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NUMERICAL SIMULATION OF A PULSATILE FLOW
THROUGH A FLEXIBLE CHANNEL

Cornel Marius Murea
1

Abstract. An algorithm for approximation of an unsteady fluid-structure interaction problem is pro-
posed. The fluid is governed by the Navier-Stokes equations with boundary conditions on pressure,
while for the structure a particular plate model is used. The algorithm is based on the modal de-
composition and the Newmark Method for the structure and on the Arbitrary Lagrangian Eulerian
coordinates and the Finite Element Method for the fluid. In this paper, the continuity of the stresses at
the interface was treated by the Least Squares Method. At each time step we have to solve an optimiza-
tion problem which permits us to use moderate time step. This is the main advantage of this approach.
In order to solve the optimization problem, we have employed the Broyden, Fletcher, Goldforb, Shano
Method where the gradient of the cost function was approached by the Finite Difference Method.
Numerical results are presented.
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Introduction

We consider a pulsatile incompressible flow through a channel with elastic walls. Following [29], the therm
pulsatility means the rapid increase and decrease of the flow rate in a first phase, followed by a longer phase
where the flow rate is small. This kind of fluid-structure interaction arises in car industries, for example the
dynamic behavior of a hydraulic shock absorber [22] or in the design of sensors subject to large acceleration
during impact [20] or in bio-mechanics, for example, the interaction between a bio-fluid and a living tissue [28].

The mathematical model which governs the fluid is the unsteady Navier-Stokes equations with boundary
condition on the pressure. For the structure, a particular plate model is used.

The most frequently, the fluid-structure interaction problems are solved numerically by partitioned proce-
dures, i.e. the fluid and the structure equations are solved separately.

There are different strategies to discretize in time the unsteady fluid-structure interaction problem. A family
of explicit algorithms known also as staggered was successfully employed for the aeroelastic applications [11].
As it shown in [22] and [26], the staggered algorithms are unstable when the structure is light and its density is
comparable to that of its fluid, such in the bio-mechanics applications. For a simplified fluid-structure problem,
the unconditionally instability of the explicit algorithms is proved in [3].

Keywords and phrases. Fluid-structure interaction, Navier-Stokes equations, Arbitrary Lagrangian Eulerian Method.
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In order to obtain unconditionally stable algorithms, at each time step we have to solve a non-linear fluid-
structure coupled system. This can be done by using: fixed point strategies [13, 22, 26, 28], Newton Method
where the gradient is approached by Finite Differences [30], quasi-Newton Method [14], Newton Method with
exact Jacobian [12]. The starting point for these iterative methods at the current time step is computed by
extrapolating the solutions at the previous time steps.

We will see in the numerical tests presented in this paper that the solution at the previous time step, which
is used as a starting point for the next time step, it is not close to the solution at the current time step. Such
phenomena is amplified during the phase when the flow rate increase or decrease rapidly or if we increase the
time step.

The fixed point and Newton like algorithms are not suitable in this case, since these methods diverge if the
starting point is not sufficiently close to the solution.

In this paper, the continuity of the stresses at the interface will be treated by the Least Squares Method and
at each time step we have to solve an optimization problem which is less sensitive to the choice of the starting
point and it permits us to use moderate time step. This is the main advantage of this approach.

The outline of this paper is as follows. In Section 1 the approximation of the structure by the modal
decomposition and Newmark scheme is presented. The Arbitrary Lagrangian Eulerian Method for Navier-
Stokes equations in moving domain is detailed in Section 2. The coupled fluid-structure algorithm is introduced
in Section 3. In order to solve the optimization problem at each time step, we have employed the Broyden,
Fletcher, Goldforb, Shano Method and the gradient of the cost function was approached by the Finite Difference
Method. Numerical results are presented and discussed in Section 4. The last section is devoted to some
concluding remarks.

1. Approximation of the structure

1.1. Strong equations of the structure

The following system was obtained from the equations of a linear elastic, homogeneous, isotropic plate (see
[10]) which is parallel to the plane Ox1x3, under the hypothesis that the vertical displacement is independent
of x3.

Let L > 0 denote the length, hS > 0 the thickness, ρS > 0 the mass density, E > 0 the Young modulus,
0 < ν ≤ 0.5 the Poisson ratio, T > 0 the length of the time interval, η : (0, L) × (0, T ) → R the applied
transverse force per unit area, u0 : (0, L) → R the initial displacement, u̇0 : (0, L) → R the initial velocity.

The problem is to find the transverse displacement u : [0, L]× [0, T ] → R such that

ρShS ∂2u

∂t2
(x1, t) +

E(hS)3

12(1 − ν2)
∂4u

∂x4
1

(x1, t) = η(x1, t), (x1, t) ∈ (0, L) × (0, T ) (1.1)

u(0, t) = 0,
∂u

∂x1
(0, t) = 0, t ∈ (0, T ) (1.2)

u(L, t) = 0,
∂u

∂x1
(L, t) = 0, t ∈ (0, T ) (1.3)

u(x1, 0) = u0(x1), x1 ∈ (0, L) (1.4)
∂u

∂t
(x1, 0) = u̇0(x1), x1 ∈ (0, L) (1.5)

The above model is suitable for the flat thin structures. The time derivative of the angular momentum
ρS(hS)3

12
∂4u

∂t2∂x2
1

was neglected since the structure is thin and consequently (hS)3 is very small. On the contrary,

the factor E(hS)3

12(1−ν2) could not be neglected because the Young modulus E is in general a big number.
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In [28, 29], for numerical simulations of the blood flow in arteries, the vascular wall was modeled as a
axisymmetric membrane

ρShS ∂2u

∂t2
(x1, t) − hSGk

∂2u

∂x2
1

(x1, t) +
EhS

12(1 − ν2)R2
u(x1, t) = η(x1, t).

Some authors add the visco-elastic term ∂3u
∂x2

1∂t
to the membrane model in order to obtain a priori estimation of

an energy [23], or to regularize the solution [4], or to stabilize the numerical schemes [7].

1.2. Natural frequencies and normal mode shapes

This subsection follows the general reference [5], Volume 7, Chapter XV and the particular Example 5.3,
p. 192 from the same reference. Another general reference in this topic is [21].

We denote by 0 < s0 < . . . < si < . . . the solutions of the equation

cos(s) cosh(s) = 1, s > 0.

We set ai = si/L. For each i ∈ N there exists a unique normal mode shape φi ∈ C4 ([0, L]) such that

φ′′′′
i (x1) = (ai)4φi(x1), x1 ∈ (0, L) (1.6)

φi(0) =
∂φi

∂x1
(0) = 0, (1.7)

φi(L) =
∂φi

∂x1
(L) = 0, (1.8)∫ L

0

φ2
i (x1) dx1 = 1. (1.9)

Let ωi =
(

si

L

)2√ E(hS)3

12(1−ν2)ρShS be the ith natural frequency associated with φi.
The normal mode shapes φi for i ∈ N form an orthonormal basis of L2(0, L). There exists a unique decom-

position of η of the form

η(x1, t) =
∑
i≥0

αi(t)φi(x1).

