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GODUNOV METHOD FOR NONCONSERVATIVE HYPERBOLIC SYSTEMS

Maŕıa Luz Muñoz-Ruiz1 and Carlos Parés2

Abstract. This paper is concerned with the numerical approximation of Cauchy problems for one-
dimensional nonconservative hyperbolic systems. The theory developed by Dal Maso et al. [J. Math.
Pures Appl. 74 (1995) 483–548] is used in order to define the weak solutions of the system: an
interpretation of the nonconservative products as Borel measures is given, based on the choice of a
family of paths drawn in the phase space. Even if the family of paths can be chosen arbitrarily,
it is natural to require this family to satisfy some hypotheses concerning the relation of the paths
with the integral curves of the characteristic fields. The first goal of this paper is to investigate the
implications of three basic hypotheses of this nature. Next, we show that, when the family of paths
satisfies these hypotheses, Godunov methods can be written in a natural form that generalizes their
classical expression for systems of conservation laws. We also study the well-balance properties of
these methods. Finally, we prove the consistency of the numerical scheme with the definition of weak
solutions: we prove that, under hypothesis of bounded total variation, if the approximations provided
by a Godunov method based on a family of paths converge uniformly to some function as the mesh is
refined, then this function is a weak solution (related to that family of paths) of the nonconservative
system. We extend this result to a family of numerical schemes based on approximate Riemann solvers.
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1. Introduction

This paper is concerned with the numerical approximation of Cauchy problems for one-dimensional noncon-
servative hyperbolic systems:

Wt + A(W )Wx = 0, x ∈ R, t > 0. (1.1)

We will assume that the system is strictly hyperbolic and that the characteristic fields are either genuinely
nonlinear or linearly degenerate.

A particular class of PDE systems that can be written in the form (1.1) is given by

Wt + F (W )x = B(W )Wx + S(W )σx, (1.2)
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where the unknown W (x, t) takes values on an open convex set Ω of R
N ; F is a regular function from Ω to R

N ;
B is a regular matrix function from Ω to MN (R); S a function from Ω to R

N ; and σ(x) is a known function
from R to R. In effect, adding to (1.2) the trivial equation

σt = 0,

this system can be easily rewritten in the form of a quasilinear first order system as (1.1) (see [8–11, 16]).
System (1.2) includes as a particular case systems of conservation laws (B = 0, S = 0), systems of conservation
laws with source term or balance laws (B = 0) and coupled systems of conservation laws as defined in [3]. Such
systems occur in many applications, as multiphase flows or multilayer fluid models.

A first difficulty related with systems (1.1) comes from the presence of nonconservative products, which makes
difficult the definition of weak solutions: in general, the nonconservative product A(W )Wx does not make sense
as a distribution. Dal Maso et al. proposed in [5] an interpretation of these products as Borel measures, based
on the choice of a family of paths in the phase space: a recent exposition on this subject can be found in [17].
We briefly recall this theory in Section 2.

Together with the definition of weak solutions, a notion of entropy has to be chosen, as the usual Lax’s
concept or one related to an entropy pair. Once this choice is done, the theory of simple waves of hyperbolic
systems of conservation laws and the results concerning the solutions of Riemann problems can be extended to
systems of the form (1.1).

The choice of the family of paths is important because it determines the speed of propagation of shocks.
The simplest choice is given by the family of segments, that corresponds to the definition of nonconservative
products proposed by Volpert [22]. In practical applications, it has to be based on the physical background
of the problem. In [16] a clear motivation for the selection of the family of paths is provided when a physical
regularization by diffusion, dispersion, etc., is available.

Even if the family of paths can be chosen arbitrarily, it is natural from the mathematical point of view to
require this family to satisfy some hypotheses concerning the relation of the paths with the integral curves of
the characteristic fields. The first goal of this paper is to investigate the implications of three basic hypotheses
of this nature. This is done in Section 3 where we show that, when these hypotheses are satisfied, there is a
strong relation between the path linking two close states and the total mass of the Borel measure associated to
the solution of the Riemann problem having these states as initial condition. A family of paths satisfying these
hypotheses can always be constructed at least for states that are near enough in a sense to be determined.

In this article we are concerned with Godunov methods for systems of the form (1.1). As it is well known,
these methods give approximations of the solution of Cauchy problems by means of the exact resolution of
Riemann problems at the intercells. In Section 4 we show that, when the family of paths satisfies the above
mentioned hypotheses, these methods can be written in a natural form that generalizes the classical expression
of the Godunov method for systems of conservation laws. We also study the well-balance properties of these
methods. Well-balancing is related to the numerical approximation of equilibria, i.e., steady solutions (see
[1, 8–11,19–21]).

A basic requirement for a numerical method for (1.1) is the following: if the sequence of numerical solutions
converges as the grid becomes infinitely fine, the limit must be a weak solution. In the particular case of systems
of conservation laws, the Lax-Wendroff convergence theorem [15] states that conservative numerical schemes
have this property. In Section 5 we prove a Lax-Wendroff type convergence theorem for the Godunov method
presented in the previous section: if the sequence of approximations obtained with a Godunov method based on
the family of paths used to define the concept of weak solutions (satisfying the basic hypotheses) has bounded
total variation and it converges uniformly as the mesh size tends to 0, its limit is a weak solution of system (1.1).

