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Abstract. This paper is concerned with the unilateral contact problem in linear elasticity. We define
two a posteriori error estimators of residual type to evaluate the accuracy of the mixed finite element
approximation of the contact problem. Upper and lower bounds of the discretization error are proved
for both estimators and several computations are performed to illustrate the theoretical results.
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1. Introduction

The finite element method is currently used in the numerical realization of contact problems occurring in
several engineering applications (see [18, 19, 24, 25, 30]). An important task consists of evaluating numerically
the quality of the finite element computations by using a posteriori error estimators. There are two important
difficulties in developing such tools for contact problems in elasticity: the first one comes from the inequality
(unilateral) conditions in the model and the second one is due to the location of these inequality conditions which
hold on (a part of) the boundary. For the linear elasticity system with standard boundary conditions (leading to
a variational identity), many different approaches leading to various error estimators have been developed and
a review of the different a posteriori error estimators can be found in [29]. Some of these approaches have been
chosen and studied for frictionless or frictional unilateral contact problems, in particular in [7, 26, 31] (residual
approach using a penalization of the contact condition or the normal compliance law), in [10, 11] (equilibrated
residual method) and finally in [14] (residual approach for BEM-discretizations).

Besides, let us mention that many studies dealing with residual estimators for scalar variational inequality
problems of the first kind have been achieved in other contexts than elasticity. In particular a great effort was
devoted to the obstacle problem (see e.g., [6,8,27] and the references therein). Moreover a residual type estimator
for the Signorini problem in its standard formulation can be found in [21] (note that the Signorini problem could
be seen as a simplification in the scalar case of the unilateral contact model). For residual estimators dealing
with variational inequalities of the second kind we refer the reader to [5] and the references therein. We recall
that a variational inequality of the first (resp. second) kind is of the form: u ∈ C, a(u, v−u) ≥ L(v−u), ∀v ∈ C
(resp. u ∈ X, a(u, v − u) + j(v) − j(u) ≥ L(v − u), ∀v ∈ X) where X is an Hilbert space, C ⊂ X is a nonempty
closed convex set, a(., .) is bilinear, X-elliptic and continuous on X × X , L(.) is linear and continuous on X ,
j(.) is proper convex and lower semi continuous on X (with values in R ∪ {+∞}). More details concerning
variational inequalities of the first or second kind can be found in e.g., [2, 17].
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In the present work we are interested in developing residual estimators for the two-dimensional unilateral
contact model in linear elasticity. This problem can be written as a variational inequality of the first kind but
also (among others) as a mixed formulation where the unknowns are the displacement field and the contact
pressure.

The paper is organized as follows. In Section 2 we introduce the equations modelling the frictionless unilateral
contact problem between an elastic body and a rigid foundation. We write the problem using a mixed formulation
where the unknowns are the displacement field in the body and the pressure on the contact area. In the third
section, we choose a classical discretization involving continuous finite elements of degree one and continuous
piecewise affine multipliers on the contact zone. Section 4 is concerned with the study of a first residual estimator
which can be seen as the natural one arising from the discrete problem. We obtain both global upper and local
lower bounds of the error. In Section 5 we consider a second estimator resulting from another discrete model
where the displacement field is the same as in the first model but where the multiplier is modified. The main
novelty of the second discrete model is that the multipliers have a constant sign. As in Section 4, we obtain
global upper and local lower bounds of the error. Finally in Section 6 we implement both estimators and we
compare them on several examples.

Finally we introduce some useful notation and several functional spaces. In what follows, bold letters like u,v,
indicate vector valued quantities, while the capital ones (e.g., V,K, . . .) represent functional sets involving vector
fields.

As usual, we denote by (L2(.))d and by (Hs(.))d, s ≥ 0, d = 1, 2 the Lebesgue and Sobolev spaces in one
and two space dimensions (see [1]). The usual norm of (Hs(D))d is denoted by ‖ · ‖s,D and we keep the same
notation when d = 1 or d = 2. For shortness the (L2(D))d-norm will be denoted by ‖ · ‖D when d = 1 or d = 2.
In the sequel the symbol | · | will denote either the Euclidean norm in R

2, or the length of a line segment, or the
area of a plane domain. Finally the notation a � b means here and below that there exists a positive constant C
independent of a and b (and of the meshsize of the triangulation) such that a ≤ C b. The notation a ∼ b means
that a � b and b � a hold simultaneously.

2. The unilateral contact problem in elasticity

Let Ω represent an elastic body in R
2 where plane strain assumptions are assumed. The boundary ∂Ω is

supposed to be polygonal, i.e., it is the union of a finite number of linear segments. Moreover we suppose that
the boundary consists in three nonoverlapping parts ΓD, ΓN and ΓC with meas(ΓD) > 0 and meas(ΓC) > 0. The
normal unit outward vector on ∂Ω is denoted n = (n1, n2) and we choose as unit tangential vector t = (−n2, n1).
In its initial configuration, the body is in contact on ΓC and we suppose that the unknown final contact zone
after deformation will be included in ΓC . The body is clamped on ΓD for the sake of simplicity. It is subjected
to volume forces f = (f1, f2) ∈ (L2(Ω))2 and to surface forces g = (g1, g2) ∈ (L2(ΓN ))2.

The unilateral contact problem in elasticity consists in finding the displacement field u : Ω → R
2 verifying

the equations and conditions (1)–(6):

divσ(u) + f = 0 in Ω, (1)

where div denotes the divergence operator of tensor valued functions and σ = (σij), 1 ≤ i, j ≤ 2, stands
for the stress tensor field. The latter is obtained from the displacement field by the constitutive law of linear
elasticity

σ(u) = Aε(u) in Ω, (2)

where A is a fourth order symmetric and elliptic tensor and ε(v) = (∇v +t∇v)/2 represents the linearized
strain tensor field. On ΓD and ΓN , the conditions are as follows:

u = 0 on ΓD, (3)
σ(u)n = g on ΓN . (4)
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Afterwards we choose the following notation for any displacement field v and for any density of surface forces
σ(v)n defined on ∂Ω:

v = vnn + vtt and σ(v)n = σn(v)n + σt(v)t.

The conditions modelling unilateral contact on ΓC are (see e.g., [13, 15, 16]):

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0. (5)

Finally the condition

σt(u) = 0 (6)

on ΓC means that friction is omitted.

In order to derive the variational formulation of (1)–(6), we consider the Hilbert space

H1
ΓD

(Ω) =
{
v ∈ H1(Ω) : v = 0 on ΓD

}
,

equipped with the H1(Ω)-norm. We further use the Hilbert space

V = (H1
ΓD

(Ω))2.

For our next uses, we introduce the trace space H
1
2 (ΓC) as follows:

H
1
2 (ΓC) =

{
φ ∈ L2(ΓC) : ∃u ∈ H1

ΓD
(Ω) such that φ = γu on ΓC

}
,

equipped with the norm
‖φ‖ 1

2 ,ΓC
= inf

u∈H1
ΓD

(Ω):φ=γu
‖u‖1,Ω,

where γ is the standard trace operator from H1(Ω) to H
1
2 (∂Ω) (see [1]). The topological dual space of H

1
2 (ΓC)

will be denoted by H− 1
2 (ΓC), whose norm is

‖ψ‖− 1
2 ,ΓC

= sup
φ∈H

1
2 (ΓC)

〈
ψ, φ

〉
− 1

2 , 1
2 ,ΓC

‖φ‖ 1
2 ,ΓC

,

where the notation 〈., .〉− 1
2 , 12 ,ΓC

represents the duality pairing between H− 1
2 (ΓC) and H

1
2 (ΓC).

The forthcoming mixed variational formulation uses the following convex cone of multipliers on ΓC

M =
{
µ ∈ H− 1

2 (ΓC) :
〈
µ, ψ

〉
− 1

2 , 1
2 ,ΓC

≥ 0 for all ψ ∈ H
1
2 (ΓC), ψ ≥ 0 a.e. on ΓC

}
.