The problem (1.1)–(1.5) has a solution of the form

u(x1, t) =
∑
i≥0

qi(t)φi(x1)

where qi is the solution of the second order differential equation

q′′i (t) + ω2
i qi(t) =

1
ρShS

αi(t), t ∈ (0, T ) (1.10)

qi(0) =
∫ L

0

u0(x1)φi(x1) dx1 (1.11)

q′i(0) =
∫ L

0

u̇0(x1)φi(x1) dx1. (1.12)



1104 C.M. MUREA

1.3. The Newmark Method

We recall the Newmark Method employed to approximate second order systems of ordinary differential
equations.

Let N ∈ N
∗ be the number of time steps and ∆t = T/N the time step. We set tn = n∆t for n = 0, 1, . . . , N .

We denote αn
i = αi(tn) and let qn

i , q̇n
i , q̈n

i be approximations of qi(tn), q′i(tn), q′′i (tn) respectively.
Knowing qn

i , q̇n
i , q̈n

i and αn+1
i , find qn+1

i , q̇n+1
i , q̈n+1

i such that:

q̈n+1
i + ω2

i qn+1
i =

1
ρShS

αn+1
i , (1.13)

q̇n+1
i = q̇n

i + ∆t
[
(1 − δ)q̈n

i + δq̈n+1
i

]
, (1.14)

qn+1
i = qn

i + ∆tq̇n
i + (∆t)2

[(
1
2
− θ

)
q̈n
i + θq̈n+1

i

]
(1.15)

where δ and θ are two real parameters.
Substituting (1.15) into (1.13) results in an equation that may be solved for q̈n+1

i :

(
1 + ω2

i (∆t)2θ
)
q̈n+1
i =

1
ρShS

αn+1
i − ω2

i

[
qn
i + ∆tq̇n

i + (∆t)2
(

1
2
− θ

)
q̈n
i

]
. (1.16)

Once q̈n+1
i is determined, (1.14) and (1.15) serve to define q̇n+1

i and qn+1
i , respectively.

Following [5], Volume 9, p. 922, this method is unconditional stable for 2θ ≥ δ ≥ 1/2. It is first order
accuracy if δ �= 1/2. If δ = 1/2, it is second order accuracy in the case θ �= 1/12 and forth order accuracy is
achieved if θ = 1/12.

Only the first m modes will be considered. We denote by

un
m(x1) =

m−1∑
i=0

qn
i φi(x1), u̇n

m(x1) =
m−1∑
i=0

q̇n
i φi(x1), ün

m(x1) =
m−1∑
i=0

q̈n
i φi(x1)

the approximations of u(x1, tn), ∂u
∂t (x1, tn), ∂2u

∂t2 (x1, tn) respectively.

2. Approximations of the unsteady Navier-Stokes equations

in a moving domain

2.1. Strong form of the unsteady Navier-Stokes equations

Let u : [0, L]×[0, T ] → R be the transverse displacement of a thin elastic wall. For each time instant t ∈ [0, T ],
we assume that u(·, t) : [0, L] → R is at least of class C1. We suppose that an admissible displacement verifies:

u(0, t) = ∂u
∂x1

(0, t) = 0, u(L, t) = ∂u
∂x1

(L, t) = 0, ∀t ∈ [0, T ],
0 < H + u(x1, t), ∀(x1, t) ∈ [0, L]× [0, T ]

where H is a positive constant.
For each t ∈ [0, T ], we introduce the notations (see Fig. 1)

ΩF
t =

{
(x1, x2) ∈ R

2; x1 ∈ (0, L), 0 < x2 < H + u (x1, t)
}

,
Γt =

{
(x1, x2) ∈ R

2; x1 ∈ (0, L), x2 = H + u (x1, t)
}

.
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Figure 1. Example of an admissible domain.

Also, we denote

Σ1 =
{
(0, x2) ∈ R

2; x2 ∈ (0, H)
}

,

Σ2 =
{
(x1, 0) ∈ R

2; x1 ∈ (0, L)
}

,

Σ3 =
{
(L, x2) ∈ R

2; x2 ∈ (0, H)
}

.

The two-dimensional domain occupied by the fluid is ΩF
t , the elastic wall is Γt, the rigid one is Σ2, while Σ1

and Σ3 represent the upstream and downstream sections, respectively. The boundaries Σ1 and Σ3 are artificial.
In the following, we denote by n = (n1, n2)T the unit outward normal vector and by τ = (τ1, τ2)T =

(−n2, n1)T the unit tangential vector to ∂ΩF
t .

For all t ∈ [0, T ] and for all x = (x1, x2)T ∈ ΩF
t , find the velocity v(x, t) ∈ R

2 and the pressure p(x, t) ∈ R

such that:

ρF

(
∂v
∂t

+ (v · ∇)v
)
− µ∆v + ∇p = fF , ∀t ∈ (0, T ), ∀x ∈ ΩF

t (2.17)

∇ · v = 0, ∀t ∈ (0, T ), ∀x ∈ ΩF
t (2.18)

v × n = 0, on Σ1 × (0, T ) (2.19)
p = Pin, on Σ1 × (0, T ) (2.20)
v = g, on Σ2 × (0, T ) (2.21)

v × n = 0, on Σ3 × (0, T ) (2.22)
p = Pout, on Σ3 × (0, T ) (2.23)

v (x1, H + u(x1, t), t) =
(

0,
∂u

∂t
(x1, t)

)T

,

∀(x1, t) ∈ (0, L) × (0, T ) (2.24)

v(x, 0) = v0(x), ∀x ∈ ΩF
0 (2.25)

where
• ρF > 0 and µ > 0 are the mass density and the viscosity of the fluid;
• fF = (fF

1 , fF
2 ) are the applied volume forces, in general the gravity forces;

• g = (g1, g2)T : Σ2 × (0, T ) → R
2 is the imposed velocity profile on a part of the rigid boundary;

• Pin : Σ1 × (0, T ) → R and Pout : Σ3 × (0, T ) → R are prescribed boundary pressure;
• v0 : ΩF

0 → R
2 is initial velocity and ΩF

0 is the initial domain.
We have supposed that the displacement u and the velocity ∂u

∂t of the moving wall are known, consequently the
moving domain ΩF

t which depends on u and the prescribed velocity on the elastic boundary Γt appearing in
the boundary condition (2.24) are given.
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The following notations have been used: v = (v1, v2)
T , ∇·v = ∂v1

∂x1
+ ∂v2

∂x2
, v×n = v1n2−v2n1, ∆vi = ∂2vi

∂x2
1
+∂2vi

∂x2
2

for i = 1, 2,

∇p =

(
∂p
∂x1
∂p
∂x2

)
, ∆v =

(
∆v1

∆v2

)
, (v · ∇)v =

(
v1

∂v1
∂x1

+ v2
∂v1
∂x2

v1
∂v2
∂x1

+ v2
∂v2
∂x2

)
.

The Navier-Stokes equations with boundary condition on pressure were firstly studied in [27].

2.2. The Arbitrary Lagrangian Eulerian coordinates and the time discretization

The Arbitrary Lagrangian Eulerian (ALE) framework was successfully used for the fluid structure interaction
problems (see [28] and the references given there).