Godunov methods as described here are particular cases of the class of path-conservative numerical schemes
introduced in [20]. In the final section we consider more general path-conservative numerical schemes based on
approximate Riemann solvers and we give a sufficient condition that makes possible to extend the consistency
result shown for Godunov methods.
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2. Weak solutions

Consider the problem in nonconservative form

Wt + A(W )Wx = 0, x ∈ R, t > 0, (2.1)

where W (x, t) belongs to Ω, an open convex subset of R
N , and W ∈ Ω �→ A(W ) ∈ MN(R) is a smooth

locally bounded map. We suppose that system (2.1) is strictly hyperbolic, that is, for each W ∈ Ω the matrix
A(W ) has N real distinct eigenvalues λ1(W ) < · · · < λN (W ), with associated eigenvectors R1(W ), . . . , RN (W ).
We also suppose that for each i = 1, . . . , N , the characteristic field Ri(W ) is either genuinely nonlinear:

∇λi(W ) · Ri(W ) �= 0, ∀W ∈ Ω,

or linearly degenerate:
∇λi(W ) · Ri(W ) = 0, ∀W ∈ Ω.

In general, the nonconservative product A(W )Wx does not make sense as a distribution. Nevertheless, after
the theory developed by Dal Maso et al. [5] it is possible to give a rigorous definition of weak solutions associated
to the choice of a family of paths in Ω:

Definition 2.1. A family of paths in Ω ⊂ R
N is a locally Lipschitz map

Φ: [0, 1]× Ω × Ω → Ω

such that:
• Φ(0; WL, WR) = WL and Φ(1; WL, WR) = WR, for any WL, WR ∈ Ω.
• For every arbitrary bounded set O ⊂ Ω, there exists a constant k such that∣∣∣∣∂Φ

∂s
(s; WL, WR)

∣∣∣∣ ≤ k|WL − WR|,

for any WL, WR ∈ O and almost every s ∈ [0, 1].
• For every bounded set O ⊂ Ω, there exists a constant K such that∣∣∣∣∂Φ

∂s
(s; W 1

L, W 1
R) − ∂Φ

∂s
(s; W 2

L, W 2
R)
∣∣∣∣ ≤ K(|W 1

L − W 2
L| + |W 1

R − W 2
R|),

for any W 1
L, W 1

R, W 2
L, W 2

R ∈ O and almost every s ∈ [0, 1].

Once a family of paths Φ has been chosen, the nonconservative product A(W )Wx can be interpreted as a
Borel measure for W ∈ (L∞(R × R

+) ∩ BV (R × R
+))N , denoted by [A(W )Wx]Φ. Given a time t, the Borel

measure related to the nonconservative product is defined as follows:

〈[A(W (·, t))Wx(·, t)]Φ, ϕ〉 =
∫

R

A(W (x, t))Wx(x, t)ϕ(x) dx

+
∑
m

(∫ 1

0

A(Φ(s; W−
m , W+

m))
∂Φ
∂s

(s; W−
m , W+

m) ds

)
ϕ(xm(t)), ∀ϕ ∈ C0(R). (2.2)

In the above equality, xm(t) are the locations of the discontinuities of W at time t, which are countable; W−
m and

W+
m are respectively the limits of W to the left and to the right at the m-th discontinuity at time t; and C0(R)

is the set of continuous maps with compact support.
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Definition 2.2. A function W ∈ (L∞(R × R
+) ∩ BV (R × R

+))N which is piecewise C1 is said to be a weak
solution of (2.1) if it satisfies the equality

Wt + [A(W )Wx]Φ = 0.

When no confusion arises, the dependency on Φ will be dropped.
Across a discontinuity, a weak solution must satisfy the generalized Rankine-Hugoniot condition:∫ 1

0

(
σI − A(Φ(s; W−, W+))

)∂Φ
∂s

(s; W−, W+) ds = 0, (2.3)

where σ is the speed of propagation of the discontinuity, I is the identity matrix, and W− and W+ are the left
and right limits of the solution at the discontinuity.

In the particular case of a system of conservation laws, that is, when A(W ) is the Jacobian matrix of some
flux function F (W ), the definition of the nonconservative product as a Borel measure does not depend on the
choice of paths, and the generalized Rankine-Hugoniot condition reduces to the usual one.

As it occurs in the conservative case, not every discontinuity is admissible. Therefore, a concept of entropy
solution has to be assumed, as one of the following ones:

Definition 2.3. A weak solution is said to be an entropy solution in the Lax sense if, at each discontinuity,
there exists i ∈ {1, . . . , N} such that

λi−1(W−) < σ < λi(W−) and λi(W+) < σ < λi+1(W+)

if the i-th characteristic field is genuinely nonlinear or

λi(W−) = σ = λi(W+)

if the i-th characteristic field is linearly degenerate.

Definition 2.4. Given an entropy pair (η, G) for (2.1), i.e. a pair of regular functions from Ω to R such that

∇G(W ) = ∇η(W ) · A(W ), ∀W ∈ Ω,

a weak solution is said to be entropy satisfying if the inequality

η(W )t + G(W )x ≤ 0

is satisfied in the distributions sense.

3. Choice of paths

In the definition of weak solutions of system (2.1), the choice of the family of paths Φ is important because it
determines the speed of shocks. In this article, we shall assume that the family of paths satisfies the following
hypotheses:

(H1) Given two states WL and WR belonging to the same integral curve γ of a linearly degenerate field, the
path Φ(·; WL, WR) is a parametrization of the arc of γ linking WL and WR.

