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MORTAR SPECTRAL ELEMENT DISCRETIZATION OF THE LAPLACE AND
DARCY EQUATIONS WITH DISCONTINUOUS COEFFICIENTS
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Abstract. This paper deals with the mortar spectral element discretization of two equivalent prob-
lems, the Laplace equation and the Darcy system, in a domain which corresponds to a nonhomogeneous
anisotropic medium. The numerical analysis of the discretization leads to optimal error estimates and
the numerical experiments that we present enable us to verify its efficiency.
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1. Introduction

As a model for the geometry of a nonhomogeneous anisotropic medium, we consider the square Ω =]− 1, 1[2,
divided into three subdomains Ω1, Ω2 and Ω3 defined by

Ω1 =] − 1, 1[×]1 − ε, 1[, Ω2 =] − 1, 0[×]− 1, 1 − ε[, Ω3 =]0, 1[×]− 1, 1 − ε[, (1.1)

where ε is a fixed parameter, 0 < ε < 1, as illustrated in Figure 1. We are particularly interested in the
anisotropic case where ε is very small.

We introduce a function α which is equal to a positive constant αk in each subdomain Ωk, 1 ≤ k ≤ 3, and
we consider the following two problems{ −div (αgrad p) = f − div g in Ω,

∂np = 0 on ∂Ω, (1.2)

⎧⎨
⎩

u + αgrad p = g in Ω,
div u = f in Ω,
u · n = 0 on ∂Ω.

(1.3)
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Figure 1. The partition of the domain Ω.

Here n denotes the unit outward normal vector to Ω on its boundary ∂Ω. From a physical point of view,
problem (1.2) is a generalized Laplace equation which, in the case g = 0, models the stationary diffusion of the
temperature in a nonhomogeneous medium with diffusion coefficient equal to αk on each Ωk when heated by
an internal source f . Problem (1.3) is known as the Darcy system and, in the case f = 0, models the flow of a
viscous incompressible fluid in a nonhomogeneous porous medium where α represents the drag coefficient (the
different values of α are due to different permeabilities in the subdomains Ωk). In both cases, it is interesting
to consider the case where the ratio of the maximum of α to its minimum is large and also the case where ε
is small, which corresponds, for instance, to soil layers for problem (1.3). We refer, among others, to [1], [4]
and [15] for the treatment of the piecewise constant coefficient α and to [6] for the treatment of anisotropic
subdomains in the spectral element context.

From a mathematical point of view, it is well known that problems (1.2) and (1.3) are equivalent when the
data g have a null normal trace on ∂Ω, in the following sense: Problem (1.3) represents a mixed formulation
of problem (1.2) where the new unknown u = g − α grad p is introduced and problem (1.2) is derived from
problem (1.3) by simply taking the divergence of the first equation. The main goal of this study is to write the
variational formulation of each problem, to propose a discretization of each problem based on this variational
formulation via a Galerkin method and to compare them.

The mortar element method, as introduced in [9], is a domain decomposition technique that enables one
to work with nonconforming decompositions of the computational domain without overlap. It therefore seems
ideally suited for handling the discontinuities of the function α. We consider this method in the framework
of spectral discretizations and, in order to take into account the anisotropy of the domain Ω1 in the case of
very small values of ε, we use different degrees of polynomials in Ω1 in the horizontal and vertical directions.
This, combined with the use of quadrature formulæ as is usually done in spectral methods, leads to a discrete
problem. We prove that it is well-posed and derive optimal error estimates.

As first proposed in [3], the key idea for the implementation of the mortar element method consists in
handling the matching conditions on the interfaces between different subdomains via the introduction of a
Lagrange multiplier. We describe the linear system that results from this algorithm and present some numerical
experiments that allow us to compare the two formulations. In both cases, the numerical results are in good
agreement with the analysis. The error curves are the same for both problems, but the implementation of the
discrete problem associated with system (1.2) appears to be less expensive, at least in the basic situations that
we consider.
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The outline of the paper is as follows.
• In Section 2, we recall the variational formulations of both problems (1.2) and (1.3) and prove their

well-posedness.
• In Section 3, we describe the discrete problems and verify that they have a unique solution.
• Section 4 is devoted to the numerical analysis of these problems. We derive error estimates where the

dependence in ε and the αk is explicitly taken into account.
• In Section 5, we present the algorithm for implementing the mortar element method, together with

some numerical experiments in order to compare the two proposed discretizations.
• Some conclusions and possible extensions are proposed in Section 6.

2. Variational formulations of the problems

The generic point in Ω is denoted by x = (x, y). Throughout this paper, we use the standard Hilbertian
Sobolev spaces Hs(Ω) for all nonnegative values of s, equipped with the usual norm ‖ · ‖Hs(Ω), and also their
analogues on each Ωk. The space H0(Ω) is denoted by L2(Ω). Since the unknown p is clearly defined up to an
additive constant in both problems (1.2) and (1.3), we also introduce the space

L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

q(x) dx = 0
}
. (2.1)

We set:
αmin = min

1≤k≤3
αk, αmax = max

1≤k≤3
αk, (2.2)

and we recall that αmin is positive. We also assume without restriction that the data (f, g) satisfy

f ∈ L2
0(Ω), g ∈ L2(Ω)2, div g ∈ L2(Ω), g · n = 0 on ∂Ω. (2.3)

The variational formulation of the Laplace equation is straightforward:

Find p in H1(Ω) ∩ L2
0(Ω)) such that

∀q ∈ H1(Ω), aL(p, q) =
∫

Ω

(f q + g · grad q)(x) dx, (2.4)

where the bilinear form aL(·, ·) is defined by

aL(p, q) =
3∑

k=1

αk

∫
Ωk

grad p · grad q dx. (2.5)

It is readily checked that, when assumption (2.3) holds, equation (2.4) can equivalently be enforced for all q
in H1(Ω) or for all q in H1(Ω) ∩ L2

0(Ω). Moreover, it follows from the density of the space C∞(Ω) of indefi-
nitely differentiable functions on Ω inH1(Ω) that the variational formulation (2.4) is equivalent to problem (1.2).

A consequence of the Bramble-Hilbert inequality is the ellipticity property

∀q ∈ H1(Ω) ∩ L2
0(Ω), aL(q, q) ≥ c αmin ‖q‖2

H1(Ω). (2.6)

Thus the well-posedness of problem (2.4) follows by applying the Lax-Milgram lemma.

Proposition 2.1. For any data (f, g) satisfying (2.3), problem (2.4) has a unique solution p in H1(Ω)∩L2
0(Ω).
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In the sequel, since we want to optimize our estimates with respect to the ratio αmax/αmin, we work with
the energy norm

‖q‖1,α =
( 3∑

k=1

αk ‖grad q‖2
L2(Ωk)2

) 1
2
. (2.7)

The solution p of problem (2.4) thus satisfies the following stability property

‖p‖1,α ≤ α
− 1

2
min

(
c ‖f‖L2(Ω) + ‖g‖L2(Ω)2

)
. (2.8)

Concerning system (1.3), we recall from [2], Section 2.1, and [10], Section XIII.1, for instance, that it admits
two variational formulations: The boundary conditions in the third line of (1.3) can be treated as essential
or natural ones or, equivalently, the unknown p can be sought for in L2(Ω) or in H1(Ω). We choose to work
with the latter formulation which allows for easier comparisons with problem (2.4) since p belongs to the same
space. In order to work with a symmetric formulation, we also observe that the first line in (1.3) can be written
equivalently as

α−1
k u + grad p = α−1

k g in Ωk, 1 ≤ k ≤ 3. (2.9)

The resulting variational formulation is

Find (u, p) in L2(Ω)2 × (H1(Ω) ∩ L2
0(Ω)) such that

∀v ∈ L2(Ω)2, aD(u,v) + bD(v, p) =
3∑

k=1

α−1
k

∫
Ωk

(g · v)(x) dx,

∀q ∈ H1(Ω), bD(u, q) = −
∫

Ω

(f q)(x) dx, (2.10)

where the bilinear forms aD(·, ·) and bD(·, ·) are defined by

aD(u,v) =
3∑

k=1

α−1
k

∫
Ωk

(u · v)(x) dx, bD(v, q) =
∫

Ω

v · grad q dx. (2.11)

Here also, the equivalence of the variational formulation (2.10) with system (1.3) (see also (2.9)) follows from
the density of C∞(Ω) in H1(Ω) and also in L2(Ω).