Define

a(u,v) =
∫

Ω

σ(u) : ε(v) dΩ, b(µ,v) =
〈
µ, vn

〉
− 1

2 , 12 ,ΓC
,

L(v) =
∫

Ω

f · v dΩ +
∫

ΓN

g · v dΓ,

for any u and v in V and µ in H− 1
2 (ΓC).
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The mixed formulation of the unilateral contact problem without friction (1)–(6) consists then in finding
u ∈ V and λ ∈M such that: {

a(u,v) + b(λ,v) = L(v), ∀v ∈ V,

b(µ− λ,u) ≤ 0, ∀µ ∈M.
(7)

An equivalent formulation of (7) consists in finding (λ,u) ∈M × V satisfying

L(µ,u) ≤ L(λ,u) ≤ L(λ,v), ∀v ∈ V, ∀µ ∈M,

where L(µ,v) = 1
2a(v,v)−L(v)+b(µ,v). Another classical weak formulation of problem (1)–(6) is a variational

inequality: find u such that

u ∈ K, a(u,v − u) ≥ L(v − u), ∀v ∈ K, (8)

where K denotes the closed convex cone of admissible displacement fields satisfying the non-penetration condi-
tions:

K =
{
v ∈ V : vn ≤ 0 on ΓC

}
.

The existence and uniqueness of (λ,u) solution to (7) has been stated in [19]. Moreover, the first argument u
solution to (7) is also the unique solution of problem (8) and λ = −σn(u).

3. Mixed finite element approximation

We approximate this problem by a standard finite element method. Namely we fix a family of meshes
Th, h > 0, regular in Ciarlet’s sense [9], made of closed triangles. For K ∈ Th we recall that hK is the diameter
of K and h = maxK∈Th

hK . The regularity of the mesh implies in particular that for any edge E of K one has
hE = |E| ∼ hK .

Let us define Eh (resp. Nh) as the set of edges (resp. nodes) of the triangulation and set Eint
h = {E ∈

Eh : E ⊂ Ω} the set of interior edges of Th (the edges are supposed to be relatively open). We denote by
EN

h = {E ∈ Eh : E ⊂ ΓN} the set of exterior edges included into the part of the boundary where we impose
Neumann conditions, and similarly EC

h = {E ∈ Eh : E ⊂ ΓC} is the set of exterior edges included into the part
of the boundary where we impose unilateral contact conditions. Set ND

h = Nh ∩ ΓD (note that the extreme
nodes of ΓD belong to ND

h ). Let S denote the set of vertices of Ω and denote by NNC
h the set of nodes which

belong to ΓC ∩ ΓN and by NCC
h the nodes belonging to ΓC ∩ S. Set finally NC

h = (Nh \ NCC
h ) ∩ ΓC (NC

h

contains the nodes in ΓC which are not vertices of Ω). For an element K, we will denote by EK the set of edges
of K and according to the above notation, we set Eint

K = EK ∩ Eint
h , EN

K = EK ∩EN
h , EC

K = EK ∩ EC
h .

For an edge E of an element K, introduce nK,E = (n1, n2) the unit outward normal vector to K along E
and the tangent vector tK,E = n⊥

K,E = (−n2, n1). Furthermore for each edge E we fix one of the two normal
vectors and denote it by nE and we set tE = n⊥

E . The jump of some vector valued function v across an edge
E ∈ Eint

h at a point y ∈ E is defined as

[[
v
]]

E
(y) = lim

α→+0
v(y + αnE) − v(y − αnE), ∀E ∈ Eint

h .

Note that the sign of
[[
v
]]

E
depends on the orientation of nE . Finally we will need local subdomains (also called

patches). As usual, let ωK be the union of all elements having a nonempty intersection with K. Similarly for a
node x and an edge E, let ωx = ∪K:x∈KK and ωE = ∪x∈Eωx.

The finite element space used in Ω is then defined by

Vh =
{
vh ∈ (C(Ω))2 : ∀κ ∈ Th, vh|κ ∈ (P1(κ))2, vh|ΓD = 0

}
.
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We suppose that the contact area consists in several straight line segments, that we denote by Γi
C , 1 ≤ i ≤ q

such that ΓC = ∪iΓi
C . In order to express the contact constraints by using Lagrange multipliers on the contact

zone, we have to introduce the space

Wh =
{
µh : ∪iΓi

C → R, µh|Γi
C

∈ C(Γi
C), ∃vh ∈ Vh s.t. vh · n = µh on ∪i Γi

C

}
. (9)

The choice of the space Wh allows us to define the following closed convex cone:

Mh =
{
µh ∈ Wh :

∫
ΓC

µhψh dΓ ≥ 0, ∀ψh ∈Wh, ψh ≥ 0
}
.

Remark 3.1. It is easy to check that Mh �⊂M .

The discretized mixed formulation of the unilateral contact problem without friction is to find uh ∈ Vh and
λh ∈Mh satisfying: {

a(uh,vh) + b(λh,vh) = L(vh), ∀vh ∈ Vh,

b(µh − λh,uh) ≤ 0, ∀µh ∈Mh.
(10)

Problem (10) consists in finding (λh,uh) ∈Mh × Vh satisfying

L(µh,uh) ≤ L(λh,uh) ≤ L(λh,vh), ∀vh ∈ Vh, ∀µh ∈Mh,

where L(µh,vh) = 1
2a(vh,vh) − L(vh) + b(µh,vh). In order to prove that there is a unique solution to prob-

lem (10), and since we are in the finite dimensional case, we only have to check (see [19], Thm. 3.9 and Ex. 3.8)
that

sup
vh∈Vh,vh �=0

b(µh,vh)
‖vh‖1,Ω

is a norm on Wh. So we have to verify that

{µh ∈Wh : b(µh,vh) = 0, ∀vh ∈ Vh} = {0},

which is satisfied according to the definition of Wh in (9). As a consequence, we obtain the following statement:

Proposition 3.2. Problem (10) admits a unique solution (λh,uh) ∈Mh × Vh.

Proposition 3.3. If (λh,uh) is the solution of (10), then uh is also the unique solution of the variational
inequality: find uh such that

uh ∈ Kh, a(uh,vh − uh) ≥ L(vh − uh), ∀vh ∈ Kh, (11)

where Kh denotes the discrete closed convex cone of admissible displacement fields satisfying the non-penetration
conditions, i.e.,

Kh =
{
vh ∈ Vh : vhn ≤ 0 on ΓC

}
.

Proof. Taking µh = 0 and µh = 2λh in (10) leads to b(λh,uh) = 0 and to

b(µh,uh) =
∫

ΓC

µhuhn dΓ ≤ 0, ∀µh ∈Mh.

The latter inequality implies by polarity that uhn ∈ −M∗
h (the notation X∗ stands for the positive polar cone

of X for the inner product on Wh induced by b(., .), see [22], p. 119). Let Qh = {µh ∈ Wh : µh ≥ 0}.
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We have M∗
h = (Q∗

h)∗ = Qh since Qh is a closed convex cone. Hence uhn ∈ −Qh and uh ∈ Kh. Besides (10)
and b(λh,uh) = 0 lead to

a(uh,uh) = L(uh) (12)

and for any vh ∈ Kh, we get

a(uh,vh) − L(vh) = −b(λh,vh) = −
∫

ΓC

λhvhn dΓ ≥ 0, (13)

owing to λh ∈ Q∗
h.

Putting together (12) and (13) implies that uh is solution of the variational inequality (11) which admits a
unique solution according to Stampacchia’s theorem. �

Remark 3.4. A priori error analyses for this discretization of the unilateral contact problem can be found in
[4,12,23]. The a priori error estimates are of order h(1+ν)/2 if u ∈ (H3/2+ν(Ω))2, 0 < ν ≤ 1/2 (see [4,12]). If an
additional assumption dealing with the finiteness of transition points between contact and separation is added
then an optimal error estimate of order h1/2+ν is obtained (see [23]).

We consider the quasi-interpolation operator πh: for any v ∈ L1(Ω), we define πhv as the unique element in
Vh = {vh ∈ C(Ω) : ∀κ ∈ Th, vh|κ ∈ P1(κ), vh|ΓD = 0} such that:

πhv =
∑

x∈Nh\ND
h

αx(v)λx, (14)

where for any x ∈ Nh\ND
h , λx is the standard basis function in Vh satisfying λx(x′) = δx,x′ , for all x′ ∈ Nh\ND

h

and αx(v) is defined as follows:

αx(v) =
1

|ωx|
∫

ωx

v(y) dy, ∀x ∈ Nh \ ND
h .

The following estimates hold (see, e.g., [29]):

Lemma 3.5. For any v ∈ H1
ΓD

(Ω) we have

‖v − πhv‖K � hK‖∇v‖ωK , ∀K ∈ Th,

‖v − πhv‖E � h
1/2
E ‖∇v‖ωE , ∀E ∈ Eh.