(H2) Given two states WL and WR belonging to the same integral curve γ of a genuinely nonlinear field, Ri,
and such that λi(WL) < λi(WR), the path Φ(·; WL, WR) is a parametrization of the arc of γ linking WL

and WR.
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(H3) Let us denote by RP ⊂ Ω × Ω the set of pairs (WL, WR) such that the Riemann problem⎧⎪⎨⎪⎩
Wt + A(W )Wx = 0,

W (x, 0) =

{
WL if x < 0,

WR if x > 0,

(3.1)

has a unique self-similar weak solution composed by at most N simple waves (i.e. entropy shocks,
contact discontinuities or rarefaction waves) connecting J + 1 intermediate constant states

W0 = WL, W1, . . . , WJ−1, WJ = WR,

with J ≤ N . Then, given (WL, WR) ∈ RP , the curve described by the path Φ(·; WL, WR) in Ω is equal
to the union of those corresponding to the paths Φ(·; Wj−1, Wj), j = 1, . . . , J .

The reason to set these hypotheses is that they allow us to prove the three following natural properties:

Proposition 3.1. Let us assume that the concept of weak solutions of (2.1) is defined on the basis of a family
of paths satisfying hypotheses (H1)–(H3). Then:

(i) Given two states WL and WR belonging to the same integral curve of a linearly degenerate field, the
contact discontinuity given by

W (x, t) =

{
WL if x < σt,

WR if x > σt,

where σ is the (constant) value of the corresponding eigenvalue through the integral curve, is an entropy
weak solution of (2.1).

(ii) Let (WL, WR) be a pair belonging to RP and let W be the solution of the Riemann problem (3.1). The
following equality holds for every t > 0:

〈A(W (·, t))Wx(·, t), 1〉 =
∫ 1

0

A(Φ(s; WL, WR))
∂Φ
∂s

(s; WL, WR) ds.

Consequently, the total mass of the Borel measure A(W (·, t))Wx(·, t) does not depend on t.
(iii) Let (WL, WR) be a pair belonging to RP and Wj any of the intermediate states involved by the solution

of the Riemann problem (3.1). Then:∫ 1

0

A(Φ(s; WL, WR))
∂Φ
∂s

(s; WL, WR) ds =
∫ 1

0

A(Φ(s; WL, Wj))
∂Φ
∂s

(s; WL, Wj) ds

+
∫ 1

0

A(Φ(s; Wj , WR))
∂Φ
∂s

(s; Wj , WR) ds.

Proof. The proof of (i) is straightforward.
To prove (ii), let us denote by W0 = WL, W1, . . . , WJ−1, WJ = WR, with J ≤ N , the intermediate states

involved by the solution of (3.1).
First, notice that in regions where W (·, t) is constant, the corresponding mass is zero, as the derivative

Wx(·, t) vanishes. Taking this fact into account in (2.2), the total mass can be written in this particular case as
follows:

〈A(W (·, t))Wx(·, t), 1〉 =
∑
j∈J1

∫ σ+
j t

σ−
j t

A(W (x, t))Wx(x, t) dx +
∑
j∈J2

∫ 1

0

A(Φ(s; Wj−1, Wj))
∂Φ
∂s

(s; Wj−1, Wj) ds,

(3.2)
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where {J1, J2} is a partition of {1, . . . , J} defined as follows: j ∈ J1 if Wj−1 and Wj are linked by a rarefaction
wave; j ∈ J2 if Wj−1 and Wj are linked by a shock or a contact discontinuity. Given j ∈ J1, we denote by σ−

j

and σ+
j the speeds of the left and right front of the corresponding wave.

Notice that if j ∈ J1 then Wj−1 and Wj lie on the same integral curve of a genuinely nonlinear characteristic
field. Moreover, given t > 0 the map x ∈ [σ−

j t, σ+
j t] �→ W (x, t) ∈ Ω can be interpreted as a parametrization of the

arc of the integral curve linking the states (see [7]). Therefore, taking into account (H2), after a reparametrization
we have: ∫ σ+

j t

σ−
j t

A(W (x, t))Wx(x, t) dx =
∫ 1

0

A(Φ(s; Wj−1, Wj))
∂Φ
∂s

(s; Wj−1, Wj) ds.

As a consequence, (3.2) can be rewritten as follows:

〈A(W (·, t))Wx(·, t), 1〉 =
J∑

j=1

(∫ 1

0

A(Φ(s; Wj−1, Wj))
∂Φ
∂s

(s; Wj−1, Wj) ds

)
.

Property (ii) is easily deduced from the latter equality and hypothesis (H3).
Finally, property (iii) is a straighforward consequence of (ii). �

Remark 3.2. Hypothesis (H1) for linearly degenerate fields is very classical and it has been assumed by many
authors (see for instance [4, 9, 14]). The importance of the assumption (H3) has been pointed out in [17].
Nevertheless (H2) has not been considered previously, to our knowledge. Even if, unlike (H1), hypotheses (H2)
and (H3) do not give any information about the speed of propagation of discontinuities, they allow to prove
the relations between the paths and the solutions of Riemann problems given by (ii) and (iii). These relations
make easier the extension to nonconservative problems of classical families of numerical schemes for systems
of conservations laws, as Godunov methods or methods based on approximate Riemann solvers, as it will be
shown hereafter.

A general procedure to construct a family of paths satistying (H1)–(H3), at least for the class RP , is as
follows:

1. For each genuinely nonlinear field Ri we choose a family of paths Φi. The Rankine-Hugoniot conditions
for shocks associated to that field will involve this family of paths:∫ 1

0

(
σI − A(Φi(s; WL, WR))

)∂Φi

∂s
(s; WL, WR) ds = 0. (3.3)

In general, the choice of these families has to be based on the physical background of the problem, and
it can be different for every genuinely nonlinear field.

2. (H1) and (H2) are used to define the path linking two states belonging to a same integral curve of a
characteristic field.