Proving the well-posedness of problem (2.10) relies on the standard arguments for saddle-point problems.
The space L2(Ω)2 is now equipped with the norm

‖v‖0,α−1 =
( 3∑

k=1

α−1
k ‖v‖2

L2(Ωk)

) 1
2
, (2.12)

and the space H1(Ω) with the norm defined in (2.7). First, we have the ellipticity property

∀v ∈ L2(Ω)2, aD(v,v) = ‖v‖2
0,α−1 . (2.13)

Further, by taking v equal to αgrad q, we obtain

bD(v, q) = ‖q‖2
1,α and ‖v‖0,α−1 = ‖q‖1,α,
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whence the inf-sup condition

∀q ∈ H1(Ω) ∩ L2
0(Ω), sup

v∈L2(Ω)2

bD(v, q)
‖v‖0,α−1

≥ ‖q‖1,α. (2.14)

Finally, we introduce the kernel

V =
{
v ∈ L2(Ω)2; ∀q ∈ H1(Ω), bD(v, q) = 0

}
. (2.15)

It can be readily verified that V is the space of functions v in L2(Ω)2 such that

div v = 0 in Ω and v · n = 0 on ∂Ω. (2.16)

Thus we are now in a position to prove the well-posedness of problem (2.10), from the arguments given for
instance in [14], Chapter 1, Section 4.1.

Proposition 2.2. For any data (f, g) satisfying (2.3), problem (2.10) has a unique solution (u, p) in L2(Ω)2 ×(
H1(Ω) ∩ L2

0(Ω)
)
. Moreover this solution satisfies

‖u‖0,α−1 + ‖p‖1,α ≤ 2α− 1
2

min

(
c ‖f‖L2(Ω) + 2 ‖g‖L2(Ω)2

)
. (2.17)

Proof. We first verify that the solution is unique. When taking (f, g) equal to zero, we observe that u belongs
to V . Taking v equal to u in the first line of (2.10) and using (2.13) yield that u is zero. Further, p is also
zero from (2.14), which proves the uniqueness result. The existence and stability estimates are then derived by
applying three times [14], Chapter 1, Lemma 4.1.
1) By combining this lemma with the inf-sup condition (2.14), we derive the existence of a function u∗ in L2(Ω)2

such that

∀q ∈ H1(Ω) ∩ L2
0(Ω), bD(u∗, q) = −

∫
Ω

(f q)(x) dx and ‖u∗‖0,α−1 ≤ c α
− 1

2
min ‖f‖L2(Ω), (2.18)

where c is the constant appearing in the Bramble-Hilbert inequality. The first equation in (2.18) obviously holds
for all q in H1(Ω).
2) Because of the choice of u∗, the function u0 = u − u∗ belongs to V and the first equation in (2.10) can be
written as

∀v ∈ V, aD(u0,v) =
3∑

k=1

α−1
k

∫
Ωk

g · v dx − aD(u∗,v). (2.19)

From (2.13) and the Lax-Milgram lemma, equation (2.19) has a unique solution u0, which moreover satisfies

‖u0‖0,α−1 ≤ α
− 1

2
min ‖g‖L2(Ω)2 + ‖u∗‖0,α−1 . (2.20)

3) The pressure p must now satisfy the equation

∀v ∈ L2(Ω)2, bD(v, p) =
3∑

k=1

α−1
k

∫
Ωk

g · v dx − aD(u0 + u∗,v).

Since the right-hand side of the previous equation vanishes for all functions v in V because of (2.19), the
existence of a p satisfying this equation follows from (2.14), together with the estimate

‖p‖1,α ≤ α
− 1

2
min ‖g‖L2(Ω)2 + ‖u0‖0,α−1 + ‖u∗‖0,α−1 . (2.21)
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As a consequence, the pair (u = u0+u∗, p) is a solution of problem (2.10) and estimate (2.17) follows from (2.18),
(2.20) and (2.21).

Remark 2.3. Estimate (2.17) is exactly of the same type as (2.8) and the constant c which is involved in it is
the same as the constant in (2.8). Such an estimate can also be derived for modified formulations, for instance
if the first line of (1.3) were not replaced by (2.9) or if it were multiplied by different powers of α. However,
proving (2.17) in all these cases requires inf-sup conditions that involve different weighted norms on the solution
and the test functions and therefore seems to be less natural.

We now state the equivalence of problems (2.4) and (2.10) in a precise form.

Proposition 2.4. Problems (2.4) and (2.10) are equivalent in the following sense:
(i) For any solution p of problem (2.4), there exists a unique function u in L2(Ω)2 such that the pair (u, p) is
a solution of problem (2.10).
(ii) For any solution (u, p) of problem (2.10), the function p is a solution of problem (2.4).

Proof. We check successively assertions (i) and (ii).
1) Let p be a solution of problem (2.4). From (2.13) and the Lax-Milgram lemma, the equation

∀v ∈ L2(Ω)2, aD(u,v) =
3∑

k=1

α−1
k

∫
Ωk

g · v dx − bD(v, p),

has a unique solution u in L2(Ω)2. Moreover, this solution satisfies, for all q in H1(Ω),

bD(u, q) = aD(u, αgrad q) =
∫

Ω

g · grad q dx − bD(α grad q, p).

It follows from the formula bD(α grad q, p) = aL(p, q) combined with (2.4) that

∀q ∈ H1(Ω), bD(u, q) = −
∫

Ω

(f q)(x) dx,

so that (u, p) is a solution of (2.10). The uniqueness of u is also a consequence of the Lax-Milgram lemma.
2) Conversely, let (u, p) be a solution of (2.10). Taking v equal to αgrad q in the first line of (2.10) and using
the second line of (2.10) together with the same arguments as previously yields that p is a solution of (2.4).

To conclude, we recall some regularity properties of the solution of problems (2.4) and (2.10). The proof of
the next lemma is based on an idea of Meyers [16] (see also [13]) and is explicitly carried out in [7], Proposi-
tion 2.2 for the Laplace equation (1.2).

Proposition 2.5. There exists a constant cΩ depending only on the geometry of Ω such that, for all data (f, g)
satisfying (2.3), the solution p of problem (2.4) belongs to Hs+1(Ω) and the solution (u, p) of problem (2.10)
belongs to Hs(Ω)2 ×Hs+1(Ω), for all real numbers s < s0, where s0 is given by

s0 = min
{

1
2
, cΩ

∣∣∣∣log
(

1 − αmin

αmax

)∣∣∣∣
}
. (2.22)

Clearly, it can be shown that the solution is more regular locally. For instance, if the data f and div g belong
to H1(Ω) and for a fixed λ > 0, the solution p of problem (2.4) belongs to Hs+1(Ω∗) and the solution (u, p) of
problem (2.10) belongs to Hs(Ω∗)2 ×Hs+1(Ω∗) for all s < 2 and all Ω∗ such that

Ω
∗ ⊂] − 1, 1[×]1− ε+ λ, 1[ or Ω

∗ ⊂] − 1,−λ[×]− 1, 1 − ε− λ[ or Ω
∗ ⊂]λ, 1[×]− 1, 1 − ε− λ[.
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However, the investigation of the regularity of the solutions in a neighbourhood of the discontinuities of α is a
much more complex task.

Finally, it must be noted that all the previous regularity properties are independent of ε. However, the norms
of the solutions in the corresponding Sobolev spaces depend on ε, as can be checked by using the one-dimensional
homothety which maps the rectangle Ω1 onto the square ] − 1, 1[×]1− ε, 3 − ε[.