Since we deal with vector valued functions we can define a vector valued operator (which we denote again by
πh for the sake of simplicity) whose components are defined above. Consequently we can directly state the

Lemma 3.6. For any v ∈ V we have

‖v − πhv‖K � hK‖v‖1,ωK , ∀K ∈ Th, (15)

‖v − πhv‖E � h
1/2
E ‖v‖1,ωE , ∀E ∈ Eh. (16)
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4. A first error estimator: η

4.1. Definition of the residual error estimators

The element residual of the equilibrium equation (1) is defined by

divσ(uh) + f = f on K.

As usual this element residual is replaced by some computable finite dimensional approximation called approx-
imate element residual

fK ∈ (Pk(K))2.

A current choice is to take fK =
∫

K
f(x) /|K| since for f ∈ (H1(Ω))2, scaling arguments yield ‖f − fK‖K �

hK‖f‖1,K and is then negligible with respect to the estimator η defined hereafter. In the same way g is
approximated by a computable quantity denoted gE on any E ∈ EN

h .

Definition 4.1 (First residual error estimator). The local and global residual error estimators are defined by

ηK =

(
6∑

i=1

η2
iK

)1/2

,

η1K = hK‖fK‖K ,

η2K = h
1/2
K

⎛
⎝ ∑

E∈Eint
K ∪EN

K

‖JE,n(uh)‖2
E

⎞
⎠

1/2

,

η3K = h
1/2
K

⎛
⎝ ∑

E∈EC
K

‖λh + σn(uh)‖2
E

⎞
⎠

1/2

,

η4K = h
1/2
K

⎛
⎝ ∑

E∈EC
K

‖σt(uh)‖2
E

⎞
⎠

1/2

,

η5K =

⎛
⎝ ∑

E∈EC
K

∫
E

−λh+uhn

⎞
⎠

1/2

,

η6K =

⎛
⎝ ∑

E∈EC
K

‖λh−‖2
E

⎞
⎠

1/2

,

η =

( ∑
K∈Th

η2
K

)1/2

,

where the notations λh+ and λh− denote the positive and negative parts of λh, respectively; JE,n(uh) means
the constraint jump of uh in normal direction, i.e.,

JE,n(uh) =
{ [[

σ(uh)nE

]]
E
, ∀E ∈ Eint

h ,
σ(uh)nE − gE , ∀E ∈ EN

h .
(17)
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The local and global approximation terms are defined by

ζK =

⎛
⎝h2

K

∑
K′⊂ωK

‖f − fK′‖2
K′ + hE

∑
E⊂EN

K

‖g − gE‖2
E

⎞
⎠

1/2

, ζ =

( ∑
K∈Th

ζ2
K

)1/2

. (18)

Remark 4.2. In the Definition 4.1, we could also set instead of η5K :

η̂5K =

⎛
⎝ ∑

E∈EC
K

∫
E

−λh−uhn

⎞
⎠

1/2

since
∫
ΓC
λh+uhn =

∫
ΓC
λh−uhn. Note that η̂5K �= η5K although

∑
K∈Th

η̂2
5K =

∑
K∈Th

η2
5K .

4.2. Upper error bound

Theorem 4.3. Let (λ,u) be the solution of (7) and let (λh,uh) be the solution of (10). Then we have

‖u− uh‖1,Ω + ‖λ− λh‖− 1
2 ,ΓC

� η + ζ.

Proof. Afterwards we adopt the following notation for the displacement error term:

eu = u − uh.

Let vh ∈ Vh. From the V-ellipticity of a(., .) and the equilibrium equations in (7) and (10) we obtain:

‖eu‖2
1,Ω � a(u − uh,u− uh)

= a(u − uh,u− vh) + a(u− uh,vh − uh)
= L(u − vh) − b(λ,u − vh) − a(uh,u− vh) + b(λh − λ,vh − uh).

Integrating by parts on each triangle K, using the definition of JE,n(uh) in (17) and the complementarity
conditions b(λ,u) = b(λh,uh) = 0 yields:

‖eu‖2
1,Ω �

∫
Ω

f · (u− vh) + b(λh,vh) + b(λ,uh) +
∑

E∈EN
h

∫
E

(g − gE) · (u − vh)

−
∑

E∈EC
h

∫
E

(σ(uh)n) · (u − vh) −
∑

E∈Eint
h ∪EN

h

∫
E

JE,n(uh) · (u− vh). (19)

Splitting up the integrals on ΓC into normal and tangential components gives:

‖eu‖2
1,Ω �

∫
Ω

f · (u − vh) + b(λh,u) + b(λ,uh)

+
∑

E∈EC
h

∫
E

(λh + σn(uh))(vhn − un) +
∑

E∈EC
h

∫
E

σt(uh)(vht − ut)

−
∑

E∈Eint
h

∪EN
h

∫
E

JE,n(uh) · (u − vh) +
∑

E∈EN
h

∫
E

(g − gE) · (u− vh). (20)
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We now need to estimate each term of this right-hand side. For that purpose, we take

vh = uh + πh(u − uh) (21)

where πh is the quasi-interpolation operator defined in Lemma 3.6.
We start with the integral term. Cauchy-Schwarz’s inequality implies∣∣∣∣

∫
Ω

f · (u − vh)
∣∣∣∣ ≤ ∑

K∈Th

‖f‖K‖u− vh‖K ,

and it suffices to estimate ‖u− vh‖K for any triangle K. From the definition of vh and (15) we get:

‖u− vh‖K = ‖eu − πheu‖K � hK‖eu‖1,ωK .

As a consequence ∣∣∣∣
∫

Ω

f · (u− vh)
∣∣∣∣ � (η + ζ)‖eu‖1,Ω. (22)

We now consider the interior and Neumann boundary terms in (20): as previously the application of Cauchy-
Schwarz’s inequality leads to∣∣∣∣∣∣

∑
E∈Eint

h ∪EN
h

∫
E

JE,n(uh) · (u− vh)

∣∣∣∣∣∣ ≤
∑

E∈Eint
h ∪EN

h

‖JE,n(uh)‖E‖u− vh‖E .

Therefore using the expression (21) and estimate (16), we obtain

‖u− vh‖E = ‖eu − πheu‖E � h
1/2
E ‖eu‖1,ωE .

Inserting this estimate in the previous one we deduce that∣∣∣∣∣∣
∑

E∈Eint
h ∪EN

h

∫
E

JE,n(uh) · (u − vh)

∣∣∣∣∣∣ � η‖eu‖1,Ω. (23)

Moreover ∣∣∣∣∣∣
∑

E∈EN
h

∫
E

(g − gE) · (u − vh)

∣∣∣∣∣∣ � ζ‖eu‖1,Ω. (24)

The two following terms are handled in a similar way as the previous ones so that∣∣∣∣∣∣
∑

E∈EC
h

∫
E

(λh + σn(uh))(vhn − un)

∣∣∣∣∣∣ � η‖eu‖1,Ω (25)

and ∣∣∣∣∣∣
∑

E∈EC
h

∫
E

σt(uh)(vht − ut)

∣∣∣∣∣∣ � η‖eu‖1,Ω. (26)

Noting that uhn ≤ 0 on ΓC , we have
b(λ,uh) ≤ 0, (27)
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and it remains to estimate one term in (20). Using the discrete complementarity condition b(λh,uh) = 0 implies

b(λh,u) =
∫

ΓC

λhun =
∫

ΓC

λh(un − uhn)

=
∫

ΓC

(λh+ − λh−)(un − uhn)

≤ −
∫

ΓC

λh+uhn −
∫

ΓC

λh−(un − uhn)

≤ η2 −
∫

ΓC

λh−(un − uhn). (28)

The last term in the previous expression is estimated using Cauchy-Schwarz’s and Young’s inequalities:

∣∣∣∣
∫

ΓC

λh−(un − uhn)
∣∣∣∣ =

∣∣∣∣∣∣
∑

E∈EC
h

∫
E

λh−(un − uhn)

∣∣∣∣∣∣
≤

∑
E∈EC

h

‖λh−‖E‖un − uhn‖E

≤
∑

E∈EC
h

(
α‖un − uhn‖2

E +
1
4α

‖λh−‖2
E

)
,

for any α > 0. A standard trace theorem implies the existence of C > 0 such that

∣∣∣∣
∫

ΓC

λh−(un − uhn)
∣∣∣∣ ≤ α‖un − uhn‖2

ΓC
+

1
4α

∑
E∈EC

h

‖λh−‖2
E

≤ Cα‖eu‖2
1,Ω +

η2

4α
· (29)

Estimates (28) and (29) give

b(λh,u) ≤ Cα‖eu‖2
1,Ω + η2

(
1 +

1
4α

)
(30)

for any α > 0.
Putting together the estimates (22)–(27) and (30) with α small enough in (20), and using Young’s inequality,

we come to the conclusion that

‖u− uh‖1,Ω � η + ζ. (31)

We now search for an upper bound on the discretization error λ− λh corresponding to the multipliers. Let
v ∈ V and vh ∈ Vh. From the equilibrium equations in (7) and (10) we get:

b(λ− λh,v) = b(λ,v − vh) − b(λh,v − vh) + b(λ− λh,vh)
= L(v − vh) − a(u,v − vh) − b(λh,v − vh) + a(uh − u,vh)
= L(v − vh) − a(u − uh,v) − a(uh,v − vh) − b(λh,v − vh).
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An integration by parts on each element K gives

b(λ− λh,v) =
∫

Ω

f · (v − vh) − a(u − uh,v) −
∑

E∈Eint
h ∪EN

h

∫
E

JE,n(uh) · (v − vh)

−
∑

E∈EC
h

∫
E

(λh + σn(uh))(vn − vhn) −
∑

E∈EC
h

∫
E

σt(uh)(vt − vht)

+
∑

E∈EN
h

∫
E

(g − gE) · (v − vh).

