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HOMOGENIZATION OF THIN PIEZOELECTRIC PERFORATED SHELLS
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Abstract. We rigorously establish the existence of the limit homogeneous constitutive law of a piezo-
electric composite made of periodically perforated microstructures and whose reference configuration
is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the
three curvilinear coordinates of the elastic displacement field and the electric potential are coupled.
By letting the size of the microstructure going to zero and by using the periodic unfolding method
combined with the Korn’s inequality in perforated domains, we obtain the limit model.
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1. Introduction

The homogenization method used in the modelling of periodically structured domains has been extensively
developed after the pioneering work (with a mathematical point of view) of Bensoussan et al. [3]. A rigorous
asymptotic study is given in Nguetseng [20], Allaire [1], Sanchez-Hubert and Sanchez-Palencia [22, 23], Cio-
ranescu and Donato [8] and in Cioranescu and Saint-Jean Paulin [10] in the case of thin perforated domains.
The approach we use in this paper differs from these quoted before and is more similar to the periodic modula-
tion method found in [2, 17]; it relies on the periodic unfolding method introduced by Cioranescu et al. [7] and
recently also extended to perforated domains [9].

The Koiter’s model for elastic shells combines the effects of the two tensors: the membrane tensor and the
flexural tensor. An asymptotic behavior of the displacement field in case of composite or laminated elastic shells
is described, for example, in Caillerie and Sanchez-Palencia [5] or Lewiński and Telega [16]. The coupling, in the
Koiter model of the two-dimensional linearized change of metric and curvature tensors which present different
order of derivatives of the curvilinear coordinates of the elastic displacement field gives rise to local problems
of different nature than the global one; in our paper these problems can be found in equations (30)–(32) and
equations (34) respectively. Another interesting extension is due to Caillerie and Sanchez-Palencia [6] when
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the size of each microstructure is comparable with its thickness; this approach will be addressed later in our
framework of piezoelectric material.

In the piezoelectric effect there exists a coupling between elastic field and electric field, i.e., under an applied
mechanical force a piezoelectric body undergoes a strain that produces an electric field and conversely an applied
electric field produces a mechanical stress. Many cristalline materials (such as quartz, Rochelle salt) or ceramic
materials (barium titanate, lead zirconate titanate) exhibit a piezoelectric behavior. Also human skin and human
bone present this property but with a very low elastic-electric coupling efficiency. These materials are used as
sensors or actuators, ultrasonic or shear transducers. For a more complete study of piezoelectric materials we
refer the reader to Dieulesaint and Royer [12] or Ikeda [14]. The modelling of laminated three-dimensional
piezoelectric composite has already been analyzed by Bourgeat et al. [4] and Mechkour [18].

Having in mind such applications as [21] (which presents a piezoelectric porous electrode used as a spatial filter
sensor) or [19] (which presents a bio-material made of a piezoelectric matrix with elastic inclusions of osteoblasts
and used as a micro device supposed to improve the bone regeneration) our purpose in this paper is to combine
the different previous features: shell structure, perforations and piezoelectric model to mathematically analyze
a well adapted model. Hence we study the homogenization of a thin shell having periodically distributed
microstructures with small size ε, each microstructure containing a hole. The shell is assumed to be of constant
thickness and periodicity, in this case, is viewed as periodicity with respect to the curvilinear parametrization
of its middle surface. The question we address here is to establish the limit model obtained when ε goes to zero.

The paper is organized as follows. In Section 2 we introduce the elements of differential geometry necessary
to describe the geometry of the shell, we recall the two-dimensional constitutive law of a piezoelectric material
(Eq. (4)) and the elastic-electric equilibrium equations of periodically perforated structures (Eq. (8)). In Sec-
tion 3 we recall the definition and main properties of the unfolding operator T ε associated to a reference cell.
Finally, in Section 4, we use the operator T ε as a tool to establish the strong convergence of the three covariant
components of the displacement field and of the electric potential (Eq. (19)) and therefore to obtain the limit
model (Eq. (34)); moreover a strong convergence is established for the correctors (Eq. (45)). For the sake of
clarity the delicate proof of Korn’s inequality for shells in perforated domain is postponed to the Appendix.

2. Two-dimensional model of shell

2.1. Reference configuration

We denote1 by xα the coordinates of a point x ∈ R
2, and by ∂α := ∂/∂xα the derivative with respect to xα.

Let Ω ⊂ R
2 be a smooth, connex domain with C2 boundary. The shell with middle surface S is defined with the

aid of a one-to-one mapping θ ∈ C3(Ω) with S = θ(Ω). We assume that for all x = (x1, x2) ∈ Ω, the two vectors
aα(x) := ∂αθ(x) are linearly independent. Hence, the vectors aα(x) span the tangent plane to the surface at
the point θ(x) ∈ S, x ∈ Ω. Let a3(x) be the unit normal vector to S at θ(x) defined by

a3(x) =
a1(x) × a2(x)
|a1(x) × a2(x)|

·

The three vectors ai(x) form the covariant basis at θ(x) while the three vectors ai(x) given by relations

ai(x) · aj(x) = δi
j,

form the two dimensional contravariant basis at θ(x). Let us remark that the vectors aα(x) defined above also
span the tangent plane to S at θ(x) and that a3(x) = a3(x). Let aαβ = aα · aβ and aαβ = aα · aβ be the
covariant and the contravariant components of the metric tensor of S. The area element along the surface S is√
a dx1 dx2 where a = det(aαβ).

1Throughout this paper, Latin indices and exponents take their values in the set {1, 2, 3}, Greek indices and exponents (except ε)
take their values in the set {1, 2} and the summation convention with respect to repeated indices and exponents is used. Boldface
letters represent vector-valued functions or spaces.
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The shell with thickness 2t and middle surface S is defined by the map

Θ : Ωt := Ω × [−t, t] → R
3,

Θ(x1, x2, x3) = θ(x1, x2) + x3a3(x1, x2), for all (x1, x2, x3) ∈ Ωt.

For t > 0 small enough, the mapping Θ is injective and the three vectors gi(x1, x2, x3) = ∂iΘ(x1, x2, x3) are
linearly independent at each point (x1, x2, x3) ∈ Ωt. The vectors gi(x1, x2, x3) form the three dimensional
covariant basis at the point Θ(x1, x2, x3). In this way we have defined a shell having the middle surface S and
constant thickness 2t > 0, i.e., a body whose reference configuration is the set Θ(Ωt).

2.2. Three-dimensional piezoelectricity

Under the action of applied volume loading f ∈ L2(Ωt) and without electric charges, the shell undergoes an
elastic displacement field u and a scalar electric potential ϕ given by the equations below:{

−div σ(u, ϕ) = f in Ωt,

−div D(u, ϕ) = 0 in Ωt,
(1)

where σ = (σij) is the linearized stress tensor and D = (Di) is the electric displacements vector defined as{
σij(u, ϕ) = cijklskl(u) + ekij∂kϕ,

Di(u, ϕ) = − eiklskl(u) + dij∂jϕ,
(2)

and {
(div σ(Bu,ϕ))j = ∂iσ

ij(u, ϕ),

div D(u, ϕ) = ∂iD
i(u, ϕ),

here (sij) represents the linearized deformation tensor which is given by

sij(u) =
1
2
(∂iuj + ∂jui).