3. The discrete problems and their well-posedness

The skeleton S of the decomposition, which is equal to ∪3
k=1∂Ωk \ ∂Ω, admits a decomposition without

overlap into mortars

S =
M−⋃
m=1

γ−m and γ−m ∩ γ−m′ = ∅, 1 ≤ m < m′ ≤M−, (3.1)

where each γ−m is a whole edge of one of the Ωk, which is then denoted by Ω−
m. Note that the choice of this

decomposition is not unique. However it is decided a priori for all the discretizations we consider. Once it is
fixed, we have another decomposition of the skeleton into non-mortars

S =
M+⋃
m=1

γ+
m and γ+

m ∩ γ+
m′ = ∅, 1 ≤ m < m′ ≤M+, (3.2)

where each γ+
m is a whole edge of one of the Ωk, here denoted by Ω+

m, and either γ+
m does not coincide with

any γ−m′ or, if γ+
m is equal to a γ−m′ , Ω+

m is different from Ω−
m′ .

To illustrate this rather abstract definition, we observe that, for the geometry defined in (1.1) and shown in
Figure 1, four choices of mortars (hence of non-mortars) are possible, as described in Figure 2. The skeleton is
the union of the vertical segment {0}×]− 1, 1 − ε[ and the horizontal segment ] − 1, 1[×{1− ε}. Thus,

• the vertical segment {0}×] − 1, 1 − ε[ is both a mortar γ−1 and a non-mortar γ+
1 but Ω−

1 can be taken
equal to Ω2 (then, Ω+

1 is equal to Ω3) or to Ω3 (then, Ω+
1 is equal to Ω2),

• the horizontal segment ] − 1, 1[×{1− ε} is either one mortar γ−2 , so that Ω−
2 is equal to Ω1 and

γ+
2 =] − 1, 0[×{1− ε}, Ω+

2 = Ω2 and γ+
3 =]0, 1[×{1− ε}, Ω+

3 = Ω3, (3.3)

or divided into two mortars γ−2 and γ−3 , with

γ−2 =] − 1, 0[×{1− ε}, Ω−
2 = Ω2 and γ−3 =]0, 1[×{1− ε}, Ω−

3 = Ω3, (3.4)

so that γ+
2 is equal to ] − 1, 1[×{1− ε} and Ω+

2 to Ω1.
In all cases, both M− and M+ are equal to 2 or 3, and their sum is always 5.

In order to take into account the large aspect ratio of the domain Ω1, the discretization parameter δ is
here a 4-tuple (M1, N1, N2, N3) of integers ≥ 2. Indeed, the local discrete spaces are defined as follows:

• The space X1
δ is the space of restrictions to Ω1 of polynomials of degree ≤ N1 with respect to x and of

degree ≤M1 with respect to y;
• For k = 2 and 3, the space Xk

δ is the space of restrictions to Ωk of polynomials of degree ≤ Nk with
respect to both x and y.

For each γ+
m, we denote by N+

m the integer Nk, where k is such that Ω+
m is equal to Ωk, and, for any nonnegative

integer N , by PN (γ+
m) the space of restrictions to γ+

m of polynomials with one variable and degree ≤ N .
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Figure 2. The four possible choices of mortars and non-mortars.

The mortar discrete space Xδ is then defined in the usual way, according to [9] (see also [11] for a more recent
description). It is the space of functions qδ such that:

• the restriction qδ |Ωk
to each Ωk, 1 ≤ k ≤ 3, belongs to Xk

δ ;
• the following matching condition holds for all m, 1 ≤ m ≤M+,

∀ψδ ∈ PN+
m−2(γ

+
m),

∫
γ+

m

(
qδ |Ω+

m
− ϕ(qδ)

)
(τ)ψδ(τ) dτ = 0, (3.5)

where the mortar function ϕ(qδ) associated with qδ is defined on each γ−m, 1 ≤ m ≤M−, as the trace of qδ |Ω−
m

.
Note that the space Xδ is not contained in H1(Ω), which means that the discretization is not conforming.

Let PN(−1, 1) denote the space of restrictions to ] − 1, 1[ of polynomials in one variable and degree ≤ N .
The Gauss-Lobatto formula on the interval ]− 1, 1[ can be written as follows: For each positive integer N , with
the notation ξN

0 = −1 and ξN
N = 1, there exists a unique set of nodes ξN

j , 1 ≤ j ≤ N − 1, and weights ρj ,
0 ≤ j ≤ N , such that

∀Φ ∈ P2N−1(−1, 1),
∫ 1

−1

Φ(ζ) dζ =
N∑

j=0

Φ(ξN
j ) ρN

j , (3.6)

where the ξN
j are equal to the zeros of the first derivative of the Legendre polynomial of degree N and the ρN

j

are positive. Moreover, the additional positivity property holds

∀ϕN ∈ PN(−1, 1), ‖ϕN‖2
L2(−1,1) ≤

N∑
j=0

ϕ2
N (ξN

j ) ρN
j ≤ 3 ‖ϕN‖2

L2(−1,1). (3.7)
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Next,
• on Ω1, we first take N equal to N1 and, by homothety and translation, we construct from the ξN1

j and

ρN1
j , 0 ≤ j ≤ N1, the nodes and weights ξ(x)

1j and ρ(x)
1j in the x-direction. On the other hand, we take N

equal to M1 and, by homothety and translation, we construct from the ξM1
j and ρM1

j , 0 ≤ j ≤ M1, the

nodes and weights ξ(y)
1j and ρ(y)

1j in the y-direction;
• for k = 2 and 3, we take N equal to Nk and, by homothety and translation, we construct from the ξNk

j

and ρNk
j , 0 ≤ j ≤ Nk, the nodes and weights ξ(x)

kj and ρ(x)
kj , resp. ξ(y)

kj and ρ(y)
kj , in the x-direction, resp.

in the y-direction.
This leads to a discrete product, defined on all functions u and v which have continuous restrictions to all Ωk,
1 ≤ k ≤ K:

((u, v))δ =
3∑

k=1

((u, v))k
δ with ((u, v))1δ =

N1∑
i=0

M1∑
j=0

u
(
ξ
(x)
1i , ξ

(y)
1j

)
v
(
ξ
(x)
1i , ξ

(y)
1j

)
ρ
(x)
1i ρ

(y)
1j ,

and ((u, v))k
δ =

Nk∑
i=0

Nk∑
j=0

u
(
ξ
(x)
ki , ξ

(y)
kj

)
v
(
ξ
(x)
ki , ξ

(y)
kj

)
ρ
(x)
ki ρ

(y)
kj , k = 2, 3. (3.8)

The exactness property of this product follows from (3.6). Let also Ik
δ , 1 ≤ k ≤ K, denote the Lagrange

interpolation operators at all nodes (ξ(x)
ki , ξ

(y)
kj ) with values in Xk

δ , and Iδ the operator such that its restriction
to each Ωk coincides with Ik

δ .

We are now in a position to present the discrete problem associated with problem (2.4). We assume that the
functions f and g have continuous restrictions to all Ωk, 1 ≤ k ≤ 3. Then, the discrete problem can be written as:

Find pδ in Xδ ∩ L2
0(Ω) such that

∀qδ ∈ Xδ, aLδ(pδ, qδ) = ((fδ, qδ))δ + ((g,grad qδ))δ, (3.9)

where the bilinear form aLδ(·, ·) is defined by

aLδ(pδ, qδ) =
3∑

k=1

αk ((grad pδ,grad qδ))k
δ , (3.10)

and the function fδ is given by

fδ(x, y) = f(x, y) − 1
4

((f, 1))δ. (3.11)

Indeed, from this last choice, ((fδ, 1))δ is equal to zero, so that equation (3.9) can equivalently be enforced for
all qδ in Xδ or in Xδ ∩ L2

0(Ω).