Choosing vh = πhv where πh is the quasi-interpolation operator defined in Lemma 3.6 and achieving a similar
calculation as in (22)–(26) we deduce that

|b(λ− λh,v)| � (η + ζ + ‖u− uh‖1,Ω)‖v‖1,Ω

for any v ∈ V. As a consequence

‖λ− λh‖− 1
2 ,ΓC

� η + ζ + ‖u− uh‖1,Ω. (32)

Putting together the two estimates (31) and (32) ends the proof of the theorem. �

4.3. Lower error bound

Theorem 4.4. For all elements K, the following local lower error bounds hold:

η1K � ‖u− uh‖1,K + ζK , (33)

η2K � ‖u− uh‖1,ωK + ζK . (34)

Assume that λ ∈ L2(ΓC). For all elements K such that K ∩ EC
h �= ∅, the following local lower error bounds

hold:

η3K �
∑

E∈EC
K

h1/2‖λ− λh‖E + ‖u− uh‖1,K + ζK , (35)

η4K � ‖u− uh‖1,K + ζK , (36)

η5K �
∑

E∈EC
K

(
‖λ− λh‖E + ‖u− uh‖E + ‖λ− λh‖1/2

E ‖un‖1/2
E + ‖u− uh‖1/2

E ‖λ‖1/2
E

)
, (37)

η6K �
∑

E∈EC
K

‖λ− λh‖E . (38)

Proof. The estimates of η1K and η2K in (33) and (34) are standard (see, e.g., [28]).
We now estimate η3K . Writing wE = wEnn + wEtt on E ∈ EC

K and denoting by bE the edge bubble
function associated with E (i.e., bE = 4λa1λa2 , when a1, a2 are the two extremities of E; we recall that λx

is the standard basis function at node x in Vh satisfying λx(x′) = δx,x′ for any node x′, see (14)), we choose
wEn = (λh + σn(uh))bE and wEt = 0 in the element K containing E (here we made a slight abuse of notation
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to simplify) and wE = 0 in Ω \K. Therefore

‖λh + σn(uh)‖2
E ∼

∫
E

(λh + σn(uh))wEn

= b(λh,wE) +
∫

K

σ(uh) : ε(wE)

= b(λh,wE) −
∫

K

σ(u − uh) : ε(wE) +
∫

K

σ(u) : ε(wE)

= b(λh − λ,wE) + L(wE) −
∫

K

σ(u− uh) : ε(wE)

� ‖λ− λh‖E‖wE‖E + ‖f‖K‖wE‖K + ‖u− uh‖1,K‖wE‖1,K .

An inverse inequality and estimate (33) imply

h
1/2
K ‖λh + σn(uh)‖E � h1/2‖λ− λh‖E + ‖u− uh‖1,K + h‖f‖K

� h1/2‖λ− λh‖E + ‖u− uh‖1,K + ζK .

This estimate gives the estimate of η3K in (35). The bound of η4K in (36) is obtained as previously by choosing
wEn = 0 and wEt = σt(uh)bE .

We now consider η5K . If E ∈ EC
K , let F ⊂ E be the part of the edge where λh = λh+. So∫

E

−λh+uhn =
∫

F

−λhuhn

=
∫

F

(λh − λ)(un − uhn) −
∫

F

λhun −
∫

F

λuhn

=
∫

F

(λh − λ)(un − uhn) −
∫

F

(λh − λ)un −
∫

F

λ(uhn − un)

� ‖λ− λh‖E‖u− uh‖E + ‖λ− λh‖E‖un‖E + ‖u− uh‖E‖λ‖E.

The last estimate implies (37) by taking the square root.
The estimate on η6K is obvious. Since λ ≥ 0 then we have 0 ≤ λh− ≤ |λ− λh| on ΓC . So

‖λh−‖E ≤ ‖λ− λh‖E

and (38) is proved. �

Remark 4.5. Assume that u ∈ (H2(Ω))2 (so λ ∈ H
1
2 (ΓC)), and that optimal a priori error estimates hold

(note that the question of optimality remains open in the a priori error analysis since the known a priori error
estimates are not optimal) and define:

ηi =
( ∑

K∈Th

η2
iK

)1/2

, 1 ≤ i ≤ 6.

Then one would have η1 � h, η2 � h, η3 � h, η4 � h, η5 � h1/4, η6 � h1/2. So η � h1/4.

5. A second error estimator: η̃

The analysis of this error estimator requires a nonstandard definition of the error (in comparison with the
already known results in the literature dealing with contact problems). We begin with some preliminaries.
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5.1. Preliminaries

For any µh ∈ Wh and vh ∈ Vh we define the bilinear form c(., .) such that

c(µh,vh) =
q∑

i=1

∫
Γi

C

Ih(µhvhn)

where Ih is the linear Lagrange interpolation operator at the nodes of Γi
C (to simplify the notations we write

Ih instead of Ii
h). Let W+

h be the closed convex cone of nonnegative functions in Wh. We define the following
discrete problem issued from (7): find uh ∈ Vh and λ̃h ∈ W+

h such that⎧⎨
⎩

a(uh,vh) + c(λ̃h,vh) = L(vh), ∀vh ∈ Vh,

c(µh − λ̃h,uh) ≤ 0, ∀µh ∈W+
h .

(39)

The following proposition establishes the link between problems (39) and (10).

Proposition 5.1. (i) Problem (39) admits a unique solution (λ̃h,uh) ∈ W+
h × Vh.

(ii) The displacement field uh in (39) coincides with the displacement field solving (10) (and also with the one
solving (11)).
(iii) The link between the contact pressures λ̃h and λh solving (39) and (10) is:

c(λ̃h,vh) = b(λh,vh), ∀vh ∈ Vh. (40)

More precisely, if ψi
j denotes the (scalar) canonical basis function at node xj in Γi

C \ ΓD, we have

λ̃h(xj) =

∫
Γi

C

λhψ
i
j∫

Γi
C

ψi
j

, ∀i, ∀j. (41)

Proof. (i). As for problem (10) and according to [19] (Thm. 3.9 and Ex. 3.8), it suffices to verify that

sup
vh∈Vh,vh �=0

c(µh,vh)
‖vh‖1,Ω

is a norm on Wh, which reduces to the condition {µh ∈Wh : c(µh,vh) = 0, ∀vh ∈ Vh} = {0}. The latter
condition is fulfilled according to the definition of Wh in (9).

(ii) The discussion is the same as in Proposition 3.3 noting that c(., .) induces an inner product on Wh and
that W+

h is a closed convex cone.
(iii) Equality (40) is straightforward. Let us show that dim(Wh) = #NC

h + #NNC
h + 2#NCC

h where the
notation # stands for the cardinal of a set. We denote by ψi

j the “canonical basis function” at node xj in

Γi
C \ΓD (i.e., ψi

j is defined on ∪�Γ�
C , the support of ψi

j lies in Γi
C , ψi

j is continuous and piecewise of degree one
on Γi

C , and ψi
j(xk) = δk,j , ∀xk ∈ Γi

C \ ΓD). Note that ψi
j is not continuous if xj ∈ NCC

h .
If xj ∈ NC

h ∪ NNC
h it is straightforward that ψi

j ∈Wh.