We denote by Ω̂F = (0, L) × (0, H) the reference domain and by Γ̂ = (0, L) × {H} its top boundary. Since
the moving boundary is a graph of a real function and the reference domain is a rectangle, we can construct
explicitly so called the ALE map.

For each admissible displacement u, we consider following family of one-to-one continuous differentiable
transformation At : Ω̂F → ΩF

t given by:

At (x̂1, x̂2) =
(

x̂1,
H + u (x̂1, t)

H
x̂2

)T

which admits the continuous differentiable inverse mapping

A−1
t (x1, x2) =

(
x1,

Hx2

H + u (x1, t)

)T

and verifies that At

(
Ω̂F
)

= ΩF
t , At

(
Γ̂
)

= Γt and At (x̂) = x̂, ∀x̂ ∈ Σ.

We set x = At (x̂) for each x = (x1, x2) ∈ ΩF
t and x̂ = (x̂1, x̂2) ∈ Ω̂F .

We denote by v̂(x̂, t) = v (At(x̂), t) and p̂(x̂, t) = p (At(x̂), t) the velocity and the pressure using so-called
Arbitrary Lagrangian Eulerian coordinates.

Let x̂ be fixed. According to the chain rule, we have

∂v̂
∂t

(x̂, t) =
d
d t

[v (At(x̂), t)] =
(

∂At

∂t
(x̂) · ∇

)
v (At(x̂), t) +

∂v
∂t

(At(x̂), t)

which implies
∂v
∂t

(x, t) =
∂v̂
∂t

(x̂, t) −
(

∂At

∂t
(x̂) · ∇

)
v (x, t) . (2.26)

Let N ∈ N
∗ be the number of time steps and ∆t = T/N the time step. We set tn = n∆t for n = 0, 1, . . . , N .

We will indicate vn+1(x), pn+1(x) the approximations of v(x, tn+1), p(x, tn+1) for x ∈ ΩF
tn+1

.
We denote x = Atn+1(x̂) and consequently x̂ = A−1

tn+1
(x).

We can use the first order finite difference scheme

∂v̂
∂t

(x̂, tn+1) ≈
v̂(x̂, tn+1) − v̂(x̂, tn)

∆t
=

v
(
Atn+1(x̂), tn+1

)
− v (Atn(x̂), tn)

∆t

=
v (x, tn+1) − v

(
Atn ◦ A−1

tn+1
(x), tn

)
∆t

≈
vn+1(x) − vn

(
Atn ◦ A−1

tn+1
(x)
)

∆t
·

Observe that the derivative ∂v̂
∂t (x̂, tn+1) which depends on the ALE coordinates x̂ can be approached by the

expression
vn+1(x)−vn

(
Atn◦A−1

tn+1
(x)
)

∆t written using the Eulerian coordinates x.
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By the definition, it follows

∂At

∂t
(x̂) =

(
0,

∂u
∂t (x̂1, t)

H
x̂2

)T

and by replacing x̂ = A−1
tn+1

(x), we obtain

ϑn+1(x)
def
=

∂At

∂t
(x̂)|t=tn+1 =

(
0,

∂u

∂t
(x1, tn+1)

x2

H + u (x1, tn+1)

)T

.

Finally, from the equality (2.26), we can employ the approximation

∂v
∂t

(x, tn+1) ≈
vn+1(x) − vn

(
Atn ◦ A−1

tn+1
(x)
)

∆t
−
(
ϑn+1(x) · ∇

)
vn+1(x). (2.27)

The time-advancing scheme is: knowing the velocity vn : ΩF
tn

→ R
2 of the fluid at the previous time step and

the displacement u(·, tn+1), the velocity ∂u
∂t (·, tn+1) of the moving boundary at the current time step, find the

velocity vn+1 : ΩF
tn+1

→ R
2, the pressure pn+1 : ΩF

tn+1
→ R of the fluid, such that

ρF

(
vn+1

∆t
+
(
(Vn − ϑn+1) · ∇

)
vn+1

)
− µ∆vn+1 + ∇pn+1 = ρF Vn

∆t
+ fF in ΩF

tn+1
(2.28)

∇ · vn+1 = 0 in ΩF
tn+1

(2.29)

vn+1 × n = 0 on Σ1 (2.30)
pn+1 = Pin(·, tn+1) on Σ1 (2.31)
vn+1 = g(·, tn+1) on Σ2 (2.32)

vn+1 × n = 0 on Σ3 (2.33)
pn+1 = Pout(·, tn+1) on Σ3 (2.34)

vn+1 (x1, H + u(x1, tn+1), t) =
(

0,
∂u

∂t
(x1, tn+1)

)T

,

0 < x1 < L (2.35)

where Vn(x) = vn
(
Atn ◦ A−1

tn+1
(x)
)

for all x in ΩF
tn+1

.
This is a first order time accurate scheme. The time derivative was approached by the backward Euler

Method. The nonlinear term (v · ∇)v was treated semi-implicit, therefore we obtain a linear system whose
associated matrix is not symmetric and it changes at each time step.

2.3. Mixed finite element approximation

We introduce the following Hilbert spaces:

Wn+1 =
{
w ∈

(
H1
(
ΩF

tn+1

))2

; w × n = 0 on Σ1 ∪ Σ3, w = 0 on Σ2 ∪ Γtn+1

}
,

Qn+1 = L2
(
ΩF

tn+1

)
.
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Find the velocity vn+1 ∈
(
H1
(
ΩF

tn+1

))2

satisfies the boundary conditions (2.30), (2.32), (2.33), (2.35) and the

pressure pn+1 ∈ L2
(
ΩF

tn+1

)
such that

{
an+1

F

(
vn+1,w

)
+ dn+1

F

(
vn+1,w

)
+ bn+1

F

(
w, pn+1

)
= �n+1 (w) , ∀w ∈ Wn+1

bn+1
F

(
vn+1, q

)
= 0, ∀q ∈ Qn+1 (2.36)

where

an+1
F

(
vn+1,w

)
=

ρF

∆t

(
vn+1,w

)
+ µ
(
∇× vn+1,∇× w

)
+ µ

(
∇ · vn+1,∇ ·w

)
(2.37)

dn+1
F

(
vn+1,w

)
= ρF

((
(Vn − ϑn+1) · ∇

)
vn+1,w

)
(2.38)

bn+1
F (w, q) = − (∇ · w, q) (2.39)

�n+1 (w) =
ρF

∆t
(Vn,w) +

(
fF ,w

)
−
∫

Σ1

Pin(·, tn+1)n ·w dγ −
∫

Σ3

Pout(·, tn+1)n · w dγ (2.40)

and (·, ·) is the scalar product of L2
(
ΩF

tn+1

)
or
(
L2
(
ΩF

tn+1

))2

.

Following [17, 27], the bilinear form (∇× y,∇× w) + (∇ · y,∇ · w) is Wn+1 elliptic and bn+1
F satisfies inf-

sup condition or Ladyzhenskaya-Babuska-Brezzi condition. If the bilinear form an+1
F + dn+1

F is elliptic on the
subspace

{
w ∈ Wn+1; ∇ · w = 0

}
, then the problem (2.36) has an unique solution.