In order to check the well-posedness of problem (3.9), we need an extension of the Bramble-Hilbert inequality.
We introduce the space X of functions q in L2(Ω) such that

• the restriction q|Ωk
to each Ωk, 1 ≤ k ≤ K, belongs to H1(Ωk),

• the following matching condition holds for all m, 1 ≤ m ≤M+,∫
γ+

m

(
q|Ω+

m
− ϕ(q)

)
(τ) dτ = 0, (3.12)

where the mortar function ϕ(q) associated with q is defined on each γ−m, 1 ≤ m ≤M−, as the trace of q|Ω−
m

.
The space X is not a discrete space, and its main advantage is that it contains both H1(Ω) and all spaces Xδ.
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Lemma 3.1. There exists a constant c such that the following property holds for all functions q in X ∩ L2
0(Ω)

‖q‖L2(Ω) ≤ c
( 3∑

k=1

|q|2H1(Ωk)

) 1
2
. (3.13)

Proof. We note that the norm q 
→
(∑3

k=1 ‖q‖2
H1(Ωk)

) 1
2

is equivalent to

‖q‖L2(Ω) +
( 3∑

k=1

|q|2H1(Ωk)

) 1
2
.

Moreover, if a function q in X ∩ L2
0(Ω) satisfies

∑3
k=1 |q|2H1(Ωk) = 0, it is equal to a constant qk in each Ωk.

The matching condition on the edge γ+
1 = {0}×] − 1, 1 − ε[ thus implies that q2 and q3 are equal. Next, any

matching condition on the edge ] − 1, 1[×{1 − ε} or part of it yields that q1 is equal to q2 = q3. Therefore,
the function q is constant on Ω and, since it belongs to L2

0(Ω), it is zero. Since the embedding of each H1(Ωk)
into L2(Ωk) is compact, we derive from the Peetre-Tartar lemma, see [14], Chapter I, Theorem 2.1, that the

quantities
(∑3

k=1 ‖q‖2
H1(Ωk)

) 1
2

and
(∑3

k=1 |q|2H1(Ωk)

) 1
2

are equivalent in X ∩ L2
0(Ω), whence inequality (3.13).

An immediate consequence of Lemma 3.1 combined with (3.7) is the ellipticity property

∀qδ ∈ Xδ ∩ L2
0(Ω), aLδ(qδ, qδ) ≥ c αmin

( 3∑
k=1

‖qδ‖2
H1(Ωk)

)
. (3.14)

We are thus now in a position to prove the well-posedness of problem (3.9).

Proposition 3.2. For any data f and g which have continuous restrictions to all Ωk, 1 ≤ k ≤ 3, problem (3.9)
has a unique solution pδ in Xδ ∩ L2

0(Ω). Moreover this solution satisfies

‖pδ‖1,α ≤ c α
− 1

2
min

(‖Iδf‖L2(Ω) + ‖Iδg‖L2(Ω)2
)
. (3.15)

Proof. From (3.14), the existence and uniqueness of the solution are an immediate consequence of the Lax-
Milgram lemma. To prove (3.15), we take qδ equal to pδ in (3.9) and use (3.7), which gives

‖pδ‖2
1,α ≤ ((fδ, pδ))δ + ((g,grad pδ))δ.

Combining the definition of the operator Iδ with a Cauchy-Schwarz inequality gives

((fδ, pδ))δ = ((Iδfδ, pδ))δ ≤ ((Iδfδ, Iδfδ))
1
2
δ (pδ, pδ))

1
2
δ ,

and applying (3.7) in each direction leads to

((fδ, pδ))δ ≤ 9 ‖Iδfδ‖L2(Ω)‖pδ‖L2(Ω).

Using the definition (3.11) of fδ together with the identity ((f, 1))δ = ((Iδf, 1))δ and once more Lemma 3.1, we
obtain

((fδ, pδ))δ ≤ 9c α− 1
2

min

(
1 +

1
2

)
‖Iδf‖L2(Ω)‖pδ‖1,α.

Simpler arguments also give
((g,grad pδ))δ ≤ 3α− 1

2
min ‖Iδg‖L2(Ω)2‖pδ‖1,α.
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Combining all this yields the desired estimate.

We now consider the discrete problem associated with problem (2.10). We introduce the space Yδ of functions
such that their restrictions to each Ωk, 1 ≤ k ≤ 3, belong to Xk

δ . Here also, we assume that the functions f
and g have continuous restrictions to all Ωk, 1 ≤ k ≤ 3. Then, the discrete problem may be written as:

Find (uδ, pδ in Y2
δ ×

(
Xδ ∩ L2

0(Ω)
)

such that

∀vδ ∈ Y2
δ , aDδ(uδ,vδ) + bDδ(vδ, pδ) =

3∑
k=1

α−1
k ((g,vδ))k

δ ,

∀qδ ∈ Xδ, bDδ(uδ, qδ) = −((fδ, qδ))δ, (3.16)

where the function fδ is introduced in (3.11) and the bilinear forms aDδ(·, ·) and bDδ(·, ·) are defined by

aDδ(uδ,vδ) =
3∑

k=1

α−1
k ((uδ,vδ))k

δ , bDδ(vδ, qδ) = ((vδ,grad qδ))δ. (3.17)

The ellipticity of the form aDδ(·, ·) on Y2
δ is an easy consequence of (3.7):

∀vδ ∈ Y2
δ , aDδ(vδ,vδ) ≥ ‖vδ‖2

0,α−1 . (3.18)

The same argument as in the continuous case leads to an inf-sup condition on the form bDδ(·, ·).

Lemma 3.3. The following inf-sup condition holds

∀qδ ∈ Xδ ∩ L2
0(Ω), sup

vδ∈Y
2
δ

bDδ(vδ, qδ)
‖vδ‖0,α−1

≥ ‖qδ‖1,α. (3.19)

Proof. It is readily checked that, for any qδ in Xδ, the functions grad qδ and α grad qδ belong to Y2
δ. Thus, by

taking vδ equal to αgrad qδ, we obtain

bDδ(vδ, qδ) =
3∑

k=1

αk ((grad qδ,grad qδ))k
δ and ‖vδ‖0,α−1 = ‖qδ‖1,α.

Using once more (3.7) in the first equality leads to

bDδ(vδ, qδ) ≥ ‖qδ‖2
1,α.

Combining all this gives the desired condition.

We state and prove the well-posedness of problem (3.16). The proof involves the discrete kernel

Vδ =
{
vδ ∈ Y2

δ ; ∀qδ ∈ Xδ, bDδ(vδ, qδ) = 0
}
. (3.20)

Proposition 3.4. For any data f and g which have continuous restrictions to all Ωk, 1 ≤ k ≤ 3, problem (3.16)
has a unique solution (uδ, pδ) in Y2

δ ×
(
Xδ ∩ L2

0(Ω)
)
. Moreover, this solution satisfies

‖uδ‖0,α−1 + ‖pδ‖1,α ≤ c α
− 1

2
min

(‖Iδf‖L2(Ω) + ‖Iδg‖L2(Ω)2
)
. (3.21)
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Proof. Let us first take f and g equal to zero in (3.16). Choosing vδ equal to uδ in the first line of this equation
yields that aDδ(uδ,uδ) is zero. It therefore follows from (3.18) that uδ is zero. We now have

∀vδ ∈ Y2
δ, bDδ(vδ, pδ) = 0,

hence pδ is also zero from (3.19). On the other hand, problem (3.16) results into a square linear system since,
thanks to the choice of fδ, the second line in (3.16) can equivalently be enforced for all qδ in Xδ or in Xδ∩L2

0(Ω).
The existence and uniqueness of the solution (uδ, pδ) are a consequence of the previous arguments. We now
prove estimate (3.21) by following the same steps as in the proof of Proposition 2.2.
1) It follows from the inf-sup condition (3.19) that there exists a function u∗

δ in Y2
δ such that

∀qδ ∈ Xδ ∩ L2
0(Ω), bDδ(u∗

δ , qδ) = −((fδ, qδ))δ

and ‖u∗
δ‖0,α−1 ≤ c α

− 1
2

min ‖Iδfδ‖L2(Ω) ≤ 3c
2
α
− 1

2
min ‖Iδf‖L2(Ω). (3.22)

2) Because of the choice of u∗
δ , the function u0

δ = uδ − u∗
δ belongs to Vδ and satisfies

∀vδ ∈ Vδ, aDδ(u0
δ,vδ) =

3∑
k=1

α−1
k ((g,v))k

δ − aDδ(u∗
δ ,vδ). (3.23)

We thus derive from (3.18) and (3.7) that

‖u0
δ‖0,α−1 ≤ c

(
α
− 1

2
min ‖Iδg‖L2(Ω)2 + ‖u∗

δ‖0,α−1

)
. (3.24)

3) The pressure pδ satisfies

∀vδ ∈ Y2
δ, bDδ(vδ, pδ) =

3∑
k=1

α−1
k ((g,vδ))k

δ − aDδ(u0
δ + u∗

δ ,vδ).