Hence, the characteristics of the three dimensional piezoelectric material are given by the elastic tensor (cijkl),
the dielectric tensor (dij) and the piezoelectric coupling tensor (eijk). These three tensors have the following
properties:

• the elastic tensor (cijkl) is symmetric and positive definite, that is,

cijkl = cjikl = cklij ,

and there exists αc > 0 such that cijklXijXkl ≥ αcXijXij , ∀Xij = Xji ∈ R;
• the dielectric tensor (dij) is symmetric and positive definite, that is, dij = dji, and there exists αd > 0

such that dijXiXj ≥ αdXiXi, ∀X = (Xi) ∈ R
3;

• the piezoelectric tensor (eijl) is symmetric in the sense that eijk = ejik .
We assume that the components of the the above three tensors belong to L∞(Ωt).
The variational formulation of the problem (1) reads: find u ∈ H1

0 (Ωt; R3) and ϕ ∈ H1
0 (Ωt) such that⎧⎪⎪⎨⎪⎪⎩

∫
Ωt

(c(u,v) + e(v, ϕ))dx =
∫

Ωt

f · v dx ∀v ∈ H1
0 (Ωt; R3),∫

Ωt

(−e(u, ψ) + d(ϕ, ψ))dx = 0 ∀ψ ∈ H1
0 (Ωt),

(3)
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where c, e and d are given by ⎧⎨⎩ c(u,v) = cijklsij(u)skl(v),
e(v, ψ) = eijksij(v)∂kψ,
d(ϕ, ψ) = dij∂iϕ ∂jψ.

2.3. From three-dimensional equations to two-dimensional equations:
the piezoelectric shell equations

In the case of two-dimensional model of piezoelectric shell, four new tensors are needed. Their expressions
in terms of the previous three dimensional ones are given in Haenel [13], equations 3.2.23, 3.2.27:

• the membrane elastic tensor (cαβστ
M ), which is symmetric and positive definite;

• the flexural elastic tensor (cαβστ
F ), which is symmetric and positive definite;

• the dielectric tensor (dαβ), which is symmetric and positive definite;
• the piezoelectric tensor (eαβσ), which is symmetric in the sense that eαβσ = eβασ.

With previous assumptions, we deduce that the components of the four above tensors belong to L∞(Ω).
We consider a shell in curvilinear coordinates inspired by a Koiter model for the elastic shells (see [15])

in which the relation between the membrane constraints Tαβ, the bending constraints Mαβ and the electric
displacements Dσ are expressed in terms of the three covariant components u = (ui) of the elastic displacement
aiui and of the electric potential ϕ as follows:⎧⎪⎪⎨⎪⎪⎩

Tαβ(u, ϕ) = cαβστ
M γστ (u) + eαβσ∂σϕ,

Mαβ(u, ϕ) = − cαβστ
F ρστ (u),

Dσ(u, ϕ) = − eαβσγαβ(u) + dστ∂τϕ.

(4)

In relations (4), the tensor γ = (γαβ) represents the two-dimensional linearized change of metric tensor. Its
components are given by

γαβ(v) =
1
2
(∂αvβ + ∂βvα) − Γσ

αβvσ − bαβv3. (5)

Also in relations (4), ρ = (ραβ) denotes the two-dimensional linearized change of curvature tensor. Its compo-
nents are given by

ραβ(v) = ∂2
αβv3 − Γσ

αβ∂σv3 − bσαbσβv3 + bσα∂βvσ + bσβ∂αvσ + (∂βb
σ
α − bταΓσ

βτ − bτβΓσ
ατ )vσ, (6)

where bαβ , bβα represent the covariant and the contravariant components of the curvature tensor of the surface S,
they are given by

bαβ = a3 · ∂αaβ, bβα = a3 · ∂αaβ .

In (5)–(6), (Γσ
αβ) denote the two-dimensional Christoffel symbols for the surface S, that is, Γσ

αβ = aσ · ∂αaβ .
On the boundary ∂Ω we assume that the elastic dispacement field u and the electric potential ϕ verify an

homogeneous Dirichlet condition, u = 0 and ϕ = 0 on ∂Ω.
Assume that the resultant of the applied mechanics forces p expressed in terms of the mean value of f in the

covariant basis satisfies the regularity condition p ∈ L2(Ω) and set V (Ω) = H1
0 (Ω) ×H1

0 (Ω) × H2
0 (Ω). Then,

the couple (u, ϕ) ∈ V (Ω) ×H1
0 (Ω) is the unique solution of the variational problem (see Haenel [13]):⎧⎪⎪⎨⎪⎪⎩

∫
Ω

(cK(u,v) + eK(v, ϕ))
√
adx =

∫
Ω

p · v
√
a dx ∀v ∈ V (Ω),∫

Ω

(−eK(u, ψ) + dK(ϕ, ψ))
√
adx = 0 ∀ψ ∈ H1

0 (Ω),
(7)
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Figure 1. The reference cell Y ∗ and the periodically perforated domain Ωε.

where cK , eK and dK are given by⎧⎪⎨⎪⎩
cK(u,v) = cαβστ

M γαβ(u)γστ (v) +
t2
3
cαβστ
F ραβ(u)ρστ (v),

eK(v, ψ) = eαβσγαβ(v)∂σψ,
dK(ϕ, ψ) = dαβ∂αϕ ∂βψ.

2.4. Geometry of the perforated domain and equilibrium equations

Let Y = [0, 1[2 be the reference cell and let T be the reference hole included in Y, that is, T ⊂ Y and
Y ∗ = Y \ T is the part of Y which is occupied by the material. Let ε be a positive parameter that represents
the size of the elementary microstructure that contains the holes. Consider

Kε = {k ∈ Z
2; ε(Y + k) ∩ Ω �= ∅}

and set
Ω̃ε =

⋃
k∈Kε

ε(Y ∗ + k).

The periodically perforated domain Ωε (see Fig. 1) is defined as

Ωε = Ω ∩ Ω̃ε.

Remark that Ω̃ε is the smallest union of εY ∗ cells that contains Ωε.
We are now in position to formulate our problem. Let us first introduce the functional spaces

V (Ωε) = {φ ∈ H1(Ωε);φ = 0 on ∂Ω ∩ Ω
ε},

W (Ωε) = {φ ∈ H2(Ωε);φ = 0 on ∂Ω ∩ Ω
ε},

V (Ωε) = V (Ωε) × V (Ωε) ×W (Ωε).