For the approximation of the fluid velocity we have been used the finite elements P1 + bubble also refereed to
as MINI elements introduced by Arnold, Brezzi and Fortin. For the fluid pressure the finite elements P1 have
been employed.

3. Approximation of the coupled fluid-structure equations

3.1. Strong form of the coupled equations

In the previous sections, we have introduced separately the structure and the fluid equations.
The coupled fluid structure problem is: find the transverse displacement u satisfies (1.1)–(1.5), the velocity

v and the pressure p satisfy (2.17)–(2.25) such that

η(x1, t) = −
(
σF n · e2

)
(x1,H+u(x1,t))

√
1 +
(

∂u

∂x1
(x1, t)

)2

(3.41)

where σF = −p I + µ
(
∇v + ∇vT

)
is the stress tensor of the fluid, e2 = (0, 1)T is the unit vector in the x2

direction.
The displacement of the structure depends on the vertical component of the stresses exerted by the fluid on

the interface (Eqs. (1.1) and (3.41)). This cames from the continuity of the stresses across the interface.
The movement of the structure changes the domain where the fluid equations must be solved (Eqs. (2.17)

and (2.18)). Also, on the interface we have to impose the equality between the fluid and structure velocity
(Eq. (2.24)).

The stresses exerted by the fluid −σF n are defined on the elastic wall Γt, while the stresses on the structure

η are defined on the horizontal segment Γ̂. The factor

√
1 +
(

∂u
∂x1

(x1, t)
)2

which appears in the equation (3.41)
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is necessary to have

∫
Γt

σF n · e2 dγ =
∫ L

0

(
σF n · e2

)
(x1,H+u(x1,t))

√
1 +
(

∂u

∂x1
(x1, t)

)2

dx1.

The displacement u must be admissible or equivalent the elastic wall Γt does not touch the bottom boundary Σ2.
The existence results for the fluid structure interaction can be found for example in [1,15] for the steady case

and in [2, 4, 9, 16] for the unsteady case. We didn’t cited here the results concerning the interaction between a
fluid and a rigid solid in rotation or in translation.

3.2. Identification of the stresses on the interface using the Least Squares Method

We recall that, the most frequently, the fluid-structure interaction problems are solved numerically by par-
titioned procedures, i.e. the fluid and the structure equations are solved separately. This can be done by using
fixed point or Newton like methods. If the starting point is not chosen “sufficiently close” to the solution, these
methods diverge.

In the following, the equation (3.41) will be treated by the Least Squares Method and at each time step we
have to solve an optimization problem which is less sensitive to the choice of the starting point. This is the
main advantage of this approach.

In order to evaluate the cost function, we must call one time the structure solver, to update the mesh and to
call one time the fluid solver. We present the details below.

The unknowns of the optimization problem are the stresses on the interface.
Suppose that at the previous time step tn we know:

• the approximations of the displacement, the velocity and the acceleration of the structure denoted
respectively by

un
m(x1) =

m−1∑
i=0

qn
i φi(x1), u̇n

m(x1) =
m−1∑
i=0

q̇n
i φi(x1), ün

m(x1) =
m−1∑
i=0

q̈n
i φi(x1);

• the polygonal approximation of the fluid domain denoted by ΩF,n
h ;

• the finite element approximations of the velocity and the pressure of the fluid denoted by vn
h and pn

h

respectively.

We seek an approximation of the stresses on the interface at the current time step tn+1 of the form ηn+1
m (x1) =∑m−1

i=0 αn+1
i φi(x1), where αn+1

i , i = 0, . . . , m − 1 are the parameters to be identified.
Let α = (α0, . . . , αm−1) ∈ R

m.

Structure sub-problem
For i = 0, . . . , m − 1, knowing qn

i , q̇n
i , q̈n

i , find Qi, Q̇i, Q̈i such that:

(
1 + ω2

i (∆t)2θ
)
Q̈i =

1
ρShS

αi − ω2
i

[
qn
i + ∆tq̇n

i + (∆t)2
(

1
2
− θ

)
q̈n
i

]
(3.42)

Q̇i = q̇n
i + ∆t

[
(1 − δ)q̈n

i + δQ̈i

]
, (3.43)

Qi = qn
i + ∆tq̇n

i + (∆t)2
[(

1
2
− θ

)
q̈n
i + θQ̈i

]
(3.44)

The above equations have been obtained from (1.16), (1.13), (1.14) replacing αn+1
i , qn+1

i , q̇n+1
i , q̈n+1

i by αi, Qi,
Q̇i, Q̈i respectively.
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Set

U(x1) =
m−1∑
i=0

Qiφi(x1), U̇(x1) =
m−1∑
i=0

Q̇iφi(x1), Ü(x1) =
m−1∑
i=0

Q̈iφi(x1).

Fluid sub-problem
Let T̂h be a mesh with triangular elements of the reference domain Ω̂F . We define the mesh with triangular

elements Th by moving each node of T̂h using the map

AU (x̂1, x̂2) =
(

x̂1,
H + U (x̂1)

H
x̂2

)T

.

We denote by ΩF
h the polygonal domain corresponding to the mesh Th and we have ∂ΩF

h = Σ1 ∪ Σ2 ∪ Σ3 ∪ Γh

where Γh is the top boundary.
Let us introduce the finite dimension spaces

Wh =
{
wh ∈

(
C0
(
Ω

F

h

))2

; ∀K triangle of Th, wh|K ∈ P1 + bubble,

wh × n = 0 on Σ1 ∪ Σ3, wh = 0 on Σ2 ∪ Γh} ,

Qh =
{
qh ∈ C0

(
Ω

F

h

)
; ∀K triangle of Th, qh|K ∈ P1

}
.

Remark that the finite element spaces are defined directly on the physical domain. Many authors (see [22,28,29])
use a different framework: the test function in the physical domain is obtained from the one in a reference domain
via the ALE map. In this case, we have to pay attention to the quadrature formulas (see [28]).

Find the velocity vh satisfies the boundary conditions

vh × n = 0, on each vertex of Σ1 ∪ Σ3,

vh = g(·, tn+1), on each vertex of Σ2,

vh =
(
0, U̇
)T

, on each vertex of the top boundary Γh

and the pressure ph ∈ Qh such that{
an+1

F (vh,wh) + dn+1
F (vh,wh) + bn+1

F (wh, ph) = �n+1 (wh) , ∀wh ∈ Wh

bn+1
F (vh, qh) = 0, ∀qh ∈ Qh.

(3.45)

When �n+1 (wh) is evaluated, we have to replace Atn ◦ A−1
tn+1

by Aun
m
◦ A−1

U in the definition (2.40).

Definition of the cost function
The right side part of the equation (3.41), which represents the stresses from fluid acting on the interface,

will be approached by
∑m−1

i=0 βiφi(x1).
Let us define for i = 0, . . . , m − 1

βi = −
∫ L

0

φi(x1)
(
σF (vh, ph)n · e2

)
(x1,H+U(x1))

√
1 +
(

∂U

∂x1
(x1)

)2

dx1.