3. Using only the paths defined above, it is possible to extend the theory of simple waves of hyperbolic
systems of conservation laws to hyperbolic nonconservative systems (2.1) (see [5]): for each i = 1, . . . , N
and WL ∈ Ω it is possible to construct a curve ε �→ ωi(ε; WL) ∈ Ω, for |ε| small enough, such that:

• If the i-th characteristic field is genuinely nonlinear, the states WL and WR = ωi(ε; WL) can be
connected by an i-shock wave satisfying (3.3) for ε < 0, and by an i-rarefaction wave for ε > 0.

• If the i-th characteristic field is linearly degenerate, WL and WR = ωi(ε; WL) can be connected by
an i-contact discontinuity for every ε.

4. Now it is possible to solve the Riemann problem (3.1) when the states WL and WR are sufficiently close.
The following result can be proved (see [5, 18]):

Theorem 3.3. For all WL ∈ Ω there exists a neighborhood O of WL in Ω such that, if WR belongs
to O, the Riemann problem (3.1) has a unique weak solution that consists of J + 1 constant states
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W0 = WL, W1, . . . , WJ−1, WJ = WR, J ≤ N , connected by rarefaction waves, entropy shock waves, or
contact discontinuities.

5. Hypothesis (H3) is finally used to define the path linking a pair of states belonging to RP .
Observe that, if WL and WR are connected by an i-shock, conditions (2.3) and (3.3) coincide.

Remark 3.4. In some cases the mathematical aspects of the problem can give enough information to select
the family of paths Φi for some of the genuinely nonlinear fields: let us suppose, for instance, that there exists
a regular function F : Ω → R

K , with K ≤ N , and two sets of indexes {i1, . . . , iK} and {j1, . . . , jK} such that

∂Fip

∂wjq

(W ) = aip,jq (W ), ∀ p, q ∈ {1, . . . , K}, ∀W ∈ Ω,

and
ai,jk

(W ) = 0, ∀ i /∈ {i1, . . . , iK}, k ∈ {1, . . . , K},
where ai,j(W ) denotes the (i, j) entry of the matrix A(W ). Moreover, let us suppose that the K × K matrix
formed from the entries of A(W ) by selecting only the rows i1, . . . , ik and the columns j1, . . . , jk has K different
real eigenvalues λ1(W ), . . . , λK(W ), with associated eigenvectors r1(W ), . . . , rK(W ). We can assume without
loss of generality that ik = jk = k, 1 ≤ k ≤ K. The structure of the matrix is then as follows:

A(W ) =
[

A1,1(W ) A1,2(W )
0 A2,2(W )

]
,

being A1,1(W ) the Jacobian of F with respect to the first K variables. Let us consider the following family of
systems of conservation laws:

∂

∂t

⎡⎢⎣ w1

...
wK

⎤⎥⎦+
∂F

∂x
(w1, . . . , wK , w̄K+1, . . . , w̄N ) = 0, (3.4)

where w̄j , j = K + 1, . . . , N , are fixed constant values. It is trivial to show that

[w1(x, t), . . . , wK(x, t)]T

is a classical solution of (3.4) if and only if

[w1(x, t), . . . , wK(x, t), w̄K+1, . . . , w̄N ]T

is a classical solution of (2.1). Therefore, it is natural to define the weak solutions in order to preserve this
relation. Notice that, in this case, the first K characteristic fields of (2.1) are given by

Ri(W ) =
[

ri(W )
0

]
.

Let us assume that the corresponding families of paths Φi are chosen so that, given two states

WL =

⎡⎢⎣ wL
1
...

wL
N

⎤⎥⎦ , WR =

⎡⎢⎣wR
1
...

wR
N

⎤⎥⎦ ,

such that
wL

j = wR
j = w̄j , j = K + 1, . . . , N,
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then
(Φi)j(s; WL, WR) = w̄j , j = K + 1, . . . , N,

where (Φi)j , j = 1, . . . , N , represent the components of Φi. Then, it can be easily shown that the jump
condition (3.3) does not depend on the particular choice of Φi and it reduces to the usual Rankine-Hugoniot
condition:

F (WR) − F (WL) = σ(WR − WL). (3.5)
As a consequence, [w1(x, t), . . . , wK(x, t)]T is a weak solution of (3.4) if and only if [w1(x, t), . . . , wK(x, t),
w̄K+1, . . . , w̄N ]T is a weak solution of (2.1). In this case, any family of paths Φi satisfying the above hypothesis
can be selected. In particular, Φi can be chosen as the family of segments:

Φi(s; WL, WR) = WL + s(WR − WL).

Remark 3.5. A system of conservation laws with source term

Wt + F (W )x = S(W )σx, (3.6)

can be considered as a particular case of (2.1) if the trivial equation

σt = 0

is added to the system. Then, the system can be formulated as follows:

W̃t + Ã(W̃ )Wx = 0, (3.7)

where W̃ is the augmented vector

W̃ =
[

W
σ

]
and the block structure of Ã(W̃ ) is given by

Ã(W̃ ) =
[

A(W ) −S(W )
0 0

]
,

being A(W ) the Jacobian matrix of the flux function F . Let us suppose that, for any W , the matrix A(W ) has
N real distinct eigenvalues

λ1(W ), . . . , λN (W ),
with associated eigenvectors

R1(W ), . . . , RN (W ),
and the characteristic fields are either genuinely nonlinear or linearly degenerate. While λi(W ) �= 0, i = 1, . . . , N ,
system (3.7) is strictly hyperbolic: the eigenvalues of the matrix are

λ1(W ), . . . , λN (W ), λ∗(W ) = 0,

with associated eigenvectors

R̃i(W̃ ) =
[

Ri(W )
0

]
, i = 1, . . . , N ; R̃∗(W̃ ) =

[
A−1(W )S(W )

1

]
.

