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MATHEMATICAL MODELLING AND NUMERICAL SOLUTION OF SWELLING
OF CARTILAGINOUS TISSUES.

PART I: MODELLING OF INCOMPRESSIBLE CHARGED POROUS MEDIA ∗
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Abstract. The swelling and shrinkage of biological tissues are modelled by a four-component mixture
theory in which a deformable and charged porous medium is saturated with a fluid with dissolved
ions. Four components are defined: solid, liquid, cations and anions. The aim of this paper is the
construction of the Lagrangian model of the four-component system. It is shown that, with the choice
of Lagrangian description of the solid skeleton, the motion of the other components can be described
in terms of Lagrangian initial system of the solid skeleton as well. Such an approach has a particularly
important bearing on computer-aided calculations. Balance laws are derived for each component and
for the whole mixture. In cooperation of the second law of thermodynamics, the constitutive equations
are given. This theory results in a coupled system of nonlinear parabolic differential equations together
with an algebraic constraint for electroneutrality. In this model, it is desirable to obtain an accurate
approximation of the fluid flow and ions flow. Such an accurate approximation can be determined by
the mixed finite element method. Part II is devoted to this task.

Mathematics Subject Classification. 76S05, 74B05, 74F10.

Received July 12, 2006. Revised March 12, 2007.

Notation

a scalar
a, a vector
A scalar
A matrix
A tensor
∇ gradient operator in current configuration
∇0 gradient operator in initial configuration
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Nomenclature

C right Cauchy-Green strain tensor [-]
c molar concentration of the fluid phase [mol·m−3]
cβ molar concentration of ion β per unit fluid volume [mol·m−3]
cfc molar concentration of fixed charges attached to the

solid skeleton per unit fluid volume [mol·m−3]
Dβ diffusivity of ion β [m2·s−1]
E Green strain tensor [-]
fβ activity coefficient of ion β [-]
F Faraday’s constant [C·mol−1]
K hydraulic permeability [m4·N−1·s−1]
p pressure of the fluid phase [N·m−2]
ql specific discharge relative to the solid [m·s−1]
qβ flux of ion β relative to the fluid [mol·m−2·s−1]
R universal gas constant [J·mol−1·K−1]
S second Piola-Kirchhoff stress [N·m−2]
t time [s]
T absolute temperature [K]
u displacement [m]
V

β
partial molar volume of ion β [m3·mol−1]

vα velocity of the α-phase [m·s−1]
vβ velocity of ion β [m·s−1]
zβ valance of ion β [-]
zfc valance of fixed charge [-]
σ Cauchy stress tensor [N·m−2]
λs Lamé stress constant [N·m−2]
µl electro-chemical potential of the fluid phase [N·m−2]
µβ electro-chemical potential of ion β [J·mol−1]
µs Lamé stress constant [N·m−2]
Π first Piola-Kirchhoff stress [N·m−2]
ξ voltage [V]
ρα bulk density of the α-phase [kg·m−3]
ρα

T true density of the α-phase [kg·m−3]
ϕ volume fraction of the liquid phase [-]
ϕα volume fraction of the α-phase [-]
ϕβ volume fraction of the component β [-]
Γβ osmotic coefficient of ion β [-]

1. Introduction

Many biological porous media exhibit swelling and shrinking behaviour when in contact with salt concen-
trations. This phenomenon, observed in cartilage and gels, is caused by electric charges fixed to the solid,
counteracted by corresponding charges in fluid. These charges result in variety of features, including swelling,
electro-osmosis, steaming potentials and streaming currents. We distinguish between the components and the
phases in this way that the components are considered to be continua related to the same macroscopic volume
measure for all components (in our case a solid, a liquid, anions, and cations ) and phases are continua related
to their own real volume measure (in our case solid and fluid). Mixture theory [2,3,6] is a framework, in which
the model integrates mechanical deformations, loads, diffusion, convection and chemical reactions of different
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Figure 1. Micro-structure and macroscopic model.

solutes. An earlier study from geomechanics presents a biphasic models, which describes the solid-fluid interac-
tions. These models can not describe osmotic effects, which have a major influence on the behaviour of tissues.
Therefore to account for osmotic effects this is modelled by a triphasic model [8,14] and four-component mixture
theory [4, 7, 12]. In the four-component mixture theory deformable and charged porous medium is saturated
with a fluid with dissolved cations and anions. In this article we follow the outlines of the four-component
model in more detail with an extension to Lagrangian formulation.

The solid skeleton and fluid are assumed to be intrinsically incompressible and therefore a non-zero fluid flux
divergence gives rise to swelling or shrinkage of the porous medium. Alternatively, a gradient in fluid pressure,
ion concentrations or voltage results in flow of the fluid and ions [7].

In this paper, we construct the model of four-component porous material in Lagrangian coordinates of the
skeleton. Such a description, particularly useful in computer-aided solutions, has not been used yet for multi-
phase systems where the skeleton is usually described in Lagrangian coordinates and the other components in
Eulerian coordinates.