Since n = (n1, n2)T = 1√
1+
(

∂U
∂x1

)2

(
− ∂U

∂x1
, 1
)T

, we obtain

βi =
∫ L

0

φi(x1)
(

ph − µ

(
∂vh,1

∂x2
+

∂vh,2

∂x1

)(
− ∂U

∂x1

)
− 2µ

∂vh,2

∂x2

)
(x1,H+U(x1))

dx1.
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Set the cost function

Jn+1(α) =
1
2

m−1∑
i=0

(αi − βi)
2
.

The terms containing the viscosity can be neglected from the boundary expressions. Consequently, we could
use the simpler formula

βi =
∫ L

0

φi(x1)ph (x1, H + U(x1)) dx1, i = 0, . . . , m − 1.

We recall that the stresses on the interface at the current time step tn+1 will be approached by ηn+1
m (x1) =∑m−1

i=0 αn+1
i φi(x1).

The parameters αn+1
i for 0 ≤ i ≤ m− 1 will be “identified” solving an optimization problem, more precisely

αn+1 def
=
(
αn+1

0 , . . . , αn+1
m−1

)
∈ arg min

α∈Rm
Jn+1(α).

We will see in the following that the above defined cost function is related to the fixed point approach for
fluid-structure interaction.

We introduce the structure operator given by S(α) =
(
Q, Q̇, Q̈

)
and the fluid operator given by

F
(
Q, Q̇, Q̈

)
= β, where

(
Q, Q̇, Q̈

)
=
(
Qi, Q̇i, Q̈i

)
0≤i≤m−1

.

Our approach is to minimize

Jn+1(α) =
1
2
‖α − β‖2

2 =
1
2
‖α −F ◦ S(α)‖2

2

where ‖·‖2 stands the Euclidean norm of R
m.

The fixed point framework is to solve F ◦ S(α) = α.
Some authors use the displacement of the structure in place of α as a fixed point. In the following we will

study the sensitivity of the displacement and velocity of the structure with respect to α. This enables us to
compare the solution computed minimizing the cost function with the ones presented in [12, 14, 26].

Let (
dQ, dQ̇, dQ̈

)
= S(α) − S(β)

where
(
dQ, dQ̇, dQ̈

)
=
(
dQi, dQ̇i, dQ̈i

)
0≤i≤m−1

and set

dU(x1) =
m−1∑
i=0

dQi φi(x1), dU̇(x1) =
m−1∑
i=0

dQ̇i φi(x1).

We denote by ‖·‖L2(0,L) the usual norm of the space L2(0, L).

Proposition 3.1. We have

‖dU‖L2(0,L) ≤ (∆t)2θ
ρShS

√
2Jn+1(α) (3.46)∥∥∥dU̇

∥∥∥
L2(0,L)

≤ (∆t)δ
ρShS

√
2Jn+1(α). (3.47)
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Proof. From the equations (3.42)–(3.44), we obtain that

dQ̈i =
1

(1 + ω2
i (∆t)2θ)

1
ρShS

(αi − βi), dQ̇i = (∆t)δ dQ̈i, dQi = (∆t)2θ dQ̈i.

Since θ > 0, we have
(
1 + ω2

i (∆t)2θ
)

> 1 and consequently

∣∣∣dQ̈i

∣∣∣ ≤ 1
ρShS

|αi − βi| ,
∣∣∣dQ̇i

∣∣∣ ≤ (∆t)δ
ρShS

|αi − βi| , |dQi| ≤
(∆t)2θ
ρShS

|αi − βi| .

Using that {φi}i∈N
is a orthonormal basis of L2(0, L), we have

‖dU‖2
L2(0,L) =

m−1∑
i=0

|dQi|2 ≤
(

(∆t)2θ
ρShS

)2

·
m−1∑
i=0

|αi − βi|2 .

By definition 2Jn+1(α) =
∑m−1

i=0 |αi − βi|2. Therefore, it follows (3.46).
In the same manner, we can prove (3.47). �
The inequalities (3.46) and (3.47) mean that the difference between the displacements or the velocities of the

structure obtained at two consecutive steps of fixed point algorithm is bounded by an expression depending on
the cost function.

3.3. Coupled fluid-structure algorithm by the BFGS Method

In order to solve at the current time step tn+1 the optimization problem minJn+1(α) for α ∈ R
m, we

employ the quasi-Newton iterative Method called Broyden, Fletcher, Goldforb, Shano (BFGS) scheme (see for
example [6], Chap. 9). This algorithm was employed in [24, 25], but for a steady fluid-structure interaction.

Step 0. Choose a starting point αn+1,0 ∈ R
m, an m×m symmetric positive matrix H0 and a positive scalar ε.

Set k = 0.
Step 1. Compute ∇Jn+1(αn+1,k).
Step 2. If

∥∥∇Jn+1(αn+1,k)
∥∥ < ε stop.

Step 3. Set dk = −Hk∇Jn+1(αn+1,k).
Step 4. Determine αn+1,k+1 = αn+1,k + θkdk, θk > 0 by means of an approximate minimization

Jn+1(αn+1,k+1) ≈ min
θ≥0

Jn+1(αn+1,k + θdk).

Step 5. Compute δk = αn+1,k+1 − αn+1,k.
Step 6. Compute ∇Jn+1(αn+1,k+1) and γk = ∇Jn+1(αn+1,k+1) −∇Jn+1(αn+1,k).
Step 7. Compute

Hk+1 = Hk +
(

1 +
γT

k Hkγk

δT
k γk

)
δkδT

k

δT
k γk

− δkγT
k Hk + HkγkδT

k

δT
k γk

Step 8. Update k = k + 1 and go to the Step 2.

The matrices Hk approach the inverse of the Hessian of J .
For the inaccurate line search at the Step 4, the methods of Goldstein and Armijo were used.
The coupled fluid-structure algorithm is: suppose that at the previous time step tn we know un

m =
∑m−1

i=0 qn
i φi,

u̇n
m =

∑m−1
i=0 q̇n

i φi, ün
m =

∑m−1
i=0 q̈n

i φi, vn
h and pn

h, then solve

αn+1 ∈ arg min
α∈Rm

Jn+1(α)
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using the BFGS scheme. The solution αn+1 is the last term of the suite αn+1,0, ..., αn+1,k, αn+1,k+1, ....
The stresses on the interface at the current time step tn+1 are given by

ηn+1
m (x1) =

m−1∑
i=0

αn+1
i φi(x1).

At each evaluation of the cost function we have to solve one structure sub-problem, to update the mesh and to
solve one fluid sub-problem. We denote by un+1

m , u̇n+1
m , ün+1

m the solution of the structure sub-problem and by
vn+1

h and pn+1
h the solution of the fluid sub-problem when Jn+1 is evaluated in the point αn+1.

In this paper, we compute ∇Jn+1(α) by the Finite Differences Method

∂Jn+1

∂αk
(α) ≈ Jn+1(α + ∆αkek) − Jn+1(α)

∆αk

where ek is the k-th vector of the canonical base of R
m and ∆αk > 0 is the grid spacing.