If xj ∈ NCC
h then xj ∈ Γi

C ∪ Γi+1
C . It suffices to show that there exists vh = (vh1, vh2) ∈ Vh such that

ψi
j = vh · n on ∪�Γ�

C and wh = (wh1, wh2) ∈ Vh such that ψi+1
j = wh · n on ∪�Γ�

C . Without loss of generality
we can assume that the unit outward normal vector along Γi

C is equal to (0,−1) and then the unit outward
normal vector along Γi+1

C is equal to (− sin θ, cos θ), for some θ ∈ ]0, 2π[ such that θ �= π (θ being the interior
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angle between Γi
C and Γi+1

C ). Since vh ·n is linear on Γi
C and Γi+1

C , it suffices to show that vh ·n coincides with
ψi

j at the nodes. Therefore we take vh equal to zero at each node except xj and for the values at xj we get

vh(xj) · (0,−1) = −vh2(xj) = 1,
vh(xj) · (− sin θ, cos θ) = −vh1(xj) sin θ + vh2(xj) cos θ = 0.

As sin θ �= 0, this system has the unique solution: vh1(xj) = −cos θ/sin θ and vh2(xj) = −1. The solution wh

is obtained similarly and is characterized by

wh1(xj) = − 1
sin θ

, wh2(xj) = 0,

wh being zero at the other vertices.
Equality (41) follows from (40) and the previous discussion. �

Remark 5.2. The a priori error estimates for the discretization (39) of the unilateral contact problem are
given in [20]. The obtained estimates are the same as for the discretization (10) (see Rem. 3.4).

5.2. Definition of the residual error estimators

As for the first estimator the element residual is defined by divσ(uh) + f = f on K and this element
residual is replaced by some computable finite dimensional approximation called approximate element residual:
fK ∈ (Pk(K))2. Similarly g is approximated by a computable quantity denoted gE on any E ∈ EN

h .

Definition 5.3 (Second residual error estimator). The local and global residual error estimators are defined by

η̃K =

(
5∑

i=1

η̃2
iK

)1/2

,

η̃1K = hK‖fK‖K ,

η̃2K = h
1/2
K

⎛
⎝ ∑

E∈Eint
K ∪EN

K

‖JE,n(uh)‖2
E

⎞
⎠

1/2

,

η̃3K = h
1/2
K

⎛
⎝ ∑

E∈EC
K

‖λ̃h + σn(uh)‖2
E

⎞
⎠

1/2

,

η̃4K = h
1/2
K

⎛
⎝ ∑

E∈EC
K

‖σt(uh)‖2
E

⎞
⎠

1/2

,

η̃5K =

⎛
⎝ ∑

E∈EC
K

∫
E

−λ̃huhn

⎞
⎠

1/2

,

η̃ =

( ∑
K∈Th

η̃2
K

)1/2

,

where we recall that JE,n(uh) is the constraint jump of uh in normal direction defined by (17).



RESIDUAL ESTIMATORS FOR UNILATERAL CONTACT 911

As in the previous section, the local and global approximation terms ζK and ζ are defined by (18).

Remark 5.4. From the previous definitions we have η̃1K = η1K , η̃2K = η2K and η̃4K = η4K . We mention that
there is no term as η6 in the second estimator since the multipliers λ̃h are of constant sign (note that a similar
approach was adopted in [27] for the obstacle problem).

5.3. Upper error bound

Theorem 5.5. Let (λ,u) be the solution of (7) and let (λ̃h,uh) be the solution of (39). We have

‖u− uh‖1,Ω + ‖λ− λ̃h‖− 1
2 ,ΓC

� η̃ + ζ.

Proof. We adopt the following notations for the error term in the displacement: eu = u − uh. Let vh ∈ Vh.
According to the V-ellipticity of a(., .) and the equilibrium equations in (7) and (39) we obtain:

‖eu‖2
1,Ω � a(u− uh,u− uh)

= a(u− uh,u− vh) + a(u − uh,vh − uh)

= L(u− vh) − b(λ,u − vh) − a(uh,u − vh) + b(λ̃h − λ,vh − uh)

+ c(λ̃h,vh − uh) − b(λ̃h,vh − uh).

Integrating by parts on each triangle K, using the definition of JE,n(uh) in (17) and the complementarity
conditions b(λ,u) = b(λh,uh) = c(λ̃h,uh) = 0 gives:

‖eu‖2
1,Ω �

∫
Ω

f · (u − vh) + b(λ,uh) + c(λ̃h,vh) +
∑

E∈EN
h

∫
E

(g − gE) · (u − vh)

−
∑

E∈EC
h

∫
E

(σ(uh)n) · (u − vh) −
∑

E∈Eint
h ∪EN

h

∫
E

JE,n(uh) · (u− vh),

which is the same inequality as in (19) according to (40). Splitting up the integrals on ΓC into normal and
tangential components yields:

‖eu‖2
1,Ω �

∫
Ω

f · (u − vh) + b(λ,uh) + b(λ̃h,u) − b(λ̃h,vh) + c(λ̃h,vh)

+
∑

E∈EC
h

∫
E

(λ̃h + σn(uh))(vhn − un) +
∑

E∈EC
h

∫
E

σt(uh)(vht − ut)

−
∑

E∈Eint
h ∪EN

h

∫
E

JE,n(uh) · (u − vh) +
∑

E∈EN
h

∫
E

(g − gE) · (u− vh). (42)

As before to estimate each term of this right-hand side, we take vh of the form (21).
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We start with the integral term. As in the case of the first estimator we deduce from (21) and (15) that

∣∣∣∣
∫

Ω

f · (u− vh)
∣∣∣∣ ≤

∑
K∈Th

‖f‖K‖u− vh‖K

�
∑

K∈Th

‖f‖KhK‖eu‖1,ωK

� (η̃ + ζ)‖eu‖1,Ω. (43)

We now consider the interior and Neumann boundary terms in (42): as previously the application of Cauchy-
Schwarz’s inequality and (16) lead to

∣∣∣∣∣∣
∑

E∈Eint
h ∪EN

h

∫
E

JE,n(uh) · (u − vh)

∣∣∣∣∣∣ ≤
∑

E∈Eint
h ∪EN

h

‖JE,n(uh)‖E‖u− vh‖E

�
∑

E∈Eint
h ∪EN

h

‖JE,n(uh)‖Eh
1/2
E ‖eu‖1,ωE

� η̃‖eu‖1,Ω. (44)

Besides we get ∣∣∣∣∣∣
∑

E∈EN
h

∫
E

(g − gE) · (u − vh)

∣∣∣∣∣∣ � ζ‖eu‖1,Ω. (45)

The two following terms are handled in a similar way as the previous ones so that

∣∣∣∣∣∣
∑

E∈EC
h

∫
E

(λ̃h + σn(uh))(vhn − un)

∣∣∣∣∣∣ � η̃‖eu‖1,Ω (46)

and ∣∣∣∣∣∣
∑

E∈EC
h

∫
E

σt(uh)(vht − ut)

∣∣∣∣∣∣ � η̃‖eu‖1,Ω. (47)

Noting that uhn ≤ 0 and λ̃h ≥ 0 on ΓC , we have

b(λ,uh) ≤ 0, b(λ̃h,u) ≤ 0 (48)

and it remains to estimate two terms in (42), namely

c(λ̃h,vh) − b(λ̃h,vh) = − b(λ̃h,uh) + c(λ̃h, πheu) − b(λ̃h, πheu)

≤ η̃2 +
∫

ΓC

Ih(λ̃h(πheu)n) − λ̃h(πheu)n. (49)
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The integral term in the previous expression is estimated as follows using a basic error estimate of numerical
integration (trapezoidal formula):

∣∣∣∣
∫

ΓC

Ih(λ̃h(πheu)n) − λ̃h(πheu)n

∣∣∣∣ =

∣∣∣∣∣∣
∑

E∈EC
h

∫
E

Ih(λ̃h(πheu)n) − λ̃h(πheu)n

∣∣∣∣∣∣
�

∑
E∈EC

h

h3
E |(λ̃h(πheu)n)′′|

�
∑

E∈EC
h

h3
E |λ̃′h((πheu)n)′|

�
∑

E∈EC
h

h2
E‖λ̃′h‖E‖((πheu)n)′‖E

�
∑

E∈EC
h

h
3/2
E ‖λ̃′h‖E‖πheu‖1,ωE

�
∑

E∈EC
h

h
3/2
E ‖λ̃′h‖E‖eu‖1,ωE

=
∑

E∈EC
h

h
3/2
E ‖(λ̃h + σn(uh))′‖E‖eu‖1,ωE

�
∑

E∈EC
h

h
1/2
E ‖λ̃h + σn(uh)‖E‖eu‖1,ωE

≤ η̃‖eu‖1,Ω. (50)

Above we have used the H1 stability of πh, proved in Lemma 3.1 of [8] (see also [28]) and the trace inequality
on an element (see [28]).