This paper is outlined as follows: In the next section, we present the kinematic consideration and the balance
laws. Section 3 is devoted to constitutive equations. In Section 4 we present the set of field equations for the
Lagrangian description for the four-component system. In some detail, the transformation of the equations to
the initial configuration of the skeleton is discussed. The fifth section is devoted to the Donnan equilibrium and
boundary conditions.

2. Balance equations

The swelling and shrinking behaviour of cartilaginous tissues (like intervertebral disc) can be modelled by
a four-component mixture theory in which a deformable and charged porous medium is saturated with a fluid
with dissolved ions. Within the concept of mixture theory, we consider a porous solid skeleton and an immiscible
pore-fluid. The idea is to present the saturated porous medium as a superposition of deformable phases that
occupy the same domain in the three-dimensional space at time t. In other words, we assume that different
phases exist simultaneously at each point in space. Cartilaginous tissues are assumed to consist of two phases,
a solid phase and a fluid phase. In cartilaginous tissues, the fluid phase consists of three components: liquid,
cation and anion. We use the abbreviation s and f respectively for the solid phase and the fluid phase. The
symbols l, + and − stand for liquid, cation and anion, respectively (cf. Fig. 1).

Definition 2.1. Consider a porous media with the components α = s, l,+ and −. The kinematics in the
mixture theory are based on two fundamental assumptions [2]:

• Each spatial point x of the actual placement is simultaneously occupied by material points Xα of all
constituents α = s, f,+,− at the time t. The material points proceed from different initial positions
Xα at time t = t0.



664 K. MALAKPOOR ET AL.

P α, P β

P α

P α
P β

P β

Xα

Xβ
x

(t0)

(t)

(τ > t)
χα(t)

χβ(t)

O

Figure 2. Motion of a multi-component mixture.

• Each constituent is assigned an independent state of motion.
Define the motion

x = χα(Xα, t) : Ωα × [0, T ] → Ω, α = s, l,+,−, (2.1)
where Ω is the domain occupied by the mixture and Ωα represents the initial configuration of the α-component,
Xα is the position of the particle of the α-component in its initial configuration, t is the time and x is the
position occupied at time t by the particle labeled Xα. At each time t ∈ [0, T ], the mappings are assumed to be
one-to-one and sufficiently smooth to render the various mathematical operations meaningful. A geometrical
interpretation of the motion function (2.1), concerning the motion of a solid and a fluid particle, is shown in
Figure 2. Define the deformation gradient of the phase α by

Fα = ∇Xαχα =
∂χα

∂Xα
· (2.2)

The determinant of the deformation gradient is defined as follow

Jα = detFα. (2.3)

Definition 2.2. The true density for the α-component is defined as the mass of the α-component per unit
volume of the α-component and is denoted by ρα

T . The bulk density ρα to be the mass of the α-component per
unit volume of the mixture. The quantity

ϕα(x, t) =
ρα(x, t)
ρα

T (x, t)
(2.4)

is called the volume fraction of the α-component. Physically ϕα represents the volume of the α component per
unit volume of the mixture.

The velocity of Xα is defined by

vα =
∂χα

∂t
(Xα, t). (2.5)

The density of the mixture is defined by
ρ =

∑
α=s,l,+,−

ρα. (2.6)

The velocity of the mixture v is defined by

v =
1
ρ

∑
α=s,l,+,−

ραvα. (2.7)
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If Ψ is any function of x and t, the derivatives of Ψ following the motion generated by v and vα are, respectively

DΨ
Dt

=
∂Ψ
∂t

+ ∇Ψ · v, (2.8)

DαΨ
Dt

=
∂Ψ
∂t

+ ∇Ψ · vα. (2.9)

Definition 2.3. Define right Cauchy-Green strain tensor C and Green strain tensor E by

C = (F s)T Fs, (2.10)

E =
1
2
(C − I). (2.11)

Before stating the balance and constitutive equations, we consider the following assumptions:
(1) The mixture is incompressible, which means that both fluid and solid are incompressible. Hence ρα

T is
uniform in position and constant in time. In other words, volumetric changes of the porous medium are
taken into account.

(2) We assume that no chemical reactions exist between phases and no sources or sinks exit.
(3) We neglect the inertia effects and body forces.
(4) The materials are assumed to be isothermal.
(5) The mixture is assumed to be saturated, i.e,

ϕs + ϕf = 1. (2.12)

The volume fraction of the ions is neglected compared to those of the solid and the fluid (dilute solution),

ϕ+ + ϕ− ≈ 0 =⇒ ϕf =
∑

β=l,+,−
ϕβ ≈ ϕl. (2.13)

(6) It is assumed that the solid matrix is entirely elastic and initially isotropic. The shear stress associated
with mixture deformation is assumed to be negligible in the fluid phase. We assume that the porous
medium is initially homogenous and therefore ϕs is initially uniform. For our binary porous medium
ϕ = ϕf ≈ ϕl indicates porosity and note that ϕs = 1 − ϕ.