Applying the inf-sup condition (3.19) once more yields

‖pδ‖1,α ≤ c
(
α
− 1

2
min ‖Iδg‖L2(Ω)2 + ‖u0

δ‖0,α−1 + ‖u∗
δ‖0,α−1

)
. (3.25)

Combining (3.22), (3.24) and (3.25) yields estimate (3.21).

As for the continuous problems, we now compare the solutions of problems (3.9) and (3.16).

Proposition 3.5. Problems (3.9) and (3.16) are equivalent in the following sense:
(i) For any solution pδ of problem (3.9), there exists a unique function uδ in Y2

δ such that the pair (uδ, pδ) is a
solution of problem (3.16).
(ii) For any solution (uδ, pδ) of problem (3.16), the function pδ is a solution of problem (3.9).

Proof. Let (uδ, pδ) be a solution of problem (3.16). By noting that uδ + α grad pδ − Iδg belongs to Y2
δ and

choosing vδ equal to this function in the first line of (3.16) implies that this line can equivalently be written

uδ + αgrad pδ = Iδg in Ω. (3.26)

Inserting this equality in the second line of (3.16) gives that pδ is a solution of (3.9). Conversely, for any
solution pδ of problem (3.9), defining uδ by (3.26) yields that (uδ, pδ) is a solution of (3.16). The uniqueness of
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uδ is a consequence of (3.18).

Consequently, problems (3.9) and (3.16) lead to the same discrete solution pδ. However, as will become
apparent later, their implementation is rather different.

4. Error estimates

We are now interested in establishing an upper bound for the error issued from the discretization of prob-
lem (2.4). Due to the nonconformity of the method, we multiply the first line of problem (1.2) by a function rδ
in Xδ and integrate by parts on each Ωk. This gives

aL(p, rδ) =
∫

Ω

(f rδ + g · grad rδ)(x) dx −
∫
S

(
α∂np− g · n)(τ)[rδ(τ)] dτ, (4.1)

where, if at each point τ of S, n denotes the unit outward normal vector directed from an Ωk towards an Ωk′ ,
[rδ(τ)] stands for the jump rδ |Ωk′ (τ) − rδ |Ωk

(τ).

Let now qδ be any function in Xδ. By using (3.7) once more, we have

‖pδ − qδ‖2
1,α ≤ aLδ(pδ − qδ, pδ − qδ).

Adding and subtracting (4.1) and (3.9) yield

‖pδ − qδ‖2
1,α ≤ aL(p− qδ, pδ − qδ) +

∫
S

(
α∂np− g · n)(τ)[(pδ − qδ)(τ)] dτ

+ (aL − aLδ)(qδ, pδ − qδ) + ((fδ, pδ − qδ))δ −
∫

Ω

f(x)(pδ − qδ)(x) dx

+ ((g,grad (pδ − qδ)))δ −
∫

Ω

(
g · grad (pδ − qδ)

)
(x) dx.

Using the Cauchy-Schwarz inequality several times, and subsequently a triangle inequality, we obtain

‖p− pδ‖1,α ≤ c
(
‖p− qδ‖1,α + sup

rδ∈Xδ

∫
S
(
α ∂np− g · n

)
(τ)[rδ(τ)] dτ

‖rδ‖1,α
+ E1 + E2 + E3

)
, (4.2)

where the first term in the right-hand side represents the approximation error, the second term is the consistency
error and the three terms E1, E2 and E3 which result from the use of quadrature formulæ are given by

E1 = sup
rδ∈Xδ

(aL − aLδ)(qδ, rδ)
‖rδ‖1,α

,

E2 = sup
rδ∈Xδ

((fδ, rδ))δ −
∫
Ω f(x)rδ(x) dx

‖rδ‖1,α
,

E3 = sup
rδ∈Xδ

((g,grad rδ))δ −
∫
Ω

(
g · grad rδ

)
(x) dx

‖rδ‖1,α
· (4.3)

Estimating the terms in E1, E2 and E3 is easy since each of them involves a sum of local terms on each Ωk.
In order to evaluate E1, we introduce the orthogonal projection operator Πk−

δ1 from H1(Ωk) onto Xk−
δ , where

Xk−
δ denotes

• the space of restrictions to Ω1 of polynomials of degree ≤ N1−1 with respect to x and of degree ≤M1−1
with respect to y for k = 1;
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• the space of restrictions to Ωk of polynomials of degree ≤ Nk −1 with respect to both x and y for k = 2
and 3.

Indeed, if Π−
δ1 denotes the operator equal to Πk−

δ1 on each Ωk, the following identity follows from (3.6)

∀rδ ∈ Xδ, (aL − aLδ)(Π−
δ1p, rδ) = 0.

Using this together with a triangle inequality leads to

E1 ≤ c
(
‖p− qδ‖1,α +

3∑
k=1

α
1
2
k ‖p− Πk−

δ1 p‖H1(Ωk)

)
. (4.4)

To conclude, we recall the approximation properties of the operator Πk−
δ1 , which are well-known for k = 2 and 3,

see [5], Theorem 7.3, and are derived from the standard results by using the affine transformation that maps Ω1

onto a square for k = 1: For any function q in Hs+1(Ωk), s ≥ 0,

‖q − Πk−
δ1 q‖H1(Ωk) ≤ c

{
(εsM−s

1 +N−s
1 ) ‖q‖Hs+1(Ω1) for k = 1,

N−s
k ‖q‖Hs+1(Ωk) for k = 2 and 3.

(4.5)

Similarly, let Πk
δ denote the orthogonal projection operator from L2(Ωk) onto Xk−

δ . Using the fact that f
belongs to L2

0(Ω) and the definition (3.11) of fδ, we have

f − fδ =
1
4

((Iδf, 1))δ = −1
4

∫
Ω

(f − Iδf)(x) dx.

Therefore using the same arguments as previously leads to

E2 ≤ c

3∑
k=1

α
− 1

2
k

(
‖f − Ik

δ f‖L2(Ωk) + ‖f − Πk−
δ f‖L2(Ωk)

)
, (4.6)

and

E3 ≤ c

3∑
k=1

α
− 1

2
k

(
‖g − Ik

δ g‖L2(Ωk)2 + ‖g − Πk−
δ g‖L2(Ωk)2

)
. (4.7)

To conclude, we recall from [5], Theorem 7.1, the properties of the operator Πk−
δ : For any function h in Hσ(Ωk),

σ ≥ 0,

‖h− Πk−
δ h‖L2(Ωk) ≤ c

{
(εσM−σ

1 +N−σ
1 ) ‖q‖Hσ(Ω1) for k = 1,

N−σ
k ‖q‖Hσ(Ωk) for k = 2 and 3.

(4.8)

Exactly the same properties hold with the operator Πk−
δ replaced by Ik

δ when σ is > 1, see [5], Theorem 14.2.