Putting together the estimates (43)–(50) in (42) and using Young’s inequality, we come to the conclusion
that

‖u− uh‖1,Ω � η̃ + ζ. (51)

Next we search for an upper bound on the discretization error λ− λh corresponding to the multipliers. Let
v ∈ V and vh ∈ Vh. From the equilibrium equations in (7) and (39) we get:

b(λ− λ̃h,v) = b(λ,v − vh) − b(λ̃h,v − vh) + b(λ− λh,vh) + b(λh − λ̃h,vh)

= L(v − vh) − a(u,v − vh) − b(λ̃h,v − vh) + a(uh − u,vh) + b(λh − λ̃h,vh)

= L(v − vh) − a(u − uh,v) − a(uh,v − vh) − b(λ̃h,v − vh) + b(λh − λ̃h,vh).

An integration by parts on each element K yields

b(λ− λ̃h,v) =
∫

Ω

f · (v − vh) − a(u − uh,v) −
∑

E∈Eint
h

∪EN
h

∫
E

JE,n(uh) · (v − vh)

−
∑

E∈EC
h

∫
E

(λ̃h + σn(uh))(vn − vhn) −
∑

E∈EC
h

∫
E

σt(uh)(vt − vht)

+ c(λ̃h,vh) − b(λ̃h,vh) +
∑

E∈EN
h

∫
E

(g − gE) · (v − vh).
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Choosing vh = πhv where πh is the quasi-interpolation operator defined Lemma 3.6 and achieving a similar
calculation as in (43)–(47) and (50) we deduce that

∣∣∣b(λ− λ̃h,v)
∣∣∣ � (η̃ + ζ + ‖u− uh‖1,Ω)‖v‖1,Ω

for any v ∈ V. As a consequence

‖λ− λ̃h‖− 1
2 ,ΓC

� η̃ + ζ + ‖u− uh‖1,Ω. (52)

Putting together the two estimates (51) and (52) ends the proof of the theorem. �

5.4. Lower error bound

Theorem 5.6. For all elements K, the following local lower error bounds hold:

η̃1K � ‖u− uh‖1,K + ζK , (53)

η̃2K � ‖u− uh‖1,ωK + ζK .

Assume that λ ∈ L2(ΓC). For all elements K such that K ∩ EC
h �= ∅, the following local lower error bounds

hold:

η̃3K �
∑

E∈EC
K

h
1/2
E ‖λ− λ̃h‖E + ‖u− uh‖1,K + ζK , (54)

η̃4K � ‖u− uh‖1,K + ζK ,

η̃5K � η̃
1/2
3K ‖uh‖1/2

1,K . (55)

Proof. According to Remark 5.4 and Theorem 4.4 we only need to estimate η̃3K and η̃5K .
We first estimate η̃3K . Writing wE = wEnn + wEtt on E ∈ EC

K and denoting by bE the edge bubble
function associated with E (i.e., bE = 4λa1λa2 , when a1, a2 are the two extremities of E), we choose wEn =
(λ̃h + σn(uh))bE and wEt = 0 in the element K containing E (here we made a slight abuse of notation to
simplify) and wE = 0 in Ω \K. So

‖λ̃h + σn(uh)‖2
E ∼

∫
E

(λ̃h + σn(uh))wEn

= b(λ̃h,wE) +
∫

K

σ(uh) : ε(wE)

= b(λ̃h,wE) −
∫

K

σ(u − uh) : ε(wE) +
∫

K

σ(u) : ε(wE)

= b(λ̃h − λ,wE) + L(wE) −
∫

K

σ(u− uh) : ε(wE)

� ‖λ− λ̃h‖E‖wE‖E + ‖f‖K‖wE‖K + ‖u− uh‖1,K‖wE‖1,K .

An inverse inequality and estimate (53) imply

h
1/2
K ‖λ̃h + σn(uh)‖E � h1/2‖λ− λ̃h‖E + ‖u− uh‖1,K + h‖f‖K

� h1/2‖λ− λ̃h‖E + ‖u− uh‖1,K + ζK .
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This bound gives the estimate of η̃3K in (54).
We finally consider η̃5K . If E ∈ EC

K , one has∫
E

−λ̃huhn =
∫

E

Ih(λ̃huhn) − λ̃huhn

� h3
E |(λ̃huhn)′′|

� h3
E |λ̃′hu′hn|

� h2
E‖λ̃′h‖E‖u′hn‖E

= h2
E‖(λ̃h + σn(uh))′‖E‖u′hn‖E

� hE‖λ̃h + σn(uh)‖E‖u′hn‖E

� h
1/2
E η̃3K‖u′hn‖E

� η̃3K‖uh‖1,K .

The last estimate implies (55) by taking the square root. �

Remark 5.7. Assume that u ∈ (H2(Ω))2 (so that λ ∈ H
1
2 (ΓC)). Then the integral term in η̃5K can be bounded

as follows:∫
E

−λ̃huhn =
∫

E

Ih(λ̃huhn) − λ̃huhn

� h3
E |(λ̃huhn)′′|

� h3
E |λ̃′hu′hn|

= h2
E‖λ̃′hu′hn‖L1(E)

≤ h2
E‖λ̃′h(u′hn − u′n)‖L1(E) + h2

E‖λ̃′hu′n‖L1(E)

� h2
E‖λ̃′h‖E‖(uhn − un)′‖E + h2

E‖λ̃′h‖L
q

q−1 (E)
‖u′n‖Lq(ΓC)

� h2
E‖(λ̃h + σn(uh))′‖E‖(uhn − un)′‖E + h2

E

√
q‖(λ̃h + σn(uh))′‖

L
q

q−1 (E)
‖u‖2,Ω

� hE‖λ̃h + σn(uh)‖E‖(uhn − un)′‖E + h2
Eh

q−2
2q

E

√
q‖(λ̃h + σn(uh))′‖E‖u‖2,Ω

� h
1/2
E η̃3K‖un − uhn‖1,E + hE

√
− ln(hE)η̃3K‖u‖2,Ω,

where 1 < q < ∞ (we choose q = − ln(hE), hE is supposed small enough) and we have used the following
embedding (see [3]): for any real number p ∈ [1,∞[,

‖v‖Lp(ΓC) ≤ C
√
p‖v‖

H
1
2 (ΓC)

, ∀v ∈ H
1
2 (ΓC),

where C is independent of p. Define

η̃i =
( ∑

K∈Th

η̃2
iK

)1/2

, 1 ≤ i ≤ 5.

Assume that optimal a priori error estimates hold (this requires additional assumptions, see Rem. (5.2)). Then
the previous result leads to the following bounds: η̃i � h, 1 ≤ i ≤ 4 and η̃5 � h3/4(− ln(h))1/4. Therefore η̃ �
h3/4(− ln(h))1/4. If we use only the known a priori error estimates (see Rem. (5.2)), we get: η̃i � h3/4, 1 ≤ i ≤ 4
and η̃5 � h5/8(− ln(h))1/4. Therefore η̃ � h5/8(− ln(h))1/4 and our result is not far away from “optimality”
since we have a loss of convergence of only h1/8(− ln(h))−1/4.
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The second error estimator allows us to obtain improved upper and lower bounds of the error in comparison
with the one in the previous section. Note that the definition of the discretization error was modified in this
section where we compare ‖u − uh‖1,Ω + ‖λ − λ̃h‖− 1

2 ,ΓC
with η̃ (whereas in the previous section we compare

‖u − uh‖1,Ω + ‖λ − λh‖− 1
2 ,ΓC

with η). The forthcoming numerical experiments will help us to compare the
performances of both estimators and suggest us that η̃ is more appropriate than η for the unilateral contact
problem.

6. Numerical experiments

This section is concerned with the numerical implementation of both estimators. We suppose that the bodies
are homogeneous isotropic materials so that Hooke’s law (2) becomes:

σ(u) =
Eν

(1 − 2ν)(1 + ν)
tr(ε(u))I +

E

1 + ν
ε(u) (56)

where I represents the identity matrix, tr is the trace operator, E and ν denote Young’s modulus and Poisson’s
ratio, respectively with E > 0 and 0 ≤ ν < 1/2.