Moreover, for i = 1, . . . , N , the characteristic field R̃i has the same character of Ri, and the (N + 1)-th char-
acteristic field is linearly degenerate. Notice that system (3.7) fulfills the hypotheses stated in Remark 3.4
with K = N . According to this remark and following the guidelines given above, a family of paths satisfy-
ing (H1)–(H3) is completely determined at least for pairs (WL, WR) ∈ RP .
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4. Godunov method for nonconservative hyperbolic systems

We consider system (2.1) in the conditions stated in Section 2, with initial condition

W (x, 0) = W0(x), x ∈ R. (4.1)

We assume that the family of paths Φ used in the definition of the nonconservative product A(W )Wx satisfies
the hypotheses (H1)–(H3).

For the discretization of the system, computing cells Ii = [xi−1/2, xi+1/2] are considered. For simplicity, we
suppose that these cells have constant size ∆x and that xi+ 1

2
= i∆x. Define xi = (i − 1/2)∆x, the center of

the cell Ii. Let ∆t be the constant time step and define tn = n∆t.
We denote by Wn

i the approximation of the cell averages of the exact solution provided by the numerical
scheme:

Wn
i
∼= 1

∆x

∫ xi+1/2

xi−1/2

W (x, tn) dx.

Suppose that the averages Wn
i at time t = tn are known. As it is usual in Godunov-type methods, to advance

in time we consider the Riemann problems

⎧⎪⎪⎨⎪⎪⎩
W

i+1/2
t + A(W i+1/2)W i+1/2

x = 0,

W i+1/2(x, tn) =

{
Wn

i if x < xi+1/2,

Wn
i+1 if x > xi+1/2;

(4.2)

and we approximate the solution at time tn+1 by

Wn+1
i =

1
∆x

(∫ xi

xi−1/2

W i−1/2(x, tn+1) dx +
∫ xi+1/2

xi

W i+1/2(x, tn+1) dx

)
.

If a CFL condition 1/2 is assumed, calculating for every t the Borel measure W
i+1/2
t + A(W i+1/2)W i+1/2

x of
[xi, xi+1/2] and integrating in [tn, tn+1] we obtain:

∫ xi+1/2

xi

W i+1/2(x, tn+1) dx =
∫ xi+1/2

xi

W i+1/2(x, tn) dx −
∫ tn+1

tn

〈A(W i+1/2(·, t))W i+1/2
x (·, t), 1[xi,xi+1/2]〉dt.

Using (ii) in Proposition 3.1, the above expression can be written as follows:

∫ xi+1/2

xi

W i+1/2(x, tn+1) dx =
∫ xi+1/2

xi

W i+1/2(x, tn) dx − ∆t

∫ 1

0

A(Φ(s; Wn
i , Wn

i+1/2))
∂Φ
∂s

(s; Wn
i , Wn

i+1/2) ds,

where Wn
i+1/2 is the constant value of W i+1/2 at x = xi+1/2.



178 M.L. MUÑOZ-RUIZ AND C. PARÉS

Reasoning as above, we have:∫ xi

xi−1/2

W i−1/2(x, tn+1) dx =
∫ xi

xi−1/2

W i−1/2(x, tn) dx − ∆t

∫ 1

0

A(Φ(s; Wn
i−1/2, W

n
i ))

∂Φ
∂s

(s; Wn
i−1/2, W

n
i ) ds.

Finally, taking into account the initial conditions, we deduce the following expression for the Godunov
method:

Wn+1
i = Wn

i − ∆t

∆x

(∫ 1

0

A(Φ(s, Wn
i−1/2, W

n
i ))

∂Φ
∂s

(s; Wn
i−1/2, W

n
i ) ds

+
∫ 1

0

A(Φ(s; Wn
i , Wn

i+1/2))
∂Φ
∂s

(s; Wn
i , Wn

i+1/2) ds

)
. (4.3)

Notice that, if the problem is conservative, i.e. if A is the Jacobian of a flux function F , (4.3) gives the usual
expression of Godunov method for a system of conservation laws:

Wn+1
i = Wn

i − ∆t

∆x

(
F (Wn

i+1/2) − F (Wn
i−1/2)

)
.

Remark 4.1. Notice that W i+1/2 can be discontinuous at x = xi+1/2. In this case, the discontinuity at
x = xi+1/2 has to be stationary (as the solution is self-similar) and therefore the total mass associated to the
corresponding jump is zero (see (2.3)). Therefore, in the expression of the numerical scheme Wn

i+1/2 can be
replaced either by the limit of W i+1/2 to the left, Wn,−

i+1/2, or to the right of xi+1/2, Wn,+
i+1/2. In the particular

case of a system of balance laws (3.6) the numerical scheme can be written as follows:

Wn+1
i = Wn

i − ∆t

∆x

(
F (Wn,−

i+1/2) − F (Wn,+
i−1/2)

)
.

Let us investigate now the well-balance property of method (4.3). Well-balancing is related to the numerical
approximation of equilibria, i.e., steady state solutions. System (2.1) can only have nontrivial steady state
solutions if it has linearly degenerate fields: if W (x) is a regular steady state solution it satisfies

A(W (x)) · W ′(x) = 0, ∀x ∈ R.

If W ′(x) �= 0, then 0 is an eigenvalue of A(W (x)) and W ′(x) is an associated eigenvector. Therefore, this
solution can be interpreted as a parametrization of an integral curve of a linearly degenerate characteristic field
whose corresponding eigenvalue takes the value 0 through the curve. In order to define the concept of well-
balancing, let us introduce the set Γ of all the integral curves γ of any linearly degenerate field of A(W ) such
that the corresponding eigenvalue vanishes on Γ. According to [21], given a curve γ ∈ Γ, a numerical scheme is
said to be exactly well-balanced (respectively well-balanced with order k) for γ if it solves exactly (respectively
up to the order O(∆xk)) regular stationary solutions W satisfying W (x) ∈ γ for every x. The numerical scheme
is said to be exactly well-balanced (or well-balanced with order k) if these properties are satisfied for any curve
of Γ (see [21] for details).

