the matrix D.
Combining the results above with the definition (17), we have

āQ(uh, Π∗uh) =
p(O)

2
α(A + AT )αT = p(O)α[Ã + D]αT

≥ p∗[λmin(Ã) − λmax(D)]ααT = p∗[λmin(Ã) − λmax(D)]|uh|21,h,Q

≥ p∗[Cλτ − 12C(1 − cosh + h)]|uh|21,h,Q. (27)

From the Lipschitz continuity of p(X), we have

|p(X) − p(O)| ≤ Lh.

Proceeding similarly as in Lemma 3.6 gives

|aQ(uh, Π∗uh) − āQ(uh, Π∗uh)| ≤ Ch|uh|2H1(Q). (28)
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Hence, using Lemma 3.5 and the Poincaré’s inequality, for sufficiently small h,

a(uh, Π∗uh) =
∑

Q∈Th

āQ(uh, Π∗uh) +
∑

Q∈Th

|aQ(uh, Π∗uh) − āQ(uh, Π∗uh)|

≥ p∗[Cλτ (C∗)2 − 12C(1 − cosh + h)]|uh|21,h − Ch|uh|2H1

≥ Cp∗[Cλτ (C∗)2 − 12C(1 − cosh + h)]|uh|2H1 − Ch|uh|2H1

≥ C0‖uh‖2
H1 .

Thus, the proof is completed. �
Theorem 3.10. Suppose that u ∈ H1

0 (Ω)∩H3(Ω). If the conditions (2), (3) and (21) hold, then for sufficiently
small h, there exists a positive constant C independent of h such that

‖u − uh‖H1 ≤ Ch2‖u‖H3 . (29)

Proof. From (9), (11) and Lemma 3.9, we have

C0‖Πu − uh‖2
H1 ≤ a(Πu − uh, Π∗(Πu − uh))

= a(Πu − u, Π∗(Πu − uh)).

It follows from Lemma 3.6 that

a(Πu − u, Π∗(Πu − uh)) ≤ Ch2‖u‖H3‖Πu − uh‖H1 .

Thus,

‖Πu − uh‖H1 ≤ C

C0
h2‖u‖H3.

Then from the triangle inequality and interpolation estimates (10), we have

‖u − uh‖H1 ≤ ‖u − Πu‖H1 + ‖Πu − uh‖H1 ≤ Ch2‖u‖H3 .

Thus, the proof of the theorem is completed. �

4. Numerical experiment

In this section, we present some numerical results for the scheme discussed in this paper. Let Ω = (0, π)×(0, π)
and p(X) = (x + 1)2 + y2 in problem (1). Let u(X) = sinx sin y be the exact solution. The source term f(X)
is determined by the above data. Then the performance of the method, in terms of the computed orders of
convergence, is reported for two families of meshes (see Fig. 4).

The left one in Figure 4 is a uniform rectangular mesh T r
h , consisting of a subdivision of the domain into

N × N subsquares for N = 4, 8, 16, . . . . Obviously, T r
h satisfies the condition (3).

The right one is a nonuniform quadrilateral mesh T q
h , consisting of a almost parallelogram grid constructed

from a uniform rectangular grid via the mapping

x(i, j) =
πi

N
, y(i, j) =

πj

N
+

π

20
sin
(

2πi

N

)
sin
(

2πi

N

)
,

where 0 ≤ i, j ≤ N . Since the maximum value of the distortion of mesh node positions is proportional to the
square of the local mesh size, then for N = 4, 8, 16, . . . , we obtain a N × N quadrilateral mesh satisfying the
almost parallelogram condition (3).
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Figure 4. Example of the meshes T r
h and T q

h .

Table 1. Error estimates and convergence orders on T r
h .

N e1,h Rate e2,h Rate
4 3.8605× 10−2 – 1.5343× 10−2 –
8 9.2577× 10−3 2.06 3.9196× 10−3 1.97
16 2.2892× 10−3 2.02 9.8734× 10−4 1.99
32 5.7067× 10−4 2.00 2.4753× 10−4 2.00
64 1.4261× 10−4 2.00 6.1921× 10−5 2.00

Table 2. Error estimates and convergence orders on T q
h .

N e1,h Rate e2,h Rate
4 1.2378× 10−1 – 2.7408× 10−2 –
8 2.7617× 10−2 2.16 7.3986× 10−3 1.89
16 6.3542× 10−3 2.12 1.9442× 10−3 1.93
32 1.4998× 10−3 2.08 4.9729× 10−4 1.97
64 3.5902× 10−4 2.06 1.2571× 10−4 1.98

We compute the error in discrete H1 semi-norm and L∞ norm, which is denoted by e1,h = |Πu − uh|1,h

and e2,h = ‖u − uh‖L∞ respectively. The numerical order of convergence is then measured by comparing the
computed error on two successive mesh level calculations, which is given by the standard formula

Rate = log2

ei,h

ei,h/2
, i = 1, 2.

Tables 1 and 2 show the results for respectively the case of uniform rectangular mesh T r
h and nonuniform

quadrilateral mesh T q
h . We see that the convergence rates in discrete H1 semi-norm and L∞ norm for both

meshes are second order accurate indeed and the results in these cases display a well agreement with our
theoretical results.
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[18] E. Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comp. 59 (1992) 359–382.
[19] M. Tian and Z. Chen, Generalized difference methods for second order elliptic partial differential equations. Numer. Math. J.

Chinese Universities 13 (1991) 99–113.
[20] Z.J. Wang, Spectral (finite) volume methods for conservation laws on unstructured grids: basic formulation. J. Comput. Phys.

178 (2002) 210–251.
[21] Z.J. Wang, L. Zhang and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids. IV: Extension

to two-dimensional systems. J. Comput. Phys. 194 (2004) 716–741.
[22] X. Xiang, Generalized difference methods for second order elliptic equations. Numer. Math. J. Chinese Universities 2 (1983)

114–126.
[23] M. Yang and Y. Yuan, A multistep finite volume element scheme along characteristics for nonlinear convection diffusion

problems. Math. Numer. Sinica 24 (2004) 487–500.