Since the reference configuration Ωε of the structure and the characteristic tensors cεK , dε
K , eε

K depend upon ε,
the solution (uε, ϕε) also depends upon ε. The equilibrium equations satisfied by the couple (uε, ϕε) ∈ V (Ωε)×
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V (Ωε) are given by⎧⎪⎪⎨⎪⎪⎩
∫

Ωε

(cεK(uε,v) + eε
K(v, ϕε))

√
a dx =

∫
Ωε

p · v
√
a dx ∀v ∈ V (Ωε),∫

Ωε

(−eε
K(uε, ψ) + dε

K(ϕε, ψ))
√
a dx = 0 ∀ψ ∈ V (Ωε),

(8)

where, by analogy with the previous notations, cεK , e
ε
K and dε

K are defined as⎧⎪⎨⎪⎩
cεK(u,v) = cε,αβστ

M γαβ(u)γστ (v) +
t2
3
cε,αβστ
F ραβ(u)ρστ (v),

eε
K(v, ψ) = eε,αβσγαβ(v)∂σψ,
dε

K(ϕ, ψ) = dε,αβ∂αϕ ∂βψ.

3. Periodic unfolding operator

Our aim in this paper is to study the limit of the couple (uε, ϕε) as ε → 0. For this purpose, we use the
periodic unfolding method introduced by Cioranescu et al. [7]. The main feature here consists in the presence
of the periodic perforations that determine a more complicated limit constitutive law. The interest is also due
to the fact that the two-dimensional linearized change of metric and curvature tensors present different order
of derivatives of their arguments. We will show that this gives rise to local problems of different nature than
the global one.

For x ∈ R
2 we denote by [x] the unique integer combination such that x− [x] ∈ Y and set {x} = x− [x] ∈ Y.

In this manner, for any x ∈ R
2 and ε > 0, we have:

x = ε
([x
ε

]
+

{x
ε

})
.

Definition 3.1. The unfolding operator T ε : L1(Ωε) → L1(Ω × Y ∗) is given by

T ε(v)(x, y) = v
(
ε
[x
ε

]
+ εy

)
, for all v ∈ L1(Ωε) extended by zero in Ω̃ε \ Ωε,

where x is the so-called “slow variable” and y is the “rapid variable”.

Obviously, T ε is a linear operator and

T ε(vw) = T ε(v)T ε(w), for all v, w ∈ L1(Ωε). (9)

From the definition of Ω̃ε we get the exact integration formula∫
Ω

v dx =
∫

Ω̃ε×Y ∗
T ε(v)dxdy, for all v ∈ L1(Ωε). (10)

Let Oε be the set of all εY ∗ cells that intersect the boundary ∂Ω, that is,

Oε =
{
x ∈ Ω̃ε;

(
ε
[x
ε

]
+ εY

)
∩ ∂Ω �= ∅

}
.

Then, for all v ∈ L1(Ωε) we have ∣∣∣∣∫
Ωε

v dx−
∫

Ω×Y ∗
T ε(v)dxdy

∣∣∣∣ ≤ ∫
Oε

|v|dx. (11)
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For a function u = u(x, y) we denote by ∇xu and ∇yu the gradient of u with respect to x and y variable
respectively and ∂i,yu represents the derivative of u with respect to yi. For k = 1, 2 we denote by Hk

per(Y
∗) the

set of all functions of Hk(Y ∗) with vanishing mean value, extended by Y -periodicity.
The main properties of the unfolding operator T ε are described below.

Proposition 3.2. The following properties hold true:
(i) For any v ∈ L1(Ωε), v ≥ 0 we have∫

Ω×Y ∗
T ε(v)dxdy ≤

∫
Ωε

v dx.

(ii) If v ∈ L2(Ω) then T ε(v) → v strongly in L2(Ω × Y ∗).

(iii) Let {vε}ε be a uniformly bounded sequence in Lp(Ωε), p > 1, that is, ‖vε‖Lp(Ωε) ≤ C with C > 0
independent on ε. Then

lim
ε→0

∫
Oε

|vε|dx = 0.

(iv) Let {vε}ε be a uniformly bounded sequence in L2(Ωε). Then, there exists v ∈ L2(Ω× Y ∗) such that, up
to a subsequence, we have

T ε(vε) ⇀ v weakly in L2(Ω × Y ∗).

(v) Let {vε}ε be a uniformly bounded sequence in H1(Ωε). Then, there exist v ∈ H1(Ω) and a corrector field
v ∈ L2(Ω, H1

per(Y
∗)), such that, up to a subsequence, the following convergences hold{

T ε(vε) → v strongly in L2(Ω × Y ∗),

T ε(∇xv
ε) ⇀ ∇xv + ∇yv weakly in L2(Ω × Y ∗; R2).

(vi) Let {vε}ε be a uniformly bounded sequence in H2(Ωε). Then, there exist v ∈ H2(Ω) and a corrector field
v ∈ L2(Ω, H2

per(Y
∗)) such that, up to a subsequence, the following convergences hold⎧⎪⎨⎪⎩

T ε(vε) → v strongly in L2(Ω × Y ∗),

T ε(∇xv
ε) → ∇xv strongly in L2(Ω × Y ∗; R2),

T ε(∇2
xv

ε) ⇀ ∇2
xv + ∇2

yv weakly in L2(Ω × Y ∗; R2 × R
2).

Proof. The statement (i) is a direct consequence of (10) while (ii)–(iv) are proved in [7, 9] and (v) in [7, 11].
We present here only the proof of (vi). Let {vε}ε be an uniformly bounded sequence in H2(Ωε). Since {vε} is
uniformly bounded in H1(Ωε), by (iv) there exist v ∈ H1(Ω) and v̂ ∈ L2(Ω, H1

per(Y
∗)) such that

T ε(vε) → v strongly in L2(Ω × Y ∗), (12)

and
T ε(∇xv

ε) ⇀ ∇xv + ∇y v̂ weakly in L2(Ω × Y ∗; R2). (13)
On the other hand, {∂iv

ε} is uniformly bounded in H1(Ωε). Hence, by (iv) there exist wi ∈ H1(Ω) and
ŵi ∈ L2(Ω × Y ∗) such that

T ε (∂iv
ε) → wi strongly in L2(Ω × Y ∗), (14)

and
T ε

(
∇x(∂iv

ε)
)
⇀ ∇xwi + ∇yŵi weakly in L2(Ω × Y ∗; R2). (15)
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From (13) and (14) we deduce ∂iv + ∂i,y v̂ = wi in Ω × Y ∗. Since ∂iv and wi depend only on x, we obtain
∇y v̂ = 0. This means ∂iv = wi in Ω, that is, v ∈ H2(Ω).