Proposition 4.2. Godunov method (4.3) is exactly well-balanced.

Proof. Let W be a regular stationary solution and let us apply (4.3) to the initial conditions

W 0
i = W0(xi), ∀ i.
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For every i, W 0
i and W 0

i+1 belong to the same integral curve of a linearly degenerate field whose corresponding
eigenvalue takes the value 0 through the curve. As a consequence, the solution of problem (4.2) is a stationary
contact discontinuity. Using (4.3) we deduce that, for every n,

Wn
i = W (xi), ∀ i. �

5. Consistency of Godunov method for weak solutions

In [20] a Lax-Wendroff type result was conjectured for path-conservative numerical schemes: if the approx-
imations provided by a path-conservative scheme converge to some function as the mesh is refined, then this
function should be a weak solution of the nonconservative system if both the definitions of path-conservative
scheme and weak solution make reference to the same family of paths. In this section, we prove a result pointing
in that direction for Godunov methods.

We assume that the mesh ratio ∆t/∆x is a fixed constant λ as ∆x, ∆t tend to 0 and a CFL condition 1/2.
For the discretization of the initial condition we choose the cell averages

W 0
i =

1
∆x

∫ xi+1/2

xi−1/2

W0(x) dx.

Set h = ∆x and introduce the function Wh(x, t) defined a.e. in R × [0,∞) by

Wh(x, 0) = W 0
i , x ∈ (xi−1/2, xi+1/2), (5.1)

and
Wh(x, t) = W i+1/2(x, t), (x, t) ∈ (xi, xi+1) × [tn, tn+1), (5.2)

being W i+1/2 the solution of (4.2).
The CFL restriction ensures that the adjacent Riemann problems solutions do not interact before time tn+1.

Theorem 5.1. For h > 0, let Wh be the numerical approximation (5.2) obtained from the Godunov numerical
scheme and Wh(x, 0) be given by (5.1).

Suppose that there exists a function W ∈ (L∞(R × [0,∞)) ∩ BV (R × [0,∞)))N such that

‖Wh(·, t) − W (·, t)‖L∞(R)N −→
h→0

0 in L1([0,∞)) (5.3)

and that there is a constant C such that

TV (Wh(·, t)) ≤ C ∀t ∈ [0,∞), h > 0. (5.4)

Then W is a weak solution of the problem (2.1) with initial condition (4.1).

Proof. We want to prove that∫ ∞

0

∫ ∞

−∞
W (x, t)

∂ϕ

∂t
(x, t) dxdt −

∫ ∞

0

〈
A(W (·, t))∂W

∂x
(·, t), ϕ(·, t)

〉
dt

= −
∫ +∞

−∞
W0(x)ϕ(x, 0) dx ∀ϕ ∈ C1

0(R × [0,∞)). (5.5)

Let ϕ ∈ C1
0(R × [0,∞)) be a test function and set

ϕn
i = ϕ(xi, t

n).
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By multiplying equation (4.3) by ϕn
i and summing over i and n we have:

∞∑
n=0

∞∑
i=−∞

(
Wn+1

i − Wn
i

)
ϕn

i +
∆t

∆x

∞∑
n=0

∞∑
i=−∞

(∫ 1

0

A(Φ(s, Wn
i−1/2, W

n
i ))

∂Φ
∂s

(s; Wn
i−1/2, W

n
i ) ds

+
∫ 1

0

A(Φ(s; Wn
i , Wn

i+1/2))
∂Φ
∂s

(s; Wn
i , Wn

i+1/2) ds

)
ϕn

i = 0.

Notice that all these sums are finite since ϕ has compact support.
Applying summation by parts we obtain:

∞∑
n=1

∞∑
i=−∞

Wn
i

(
ϕn

i − ϕn−1
i

)− ∆t

∆x

∞∑
n=0

∞∑
i=−∞

(∫ 1

0

A(Φ(s, Wn
i+1/2, W

n
i+1))

∂Φ
∂s

(s; Wn
i+1/2, W

n
i+1) ds ϕn

i+1

+
∫ 1

0

A(Φ(s; Wn
i , Wn

i+1/2))
∂Φ
∂s

(s; Wn
i , Wn

i+1/2) ds ϕn
i

)
= −

∞∑
i=−∞

W 0
i ϕ0

i .

Now set
ϕn

i+1/2 = ϕ(xi+1/2, t
n).

It is straightforward that
ϕn

j = ϕn
i+1/2 + O(∆x), j = i, i + 1.

Using this fact and multiplying the last equation by ∆x we have:

∆x∆t
∞∑

n=1

∞∑
i=−∞

Wn
i

ϕn
i − ϕn−1

i

∆t
− ∆t

∞∑
n=0

∞∑
i=−∞

(∫ 1

0

A(Φ(s; Wn
i , Wn

i+1/2))
∂Φ
∂s

(s; Wn
i , Wn

i+1/2) ds

+
∫ 1

0

A(Φ(s, Wn
i+1/2, W

n
i+1))

∂Φ
∂s

(s; Wn
i+1/2, W

n
i+1) ds

)(
ϕn

i+1/2 + O(∆x)
)

= −∆x

∞∑
i=−∞

W 0
i ϕ0

i .