3.4. Fixed point, Newton and BFGS Methods

In this section, we analyze different iterative methods for solving coupled fluid-structure problems.
In the previous section, we have presented the BFGS Method in order to solve the optimization problem

inf
α∈Rm

J(α) =
1
2
‖α −F ◦ S(α)‖2

where ‖·‖ stands the Euclidean norm of R
m.

The fixed point framework is to solve F ◦ S(α) = α.
Let G : R

m → R
m the nonlinear application given by G(α) = F ◦S(α). In order to approach the fixed point

G(α∗) = α∗, we could use the following algorithm

α0 ∈ R
n, αk+1 = G(αk).

If G is a contraction and if the starting point α0 is sufficiently close to the solution, then the sequence
{
αk
}

is
linearly convergent to α∗.

We can set F : R
m → R

m, F (α) = α − G(α), then the fixed point problem is equivalent to F (α) = 0. The
Newton Method can be employed for finding the roots of F :

α0 ∈ R
m, αk+1 = αk −

(
∇F (αk)T

)−1
F (αk).

If the Jacobian matrix ∇F (α∗)T is nonsingular and the starting point is sufficiently close to the solution, then
the sequence

{
αk
}

is quadratically convergent.
In a general framework, the BFGS Method is designed to find approximation of the local minimizers of J ,

solutions of the nonlinear system ∇J(α) = 0. Its convergence is superlinearly. In our particular case
J(α) = 1

2 ‖F (α)‖2, we get
∇J(α) = (∇F (α)) F (α).

Consequently, if α∗ is a local minimizer, then (∇F (α∗)) F (α∗) = 0. What is most surprising is the fact that
if the Jacobian matrix ∇F (α∗)T is nonsingular, from the above equality we obtain that F (α∗) = 0! In other
words, a local minimizer α∗, with nonsingular Jacobian matrix ∇F (α∗)T , is a global minimizer of zero residual,
i.e. J(α∗) = 0. Only in the case when ∇F (α∗)T is singular and F (α∗) �= 0, the solution computed by the
BFGS Method is not a solution of the fluid-structure coupled problem.

We have to recall that the Newton Method fails if ∇F (α∗)T is nonsingular.
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Table 1. Parameters for the three tests with same time step and different mesh sizes.

∆t mesh size h no. triangles no. vertices
0.0005 h1 = 0.25 196 127
0.0005 h2 = 0.17 226 448
0.0005 h3 = 0.10 1250 696

Concerning the convergence rate, the fixed point algorithm is slower than the BFGS Method, which is slower
than the Newton Method. But, if the starting point is not sufficiently close to the solution, the fixed point and
Newton algorithms diverge.

On the contrary, the BFGS Method is less sensitive to the choice of the starting point and, in general, it is
convergent to a local minimizer from almost any starting point. This is the main advantage.

At each iteration of the Newton Method we have to solve a linear system of matrix ∇F (αk)T , but it is not
the case if we employ the BFGS Method, since the matrices Hk approach the inverse of the Hessian. Moreover,
if the Jacobian matrix ∇F (αk)T is singular or ill-conditioned, the Newton Method doesn’t work.

4. Numerical results

4.1. Case of an impulsive pressure wave in a higher compliant channel

Input data. We have tested on the 2D benchmark proposed in [13] arising from blood flow in arteries. Our
numerical experiments have only an academic purpose. The structure equation (1.1) is not appropriate to model
the artery wall. However, the algorithm presented in this paper can be easily adapted to simulate the blood
flow in arteries by replacing (1.1) by the one dimensional axisymmetric membrane model.

The computation has been made in a domain of length L = 6 cm and height H = 1 cm. The viscosity of the
fluid was taken to be µ = 0.035 g

cm·s , its density ρF = 1 g
cm3 . The thickness of the elastic wall is hS = 0.1 cm,

the Young modulus E = 0.75 · 106 g
cm·s2 , the Poisson ratio ν = 0.5, the density ρS = 1.1 g

cm3 . The volume force
in fluid is fF = (0, 0)T .

We remark that the structure is light and its density is comparable to the ones of the fluid. For this data,
the fixed point algorithm with relaxation can diverge if the relaxation parameter is not carefully chosen [26].

For the boundary conditions we have used:

Pin(x, t) =
{

103(1 − cos(2πt/0.005)), x ∈ Σ1, 0 ≤ t ≤ 0.005
0, x ∈ Σ1, 0.005 ≤ t ≤ T

g(x, t) = 0, x ∈ Σ2, 0 ≤ t ≤ T
Pout(x, t) = 0, x ∈ Σ3, 0 ≤ t ≤ T

and for the initial conditions we have taken: u0 = 0, u̇0 = 0, ü0 = 0, v0 = 0.
The maximal pressure imposed at the inflow is Pin(·, 0.0025) = 2000 dynes

cm2 and the time duration of the
over-pressure at the inflow is 0.005 s.

We have performed the simulation for N = 500 time steps with a time step ∆t = 0.0005 s which gives a time
duration T = N∆t = 0.25 s.

The numerical tests have been produced using freefem++ v1.34 (see [18]).
Only the first 5 modes have been considered for the structure. In order to compute the normal mode shapes,

the system (1.6)–(1.9) has been solved using the software Maple. For the Newmark algorithm we have used
δ = 0.6 and θ = 0.5.

For the approximation of the fluid velocity and pressure we have employed the triangular finite elements
P1+bubble and P1 respectively. We have used three reference meshes of parameters presented in Table 1.

The gradient of the cost function is approached by the Finite Differences Method with the grid spacing
∆αk = 0.001.



NUMERICAL SIMULATION OF A PULSATILE FLOW THROUGH A FLEXIBLE CHANNEL 1115

0

100000

200000

300000

400000

500000

600000

700000

800000

0 0.001 0.002 0.003 0.004 0.005 0.006

in
iti

al
 J

time (s)

0

500

1000

1500

2000

2500

0.006 0.05 0.1 0.15 0.2 0.25

in
iti

al
 J

time (s)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  0.001  0.002  0.003  0.004  0.005  0.006

in
iti

al
 J

time (s)

 0

 500

 1000

 1500

 2000

 2500

 0.006  0.05  0.1  0.15  0.2  0.25

in
iti

al
 J

time (s)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0.006

in
iti

al
 J

time (s)

 0

 500

 1000

 1500

 2000

 2500

 0.006  0.05  0.1  0.15  0.2  0.25

in
iti

al
 J

time (s)

Figure 2. Starting values of the cost function during the pressure impulse (at the left) and
after (at the right) for the mesh sizes h1 (top), h2 (middle), h3 (bottom).

Starting point for the minimization algorithm. In our computations, the stress at the previous time step αn

is used as starting point in the iterative method at the current time step. We remark in the left picture of
Figure 2 that the starting values of the cost function are huge during the over-pressure imposed at the inflow.
This means that the starting point is not closed to the solution, where the cost function reaches the zero
value. Also, we observe that the starting values of the cost function are not very sensitive to the
mesh size.