Conservation of mass for the phases s and f imply

∂ϕα

∂t
+ ∇ · (ϕαvα) = 0, α = s, f. (2.14)

Summing up these two equations for α = s, f and using the saturation assumption (2.12), the incompressible
constraint condition reads

∇ · (ql + vs) = 0, (2.15)
where the specific discharge relative to the solid phase is defined by

ql = ϕ(vf − vs). (2.16)

The fluid velocity is a weighed average of the velocity of the liquid and the velocities of the ions. Since we are
interested on the situation in which there are far more water molecules than ions, we approximate the velocity
of the fluid by the velocity of the liquid, vf ≈ vl.

The conservation of mass for the dissolved ions implies

∂ϕcβ

∂t
+ ∇ · (ϕcβvβ) = 0, β = +,−, (2.17)
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where cβ is the molar concentration of ion β per unit fluid volume and vβ is the average velocity of ion β.
Define the molar flux qβ relative to the fluid as

qβ = ϕcβ(vβ − vl). (2.18)

After neglecting body forces and inertia effects, the momentum balance takes the form

∇ · σα + πα = 0, α = s, l,+,−, (2.19)

where σα is the partial stress tensor of component α, πα is the momentum interaction with component other
than α. The momentum balance for the mixture reads

πs + πl + π+ + π− = 0. (2.20)

Hence
∇ · σ = ∇ · σs + ∇ · σl + ∇ · σ+ + ∇ · σ− = 0, (2.21)

where σ represents the Cauchy stress tensor of the mixture.
The balance of moment of momentum requires that the stress tensor σ be symmetric. The partial stresses σα

are symmetric if no moment of momentum interaction between components occurs (a proof can be found in [1]).
In this work we shall assume all partial stresses to be symmetric.

Electroneutrality requires
z+c+ + z−c− + zfccfc = 0, (2.22)

where zβ , β = +,−, is the valence of the dissolved ion β. For a mono-valent salt, z+ = 1 and z− = −1. The
superscript fc stands for fixed charge, i.e. the attached ionic group, thus cfc denotes the molar concentration
of the ions attached to he solid skeleton per unit fluid volume.

The conservation of fixed charge reads

∂ϕcfc

∂t
+ ∇ · (ϕcfcvs) = 0. (2.23)

Following the isothermal and incompressible conditions, the entropy inequality for a unit volume of mixture
reads [1]: ∑

α=s,l,+,−

(
−ϕαD

αΨα

Dt
+ σα : ∇vα − πα · vα

)
≥ 0, (2.24)

where Ψα is the free energy density for the α-component per unit volume component and is defined by
ϕαΨα = ψα with ψα to be the Helmholtz free energy of component α per unit mixture volume, and Dα is
the symmetric part of the velocity gradient of the α-component.

Define W to be the Helmholtz free energy of the mixture by

W = Js
∑

α=s,l,+,−
ϕαΨα = Js

∑
α=s,l,+,−

ψα. (2.25)

We try to rewrite the entropy inequality (2.24) per initial mixture volume. Note that

DsJs

Dt
= Js∇ · vs. (2.26)

Material time differentiation of W with respect to the solid motion gives

DsW

Dt
= W∇ · vs + Js

∑
α=s,l,+,−

Dsϕα

Dt
Ψα + Js

∑
α=s,l,+,−

ϕαD
sΨα

Dt
· (2.27)
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Evidently,
DsΨα

Dt
=
DαΨα

Dt
+ ∇Ψα · (vs − vα), (2.28)

so,

−Js
∑

α=s,l,+,−
ϕαD

αΨα

Dt
= −D

sW

Dt
+W∇ · vs + Js

∑
α=s,l,+,−

Dsϕα

Dt
Ψα

− Js
∑

β=l,+,−
ϕβ∇Ψβ · (vβ − vs).

The definition of the material time derivative in (2.9) and the incompressibility assumption imply that

+ Js
∑

α=s,l,+,−

Dsϕα

Dt
Ψα

= Js
∑

α=s,f,+,−

(
Ψα ∂ϕ

α

∂t
+ Ψα∇ϕα · vs

)

= Js
∑

α=s,f,+,−

(
Ψα ∂ϕ

α

∂t
+ Ψα (∇ · (ϕαvs) − ϕα∇ · vs)

)
= − Js∇ · vs

∑
α=s,f,+,−

Ψαϕα − Js
∑

β=l,+,−
Ψβ∇ · (ϕβ(vβ − vs)

)
+ Js

∑
α=s,l,+,−

Ψα

(
∂ϕα

∂t
+ ∇ · (ϕαvα)

)
︸ ︷︷ ︸

=0

= − W∇ · vs − Js
∑

β=l,+,−
Ψβ∇ · (ϕβ(vβ − vs)

)
.