And using (iii) in Proposition 3.1, the last equation can be rewritten as

∆x∆t

∞∑
n=1

∞∑
i=−∞

Wn
i

ϕn
i − ϕn−1

i

∆t
−∆t

∞∑
n=0

∞∑
i=−∞

(∫ 1

0

A(Φ(s; Wn
i , Wn

i+1))
∂Φ
∂s

(s; Wn
i , Wn

i+1) ds

)(
ϕn

i+1/2 + O(∆x)
)

= −∆x
∞∑

i=−∞
W 0

i ϕ0
i . (5.6)

We want to prove that equation (5.5) can be obtained by passing to the limit as h tends to 0 in (5.6).
It is not difficult to check that the first and the last terms in (5.6) converge to the first and the last terms

in (5.5), respectively. It remains to prove that the second term in (5.6) converges to the second one in (5.5).
Because of the smoothness of A and Φ, and the boundedness of Wn

i in L∞, it is enough to study the
convergence of

∆t
∞∑

n=0

∞∑
i=−∞

(∫ 1

0

A(Φ(s; Wn
i , Wn

i+1))
∂Φ
∂s

(s; Wn
i , Wn

i+1) ds

)
ϕn

i+1/2.

Using Proposition 3.1 and the CFL condition, the following equality holds for every t ∈ [tn, tn+1),〈
A(Wh(·, t))∂Wh

∂x
(·, t), 1[xi,xi+1]

〉
=
∫ 1

0

A(Φ(s; Wn
i , Wn

i+1)
)∂Φ

∂s
(s; Wn

i , Wn
i+1) ds.
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From this equality, we find that

∆t

∞∑
n=0

∞∑
i=−∞

(∫ 1

0

A(Φ(s; Wn
i , Wn

i+1))
∂Φ
∂s

(s; Wn
i , Wn

i+1) ds

)
ϕn

i+1/2 =
∫ ∞

0

〈
A(Wh(·, t))∂Wh

∂x
(·, t), ϕ(·, t)

〉
dt

+
∞∑

n=0

∞∑
i=−∞

∫ tn+1

tn

〈
A(Wh(·, t))∂Wh

∂x
(·, t),

(
ϕn

i+1/2 − ϕ(·, t)
)

1[xi,xi+1]

〉
dt. (5.7)

The second summand trivially converges to 0. To study the convergence of the first summand we use the
following convergence result shown in [5]:

Theorem 5.2. Let Uk be a sequence in (BV (a, b))N and U be in (BV (a, b))N such that

Uk −→
k→∞ U in (L∞(a, b))N (5.8)

and that there exists a constant C such that

TV b
a (Uk) ≤ C ∀k. (5.9)

Then, for every continuous function a : R
N → R

N , we have:[
a(Uk)

dUk

dx

]
Φ

−→
k→∞

[
a(U)

dU

dx

]
Φ

(5.10)

weakly-star in the sense of bounded measures, i.e.〈[
a(Uk)

dUk

dx

]
Φ

, ϕ

〉
−→

k→∞

〈[
a(U)

dU

dx

]
Φ

, ϕ

〉
∀ϕ ∈ C([a, b]). (5.11)

Using this result we find that〈
A(Wh(·, t))∂Wh

∂x
(·, t), ϕ(·, t)

〉
−→
h→0

〈
A(W (·, t))∂W

∂x
(·, t), ϕ(·, t)

〉
.

The Lebesgue dominated convergence theorem allows to prove the convergence of the first summand in (5.7) to∫ ∞

0

〈
A(W (·, t))∂W

∂x
(·, t), ϕ(·, t)

〉
dt

as h tends to 0, which concludes the proof. �

Remark 5.3. Theorem 5.1 cannot be considered as an extension of the classical Lax-Wendroff theorem for
Godunov methods in the context of nonconservative problems, as the uniform convergence required here is much
stronger than that required in the classical result. Moreover, the hypothesis concerning the total variation is
not realistic: in [2] it has been shown that Godunov methods can increase arbitrarily the total variation even
in the context of conservative problems. The negative results shown in [13] or [6] concerning the failure of the
convergence of nonconservative schemes must also be taken into account in further investigations. Therefore,
the previous result has to be understood merely as a consistency result of the numerical scheme with the
chosen notion of weak solution and, thus, with the corresponding Rankine-Hugoniot conditions. Some results
of convergence for Godunov methods applied to systems of balance laws can be found in [14] or [9].
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Remark 5.4. Theorem 5.1 does not imply that the weak solution obtained as the mesh is refined is an entropy
solution. If the definition of entropy solution is related to an entropy pair (see Def. 2.4) we should prove
that∫ ∞

0

∫ ∞

−∞
η(W (x, t))

∂ϕ

∂t
(x, t) dxdt −

∫ ∞

0

∫ ∞

−∞
G(W (x, t))

∂ϕ

∂x
(x, t) dxdt

≤ −
∫ +∞

−∞
η(W0(x))ϕ(x, 0) dx ∀ϕ ∈ C1

0(R × R
+), ϕ ≥ 0. (5.12)

To show this, it is enough to have a discrete entropy inequality of the form

η(Wn+1
i ) ≤ η(Wn

i ) − ∆t

∆x

(Gn
i+1/2 − Gn

i−1/2

)
, (5.13)

where
Gn

i+1/2 = G(Wn
i−q, . . . , W

n
i+p

)
, (5.14)

G being a Lipschitz continuous function from Ωp+q+1 to Ω consistent with G in the sense that

G(W, . . . , W ) = G(W ) ∀W ∈ Ω. (5.15)

The proof is identical to that corresponding to conservative schemes (see [15]).
If η is a convex function and (WL, WR) ∈ RP , the following inequality can be proved for the solution of a