Our main aim is to validate our theoretical results by computing the different contributions of the estimators η
and η̃ and their orders of convergence for different meshes. We also compute some effectivity indices and show
that the estimator can be determined in more general cases than the theoretical framework. In our numerical
experiments we do not consider optimized computations obtained from the estimators and a mesh adaptivity
procedure which are beyond the scope of this paper. In the following we denote by NC , the number of elements
of the mesh on ΓC . Since we use uniform meshes (made of triangular elements), this parameter measures the
size of the mesh.

6.1. First example: comparison of the error terms in both estimators

We consider the domain Ω =]0, 1[×]0, 1[. We choose a realistic physical example. Namely we suppose
that the body is an iron square of 1 m2 whose material characteristics are E = 2.1 × 1011 Pa, ν = 0.3 and
ρ = 7800 kg · m−3. The body is clamped on ΓD = {1}×]0, 1[, it is initially in contact with ΓC = {0}×]0, 1[ and
it is acted on by its own weight only (with g = 9.81 m · s−2). Moreover ΓN =]0, 1[×({0}∪ {1}). We begin with
achieving computations involving criss-cross meshes (this means that the body is divided into identical squares,
each of them being divided into four identical triangles).

We observe (see Fig. 1) that ΓC is divided into two parts: an upper part where the body remains in contact
with the axis x = 0 and the lower part of ΓC where it separates from this axis. We determine the convergence
of all the terms involved in both estimators η and η̃ and we report the results in Tables 1 and 2 where we adopt
the notations of Remarks 4.5 and 5.7:

ηi =
( ∑

K∈Th

η2
iK

)1/2

, 1 ≤ i ≤ 6, η̃j =
( ∑

K∈Th

η̃2
jK

)1/2

, 1 ≤ j ≤ 5.

In these tables we compute the average convergence rates by averaging the rates between NC = 4 and NC = 128
and we give the limit rates if we observe that the rates seem to converge (this is not always the case). Note
that the convergence rate of the terms: η1 = η̃1 = h(

∑
K∈Th

‖fK‖2
K)1/2 ∼ h is 1.

From the experiments we see that the terms η2 = η̃2, η3, η̃3 and η4 = η̃4 converge towards zero and that η3
is close to η̃3 (η2 is the term converging the slowest towards zero and we observe that the main part of the error
in η and η̃ is located near the singular points (1, 0) and (1, 1)). The error terms measuring the non fulfillment
of the complementary condition (i.e., η5 and η̃5) show a convergence rate close to 1.5 which is much higher
than the ones expected from the theoretical part (see Rems. 4.5 and 5.7). Moreover η5 and η̃5 are small in
comparison with the other terms: this is not surprising since these terms are the only ones which depend on the
Young modulus E. More precisely, if u(E) solves the elasticity problem in Figure 1 with a Young modulus E
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Figure 1. Initial and deformed configuration with NC = 50 (deformation is amplified by a
factor 2 × 105).

Table 1. Contributions in the estimator η (criss-cross mesh).

Estimator η η2 η3 η4 η5 η6

NC = 1 94 716 35 788 29 586 3.20112 × 10−2 13 771
NC = 2 102 670 23 307 14 128 1.96822 × 10−2 12 322
NC = 4 78 460 9240.6 5989.7 5.02411 × 10−3 820.96
NC = 8 50 672 3150.8 2429.3 3.32207 × 10−3 1562.1
NC = 16 30 376 1108.1 938.10 4.31419 × 10−4 53.836
NC = 32 17 806 389.83 356.38 1.67433 × 10−4 31.015
NC = 64 10 424 138.49 134.19 6.30827 × 10−5 17.193
NC = 128 6142.2 49.502 50.194 2.39545 × 10−5 9.8331

Convergence:
Average rate 0.74 1.51 1.38 1.54 1.28
Limit rate 0.76 1.48 1.42 1.40 0.81

then it is easy to check from (56) that u(E)/k solves the same problem with a Young modulus kE (if we had
nonhomogeneous Dirichlet conditions, this would not be true) whereas σ(u(E)) = σ(u(kE)). This implies
that η5 and η̃5 behave as E−1/2 and maybe a normalization of η5 and η̃5 would be necessary to avoid this
phenomenon. The term η6 whose theoretical convergence rate is also not optimal shows a non uniform decay
towards zero, but faster than η2. So we can reasonably expect that η2 is the greatest term when NC → +∞.

If we choose more general unstructured quasi-uniform meshes (instead of criss-cross meshes) on Ω we obtain
the results reported in Tables 3 and 4.

The main conclusions are similar to the ones when criss-cross meshes are used and we notice that the terms η5
and η6 converge rapidly but with a non uniform rate towards zero.

From this test we conclude that the implementation of η̃ is simpler than for η: there is one term less in the
computation of η̃ and the terms η5 and η6 involve negative parts of λh (this would be more difficult to compute,
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Table 2. Contributions in the estimator η̃ (criss-cross mesh).

Estimator η̃ η̃2 η̃3 η̃4 η̃5

NC = 1 94 716 11 959 29 586 3.39530 × 10−2

NC = 2 102670 9536.6 14 128 1.04538 × 10−2

NC = 4 78 460 5014.3 5989.7 6.93578 × 10−3

NC = 8 50 672 2270.7 2429.3 2.16306 × 10−3

NC = 16 30 376 900.17 938.10 7.61047 × 10−4

NC = 32 17 806 339.23 356.38 2.71989 × 10−4

NC = 64 10 424 125.04 134.19 9.69379 × 10−5

NC = 128 6142.2 45.618 50.194 3.46036 × 10−5

Convergence:
Average rate 0.74 1.36 1.38 1.53
Limit rate 0.76 1.45 1.42 1.49

Table 3. Contributions in the estimator η (unstructured mesh)

Estimator η η2 η3 η4 η5 η6

NC = 1 88 542 31 184 32 591 2.24674 × 10−2 9851.5
NC = 2 99 918 21 238 13 833 1.70126× 10−2 10 315
NC = 4 95 846 10 861 5703.5 2.50567 × 10−3 737.97
NC = 8 69 987 4082.7 2448.9 3.27411 × 10−3 1502.8
NC = 16 44 123 1494.5 981.63 3.83538 × 10−4 144.18
NC = 32 26 776 505.22 373.78 1.0720 × 10−4 42.542
NC = 64 15 548 158.77 145.82 2.53311 × 10−5 9.1921
NC = 128 9296.4 54.193 53.902 3.58675 × 10−6 0.72587

Convergence:
Average rate 0.67 1.53 1.35 1.89 2.00
Limit rate 0.74 1.55 1.44 no limit rate no limit rate

especially in the three-dimensional case). Besides it seems that the convergence rate of η̃5 is more uniform
than the ones of η5 and η6 and that there are very few elements (near the transition points from contact to
separation) where the error of η̃5 is located and this is not the case for η5 and η6.

6.2. Second example: a more regular case

We consider the geometry Ω̂ =]0, 2[×]0, 1[ of area 2 square meters. We adopt symmetry conditions (i.e.,
un = 0, σt(u) = 0) on ΓS = {1}×]0, 1[ and we achieve the computations on the square Ω =]0, 1[×]0, 1[. We set
ΓC =]0, 1[×{0} and ΓN is the remaining part of the boundary of Ω. A Poisson ratio of ν = 0.2 and a Young
modulus of E = 1 Pa are chosen (the latter value is of course not realistic from a physical point of view). A
density of surface forces g of magnitude 1 N·m−2 oriented inwards Ω is applied on {0}×]1/2, 1[ and ]1/2, 1[×{1}.
Such a configuration corresponds to a K-elliptic case (see [19], Thm. 6.3) and the problem admits a unique
solution. We use criss-cross meshes in this example. Figure 2 depicts the initial and deformed configurations of
the body. Here again ΓC shows a contact and a separation part.



RESIDUAL ESTIMATORS FOR UNILATERAL CONTACT 919

Table 4. Contributions in the estimator η̃ (unstructured mesh).

Estimator η̃ η̃2 η̃3 η̃4 η̃5

NC = 1 88542 19 751 32 591 2.38302 × 10−2

NC = 2 99918 10 687 13 833 1.06738 × 10−2

NC = 4 95846 7155.9 5703.5 5.95065 × 10−3

NC = 8 69987 3387.7 2448.9 2.20742 × 10−3

NC = 16 44123 1288.3 981.63 6.76565 × 10−4

NC = 32 26776 453.06 373.78 2.45212 × 10−4

NC = 64 15548 143.92 145.82 8.87555 × 10−5

NC = 128 9296.4 49.590 53.902 3.17811 × 10−5

Convergence
Average rate 0.67 1.43 1.35 1.51
Limit rate 0.74 1.54 1.44 1.48

Figure 2. Initial and deformed configuration with NC = 50 (deformation is amplified by a
factor 0.1).