By (15) we obtain
T ε

(
∂2

ijv
ε
)
⇀ ∂2

ijv + ∂j,yŵi weakly in L2(Ω × Y ∗). (16)
Interchanging i and j in (16) we also have

T ε
(
∂2

jiv
ε
)
⇀ ∂2

jiv + ∂i,yŵj weakly in L2(Ω × Y ∗). (17)

Since v ∈ H2(Ω), from (16) and (17) one obtains

∂j,yŵi = ∂i,yŵj in Ω × Y ∗. (18)

A classical result states that if ŵ = (ŵi) satisfies (18) in a simply connected domain, then ŵ is a gradient of a
vector field. This result also holds for perforated domains provided that the set of perforations has a Lipschitz
boundary. Therefore, there exists v ∈ L2(Ω;H2

per(Y ∗)) such that ŵ = ∇yv. Now (16) yields

T ε(∇2
xv

ε) ⇀ ∇2
xv + ∇2

yv weakly in L2(Ω × Y ∗; R2 × R
2).

This completes the proof. �

4. Homogenization of piezoelectric shell

We assume that there exist four tensors cM , cF , d, e which depend only on the microscopic variable y, such
that

T ε(cε,αβλµ
M )(x, y) = cαβλµ

M (y), for all (x, y) ∈ Ω × Y ∗,
and similarly for all tensors. Let V per(Y ∗) = H1

per(Y
∗) ×H1

per(Y
∗) ×H2

per(Y
∗).

We first prove the following result.

Theorem 4.1. Let (uε, ϕε) ∈ V (Ωε) × V (Ωε) be the unique solution of (8). Then, there exist (u, ϕ) ∈
V (Ω) × H1

0 (Ω) and two corrector fields u ∈ L2(Ω,V per(Y ∗)), ϕ ∈ L2(Ω, H1
per(Y

∗)) defined by the following
convergence ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T ε(uε) → u strongly in L2(Ω × Y ∗),

T ε(ϕε) → ϕ strongly in L2(Ω × Y ∗),

T ε(γαβ(uε)) ⇀ γαβ(u) + sαβ,y(u) weakly in L2(Ω × Y ∗),

T ε(ραβ(uε)) ⇀ ραβ(u) + rαβ,y(u) weakly in L2(Ω × Y ∗),

T ε(∇xϕ
ε) ⇀ ∇xϕ+ ∇yϕ weakly in L2(Ω × Y ∗; R2),

(19)

with sαβ,y(u) =
1
2
(∂α,yuβ + ∂β,yuα) and rαβ,y(u) = ∂2

αβ,yu3 + bσα∂β,yuσ + bσβ∂α,yuσ.

The limit fields (u, ϕ) and (u, ϕ) are the unique solution of the following variational problem posed for all
v ∈ V (Ω),v ∈ L2(Ω,V per(Y ∗)), ψ ∈ H1

0 (Ω), ψ ∈ L2(Ω, H1
per(Y ∗)):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω×Y ∗

(cαβστ
M (γαβ(u) + sαβ,y(u))(γστ (v) + sστ,y(v))

+
t2

3
cαβστ
F (ραβ(u) + rαβ,y(u))(ρστ (v) + rστ,y(v)))

√
a dxdy

+
∫

Ω×Y ∗
eαβσ(γαβ(v) + sαβ,y(v))(∂σϕ+ ∂σ,yϕ)

√
a dxdy = |Y ∗|

∫
Ω

p · v
√
a dx,∫

Ω×Y ∗
(−eαβσ(γαβ(u) + sαβ,y(u))(∂σψ + ∂σ,yψ) + dαβ(∂αϕ+ ∂α,yϕ)(∂βψ + ∂β,yψ))

√
a dxdy = 0.

(20)
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We shall prove (see Thm. 4.4) that the last three convergences in (19) are actually strong.

Proof. We divide the proof into three steps.
Step 1. A priori estimates. Taking (v, ψ) = (uε, ϕε) in (8) we have⎧⎪⎪⎨⎪⎪⎩

∫
Ωε

(cεK(uε,uε) + eε
K(uε, ϕε))

√
a dx =

∫
Ωε

p · uε
√
adx,∫

Ωε

(−eε
K(uε, ϕε) + dε

K(ϕε, ϕε))
√
a dx = 0.

By summation we obtain ∫
Ωε

(cεK(uε,uε) + dε
K(ϕε, ϕε))

√
adx =

∫
Ωε

p · uε
√
a dx,

that is,∫
Ωε

(
cε,αβστ
M γαβ(uε)γστ (uε) +

t2

3
cε,αβστ
F ραβ(uε)ρστ (uε) + dε,αβ∂αϕ

ε∂βϕ
ε
)√

a dx =
∫

Ωε

p · uε√a dx. (21)

Using Hölder’s inequality and the fact that the membrane, flexural and dielectric tensors are positive definite,
we obtain the estimate∑

α,β

{
‖ραβ(uε)‖2

L2(Ωε) + ‖γαβ(uε)‖2
L2(Ωε)

}
+

∑
α

‖∂αϕ
ε‖2

L2(Ωε)≤C1‖uε‖L2(Ωε), (22)

where C1 > 0 is independent on ε.
On the other hand, by Korn’s inequality for shells in the case of perforated domains (see Thm. 6.2 in the

Appendix) we have

‖uε
1‖2

H1(Ωε) + ‖uε
2‖2

H1(Ωε) + ‖uε
3‖2

H2(Ωε) ≤ C2

∑
α,β

{
‖ραβ(uε)‖2

L2(Ωε) + ‖γαβ(uε)‖2
L2(Ωε)

}
, (23)

with C2 independent on ε. Combining (22) and (23) and using Poincaré’s inequality we get

‖uε
1‖H1(Ωε) + ‖uε

2‖H1(Ωε) + ‖uε
3‖H2(Ωε) + ‖ϕε‖H1(Ωε) ≤ C,

where C is a positive constant that does not depend on ε.
Step 2. Weak convergence. In view of Proposition 3.2 (v)–(vi), there exist a piezoelectric field (u, ϕ) ∈
V (Ω) ×H1

0 (Ω) and two corrector fields u ∈ L2(Ω,V per(Y ∗)), ϕ ∈ L2(Ω, H1
per(Y

∗)) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ε(uε) → u strongly in L2(Ω × Y ∗),

T ε(ϕε) → ϕ strongly in L2(Ω × Y ∗),

T ε(∇xu
ε
α) ⇀ ∇xuα + ∇yuα weakly in L2(Ω × Y ∗; R2),

T ε(∇xu
ε
3) → ∇xu3 strongly in L2(Ω × Y ∗; R2),

T ε(∇2
xu

ε
3) ⇀ ∇2

xu3 + ∇2
yu3 weakly in L2(Ω × Y ∗; R2 × R

2),

T ε(∇xϕ
ε) ⇀ ∇xϕ+ ∇yϕ weakly in L2(Ω × Y ∗; R2).