Thus

− Js
∑

α=s,l,+,−
ϕαD

αΨα

Dt
=
DsW

Dt
− Js

∑
β=s,l,+,−

∇ · (Ψβϕβ(vβ − vs)
)
. (2.29)

By using equations (2.19) and (2.21) we have∑
α=s,l,+,−

σα : ∇vα =
∑

α=s,l,+,−
σα∇vs +

∑
β=l,+,−

σβ : ∇(vβ − vs)

= σ∇vs +
∑

β=l,+,−
∇ · (σβ(vβ − vs)

) − ∑
α=s,l,+,−

∇ · σα · vα + vs
∑

α=s,l,+,−
∇ · σα

︸ ︷︷ ︸
0

= σ∇vs +
∑

β=l,+,−
∇ · (σβ(vβ − vs)

)
+

∑
α=s,l,+,−

πα · vα (2.30)

therefore by using the above results and equations (2.19) and (2.21) the entropy inequality (2.24) in the initial
state of porous solid takes the following form

−D
sW

Dt
+ Jsσ : ∇vs − Js

∑
β=l,+,−

∇ ·
(
Kβ · (vβ − vs)

)
≥ 0, (2.31)
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where Kβ is the chemical potential tensor per unit mixture volume for the β-component and is defined by

Kβ = ψβI − σβ , β = l,+,−, (2.32)

where I is the second order unit tensor.

3. Constitutive equations

In order to complete the system of equations, it is necessary to provide constitutive equations for the specific
discharge and the molar flux. Before we go through the details, we need to state some restrictions on the
equations from the general continuum theory.

• Principle of material frame-indifference or objectivity, or in some literature known as principle of change
of observer. This principle states that the response of any material must be independent of the observer.

• Principle of dissipation. This states that the constitutive relations must satisfy the reduced entropy
inequality (2.31) for all values of their arguments [5].

• Principle of equipresence [16]. This states that if a variable is used in one constitutive relations of
a problem, it should be used in all the constitutive relations for that problem (unless, its presence
contradicts some other law or axiom).

Note that the entropy inequality should hold for all mixtures satisfying the balance laws, incompressibility and
electroneutrality.

Due to the objectivity principle, we refer the current description of the mixture to the initial state of the
porous solid. Define volume fractions

Φα = Jsϕα, α = s, l,+,−, (3.1)

per unit initial volume, we can rewrite the balance equation (2.14) as follows:

DsΦα

Dt
+ Js∇ · (ϕα(vα − vs)) = 0, α = s, l,+,−. (3.2)

We shall denote Φf by Φ. By introducing a Lagrange multiplier p for the incompressible constraint (2.15), the
entropy inequality (2.31) takes the form

− DsW

Dt
+ Js(σ + pI) : ∇vs + Js(− Kl + pϕI) : ∇(vl − vs)

+ Js
∑

β=+,−
− Kβ : ∇(vβ − vs) + Js(−∇ · Kl + p∇ϕ) · (vl − vs)

+ Js
∑

β=+,−
− ∇ · Kβ · (vβ − vs) ≥ 0. (3.3)

The electroneutrality condition (2.22) in the initial state takes the following form

Φz+c+ + Φz−c− + zfcϕ0c
fc
0 = 0, (3.4)

where ϕ0 and cfc
0 are initial porosity and initial fixed charge density, respectively. It is easy to check that

DsΦcβ

Dt
+ Js∇ · (ϕcβ(vβ − vs)

)
= 0, ∀β = +,−. (3.5)
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After combining (3.4) and (3.5), we obtain another constraint for the entropy inequality as:

∑
β=+,−

1

V
β
∇ · (zβϕβ(vβ − vs)

)
= 0. (3.6)

Here we use the fact that

V
β
cβ =

ϕβ

ϕ
, β = l,+,−, (3.7)

where V
β

is the molar volume of the component β and is constant by incompressibility assumption, β = l,+,−
and cl = c− c+ − c−. Here c is the molar concentration of the fluid phase, which is assumed to be uniform and
constant.

The equation (3.6) can be written in another form as:

z+∇ · (q+ + c+ql) + z−∇ · (q− + c−ql) = 0. (3.8)

In (3.5), the presence of molar volume V
β

shows a link between ϕβ and ϕcβ . For the constitutive equations,
our attempt is to introduce them not dependent on ϕβ but on ϕcβ . As we will see later V

β
will help us to do it.