We now evaluate the approximation error. We only give an outline of the proof, since the results are standard
at least in the isotropic case, see [9], Appendix B. The next statement involves the parameter λδ defined as
max{λ1

δ , λ
2
δ}, with

λ1
δ =

{
(α2

α3
)

1
2 if N2 ≥ N3,

(α3
α2

)
1
2 if N3 > N2,

(4.9)

and

λ2
δ =

{
max

{
(α2

α1
)

1
2 (1 + N1

N2
)

1
2 , (α3

α1
)

1
2 (1 + N1

N3
)

1
2
}

if ] − 1, 1[×{1− ε} = γ−2 ,
(1 + N1

M1
) max

{
(α1

α2
)

1
2 (1 + N2

N1
)

1
2 , (α1

α3
)

1
2 (1 + N3

N1
)

1
2
}

if ] − 1, 1[×{1− ε} = γ+
2 .

(4.10)
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Although this definition is rather complex, we prefer to write it explicitly since it allows for optimizing the
choice of the mortars as functions of the values of the αk.

The proof of the next proposition also requires
• the orthogonal projection operator π̃+

m from H1
0 (γ+

m) onto PN+
m

(γ+
m) ∩ H1

0 (γ+
m) for the scalar product

associated with the norm | · |H1(γ+
m);

• a lifting operator R+
m from PN+

m
(γ+

m)∩H1
0 (γ+

m) onto the space of restrictions to Ω+
m of polynomials with

degree ≤ N+
m with respect to both x and y vanishing on ∂Ω+

m \ γ+
m, which satisfies, for all s,

∀ϕδ ∈ PN+
m

(γ+
m) ∩H1

0 (γ+
m), ‖R+

mϕδ‖H1(Ω+
m) ≤ c ‖ϕδ‖

H
1
2
00(γ+

m)
. (4.11)

The existence of such an operator is established in [8] (note that its range is not contained in X1
δ when Ω+

m is
equal to Ω1 and M1 < N1).

Proposition 4.1. Assume that the function p is such that its restriction to each Ωk, 1 ≤ k ≤ K, belongs to
Hsk+1(Ωk), sk >

1
2 . The following approximation error estimate holds

inf
qδ∈Xδ

‖p− qδ‖1,α ≤ c (1 + λδ)
(
α

1
2
1 (εs1M−s1

1 +N−s1
1 ) ‖q‖Hs1+1(Ω1) +

3∑
k=2

α
1
2
k N

−sk

k ‖q‖Hsk+1(Ωk)

)
. (4.12)

Proof. The proof is performed in several steps.
1) We first recall from [5], Theorem 14.2, the following result concerning the interpolation operator

‖p− Iδp‖1,α ≤ c
(
α

1
2
1 (εs1M−s1

1 +N−s1
1 ) ‖q‖Hs1+1(Ω1) +

3∑
k=2

α
1
2
k N

−sk

k ‖q‖Hsk+1(Ωk)

)
. (4.13)

2) Only when the whole edge ]− 1, 1[×{1− ε} is a mortar, denoted by γ−2 (this is the case in the two top parts
of Fig. 2), we define the function

q�
δ =

{
(p− I1

δ p)(a) (1 − x2) on Ω1,
0 on Ω2 and Ω3,

where a denotes the corner (0, 1 − ε). Thanks to the Gagliardo-Nirenberg inequality, we have

‖q�
δ‖1,α ≤ c α

1
2
1 |(p− I1

δ p)(a)| ≤ c′ α
1
2
1 ‖p− I1

δ p‖L∞(γ−
2 ) ≤ c′ α

1
2
1 ‖p− I1

δ p‖
1
2

L2(γ−
2 )
‖p− I1

δ p‖
1
2

H1(γ−
2 )
.

Since the operator I1
δ is constructed by tensorization, its restriction to γ−2 is a one-dimensional interpolation

operator. From the properties of this operator [5], Theorem 13.4, and the trace theorem, we obtain that

‖q�
δ‖1,α ≤ c α

1
2
1 N

−s1
1 ‖q‖Hs1+1(Ω1). (4.14)

Taking q�
δ equal to zero when the edge ]−1, 1[×{1−ε} is a non-mortar, we observe that the function q�

δ = Iδq+q
�
δ

is continuous at all the endpoints of the non-mortars.
3) Finally, we take

q�
δ =

M+∑
m=1

IδR+
mπ̃

+
m(ϕ(q�

δ) − q�

δ|Ω+
m

),

where each R+
m is extended by zero to Ω \ Ω+

m. Note that Iδ is the identity except when Ω+
2 is equal to Ω1

and M1 < N1, where it reduces the degree with respect to y of the image of R+
m and also that the previous
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choice can be improved because of the conformity of the bottom part of the decomposition by lifting the jump
through γ±1 on the Ωk, k = 2 or 3, corresponding to the largest Nk whatever is Ω+

1 . Rather technical arguments
involving a separate treatment of the four possible choices of mortars, give

‖q�
δ‖1,α ≤ c (1 + λδ)

(
α

1
2
1 (εs1M−s1

1 +N−s1
1 ) ‖q‖Hs1+1(Ω1) +

3∑
k=2

α
1
2
k N

−sk

k ‖q‖Hsk+1(Ωk)

)
. (4.15)

To conclude, we set qδ = q�
δ + q�

δ. Thus, the jump of qδ through each γ+
m is equal to (π̃+

m − id)(ϕ(q�
δ) − q�

δ|Ω+
m

).

Since the mapping: χδ 
→ χ′′
δ is an isomorphism from PN+

m
(γ+

m)∩H1
0 (γ+

m) onto PN+
m−2(γ

+
m), the following identity

is derived by integration by parts

∀ϕ ∈ H1
0 (γ+

m), ∀ψδ ∈ PN+
m−2(γ

+
m),

∫
γ+

m

(ϕ− π̃+
mϕ)(τ)ψδ(τ) dτ = 0,

so that the function qδ belongs to Xδ. Estimate (4.12) then follows from (4.13) to (4.15).
It remains to evaluate the consistency error, which is simpler than previously. Let now λ3

δ and λ4
δ denote the

parameters defined by

λ3
δ =

{
1 if ] − 1, 1[×{1− ε} = γ−2
log N1 if ] − 1, 1[×{1− ε} = γ+

2

(4.16)

and

λ4
δ = max

1≤m≤M+
max
k∈E+

m

(
α+

m

αk

) 1
2

, (4.17)

where E+
m denotes the set of indices k such that ∂Ωk ∩ γ+

m has a positive measure.

Proposition 4.2. Assume that the function p is such that its restriction to each Ωk, 1 ≤ k ≤ K, belongs to
Hsk+1(Ωk), sk >

1
2 , and also that the data g belong to Hσ(Ω)2, σ > 1

2 . The following consistency error estimate
holds

sup
rδ∈Xδ

∫
S
(
α∂np− g · n

)
(τ)[rδ(τ)] dτ

‖rδ‖1,α

≤ c (1 + λ3
δ)(1 + λ4

δ)
3∑

k=1

(
α

1
2
k N

−sk

k ‖p‖Hsk+1(Ωk) + α
− 1

2
k N−σ

k ‖g‖Hσ(Ωk)2
)
. (4.18)

Proof. We use the partition (3.2) of the skeleton into non-mortars. Denoting by π+
m the orthogonal projection

operator from L2(γ+
m) onto PN+

m−2(γ
+
m), we deduce from the matching conditions (3.5) that

∫
γ+

m

(
α∂np− g · n

)
(τ)[rδ(τ)] dτ =

∫
γ+

m

(Id− π+
m)

(
α∂np− g · n

)
(τ)[rδ(τ)] dτ.