(24)

From (24) we get {
T ε(γαβ(uε)) ⇀ γαβ(u) + sαβ,y(u) weakly in L2(Ω × Y ∗),

T ε(ραβ(uε)) ⇀ ραβ(u) + rαβ,y(u) weakly in L2(Ω × Y ∗).
(25)
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Step 3. Limit coupled problems. Let us first take test functions in (8) of the form (v, ψ) with v = (vi) and
vi, ψ ∈ C∞

0 (Ω). Then ⎧⎪⎨⎪⎩
T ε(γαβ(v)) → γαβ(v) strongly in L2(Ω × Y ∗),

T ε(ραβ(v)) → ραβ(v) strongly in L2(Ω × Y ∗),

T ε(∇xψ) → ∇xψ strongly in L2(Ω × Y ∗; R2).

By (11), Proposition 3.2 (iii) and (24)–(25) we pass to the limit in order to obtain the following variational
problem for all (v, ψ):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω×Y ∗

{
cαβστ
M (γαβ(u) + sαβ,y(u))γστ (v) +

t2

3
cαβστ
F (ραβ(u) + rαβ,y(u))ρστ (v)

}√
adxdy

+
∫

Ω×Y ∗
eαβσ(∂σϕ+ ∂σ,yϕ)γαβ(v)

√
adxdy = |Y ∗|

∫
Ω

p · v
√
adx,∫

Ω×Y ∗

{
− eαβσ(γαβ(u) + sαβ,y(u))∂σψ + dαβ(∂αϕ+ ∂α,yϕ)∂βψ

}√
adxdy = 0.

(26)

By density, the above relations hold for all (v, ψ) ∈ V (Ω) ×H1
0 (Ω).

We now take test functions v and ψ in (8) of the form

v(x) = vε(x) =
(
εv1(x)w1

({x
ε

})
, εv2(x)w2

({x
ε

})
, ε2v3(x)w3

({x
ε

}))
,

ψ(x) = ψε(x) = εψ(x)φ
({x

ε

})
,

with vi, ψ ∈ C∞
0 (Ω) and wi, φ ∈ C∞

per(Y
∗
). One can easily check that

∂αv
ε
β(x) = εwβ

({x
ε

})
∂αvβ(x) + vβ(x)∂αwβ

({x
ε

})
,

∂αβv
ε
3(x) = ε2w3

({x
ε

})
∂αβv3(x) + ε∂αv3(x)∂βw3

({x
ε

})
+ ε∂βv3(x)∂αw3

({x
ε

})
+ v3(x)∂αβw3

({x
ε

})
,

∂αψ
ε(x) = εφ

({x
ε

})
∂αψ(x) + ψ(x)∂αφ

({x
ε

})
.

Using Proposition 3.2 we obtain

⎧⎪⎨⎪⎩
T ε(∂αv

ε
β) → vβ(x)∂α,ywβ(y) strongly in L2(Ω × Y ∗),

T ε(∂αβv
ε
3) → v3(x)∂αβ,yw3(y) strongly in L2(Ω × Y ∗),

T ε(∂αψ
ε) → ψ(x)∂α,yφ(y) strongly in L2(Ω × Y ∗).

Let us set vi(x, y) = vi(x)wi(y) and ψ(x, y) = ψ(x)φ(y), (x, y) ∈ Ω × Y . Then

⎧⎪⎨⎪⎩
T ε(γαβ(vε)) → sαβ,y(v) strongly in L2(Ω × Y ∗),

T ε(ραβ(vε)) → rαβ,y(v) strongly in L2(Ω × Y ∗),

T ε(∇xψ
ε) → ∇yψ strongly in L2(Ω × Y ∗; R2).

(27)
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With the same arguments as above we can pass to the limit in (8) to obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω×Y ∗

{
cαβστ
M (γαβ(u) + sαβ,y(u))sστ,y(v) +

t

3

2

cαβστ
F (ραβ(u) + rαβ,y(u))rστ,y(v)

}√
adxdy

+
∫

Ω×Y ∗
eαβσsαβ,y(v)(∂σϕ+ ∂σ,yϕ)

√
a dxdy = 0,∫

Ω×Y ∗

{
− eαβσ(γαβ(u) + sαβ,y(u))∂σ,yψ + dαβ(∂αϕ+∂α,yϕ)∂β,yψ

}√
a dxdy = 0.

(28)

By density, (28) holds for all (v, ψ) ∈ L2(Ω,V per(Y ∗)) × L2(Ω, H1
per(Y

∗)). Now, the variational problem (20)
is obtained by summating (26) and (28). We point out that (20) has a unique solution due to the symmetry
and coercivity of the tensors cM , cF , d, e.

This completes the proof of Theorem 4.1. �
We are now in position to write the local problems. First, in view of problem (28), we express the correc-

tors u and ϕ as a linear combination of basis functions (gλµ, ζ
λµ

), (h
λµ
, θ

λµ
), (zµ, ηµ) ∈ L2(Ω,V per(Y ∗)) ×

L2(Ω, H1
per(Y

∗)): ⎧⎨⎩ u(x, y) = γλµ(u(x))gλµ(x, y) + ρλµ(u(x))h
λµ

(x, y) + ∂µϕ(x)zµ(x, y),

ϕ(x, y) = γλµ(u(x))ζ
λµ

(x, y) + ρλµ(u(x))θ
λµ

(x, y) + ∂µϕ(x)ηµ(x, y).
(29)

From (28) and (29), the three pairs of local functions (gαβ, ζ
αβ

), (h
αβ
, θ

αβ
) and (zσ, ησ) are given by the

variational problems (30)–(32) below. Remark that the difference between problem (8) and problems (30)–(32)
is that the operators γαβ and ραβ in (8) have been replaced by sαβ,y and rαβ,y respectively:⎧⎪⎪⎨⎪⎪⎩

∫
Y ∗

(cK,y(gαβ ,v) + ey(v, ζ
αβ

)) = −
∫

Y ∗
cαβστ
M sστ,y(v) ∀v̄ ∈ V per(Y ∗),∫

Y ∗
(−ey(gαβ , ψ) + dy(ζ

αβ
, ψ)) =

∫
Y ∗

eαβσ∂σ,yψ, ∀ψ̄ ∈ H1
per(Y

∗),
(30)

⎧⎪⎪⎨⎪⎪⎩
∫

Y ∗
(cK,y(h

αβ
,v) + ey(v, θ

αβ
)) = − t2

3

∫
Y ∗
cαβστ
F rστ,y(v), ∀v̄ ∈ V per(Y ∗),∫

Y ∗
(−ey(h

αβ
, ψ) + dy(θ

αβ
, ψ)) =0 ∀ψ̄ ∈ H1

per(Y
∗),

(31)

⎧⎪⎪⎨⎪⎪⎩
∫

Y ∗
(cK,y(zσ,v) + ey(v, ησ)) = −

∫
Y ∗

eαβσsαβ,y(v) ∀v̄ ∈ V per(Y ∗),∫
Y ∗

(−ey(zσ, ψ) + dy(ησ, ψ)) = −
∫

Y ∗
dσβ∂β,yψ ∀ψ̄ ∈ H1

per(Y
∗),

(32)

with the new notations⎧⎪⎪⎪⎨⎪⎪⎪⎩
cK,y(u,v) = cαβστ

M sαβ,y(u)sστ,y(v) +
t2

3
cαβστ
F rαβ,y(u)rστ,y(v),

ey(v, ψ) = eαβσsαβ,y(v)∂σ,yψ,

dy(η, ψ) = dαβ∂α,yη ∂β,yψ.