Introducing the restriction equation (3.6) into inequality (3.3) by means of a Lagrange multiplier λ, yields:

− DsW

Dt
+ Js(σ + pI) : ∇vs + Js(− Kl + pϕI) : ∇(vl − vs)

+ Js
∑

β=+,−

(
− Kβ +

zβλ

V
β
ϕβI

)
: ∇(vβ − vs)

+ Js(− ∇ · Kl + p∇ϕ) · (vl − vs)

+ Js
∑

β=+,−

(
− ∇ · Kβ +

zβλ

V
β
∇ϕβ

)
· (vβ − vs) ≥ 0. (3.9)

To close the system, we choose W , σ + pI, −Kl + ϕpI, −Kβ + ϕβλ zβ

V
β I (β = +,−), −∇ · Kl + p∇ϕ and

−∇·Kβ +λ zβϕβ

V
β ∇ϕβ (β = +,−) to be the constitutive variables, i.e,. they are functions of a set of independent

variables (the constitutive variables are thus the dependent variables). We choose as independent variables the
Green strain E (cf. (2.11)), the Lagrangian form of the volume fractions of the liquid and the ions Φβ, and of
the relative velocities vβs = (Fs)−1(vβ − vs), β = l,+,−. Thus

W = W (E ,Φβ,vβs), (3.10)

σ + pI =
1
Js

FsS̃(E,Φβ ,vβs)(Fs)T , (3.11)

− Kl + pϕI = FsK̃
l
(E ,Φβ ,vβs)(F s)T , (3.12)

− Kβ +
zβλ

V
β
ϕβI = FsK̃

β
(E,Φβ ,vβs)(Fs)T , β = +,−, (3.13)

− ∇ · Kl + p∇ϕ = Fs ˜̃Kl

(E ,Φβ ,vβs), (3.14)

− ∇ · Kβ +
zβλ

V
β
∇ϕβ = Fs ˜̃Kβ

(E,Φβ ,vβs), β = +,−. (3.15)
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We apply the chain rule for the time differentiation of W , hence we have

DsW

Dt
=

∂W

∂E :
DsE
Dt

+
∑

β=l,+,−

∂W

∂Φβ

DsΦβ

Dt
+

∑
β=l,+,−

∂W

∂vβs
· D

svβs

Dt

= Fs ∂W

∂E (Fs)T : Ds − Js
∑

β=l,+,−

∂W

∂Φβ
∇ · (ϕβ(vβ − vs)

)
+

∑
β=l,+,−

∂W

∂vβs
· D

svβs

Dt
· (3.16)

Here we use the fact that
DsE
Dt

= (F s)T DsFs.

We insert the equation (3.16) in (3.9). This results into

(
Js(σ + pI) − Fs ∂W

∂E (Fs)T

)
: ∇vs −

∑
β=l,+,−

∂W

∂vβs
· D

svβs

Dt
+ Js

(
− Kl +

(
p+

∂W

∂Φ

)
ϕI

)
: ∇(vl − vs)

+ Js
∑

β=+,−

(
− Kβ +

(
zβλ

V
β

+
∂W

∂Φβ

)
ϕβI

)
: ∇(vβ − vs) + Js

∑
β=l,+,−

fβ · (vβ − vs) ≥ 0,

(3.17)

where

f l = − ∇ · Kl +
(
p+

∂W

∂Φ

)
∇ϕ,

fβ = − ∇ · Kβ +
(
zβλ

V
β

+
∂W

∂Φβ

)
∇ϕβ , β = +,−.

It follows from (3.10), (3.14) and (3.15) that

fβ = Fs f̃β(E,Φβ ,vβs), β = l,+,−. (3.18)

By a standard argument [5], (3.17) is satisfied if and only if

σ + pI =
1
Js

Fs ∂W

∂E (Fs)T , (3.19)

∂W

∂vβs
= 0, β = l,+,−, (3.20)

Kl =
(
p+

∂W

∂Φ

)
ϕI , (3.21)

Kβ =
(
zβλ

V
β

+
∂W

∂Φβ

)
ϕβI, β = +,−, (3.22)

and ∑
β=l,+,−

fβ · (vβ − vs) ≥ 0. (3.23)

Equation (3.19) shows that the stress of the mixture can be derived from the strain energy functionW minus pI.
It can be seen that here p presents the hydrostatic pressure acting on the mixture [2]. Equation (3.20) shows
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that the strain energy does not depend on the relative velocities. Define the chemical potential µl per unit fluid
volume and the electro-chemical potential µβ, β = +,−, per mol of ion β, such that

Kl = ϕµlI, (3.24)

Kβ = ϕcβµβI, β = +,−. (3.25)

Therefore equation (3.21) and (3.22) imply that

µl = p+
∂W

∂Φl
,

µβ = λzβ +
∂W

∂Φβ
V

β
, β = +,−.

(3.26)

It has been shown in [12] that the multiplier λ can be interpreted as the electrical potential of the medium
multiplied by the constant of Faraday, i.e, λ = Fξ.