Stopping criteria and efficiency. At each time step, the optimization problem have been solved by the BFGS
algorithm.
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We have employed the freefem++ implementation of the BFGS algorithm which use the stopping criteria:
‖∇J‖ < ε or the number of iterations reaches a maximal value nbiter. We have performed the computations
with ε = 10−4 and nbiter = 8. We set to 4 the maximal number of the iterations for the line search. For the
Least Squares problems of zero residual, a more useful stopping criteria is ‖J‖ < ε, but it is not implemented
yet.

To sum up, at each time step the cost function is called at most

maximal number iterations BFGS × (m + maximal number iterations line search).

At each evaluation of the cost function we have to solve one structure sub-problem, to update the mesh and to
solve one fluid sub-problem.

The final values of the cost function are less than 10−3 almost everywhere with very few exceptions (see
Fig. 3).
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Figure 3. Final values of the cost function at each time step for the mesh size h1.

From the formulas (3.46) and (3.47), it follows:

∥∥∥dU̇
∥∥∥

L2(0,L)
≤ (∆t)δ

ρShS

√
2Jn+1(α) ≤ 0.0005 · 0.6

1.1 · 0.1

√
2 × 10−3 ≈ 1.21 × 10−4

‖dU‖L2(0,L) ≤ (∆t)2θ
ρShS

√
2Jn+1(α) ≤ (0.0005)2 · 0.5

1.1 · 0.1

√
2 × 10−3 ≈ 5.08 × 10−8.

In [26], at each time step, the coupled fluid-structure problem was solved by fixed point strategy with a relaxation
parameter. At the start up of the simulation an important number of iterations (see [26], Fig. 4.14, p. 150) is
necessary to satisfy the criteria

max

⎛⎝‖dU‖L∞

‖U‖L∞
,

∥∥∥dU̇
∥∥∥

L∞∥∥∥U̇∥∥∥
L∞

⎞⎠ ≤ 10−4.

The convergence of the fixed point algorithm can be accelerated using the Aitken’s [14] or transpiration
method [8].

Good convergence rate was obtained in [14] where the derivative of the operator was replaced by a much
simpler operator. In order to achieve ‖dU‖ ≤ 10−6, six iterations of quasi-Newton Method are required.

In [12], the block Newton algorithm is used where the Jacobian is evaluated exactly. The convergence is
obtained in 2-3 iterations, only.

Behavior of the computed solution. The coupled fluid-structure algorithm is numerically stable for
∆t = 0.0005 s.
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Figure 4. Fluid pressure [dynes
cm2 ].

The wave starts from the left side (see Figs. 4, 5) and it will be reflected at the right side. The animations
including the displacement of the structure and the pressure of the fluid can be visualized on the web page of
the author. The pulse speed is about 170 cm/s. In [13, 26], a 3D fluid-structure model is coupled with a 1D
reduced model in order to reduce the reflexion due to the inappropriate boundary conditions for the structure
and for the fluid on the right side.

4.2. Case of a sine wave of the pressure input in a less compliant channel

We will test now the sensitivity of the computed data by increasing the time step ∆t. The BFGS Method
will be successful from farther starting point.
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t= 0.0150

t= 0.0300

t= 0.0450

t= 0.0600

t= 0.0750

Figure 5. Displacements [cm] of the top wall and fluid velocity [ cms ]. The arrows were scaled
by a factor 0.1.

The simulations were performed for E = 3 × 106 g
cm·s2 the Young modulus of the structure and for a five

times longer over-pressure at the inflow:

Pin(x, t) =
{

103(1 − cos(2πt/0.025)), x ∈ Σ1, 0 ≤ t ≤ 0.025
0, x ∈ Σ1, 0.025 ≤ t ≤ T.
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Table 2. Parameters for the three numerical tests.

∆t h N T
0.0005 0.17 200 0.1
0.0010 0.17 100 0.1
0.0025 0.17 40 0.1

The other parameters are the same as in the previous test.
For the three numerical tests, we have used the same reference mesh of 448 triangles and 267 vertices.
The time step ∆t, the mesh size h, the number of time steps N and T = N∆t are reported in Table 2.
The stress at the previous time step αn is used as starting point in the iterative method for solving the

minimization problem minα∈Rm Jn+1(α) at the current time step. The starting values of the cost function
Jn+1(αn) are showed in the left column of Figure 6.

Remark that some values of the cost function in the starting points can reach 1.8× 105 when ∆t = 0.0005 or
5×105 when ∆t = 0.0010 or 1.2×106 when ∆t = 0.0025. These great values mean that for some time instants,
the solution at the previous time step is not closed to the solution at the current time step.

Also, we observe that values of the cost function in the starting points are very sensitive to ∆t.
At each time step, the BFGS algorithm find efficiently an optimal value of the cost function less than 0.00055

(see the right column of Fig. 6).
We have performed less than 10 iterations of the BFGS algorithm and less than 5 iterations for the line

search at each time step.
Even in the case of important displacements of the structure, the algorithm is successful (see Fig. 7).

4.3. Modified Newton Method

The Modified Newton Method (Newton Method with line search strategies) inherits the fast local convergence
of the Newton Method and, in the same time, it is less sensitive to the starting point. We will see that, in some
situations, this method can be a better choice than the BFGS Method.

Step 0. Choose a starting point α0 ∈ R
m and a positive scalar ε. Set k = 0.

Step 1. If
∥∥F (αk)

∥∥ < ε stop.

Step 2. Set dk = −
((

∇F (αk)
)T)−1

F (αk).

Step 3. Determine αk+1 = αk + θkdk, θk > 0 by means of an approximate minimization∥∥F (αk+1)
∥∥ ≈ min

θ≥0

∥∥F (αk + θdk)
∥∥ .

Step 4. Update k = k + 1 and go to the Step 1.

In this paper, we make distinction between the Modified Newton Method described above and the Newton
Method where at the Step 3, we always take θk = 1.

First, we will employ the Modified Newton Method for a nonlinear problem in R
2, then for a fluid-structure

interaction problem presented previously.

4.3.1. Validation tests

Let F : R
2 → R

2 be defined by

F (α) = F (α1, α2) =
(

α2
1 + α2

2 − 2
exp(α1 − 1) + α2

2 − 2

)
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Figure 6. Starting (left) and final (right) values of the cost function for ∆t = 0.0005 (top),
∆t = 0.0010 (middle) and ∆t = 0.0025 (bottom).

which has the roots (1, 1)T and (1,−1)T . Numerical results obtained by Newton Method for solving
F (α) = (0, 0)T are presented in [19]. The Jacobian of F can be computed analytically by

(∇F (α))T =
(

2α1 2α2

exp(α1 − 1) 2α2

)
.

Observe that the Jacobian is singular for α2 = 0.
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t= 0.0150

t= 0.0300

t= 0.0450

Figure 7. Displacements [cm] of the top wall and fluid velocity [ cms ]. The arrows were scaled
by a factor 0.05.

We have investigated Newton, BFGS and Modified Newton Methods for two initial starting points:
α0 = (2, 3)T and α0 = (3, 5)T using freefem++ [18]. The line search strategy implemented in freefem++ starts
with the step θ = 1 and then, if it is not acceptable, reduces it using backtracking with cubic interpolation (see
[6], Sect. 6.3.2, pp. 126–129).