(33)

One can easily prove that problems (30)–(32) have a unique solution. We point out that the basis functions
depend upon the macroscopic variable x due to the definition of the operator rαβ,y and cK,y.

Concerning the global homogenized problem we have the following result.



886 M. GHERGU ET AL.

Theorem 4.2. The limit elastic field u ∈ V (Ω) and the limit electric potential ϕ ∈ H1
0 (Ω) are the unique

solution of the global homogenized variational problem⎧⎪⎪⎨⎪⎪⎩
∫

Ω

(cK(u,v) + eK(v, ϕ))
√
a dx =

∫
Ω

p · v
√
a dx, ∀v ∈ V (Ω),∫

Ω

(−eK(u, ψ) + dK(ϕ, ψ))
√
a dx = 0, ∀ψ ∈ H1

0 (Ω),
(34)

where cK , eK , dK depend now on six new tensors given in (43) below.

Proof. By (29) we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
sαβ,y(u) = γλµ(u)sαβ,y(gλµ) + ρλµ(u)sαβ,y(h

λµ
) + ∂µϕsαβ,y(zµ),

rαβ,y(u) = γλµ(u)rαβ,y(gλµ) + ρλµ(u)rαβ,y(h
λµ

) + ∂µϕrαβ,y(zµ),

∂σ,yϕ = γλµ(u)∂σ,yζ
λµ

+ ρλµ(u)∂σ,yθ
λµ

+ ∂µϕ∂σ,yη
µ.

Using the above relations, the first equation in (26) reads

∫
Ω×Y ∗

{
[cαβστ

M + cστλµ
M sλµ,y(gαβ) + eστλ∂λ,yζ

αβ ]γαβ(u)γστ (v) +
t2

3
cστλµ
F rλµ,y(gαβ)γαβ(u)ρστ (v)

+ [cστλµ
M sλµ,y(h

αβ
) + eαβλ∂λ,yθ

αβ
]ραβ(u)γλµ(v) +

t2

3
[cαβστ

F + cστλµ
F rλµ,y(θ

αβ
)]ραβ(u)ρστ (v)

+ [(eαβσ + eαβλ∂λ,yη
s + cαβστ

M )γαβ(u) +
t2

3
cαβστ
F rλµ,y(zσ)ραβ(v)]∂σϕ

}√
a dxdy = |Y ∗|

∫
Ω

p · v
√
a dx.

(35)

Also, the second equation in (26) takes the form

∫
Ω×Y ∗

{
[−eαβσ − eλµσsλµ,y(gαβ) + dλσ∂λ,yζ

αβ
]γαβ(v)∂σψ + [−eλµσsλµ,y(h

αβ
) + dλσ∂λ,yθ

αβ
]ραβ(v)∂σψ

+ [dαβ + dαλ∂λ,yη
β − eλµαsλµ,y(zβ)]∂αϕ∂βψ

}√
adxdy = 0.

(36)

Let us introduce the notations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cαβστ
M (x) = 1

|Y ∗|
∫

Y ∗ c
στλµ
M (δα

λδ
β
µ + sλµ,y(gαβ)) + eστλ∂λ,yζ

αβ
,

cαβστ
F (x) = 1

|Y ∗|
∫

Y ∗ c
στλµ
F (δα

λδ
β
µ + rλµ,y(h

αβ
)),

cαβστ
1 (x) = 1

|Y ∗|
∫

Y ∗ c
στλµ
F rλµ,y(gαβ),

cαβστ
2 (x) = 1

|Y ∗|
∫

Y ∗ c
στλµ
M sλµ,y(h

αβ
) + eστλ∂λ,yθ

αβ
,

eαβσ(x) = 1
|Y ∗|

∫
Y ∗ eαβλ(δσ

λ + ∂λ,yη
σ) + cαβλµ

M sλµ,y(zσ),

l
αβσ

(x) = 1
|Y ∗|

∫
Y ∗ c

αβλµ
F rλµ,y(zσ),

f
αβσ

(x) = 1
|Y ∗|

∫
Y ∗ eλµσ(δα

λ δ
β
µ + sλµ,y(gαβ)) − dλσ∂λ,yζ

αβ
,

qαβσ(x) = 1
|Y ∗|

∫
Y ∗ eλµσsλµ,y(h

αβ
) − dλσ∂λ,yθ

αβ
,

d
αβ

(x) = 1
|Y ∗|

∫
Y ∗(−eλµαsλµ,y(zβ) + dαλ(δβ

λ + ∂λ,yη
β)).

(37)
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From (35)–(37) we get the following global variational problem⎧⎪⎪⎨⎪⎪⎩
∫

Ω

(cK(u,v) + eK(v, ϕ))
√
a dx =

∫
Ω

p · v
√
adx, ∀v ∈ V (Ω),∫

Ω

(−fK(u, ψ) + dK(ϕ, ψ))
√
a dx = 0, ∀ψ ∈ H1

0 (Ω),
(38)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cK(u,v) = cαβστ
M γαβ(u)γστ (v) +

t2

3
cαβστ
F ραβ(u)ρστ (v) +

t2

3
cαβστ
1 γαβ(u)ρστ (v) + cαβστ

2 ραβ(u)γστ (v),

eK(v, ψ) = eαβσγαβ(v)∂σψ +
t2

3
l
αβσ

ραβ(v)∂σψ,

fK(v, ψ) = f
αβσ

γαβ(v)∂σψ + q̄αβσραβ(v)∂σψ,

dK(ϕ, ψ) = d
αβ
∂αϕ ∂βψ.

The following result asserts the symmetry of the tensors cM , cF , d.

Lemma 4.3. We have

(i)
t2

3
cαβστ
1 = cσταβ

2 .

(ii) f
αβσ

= f
βασ

= eαβσ and qαβσ = qβασ = t2

3 l
αβσ

.
(iii) cαβστ

M = cσταβ
M and cαβστ

F = cσταβ
F .

(iv) d
αβ

= d
βα
.

Proof. The main idea is to choose particular test functions (v, ψ) in the variational problems (30)–(32).
(i) Letting (v, ψ) = (gαβ , ζ

αβ
) in (31) we obtain⎧⎪⎪⎨⎪⎪⎩

∫
Y ∗

(cK,y(h
στ
, gαβ) + ey(gαβ , θ

στ
)) = − t2

3

∫
Y ∗
cστλµ
F rλµ,y(gαβ),∫

Y ∗
(−ey(h

στ
, ζ

αβ
) + dy(θ

στ
, ζ

αβ
)) = 0.