We use of the residual inequality (3.23) to establish that

f̃β(E,Φβ ,0) = 0, β = l,+,−. (3.27)

It is natural to refer to the state where vls = v+s = v−s = 0 as the state of thermodynamic equilibrium.
Equation (3.27) show that local interaction forces vanish in this state. In the approximation where the departures
from the state GRAD Φβ = 0 and vβs = 0, for β = l,+,−, are assumed to be small, (3.18) can be approximated
by

fβ =
∑

γ=l,+,−
Bβγ(vγ − vs), β = l,+,−, (3.28)

where

Bβγ = Fs ∂ f̃
β

∂vγs
(E,Φγ ,0)(Fs)T , β, γ = l,+,−. (3.29)

Given (3.23) and (3.29), we can conclude that Bβγ is a positive symmetric semi-definite matrix.
Substituting (3.26) into equation (3.28) yields the classical equations of irreversible thermodynamics:⎧⎨⎩

− ϕl∇µl =
∑

γ=l,+,−B
lγ(vγ − vs),

− ϕβ

V
β
∇µβ =

∑
γ=l,+,−B

βγ(vγ − vs), β = +,−. (3.30)

As it is assumed in the previous section, we restrict our considerations to isothermal, non-reacting mixtures
where the solid phase is homogeneous. For such a mixture that consists of four components, the Helmholtz
potential is expressed as a sum of an elastic energy W (E) and a mixing energy W (Φβ) for β = l,+,−. Also,
we choose W to comply donnan equilibrium and van’t Hoff equation. Therefore

W (E ,Φ,Φ+,Φ−) = (µl
0 +RTc)Φ + µ+

0

Φ+

V
+ + µ−

0

Φ−

V
−

+ RT (Φc− Φ+

V
+ − Φ−

V
− )

⎛⎜⎜⎝ln
Φc− Φ+

V
+ − Φ−

V
−

Φc
− 1

⎞⎟⎟⎠
+ RT Γ+ Φ+

V
+

(
ln

Φ+

ΦcV
+ − 1

)
+RT Γ− Φ−

V
−

(
ln

Φ−

ΦcV
− − 1

)
+W (E). (3.31)

In this relation:
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– µl
0 is the initial electro-chemical potential of the fluid phase;

– µβ
0 is the initial electro-chemical potential of ion β;

– Γβ ∈ (0, 1] is the osmotic coefficient of ion β, which is uniform and constant;
– c is the molar concentration of the fluid phase, which is assumed to be uniform and constant;
– R is the universal gas constant;
– T is the absolute temperature, which is uniform and constant since the materials are assumed to be

isothermal.
The constitutive equations (3.19) and (3.30) that fulfill the second law of thermodynamics are

σ + pI =
1
Js

Fs ∂W

∂E (Fs)T , (3.32)

− ϕβ∇µ̃β =
∑

γ=l,+,−
Bβγ(vγ − vs), β = l,+,−, (3.33)

with µ̃l = µl, µ̃β = µβ/V
β
, (β = +,−).

By using equations (3.26) and (3.31) we simplify the equations for the electro-chemical potentials as

µl = p+
∂W

∂Φ
= p+ µl

0 +RTc ln

⎛⎜⎜⎝Φc− Φ+

V
+ − Φ−

V
−

Φc

⎞⎟⎟⎠ +
RT

Φ

(
Φ+

V
+ +

Φ−

V
−

)

− RT Γ+Φ+

V
+
Φ

− RT Γ−Φ−

V
−

Φ
, (3.34)

and

µβ = zβFξ +
∂W

∂Φβ
V

β
= zβFξ + µβ

0 −RT ln

⎛⎜⎜⎝Φc− Φ+

V
+ − Φ−

V
−

Φc

⎞⎟⎟⎠ +RT Γβ ln
(

Φβ

ΦcV
β

)
, β = +,−. (3.35)

After linearizing the logarithm terms and using (3.7) we have

µl ≈ p+ µl
0 −RT (Γ+c+ + Γ−c−)

µβ ≈ µβ
0 + zβFξ +RT Γβ ln

cβ

c
, β = +,−. (3.36)

In [13], the components of the friction matrix are related to diffusion coefficients of fluid and ions and it can be
shown as the followings:

Bll := ϕ2K−1 − (Bl+ +Bl−), (3.37)

Bii := − Bil, i = +,−, (3.38)

Bil := − ϕiRT (V
i
Di)−1, i = +,−, (3.39)

B+− := 0, (3.40)

where K is the permeability and Di is the ion diffusion tensor in free water. Manipulation of the second equation
in (3.33) yields

ϕβ(vβ − vs) = −
∑

γ=l,+,−
P βγ∇µ̃γ , β = l,+,−, (3.41)
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with
P βγ = ϕβϕγ(B−1)βγ , β, γ = l,+,−.