Using a Cauchy-Schwarz inequality then yields∫
γ+

m

(
α∂np− g · n

)
(τ)[rδ(τ)] dτ ≤ ‖(Id− π+

m)
(
α∂np− g · n

)‖
Hε

+
m− 1

2 (γ+
m)

‖ [rδ] ‖
H

1
2−ε

+
m (γ+

m)
,

where all ε+m are taken equal to zero except in the case m = 2 when the whole edge ] − 1, 1[×{1 − ε} is equal
to γ+

2 where it satisfies 0 < ε+2 < 1
2 (indeed, in this case, the trace of rδ |Ω2∪Ω3

does not belong to H
1
2 (γ+

2 ) for
all rδ in Xδ since these functions are not necessarily continuous at the point (0, 1 − ε)).
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Next, we recall from [5], Remark 6.1, that, for any interval γ, the orthogonal projection operator πN from L2(γ)
onto PN(γ) satisfies, for all nonnegative integers s and t and for any function ϕ in Hs(γ),

‖ϕ− πNϕ‖H−t(γ) ≤ cN−t−s ‖ϕ‖Hs(γ).

Moreover if for instance 0 ≤ t ≤ 1
2 , the constant in the previous inequality is independent of t. Applying this

result yields the estimate

∫
γ+

m

(
α∂np− g · n)(τ)[rδ ](τ) dτ

≤ c (N+
m)ε+

m

(
α+

m (N+
m)−s+

m ‖∂np‖
Hs

+
m− 1

2 (γ+
m)

+ (N+
m)−σ ‖g‖

Hσ− 1
2 (γ+

m)2

)
‖ [rδ] ‖

H
1
2−ε

+
m (γ+

m)
.

We conclude by using the trace theorem and also by noting that
1) each (α+

m)
1
2 ‖ [rδ] ‖

H
1
2−ε

+
m (γ+

m)
is bounded by (α+

m)
1
2 times the sum of ‖rδ ‖H1(Ω+

m) and of the ‖rδ ‖H1(Ωk),

k ∈ E+
m, hence by (1 + λ4

δ) times ‖rδ‖1,α,
2) when ε+2 is not zero, it follows from [12], Remark 2.10, that the mapping: (ϕ2, ϕ3) 
→ ϕ, where ϕ is equal
to ϕ2 on γ−2 and to ϕ3 on γ−3 is continuous from

∏3
k=2H

1
2−ε+

2 (γ−k ) into H
1
2−ε+

2 (γ+
2 ) with norm ≤ c (ε+2 )−1.

Thus taking ε+2 equal to (log N1)−1 leads to the apparition of (1 + λ3
δ).

The first error estimate is now derived by inserting into (4.2)
1) estimate (4.12) for the approximation error;
2) estimate (4.18) for the consistency error;
3) estimate (4.4) combined with (4.5) and (4.12) for E1;
4) estimate (4.6) and (4.7) combined with (4.8) and its analogue for Ik

δ [5], Theorem 14.2, for E2 and E3.

Theorem 4.3. Assume that the function p is such that its restriction to each Ωk, 1 ≤ k ≤ K, belongs to
Hsk+1(Ωk), sk > 1

2 , and also that the data (f, g) belong to Hσ(Ω) × Hσ(Ω)2, σ > 1. The following error
estimate holds between the solution p of problem (2.4) and the solution pδ of problem (3.9)

‖p− pδ‖1,α ≤ c
(
E(p) + E(f, g)

)
, (4.19)

where the quantities E(p) and E(f, g) are given by

E(p) ≤ (1 + max{λ1
δ, λ

2
δ})(1 + λ3

δ)(1 + λ4
δ)(

α
1
2
1 (εs1M−s1

1 +N−s1
1 ) ‖p‖Hs1+1(Ω1) +

3∑
k=2

α
1
2
k N

−sk

k ‖p‖Hsk+1(Ωk)

)
, (4.20)

and

E(f, g) ≤ (
α
− 1

2
1 (εσM−σ

1 +N−σ
1 ) +

3∑
k=2

α
− 1

2
k N−σ

k

)
(
‖f‖Hσ(Ω) + (1 + λ3

δ)(1 + λ4
δ) ‖g‖Hσ(Ω)2

)
, (4.21)

for the λj
δ introduced in (4.9), (4.10), (4.16) and (4.17).

By combining Propositions 2.4 and 3.5 with the identity (3.26), we immediately obtain an estimation of the
error resulting from the discretization of problem (2.10).
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Theorem 4.4. If the assumptions of Theorem 4.3 are satisfied, the following error estimate holds between the
solution p of problem (2.10) and the solution pδ of problem (3.16)

‖u − uδ‖0,α−1 + ‖p− pδ‖1,α ≤ c
(
E(p) + E(f, g)

)
, (4.22)

where the quantities E(p) and E(f, g) are defined in (4.20) and (4.21), respectively.

We are interested in the case where the data (f, g) are very smooth, so that the quantity E(f, g) is much
smaller than E(p) and we try to make some further choices in order to optimize E(p). The first natural choice
consists in choosing M1 such that

c εN1 ≤M1 ≤ c′ εN1. (4.23)

Clearly this reduces the number of degrees of freedom without reducing the accuracy of the discretization. With
this choice and in view of (4.10), we take

γ−2 =] − 1, 1[×{1− ε}, (4.24)

which apparently improves λ2
δ at least when ε is small. As a consequence, λ3

δ is now equal to 1. When this choice
is made, taking all the Nk equal to a constant times αk yields that the product (1+max{λ1

δ, λ
2
δ})(1+λ3

δ)(1+λ4
δ)

which appears in E(p) behaves like the ratio αmax/αmin in the worst case, which seems unavoidable. To conclude,
we note that, in practice, optimal choices of the discretization parameters are not always possible in the numerical
simulations. Nevertheless, the previous comments permit an optimization of these choices according to each
special situation.

5. Numerical experiments

First, we briefly describe the implementation of the two discrete problems. As first proposed in [3], the
matching conditions (3.5) are enforced via the introduction of a Lagrange multiplier. More precisely, we define
the space

Qδ =
M+∏
m=1

PN+
m−2(γ

+
m). (5.1)

Next, we define the bilinear form on Xδ × Qδ by

e(qδ, µδ) =
M+∑
m=1

∫
γ+

m

(
qδ |Ω+

m
− ϕ(qδ)

)
(τ)µm(τ) dτ, with µδ = (µ1, . . . , µM+). (5.2)

We denote by ξ+mj , 0 ≤ j ≤ N+
m, the nodes of the Gauss-Lobatto quadrature formula on Ω+

m which belong to γ+
m.

Next, we consider the modified discrete problems

Find pδ in Yδ ∩ L2
0(Ω) and λδ in Qδ such that

∀qδ ∈ Xδ, aLδ(pδ, qδ) + e(qδ, λδ) = ((fδ, qδ))δ + ((g,grad qδ))δ,

∀µδ ∈ Qδ, e(pδ, µδ) = 0, (5.3)

and
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Find (uδ, pδ) in Y2
δ ×

(
Yδ ∩ L2

0(Ω)
)

and λδ in Qδ such that

∀vδ ∈ Y2
δ , aDδ(uδ,vδ) + bDδ(vδ, pδ) =

3∑
k=1

α−1
k ((g,vδ))k

δ ,

∀qδ ∈ Xδ, bDδ(uδ, qδ) + e(qδ, λδ) = −((fδ, qδ))δ,

∀µδ ∈ Qδ, e(pδ, µδ) = 0. (5.4)

Their equivalence with problems (3.9) and (3.16), respectively, is proved in [3] in a simpler case.
These new discrete problems can also be written as follows. In problem (5.3), the vector P of unknowns

consists of the pδ(ξ
(x)
ki , ξ

(y)
kj ) minus the value at one node which is usually taken equal to zero (the fact that pδ

belongs to L2
0(Ω) is recovered in a post-processing step). If this node belongs to Ω1 for instance, P consists

of three blocks of sizes (M1 + 1)(N1 + 1) − 1 and (Nk + 1)2, k = 2, 3, respectively. The vector Λ of auxiliary
unknowns is made of the λδ(ξ+mj), 1 ≤ j ≤ N+

m − 1, so it consists of M+ blocks. Problem (5.3) is equivalent to
the linear system (

AL ET

E 0

) (
P
Λ

) (
H
0

)
, (5.5)

where the vector H depends on the values of (f, g) at the Gauss-Lobatto nodes. The main advantage of the
system resulting from this approach is that the matrix AL is block-diagonal, made of one block per Ωk, while
the size of the matrix E (or at least the number of non-zero coefficients in it) is much smaller. Moreover, since
the matrix AL is symmetric, the global matrix is also symmetric.