By subtraction, the above relations yield

t2

3

∫
Y ∗
cστλµ
F rλµ,y(gαβ) = −

∫
Y ∗
cK,y(h

στ
, gαβ) + ey(gαβ , θ

στ
) + ey(h

στ
, ζ

αβ
) − dy(θ

στ
, ζ

αβ
).

Hence

t2

3
c̄αβστ
1 =

t2

3|Y ∗|

∫
Y ∗
cστλµ
F rλµ,y(gαβ)

= − 1
|Y ∗|

∫
Y ∗
cK,y(h

στ
, gαβ) + ey(gαβ , θ

στ
) + ey(h

στ
, ζ

αβ
) − dy(θ

στ
, ζ

αβ
).

(39)

Taking (v, ψ) = (h
στ
, θ

στ
) in (30) and then subtracting, we find

c̄αβστ
2 =

1
|Y ∗|

∫
Y ∗
cστλµ
M sλµ,y(h

αβ
) + eστλ∂λ,yθ

αβ

= − 1
|Y ∗|

∫
Y ∗
cK,y(gαβ ,h

στ
) + ey(h

στ
, ζ

αβ
) + ey(gαβ , θ

στ
) − dy(ζ

αβ
, θ

στ
).

(40)
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From (39) and (40) we get t2

3 c̄
αβστ
1 = c̄αβστ

2 .

(ii) Let us take (v, ψ) = (gαβ, ζ
αβ

) as test functions in (32). We get⎧⎪⎪⎨⎪⎪⎩
∫

Y ∗
(cK,y(zσ, gαβ) + ey(gαβ , ησ) = −

∫
Y ∗

eλµσsλµ,y(gαβ),∫
Y ∗

(−ey(zσ, ζ
αβ

) + dy(ησ, ζ
αβ

)) = −
∫

Y ∗
dλσ∂λ,yζ

αβ
.

Subtracting the above equalities we obtain

−
∫

Y ∗
eλµσ(sλµ,y(gαβ) − ∂λ,yζ

αβ
) =

∫
Y ∗
cK,y(gαβ , zσ) + ey(gαβ , ησ) + ey(zσ, ζ

αβ
) − dy(ησ, ζ

αβ
).

Furthermore, by (37) we deduce

f
αβσ

= eαβσ +
∫

Y ∗
eλµσ(sλµ,y(gαβ) − ∂λ,yζ

αβ
)

= eαβσ − 1
|Y ∗|

∫
Y ∗
cK,y(gαβ , zσ) + ey(gαβ , ησ) + ey(zσ, ζ

αβ
) − dy(ησ, ζ

αβ
).

(41)

Hence f
αβσ

= f
βασ

. Taking (v, ψ) = (zσ, ησ) in (30), by combination we have

−
∫

Y ∗
cαβστ
M (sστ,y(zσ) + ∂λ,yη

σ) =
∫

Y ∗
cK,y(gαβ , zσ) + ey(gαβ , ησ) + ey(zσ, ζ

αβ
) − dy(ησ, ζ

αβ
).

By (37), (41) and the above equality we obtain

eαβσ= eαβσ +
∫

Y ∗

∫
Y ∗
cαβστ
M (sστ,y(zσ) + ∂λ,yη

σ)

= eαβσ − 1
|Y ∗|

∫
Y ∗
cK,y(gαβ , zσ) + ey(gαβ , ησ) + ey(zσ, ζ

αβ
) − dy(ησ, ζ

αβ
).

= f
αβσ

.

We have proved that f
αβσ

= f
βασ

= eαβσ. In the same manner we obtain qαβσ = qβασ = t2

3 l
αβσ

.
(iii) First, from (37) we have

cαβστ
M (x) = cαβστ

M +
1

|Y ∗|

∫
Y ∗
cαβλµ
M sλµ,y(gστ ) + eαβλ∂λ,yζ

στ
.

We choose (v, ψ) = (gστ , ζ
στ

) as test functions in (30). We get⎧⎪⎨⎪⎩
∫

Y ∗
(cK,y(gαβ , gστ ) + ey(gστ , ζ

αβ
)) = −

∫
Y ∗
cαβλµ
M sλµ,y(gστ ),∫

Y ∗
(−ey(gαβ , ζ

στ
) + dy(ζ

αβ
, ζ

στ
)) = 0.

Hence

cαβστ
M = cαβστ

M − 1
|Y ∗|

∫
Y ∗
cK,y(gαβ , gστ ) + ey(gστ , ζ

αβ
) + ey(gαβ , ζ

στ
) − dy(ζ

αβ
, ζ

στ
).
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It follows that cαβστ
M = cσταβ

M . In the same manner, by taking (v, ψ) = (h
στ
, θ

στ
) in (31), we deduce cαβστ

F =
cσταβ
F .

(iv) With the same idea as above, we consider (v, ψ) = (zσ, ησ) in (32) in order to get

d
αβ

= dαβ − 1
|Y ∗|

∫
Y ∗
cK,y(zα, zβ) + ey(zα, ηβ) + ey(zβ , ηα) − dy(ηα, ηβ) = d

βα
.

The proof of Lemma 4.3 is now complete. �

From (37) we obtain the following expressions of homogenized tensors c̄M , c̄F , ē, d̄ and of the new flexural
coupling tensors c̄, l̄: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cαβστ
M (x) = 1

|Y ∗|
∫

Y ∗ c
αβλµ
M (δσ

λδ
τ
µ + sλµ,y(gστ )) + eαβλ∂λ,yζ

στ
,

cαβστ
F (x) = 1

|Y ∗|
∫

Y ∗ c
αβλµ
F (δσ

λδ
τ
µ + rλµ,y(h

στ
)),

cαβστ (x) = 1
|Y ∗|

∫
Y ∗ c

αβλµ
F rλµ,y(gστ ),

eαβσ(x) = 1
|Y ∗|

∫
Y ∗ eαβλ(δσ

λ + ∂λ,yη
σ) + cαβλµ

M sλµ,y(zσ),

l
αβσ

(x) = 1
|Y ∗|

∫
Y ∗ c

αβλµ
F rλµ,y(zσ),

d
αβ

(x) = 1
|Y ∗|

∫
Y ∗(−eλµαsλµ,y(zβ) + dαλ(δβ

λ + ∂λ,yη
β)).