P =
(
P βγ

)
β,γ=l,+,− can be derived as:

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
K K

ϕ+

ϕ
K
ϕ−

ϕ

K
ϕ+

ϕ

V
+
D+ϕ+

RT
+K

(
ϕ+

ϕ

)2

K
ϕ+ϕ−

ϕ2

K
ϕ−

ϕ
K
ϕ+ϕ−

ϕ2

V
−
D−ϕ−

RT
+K

(
ϕ−

ϕ

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.42)

Now by using (3.41) we can derive the specific discharge ql and the ion fluxes qi in terms of the electro-chemical
potential µβ

ql = ϕ(vl − vs) = −
∑

γ=l,+,−
P lγ∇µ̃γ = − K

ϕ
(∇µ̃l + ϕ+∇µ̃+ + ϕ−∇µ̃−)

= − K(∇µl + c+∇µ+ + c−∇µ−), (3.43)

and

qβ =
ϕβ

V
β
(vβ − vl) =

ϕβ

V
β
(vβ − vs) − ϕβ

V
β
(vl − vs) = − 1

V
β

∑
γ=l,+,−

P βγ∇µ̃γ − cβql

= − Dβcβϕ

RT
∇µβ , β = +,−. (3.44)

The above relations are called the extended Darcy’s law and Fick’s law.
Assuming the electroneutrality (2.22), if we put (3.36) into (3.43) and (3.44), then the extended Darcy’s law

and the Fick’s law can be stated in terms of the variables p, cβ and ξ as follow:

ql = − K
(∇p− zfccfcF∇ξ),

qβ = − Dβϕ

(
F

RT
zβcβ∇ξ + Γβ∇cβ

)
, β = +,−. (3.45)

From physical considerations [12], µl and µβ are continuous even if cfc is not. Therefore we choose the electro-
chemical potentials to be the primal variables.

Remark 3.1. Define the activity fβ by

fβ =
(
cβ

c

)Γβ−1

, β = +,−. (3.46)

Then based on the definition of the electro-chemical potentials and on the electroneutrality assumption, the
secondary variables cβ , p and ξ are expressed as

cβ = − 1
2zβ

zfccfc +
1
2

√
(zfccfc)2 +

4c2

f+f− exp
µ+ − µ+

0 + µ− − µ−
0

RT
, (3.47)

p = µl − µl
0 +RT

(
Γ+c+ + Γ−c−

)
, (3.48)

ξ =
1

zβF

(
µβ − µβ

0 −RT ln
fβcβ

c

)
, β = +,− . (3.49)
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The ion concentrations cβ are clearly positive. For numerical stability, it is preferable to use the expression for
voltage with β = − if zfc is positive and vice versa.

4. Reformulation in Lagrangian coordinate

From now, we omit the superscript s from Fs and Js and Ds

Dt . Recall the Nanson’s formula [11], page 75,
then obviously the following relations hold for the gradient and the divergence operators in the initial and the
current configurations:

For a scalar a, a vector a and a tensor T :

∇0a = FT∇a,
1
J
∇0 · (JF−1a) = ∇ · a,

1
J
∇0 · (JF−1T ) = ∇ · T .

Define ϕ0 and ϕs
0 = 1−ϕ0 as the initial porosity and the initial volume fraction of the solid phase, respectively.

Recall the Lagrangian form of the balance equation (2.14) as it stated in (3.2)

DJϕα

Dt
+ J∇ · (ϕα(vα − vs)) = 0, α = s, l,+,−.

Easily it can be seen that the above equation is equivalent to

DJϕα

Dt
+ ∇0 ·

(
JF−1ϕα(vα − vs)

)
= 0, α = s, l,+,−.

For α = s we have
DJϕs

Dt
= 0, or ϕsJ = ϕs

0,

where ϕs
0 is the solid volume fraction in the initial configuration. This gives

ϕ = 1 − ϕs = 1 − 1 − ϕ0

J
· (4.1)

For α = l we have
DJϕ

Dt
+ ∇0 ·Ql = 0, (4.2)

where
Ql = JF−1ql. (4.3)

By using definitions (2.16), (2.18) and equation (3.2), we have

DJϕcβ

Dt
+ J∇ · (qβ + cβql) = 0, β = +,−.

Finally the ions balance in Lagrangian form takes the following form

DJϕcβ

Dt
+ ∇0 · (Qβ + cβQl) = 0, β = +,−, (4.4)

where
Qβ = JF−1qβ , β = +,−. (4.5)



MODELLING OF INCOMPRESSIBLE CHARGED POROUS MEDIA 675

In the Lagrangian form, (2.23) is expressed as

DJϕcfc

Dt
= 0, or ϕcfc = ϕ0c

fc
0 J

−1, (4.6)

where cfc
0 is the fixed charge concentration in the initial configuration. From (4.1)

(ϕJ)−1 = (J − ϕs
0)

−1

and therefore

cfc = cfc
0 ϕ0(J − ϕs

0)
−1. (4.7)

Equation (2.21) in Lagrangian form takes the following form

∇0 · Π = 0 or ∇0 ·
(
SFT

)
= 0, (4.8)

where Π and S are the first and second Piola-Kirchhoff stress tensors. The constitutive relation (3.32) is

σ + pI =
1
J

F ∂W

∂E FT .