Riemann problem:

GR(WL, WR) := G(WR) +
∫ ∞

0

(
η
(
V (v; WL, WR)

)− η(WR)
)
dv

≤ GL(WL, WR) := G(WL) −
∫ 0

−∞

(
η
(
V (v; WL, WR)

)− η(WL)
)
dv, (5.16)

being V (x/t; WL, WR) the self-similar solution of the Riemann problem (3.1). Again, the proof is identical to
that corresponding to systems of conservation laws (see [1]). It can be easily shown that (5.13) is satisfied for
any numerical entropy flux function G(WL, WR) such that:

GR(WL, WR) ≤ G(WL, WR) ≤ GL(WL, WR). (5.17)

6. Path-approximate Riemann solvers

In [20] the concept of path-conservative numerical scheme was introduced:

Definition 6.1. Given a family of paths Ψ, a numerical scheme is said to be Ψ-conservative if it can be written
in the form

Wn+1
i = Wn

i − ∆t

∆x

(
D+

i−1/2 + D−
i+1/2

)
, (6.1)

where
D±

i+1/2 = D±(Wn
i−q, . . . , W

n
i+p),

D− and D+ being two continuous functions from Ωp+q+1 to Ω satisfying:

D±(W, . . . , W ) = 0, ∀W ∈ Ω, (6.2)
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and

D−(W−q , . . . , Wp) + D+(W−q, . . . , Wp) =
∫ 1

0

A(Ψ(s; W0, W1))
∂Ψ
∂s

(s; W0, W1) ds, (6.3)

for every Wi ∈ Ω, i = −q, . . . , p.

The notion of approximate Riemann solver was introduced in [12] for conservative systems and extended for
balance laws in [1]. In [20] the following generalization for nonconservative systems (2.1) was introduced:

Definition 6.2. Given a family of paths Ψ, a Ψ-approximate Riemann solver for (2.1) is a function Ṽ :
R × Ω × Ω �→ Ω satisfying:

• For every W ∈ Ω:
Ṽ (v; W, W ) = W, ∀v ∈ R.

• For every WL, WR ∈ Ω there exist λmin(WL, WR), λmax(WL, WR) in R such that:

Ṽ (v; WL, WR) = WL, if v < λmin(WL, WR);

Ṽ (v; WL, WR) = WR, if v > λmax(WL, WR).

• For every WL, WR ∈ Ω:

∫ 1

0

A (Ψ(s; WL, WR))
∂Ψ
∂s

(s; WL, WR) ds

+
∫ ∞

0

(
Ṽ (v; WL, WR) − WR

)
dv +

∫ 0

−∞

(
Ṽ (v; WL, WR) − WL

)
dv = 0.

Given a Ψ-approximate Riemann solver for (2.1) a numerical scheme can be constructed as follows:

Wn+1
i =

1
∆x

(∫ xi

xi−1/2

Ṽ

(
x − xi−1/2

∆t
; Wn

i−1, W
n
i

)
dx +

∫ xi+1/2

xi

Ṽ

(
x − xi+1/2

∆t
; Wn

i , Wn
i+1

)
dx

)
. (6.4)

Under a CFL condition 1/2, the numerical scheme can also be written in the form (6.1) with

D−
i+1/2 = −

∫ 0

−∞

(
Ṽ (v; Wn

i , Wn
i+1) − Wn

i

)
dv, (6.5)

D+
i+1/2 = −

∫ ∞

0

(
Ṽ (v; Wn

i , Wn
i+1) − Wn

i+1

)
dv. (6.6)

Clearly, a numerical scheme (6.1) based on a Ψ-approximate Riemann solver is Ψ-conservative.
Godunov method is the particular case corresponding to the choice of the exact Riemann solver, i.e.

Ṽ (v; WL, WR) = V (v; WL, WR).

Let us consider a path-numerical scheme based on a Φ-approximate Riemann solver, Φ being the family of
paths used for the definition of weak solutions. We consider again a function Wh(x, t) defined as in the previous
section, just replacing (5.2) by:

Wh(x, t) = Ṽ

(
x − xi+1/2

t − tn
; Wn

i , Wn
i+1

)
, (x, t) ∈ (xi, xi+1) × [tn, tn+1). (6.7)
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Theorem 5.1 remains valid for Wh provided that the approximate Riemann solver satisfies the equality:〈
A
(
Ṽ (x/t; WL, WR)

) ∂

∂x
Ṽ (x/t; WL, WR), 1[A,B](x)

〉
=
∫ 1

0

A (Φ(s; WL, WR))
∂Φ
∂s

(s; WL, WR) ds, (6.8)

for every WL, WR, t ≥ 0, and A, B such that:

A ≤ λmin(WL, WR) t, λmax(WL, WR) t ≤ B.

The proof is similar to that of Theorem 5.1.
Moreover, if the concept of entropy is given by an entropy pair with convex η and the Ψ-approximate Riemann

solver is assumed to be dissipative in the sense that the following inequality is satisfied for every WL, WR:

G̃R(WL, WR) := G(WR) +
∫ ∞

0

(
η
(
Ṽ (v; WL, WR)

)− η(WR)
)

dv

≤ G̃L(WL, WR) := G(WL) −
∫ 0

−∞

(
η
(
Ṽ (v; WL, WR)

)− η(WL)
)

dv, (6.9)

then (5.12) is satisfied for any numerical entropy flux function G(WL, WR) satisfying

G̃R(WL, WR) ≤ G(WL, WR) ≤ G̃L(WL, WR). (6.10)

In this case, the weak solution obtained as the mesh is refined is an entropy solution.
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