It is easy to see that the symmetry conditions on ΓS lead to supplementary error terms similar to the ones
in η4 = η̃4 and we add these terms to η2 and η̃2. Moreover we have η1 = η̃1 = 0. The results concerning both
estimators are reported in Tables 5 and 6.

As in the previous example, η2 is the main term in the estimators with the lowest (but greater then in the
previous example) convergence rate. We observe that the error is mainly located near the transition point
between contact and separation and near the singularities (0, 1/2) and (1/2,1) due to the jumps of the density
of surface forces at these points and also, due to the very small Young modulus. As in the previous example the
error terms η5 and η̃5 measuring the non fulfillment of the complementary condition converge with an higher
rate than theoretically expected. The term η6 shows a slow convergence rate in comparison with η5 and η̃5.

If we denote by (a(u−uh,u−uh))1/2 the energy norm of the discretization error (which is equivalent to the
(H1(Ω))2- norm of the error), we compute the convergence rates α, α̃ and β of η, η̃ and (a(u− uh,u− uh))1/2
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Table 5. Contributions in the estimator η.

Estimator η η2 η3 η4 η5 η6

NC = 2 0.93715 0.16483 5.46634 × 10−2 5.77944 × 10−2 7.91410 × 10−2

NC = 4 0.56976 7.17157 × 10−2 3.63730 × 10−2 2.32941 × 10−2 4.26924 × 10−2

NC = 8 0.33391 2.27644 × 10−2 1.53814 × 10−2 1.67857 × 10−2 1.62697 × 10−2

NC = 16 0.19152 1.00065 × 10−2 7.79360 × 10−3 4.73869 × 10−3 7.69676 × 10−3

NC = 32 0.10682 3.66909 × 10−3 3.24986 × 10−3 2.44547 × 10−3 5.90999 × 10−3

NC = 64 5.84672 × 10−2 1.17072 × 10−3 1.24725 × 10−3 8.11375 × 10−4 1.44793 × 10−3

NC = 128 3.15747 × 10−2 4.85373 × 10−4 5.05263 × 10−4 3.12555 × 10−4 1.38974 × 10−3

Convergence:
Average rate 0.83 1.44 1.23 1.24 0.99
Limit rate 0.89 1.27 1.30 1.38 no limit rate

Table 6. Contributions in the estimator η̃.

Estimator η̃ η̃2 η̃3 η̃4 η̃5

NC = 2 0.93715 0.10459 5.46634 × 10−2 7.89660 × 10−2

NC = 4 0.56976 5.01141 × 10−2 3.63730 × 10−2 1.41282 × 10−2

NC = 8 0.33391 1.84373 × 10−2 1.53814 × 10−2 1.30765 × 10−2

NC = 16 0.19152 7.52496 × 10−3 7.79360 × 10−3 2.79887 × 10−3

NC = 32 0.10682 2.85827 × 10−3 3.24986 × 10−3 1.04594 × 10−3

NC = 64 5.84672 × 10−2 1.03522 × 10−3 1.24725 × 10−3 6.23388 × 10−4

NC = 128 3.15747 × 10−2 4.01120 × 10−4 5.05263 × 10−4 1.50507 × 10−4

Convergence:
Average rate 0.83 1.39 1.23 1.31
Limit rate 0.89 1.37 1.30 no limit rate

respectively. Moreover we are interested in determining the effectivity indices:

γ =
η

(a(u − uh,u− uh))1/2
and γ̃ =

η̃

(a(u − uh,u − uh))1/2
·

These ratios measure the reliability of our estimators.
To our knowledge this problem does not admit an explicit solution u. So, in order to determine (a(u −

uh,u− uh))1/2, we need to compute a reference solution denoted by uref corresponding to a mesh which is as
fine as possible. The most refined mesh corresponds to NC = 128 and it furnishes the reference solution uref

which is the chosen approximation for u.

The results are reported in Table 7 where the errors are computed from NC = 2 to NC = 32 (the value
NC = 64 would give a underestimated error in the energy norm since the field uh is then too close to the
reference solution). The average convergence rates (between NC = 2 and NC = 32) are the following: α = 0.79,
α̃ = 0.79 and β = 0.84 and are therefore close. We also observe that the effectivity indices vary between 3.24
and 3.80 which correspond to reasonable values.
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Table 7. Estimators, error in the energy norm and effectivity indices.

η η̃ (a(u − uh,u − uh))1/2 γ γ̃

NC = 2 0.95823 0.94784 0.29249 3.28 3.24
NC = 4 0.57746 0.57329 0.17068 3.38 3.36
NC = 8 0.33585 0.33503 9.66688 × 10−2 3.47 3.47
NC = 16 0.19215 0.19185 5.32324 × 10−2 3.61 3.61
NC = 32 0.10712 0.10691 2.81764 × 10−2 3.80 3.79

Table 8. Contributions in the estimator η̃.

Estimator η̃ η̃2 η̃3 η̃4 η̃5

h = 1/10 236.36 48.899 41.727 0.20734
h = 1/20 138.60 17.341 20.835 6.25309 × 10−2

h = 1/40 89.959 10.645 10.912 2.98565 × 10−2

h = 1/80 42.857 2.2564 4.3787 1.68111 × 10−2

h = 1/160 22.865 1.1549 2.5559 4.50074 × 10−3

Convergence:
Average rate 0.84 1.35 1.00 1.38

In this example the term η6 converges slowly whereas the terms η3 and η̃3, η5 and η̃5 are similar. Concerning
the convergence rates of η and η̃ we find that there are similar and that the effectivity indices are also very
close. So we conclude that there is no reason to choose η instead of η̃ which is simpler to implement.

6.3. Third example: a Hertz type problem

In this test we consider the contact problem between an elastic disc (of 1 m in diameter) and a rigid half
plane which corresponds to a Hertz type problem. A Poisson ratio of 0.4 and a Young modulus E = 10 000 Pa
are chosen. The aim of this example is to extend the range of applicability of the estimator η̃ to a more general
case involving a curved contact zone with an initial gap between the foundation and the elastic body and an
increasing contact area. Initially in the unconstrained configuration, the contact part between the disc and the
half-plane is a single point. A density of surface loads g = (0,−200) N · m−2 is applied on the upper quarter
part of the boundary so that the problem becomes symmetric. We use quasi-uniform unstructured meshes.
Note that the unilateral contact conditions in (5) have to be changed to take into account the gap between the
contacting bodies. The conditions modelling unilateral contact on ΓC become:

un − ξ ≤ 0, σn(u) ≤ 0, σn(u) (un − ξ) = 0,

where ξ = ξ(x) is the distance from x ∈ ΓC to the rigid foundation. As a consequence the definition of η̃5 in
Definition 5.3 has to be changed into

η̃5K =

⎛
⎝ ∑

E∈EC
K

∫
E

−λ̃h(uhn − ξ)

⎞
⎠

1/2

.

The initial and a deformed configuration are depicted in Figure 3. The results concerning the implementation
of η̃ are reported in Table 8.
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Figure 3. Initial and deformed configuration (deformation is not amplified).

As previously explained and observed in the first example, the term η̃5 is small and it admits a convergence
rate which is really more important than theoretically expected. We obtain for this example results which are
similar to the previous ones.

7. Conclusion

In this work we propose and analyze two estimators (η and η̃) of residual type associated with two mixed finite
element approximations of the two-dimensional frictionless unilateral contact problem in linear elasticity. For
both estimators we obtain upper and lower bounds of the discretization error. From the numerical experiments
we come to the conclusion that the results given by the two estimators are roughly speaking similar and that all
the terms converge towards zero with satisfactory convergence rates (the slowest convergence is observed for the
classical terms denoted by η2 and η̃2 which measure in particular the constraint jumps across the interior edges,
and all the terms coming from the contact approximation converge better). Nevertheless η̃ has one term less to
evaluate in comparison with η and its numerical implementation is (a bit) simpler. We also observe that the
supplementary term in η (i.e., η6) does not admit in the general case a uniform convergence rate. Our conclusion
concerning the comparison of both estimators is that η̃ could be more promising than η. Besides we see that
the error terms measuring the non fulfillment of the complementarity condition (i.e., η5 and η̃5) converge much
faster than theoretically expected; this allows us to expect that some improved theoretical estimates for these
terms could be obtained.
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