Considering this relation, the second Piola-Kirchhoff stress is expressed by

S = ΠF−T =
∂W

∂E − pJC−1, (4.9)

where the right Cauchy-Green tensor C is defined in (2.10).
It is easy to check that the Lagrangian forms of equations (3.43) and (3.44) are

Ql = − K̃(∇0µ
l + c+∇0µ

+ + c−∇0µ
−),

Qβ = − D̃
β
cβϕ

RT
∇0µ

β , β = +,−,
(4.10)

where

K̃ = JF−1KF−T , (4.11)

D̃β
= JF−1DβF−T , β = +,−. (4.12)

5. Total set of equations

The combination of the deformation of the porous media and the flow of the fluid and ions in the Lagrangian
description result into the following set of equations:
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Balance equations

∇0 · (SFT ) = 0,
DJϕ

Dt
+ ∇0 ·Ql = 0,

DJϕcβ

Dt
+ ∇0 · (Qβ + cβQl) = 0, β = +,−.

Constitutive equations

∂W

∂E − pJC−1 = S,
−K̃(∇0µ

l + c+∇0µ
+ + c−∇0µ

−) = Ql,

−D̃β
cβϕ

RT
∇0µ

β = Qβ , β = +,−.

(5.1)

6. Donnan equilibrium and boundary conditions

In order to solve the above system of equations, we need to pose the boundary conditions. This can be
achieved by suitably combining the essential conditions for µl, µβ and u and the natural conditions for the
normal components of Qβ , β = l,+,− and S.

Consider the case that the porous medium is in contact with an electroneutral bathing solution, given that
the pressure pout, the voltage ξout and the ion concentrations cout are known. The bathing solution contains no
fixed charges, thus c+out = c−out = cout. Since the electro-chemical potentials are continuous at the boundary,

µl
in = µl

out, (6.1)
µ+

in = µ+
out, (6.2)

µ−
in = µ−

out, (6.3)

where µl
out and µβ

out are the electro-chemical potentials in the outer solution. Assume Γ+
in = Γ−

in = Γ and
Γ+

out = Γ−
out = 1, then the combination of the above relations and the relations expressed in (3.36) provides

µl
in = µl

0 + pout − 2RTcout, (6.4)

µβ
in = µβ

0 + Fzβξout +RT Γ ln
cout

c
, β = +,−, (6.5)

where cout, pout and ξout are the ions concentration, fluid pressure and the electrical potential of the outer
solution, respectively. Equation (6.5) for β = +,− in combination with (6.2) and (6.3) imply

µ+
0 + µ−

0 +RT ln
c2out

c2
= µ+

out + µ−
out = µ+

in + µ−
in = µ+

0 + µ−
0 +RT Γ ln

c+inc
−
in

c2
·

Therefore, we have

c2out

c2
=

(
c+inc

−
in

c2

)Γ

. (6.6)
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Easily we can see that

π = pin − pout = RT
(
Γ(c+in + c−in) − 2cout

)
, (6.7)

ξin − ξout =
RT

Fzβ
ln
coutc

Γ−1

(cβin)Γ
, β = +,− . (6.8)

In (6.7), π is the osmotic pressure [15] and ξin−ξout is the Donnan voltage between the inner and outer solution.
It is called Nernst potential [9, 10].

Let Ω be an open domain in R
n, n = 1, 2, 3, then define ΩT = Ω× (0, T ] for T > 0 and consider the sets ΓD

u

and ΓN
u (and similarly ΓD

p and ΓN
p ) to be two disjoint open subsets of the total boundary Γ = ∂Ω, such that

ΓD
α ∩ ΓN

α = Ø and Γ̄D
α ∪ Γ̄N

α = Γ for α = u and p. We assume

meas ΓD
α > 0 for α = u, p. (6.9)

From the above statements we can get the following boundary conditions:

Boundary conditions

u = 0 on ΓD
u × (0, T ],

µl = µl
in on ΓD

p × (0, T ],
µ+ = µ+

in on ΓD
p × (0, T ],

µ− = µ−
in on ΓD

p × (0, T ],
n · (SFT ) = gN

u on ΓN
u × (0, T ],

n ·Ql = 0 on ΓN
p × (0, T ],

n ·Q+ = 0 on ΓN
p × (0, T ],

n ·Q− = 0 on ΓN
p × (0, T ].

(6.10)

7. Conclusion

In this article the swelling of charged porous media, like hydrated tissues is modelled by means of mixture
theory. Considering four component for the mixture, solid, fluid, cation and anion we derived a set of balance
equations for each component and for the mixture. The Lagrangian form of second law of thermodynamics
complete the set of equations by means of constitutive equations. The equations are rewritten in Lagrangian
description. Such a description is useful in computer-aided solutions. Finally the boundary conditions are given
for this model.
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