We denote by J(α) = 1
2 ‖F (α)‖2, where ‖·‖ is the Euclidean norm of R

2. The gradient can be computed
analytically by ∇J(α) = (∇F (α)) F (α).
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The first starting point: α0 = (2, 3)T

Newton Method. Only 4 iterations are needed to the Newton Method in order to satisfy the stopping criteria
‖F (α)‖ < ε, where ε = 10−3. At the initial iteration we have α0 = (2, 3)T , J(α0) = 107.723. At the final
iteration we have obtained: α4 = (1, 1.00011)T , J(α4) = 5.01828e− 08 and

F (α4) = (0.000224015, 0.000224015)T .

BFGS Method. The stopping criteria ‖∇J(α)‖ < ε for ε = 10−3 is reached after 25 iterations. The mean
number of evaluations of the cost function J is 5.16 for the inaccurate line search. At the final iteration we have
obtained: α25 = (1.00015, −1.00036)T , J(α25) = 9.05405e− 07 and

∇J(α25) = (0.000299141, −0.000724457)T .

Modified Newton Method. We have performed the computations with the same line search strategy as in the
BFGS Method. The stopping criteria ‖F (α)‖ < ε holds after 12 iterations, where ε = 10−3. The mean number
of evaluations of the cost function J is 4 for the inaccurate line search. At the final iteration we have obtained:
α12 = (0.999982, 0.999824)T , J(α12) = 1.42877e− 07 and

F (α12) = (−0.000386687, −0.000369091)T .

Discussions. The Newton Method is the faster. The BFGS Method performs 25 iterations, while the Modified
Newton Method only 12 to obtain a final cost function of about 10−7. The Newton and Modified Newton
Methods approach the root (1, 1)T and the BFGS Method finds the other root (1,−1)T .

The second starting point: α0 = (3, 5)T

The Newton Method is divergent for this starting point. The history of the cost function is the following:
J(α0) = 974.747, J(α1) = 396.045, J(α2) = 1309.35.

The Modified Newton Method will stagnate from the 9th to the 30th iteration near the point
α = (3.47282, 0.000614253)T which is not a solution because J(α) = 99.1761 and F (α) = (10.06, 9.85592)T .
This stagnation is a consequence of the fact that the Jacobian is singular for α2 = 0.

We have performed 30 iterations of the BFGS Method. The mean number of evaluations of the cost function
J for the inaccurate line search is 4.33. At the final iteration we have obtained: α30 = (0.996168, −0.998812)T ,
J(α30) = 6.9477e− 05 and ∇J(α30) = (0.00758799, 0.002399)T .

Also, we have tested the BFGS Method with the starting point α = (3.47282, 0.000614253)T which is a stag-
nation point for the Modified Newton Method. After the 21 iterations, the BFGS Method finds
α = (−0.47772, 1.33111), where J(α) = 3.62384e− 09.

Discussions. If the starting points is not close to the solution, the Newton Method is divergent. Contrary
to the Modified Newton Method, the BFGS Method gives satisfaction even in the neighborhood of the points
where the Jacobian is singular.

4.3.2. Solving fluid-structure interaction by Modified Newton Method

In Section 4.2, we have presented numerical results for solving a fluid-structure interaction problem. At each
time step, the BFGS Method was employed to solve inf J(α) = 1

2 ‖F (α)‖2.
The aim of this section is to compare the performances of the Modified Newton and BFGS Methods for

solving a particular fluid-structure interaction problem. The stopping criteria for the Modified Newton Method
‖F (α)‖ < ε is not equivalent to the one used by the BFGS Method ‖∇J‖ = ‖(∇F (α))F (α)‖ < ε, so we will
proceed in the following manner: at each time step, we perform the same number of iterations of the both
methods. We will compare the values of the cost function J(α) after 10 iterations. Then we will observe which
method gives the smaller values. The same inexact line search strategy will be employed.
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Figure 8. Final values of J obtained by the BFGS (left) and Modified Newton Method (right)
for ∆t = 0.0005.

Moderate time step
For the time step ∆t = 0.0005, the BFGS Methods finds final values of J less than 0.0006. The numerical

results obtained by the Modified Newton Method are reported in the right plot of Figure 8. The BFGS Method
wins at each time iteration.

Concerning the CPU time, in order to perform N = 200 time iterations, the BFGS Method needs 2 hours,
30 minutes and 55 seconds while the Modified Newton Method needs 3 hours, 34 minutes and 38 seconds on a
computer with two processors of 3.6 GHz frequency.

The Jacobian of F was computed by the same Finite Differences scheme as for ∇J

∂F

∂αk
(α) ≈ F (α + ∆αkek) − F (α)

∆αk

where ek is the k-th vector of the canonical base of R
m and ∆αk > 0 is the grid spacing. The columns of the

Jacobian are the vectors ∂F
∂αk

. In spite of the fact that the gradient of J is a vector of dimension m and the
Jacobian of F is a m×m matrix, the computation of the both needs the same number of evaluation of F , more
precisely m + 1. Contrary to the BFGS Method, at each iteration the Modified Newton Method requires the
solution of a linear system in order to compute the direction dk.

Also, for the time step ∆t = 10−4, the BFGS Method finds values of J smaller than the Modified Newton
Method.

Small time step
We have performed numerical tests for N = 100 time iterations with the step ∆t = 10−5. We can see in

Figure 9, that the Modified Newton Method finds smaller values than the BFGS Method.
The CPU time is 76 minutes and 9 seconds for the BFGS Method and 107 minutes and 27 seconds for the

Modified Newton Method.
After the time instant t = 0.0003, the BFGS Method obtains final values of J which have the first digits

0.0002955. The further digits change, but this is not visible on the left plot of Figure 9.
Discussions. The numerical results presented in this section suggest to use the Modified Newton Method for

small time steps, while the BFGS Method is preferable for moderate time steps.

5. Conclusions

In this paper, the continuity of the stresses at the interface was treated by the Least Squares Method. At
each time step we have to solve an optimization problem which is less sensitive to the choice of the starting
point and it permits us to use moderate time step. This is the main advantage of this approach.
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Figure 9. Final values of J obtained by the BFGS (left) and Modified Newton Method (right)
for ∆t = 10−5.

For moderate time step, the solution at the previous time step is not close to the solution at the current
time instant. Such phenomena is amplified during the phase when the flow rate increase or decrease rapidly or
if we increase the time step. In order to solve the optimization problem, we have employed the BFGS Method
which is successful from farther starting point. The gradient of the cost function was approached by the Finite
Difference Method.

The coupled fluid-structure algorithm has good stability properties.
We conclude with a suggestion from [6]: use Newton like methods for their fast local convergence when ever

it seems to be working well, otherwise use a slower method such BFGS but which is designed to converge to
the local minimizer from almost any starting point.
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[5] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 7, 9, Masson
(1988).

[6] J.E. Dennis, Jr., and R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations. Classics in
Applied Mathematics, 16, Society for Industrial and Applied Mathematics, Philadelphia, PA (1996).

[7] S. Deparis, Numerical Analysis of Axisymmetric Flows and Methods for Fluid-Structure Interaction Arising in Blood Flow
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