Similarly, let U be the vector consisting of the uδ(ξ
(x)
ki , ξ

(y)
kj ) at all Gauss-Lobatto nodes. Here also, U consists

of three blocks of sizes 2(M1 + 1)(N1 + 1) and 2(Nk + 1)2, k = 2, 3, respectively. For the same vectors P and Λ
as previously, problem (5.4) is equivalent to the linear system⎛

⎝ AD BT
D 0

BD 0 ET

0 E 0

⎞
⎠

⎛
⎝ U

P
Λ

⎞
⎠ =

⎛
⎝ G

F
0

⎞
⎠ , (5.6)

where the vectors F and G now depend on the values of f and g, respectively, at the Gauss-Lobatto nodes and
are easier to compute than the vector H of system (5.5). The size of system (5.6) is much larger than the size of
system (5.5). However the matrix AD is now fully diagonal, with diagonal coefficients equal to the α−1

k ρ
(x)
ki ρ

(y)
kj ,

so that solving it is not necessarily more expensive. Here also, the global matrix is symmetric.
Applying an Uzawa type algorithm to eliminate the vector U in (5.6) leads exactly to the same system

as (5.5), so we did not use it in order to compare the numerical properties of the two systems. In all cases
systems (5.5) and (5.6) are solved using the NAG routine F04JAF [17]. This routine calculates the minimal
least-squares solution of Mx = b where M is m× n matrix with rank ≤ n and m ≥ n. The minimal least-
squares solution is the vector x which minimizes the norm of the residual vector x = b −Mx. The matrix M
is factorized by using singular value decomposition.

The numerical experiments deal with the following examples where, in all cases, the unique datum is the
function f , g being taken equal to zero.

Example 1. The coefficients αk satisfy
α1 = α2 = α3 = 1, (5.7)

and the exact solution is given by
p(x, y) = cos(πx) cos(πy). (5.8)
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Figure 3. Error curves for the Laplace system in Example 1.

Example 2. The coefficients αk again satisfy (5.7) and the exact solution is given by

p(x, y) = (1 − x2)
5
2 (1 − y2)

5
2 . (5.9)

Example 3. We consider the inhomogeneous problem with

α1 = 1, α2 = 0.1, α3 = 0.01, (5.10)

and datum f given by
f(x, y) = cosπx cos πy. (5.11)

In all cases, the error is represented as a function of a unique parameter N , with N = N1 = N2 = N3, and
the parameter M = M1 is defined as a function of N . The error is computed in the norm defined in (2.7), it is
equal to ‖p− pδ‖1,α. In view of (4.24), we have chosen the mortars defined by

γ−1 = {0}×]− 1, 1 − ε[, γ−2 =] − 1, 1[×{1− ε}, (5.12)

and the corresponding domains Ω−
m and Ω+

m represented in the top left part of Figure 2. However experimentation
reveals that the results are independent of this choice. For simplicity, system (5.5) is called the Laplace system
from now on and system (5.6) is called the Darcy system.

In Figure 3, we present the curves of the error as a function of N in bilogarithmic scales for Example 1, for
ε taking the following values

ε = 0.5, ε = 0.1, ε = 0.01, ε = 0.001, (5.13)
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Figure 4. Error curves for the Darcy system in Example 1.

Table 1. CPU times (in seconds) for Example 1.

N = M 4 6 8 10 12
Laplace 0.09 0.45 2.03 7.20 20.27
Darcy 1.49 12.92 62.40 215.96 608.32

and in the three cases (i) N = M , (ii) N = M + 2, and (iii) N = M + 4. These results are obtained using the
Laplace system. As expected, we observe exponential convergence. It can also be noted that the accuracy of
the method is not significantly affected by taking fewer degrees of freedom in Ω1 and that it is not affected by
the size of Ω1 which is determined by ε.

In Figure 4, we present the results obtained by using the Darcy system for the same Example 1. The results
are identical to those obtained using the Laplace model. In order to give an indication of the computing time
required, in Table 1, we present the CPU times for the solution of Example 1. These times were recorded on
an IBM RS6000/43P (375 MHz). From these results it is obvious that the Laplace system is computationally
cheaper than the Darcy system, at least in this simple case where all the αk are equal. Therefore the next
experiment only deals with the Laplace system.

In Figure 5, we present the curves of the error as a function of N in bilogarithmic scales for Example 2, for
the values of ε given in (5.13) and in the three cases (i) N = M , (ii) N = 2M , and (iii) N = 3M and for the
Laplace system. Here, the solution is less regular than in Example 1 and, as a result, the convergence is no
longer exponential. In the case ε = 0.5, as the ratio N/M increases the rate of convergence decreases. The rate
of convergence does not appear to be affected as the ratio N/M increases for the other values of ε, which seems
in perfect coherence with the optimal choice of the ratio N/M proposed in (4.23).
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Figure 5. Error curves for the Laplace system in Example 2.

Table 2. CPU times (in seconds) for Example 3.

M 4 5 6 8
N 8 10 12 16

Laplace 1.23 4.09 11.15 59.73
Darcy 35.24 122.17 342.76 1995.20

Finally, in Figure 6, we present the curves of the error as a function of N in bilogarithmic scales for Example 3,
for ε now taking the following values

ε = 0.1, ε = 0.01, ε = 0.001, (5.14)

in the three cases (i) N = M , (ii) N = 2M , and (iii) N = 3M and for the Laplace system. The norm of the
error is now ‖pr − pδ‖1,α, where the reference solution pr is computed with N = 26. Here, since the problem
is nonhomogeneous, the convergence is no longer exponential. As ε decreases so does the rate of convergence.
Further, the rate of convergence for each ε does not appear to be affected by the ratio N/M .

We do not give the results obtained for this same Example 3 and the Darcy system since they are fully
similar. However, in Table 2, we present the CPU times for the solution of Example 3, there also recorded on
an IBM RS6000/43P (375 MHz). The Laplace system is again cheaper than the Darcy system. So, the interest
of using the Darcy system seems rather limited.
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Figure 6. Error curves for the Laplace system in Example 3.

6. Some conclusions and possible extensions

The results of Section 5 prove the efficiency of our approach: The accuracy of spectral methods is preserved in
all computations despite the singular behaviour of the solution (see Examples 2 and 3) and the mortar method
seems ideally suited for handling discontinuous coefficients even for anisotropic subdomains (for instance, when
ε = 10−3). In this case, diminishing the value of M1 for a fixed N1 does not destroy the behaviour of the error
and reduces the cost of the discretization. Note also that, in all experiments, solving the problem for the Darcy
system is more expensive than solving the corresponding problem for the Laplace equation.

Several extensions of this work are possible.

(i) Extending the method to the case of dimension d = 3 relies on the standard arguments for the three-
dimensional mortar method. However, it is well-known [9], Section 3, that the mortar approximation
error is not fully optimal in the case of non-conforming decompositions.

(ii) The previous study can be easily applied to the case where the coefficient α is replaced by a tensor
A = (ars)1≤r,s≤2 which is positive definite, in the sense that

∀ξ = (ξ1, ξ2) ∈ R2,

2∑
r=1

2∑
s=1

αrsξrξs ≥ c

2∑
r=1

ξ2r .

Moreover, when this tensor is diagonal and the ratio α11/α22 is large, a much lower value of M can be
used without modifying the order of convergence.
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(iii) Handling complex geometries by means of curved subdomains is a little more difficult in the spectral
context and requires the use of over-integration, i.e. using quadrature formulæ exact on P2L−1(−1, 1),
with L larger than N or M . We refer to [15] which includes pioneering work on this extension. The
implementation of the mortar method is then more expensive (in particular, for the Darcy system, the
mass matrix AD is no longer diagonal) but this does not increase the discretization error.
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