(42)

Remark also that, by virtue of Lemma 4.3, problem (38) rewrites⎧⎪⎪⎨⎪⎪⎩
∫

Ω

(cK(u,v) + eK(v, ϕ))
√
a dx =

∫
Ω

p · v
√
a dx ∀v ∈ V (Ω),∫

Ω

(−eK(u, ψ) + dK(ϕ, ψ))
√
a dx = 0 ∀ψ ∈ H1

0 (Ω),

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cK(u,v) = cαβστ

M γαβ(u)γστ (v)+
t2

3
cαβστ
F ραβ(u)ρστ (v)+

t2

3
cαβστγαβ(u)ρστ (v)+

t2

3
cσταβραβ(u)γστ (v),

eK(v, ψ) = eαβσγαβ(v)∂σψ +
t2

3
l
αβσ

ραβ(v)∂σψ,

dK(ϕ, ψ) = d
αβ
∂αϕ ∂βψ.

(43)
It remains only to prove the existence and the uniqueness of the solution corresponding to the limit prob-

lem (34). This follows via Lax-Milgram theorem by showing the coercivity of the tensors (cαβστ
M ), (cαβστ

F ) and

(d
αβ

). Note that by virtue of Lemma 4.3 all these tensors are symmetric. Let us first prove the coercivity of
(cαβστ

M ). To this aim, consider a symmetric tensor X = (Xαβ). Then, from (42) we have

cαβστ
M XαβXστ = cαβστ

M XαβXστ +
1

|Y ∗|

∫
Y ∗
cαβλµ
M sλµ,y(gστXαβ)Xστ + eαβλ∂λ,y(ζ

στ
Xστ )Xαβ .

Moreover, by (30) we deduce that (w, ξ) = (gστXστ , ζ
στ
Xστ ) is solution of the variational problem⎧⎪⎪⎨⎪⎪⎩

∫
Y ∗

(cK,y(w,v) + ey(v, ξ))= −
∫

Y ∗
cαβλµ
M sλµ,y(v)Xαβ , ∀ v̄ ∈ V per(Y ∗),∫

Y ∗
(−ey(w, ψ) + dy(ξ, ψ)=

∫
Y ∗

eαβσ∂σ,yψXαβ , ∀ ψ̄ ∈ H1
per(Y

∗).
(44)
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Therefore (w, ξ) is a saddle point associated to the functional

I : V per(Y ∗) ×H1
per(Y

∗) → R,

defined by

I(v, ψ) =
1
2

∫
Y ∗
cαβστ
M (sαβ,y(v) +Xαβ)(sστ,y(v) +Xστ )

√
a dy +

t2

6

∫
Y ∗
cαβστ
F rαβ,y(v)rστ,y(v)

√
ady

+
∫

Y ∗
eαβσ(sαβ,y(v) +Xαβ)∂λ,yψ

√
a dy − 1

2

∫
Y ∗
dαβ∂α,yψ∂β,yψ

√
a dy.

This yields

I(w, ψ) ≤ I(w, ξ) ≤ I(v, ξ), for all (v, ψ) ∈ V per(Y ∗) ×H1
per(Y

∗).

Consequently, for ψ = 0 we get

I(w, ξ) ≥ I(w, 0)

=
1
2

∫
Y ∗
cαβλµ
M (sαβ,y(w) +Xαβ)(sλµ,y(w) +Xλµ)

√
a dy +

t2

6

∫
Y ∗
cαβστ
F rαβ,y(w)rστ,y(w)

√
a dy

> 0.

Moreover, taking (v, ψ) = (w, ξ) in (44) we obtain

cαβτσ
M XαβXστ = 2I(w, ξ) > 0.

Set B = {X = (Xαβ) ;X is symmetric and XαβXαβ = 1} and consider Ψ : B → R defined by

Ψ(Xαβ) = cαβρσ
M XαβXρσ.

It is easy to see that Ψ is continuous on B endowed with the standard topology defined by the norm ‖X‖ =
(XαβXαβ)

1
2 . Since Φ attains its minimum on B and Ψ > 0, we conclude that there exists αM > 0 such that

Ψ
(
Xαβ

‖ X ‖

)
≥ αM , for all symmetric tensor X = (Xαβ) �≡ 0.

From the above inequality we deduce

cαβρσ
M XαβXρσ ≥ αMXαβXαβ .

This means that the tensor (cαβστ
M ) is coercive. In a similar way we obtain that the tensors (cαβστ

F ) and (d
αβ

)
are coercive. Hence, by Lax-Milgram theorem we deduce that the global problem (34) has a unique solution.
This completes the proof of Theorem 4.2. �
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Theorem 4.4. We have the following strong convergence for the gradients⎧⎪⎨⎪⎩
T ε(γαβ(uε)) → γαβ(u) + sαβ,y(u) strongly in L2(Ω × Y ∗),

T ε(ραβ(uε)) → ραβ(u) + rαβ,y(u) strongly in L2(Ω × Y ∗),

T ε(∇xϕ
ε) → ∇xϕ+ ∇yϕ strongly in L2(Ω × Y ∗; R2).

(45)

Proof. Let us take v = u, ψ = ϕ and v = u, ψ = ϕ in (20). By summation we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω×Y ∗

(cαβστ
M (γαβ(u) + sαβ,y(u))(γστ (u) + sστ,y(u))

+
t2

3
cαβστ
F (ραβ(u) + rαβ,y(u))(ρστ (u) + rστ,y(u)))

√
a dxdy

+
∫

Ω×Y ∗
dαβ(∂αϕ+ ∂α,yϕ)(∂βψ + ∂β,yψ))

√
a dxdy = |Y ∗|

∫
Ω

p · v
√
a dx.

(46)

From (24) and (25), the left hand side in (46) is smaller than

lim inf
ε→0

∫
Ω×Y ∗

{
cαβστ
M T ε(γαβ(uε))T ε(γστ (uε))

+
t2

3
cαβστ
F T ε(ραβ(uε))T ε(ρστ (uε)) + dαβT ε(∂αϕ

ε)T ε(∂βϕ
ε)

}
T ε(

√
a) dxdy,

which reads

lim inf
ε→0

∫
Ω×Y ∗
T ε

({
cαβστ
M γαβ(uε)γστ (uε) +

t2
3
cαβστ
F ραβ(uε)ρστ (uε) +dαβ∂αϕ

ε∂βϕ
ε
}√

a

)
dxdy.

By virtue of Proposition 3.2 (i) and (21), we have

lim inf
ε→0

∫
Ω×Y ∗
T ε

({
cαβστ
M γαβ(uε)γστ (uε) +

t2

3
cαβστ
F ραβ(uε)ρστ (uε) +dαβ∂αϕ

ε∂βϕ
ε
}√

a

)
dxdy

≤ lim inf
ε→0

∫
Ωε

(
cαβστ
M γαβ(uε)γστ (uε) +

t2

3
cαβστ
F ραβ(uε)ρστ (uε) +dαβ∂αϕ

ε∂βϕ
ε
)√
a dx

≤ lim sup
ε→0

∫
Ωε

(
cαβστ
M γαβ(uε)γστ (uε) +

t2

3
cαβστ
F ραβ(uε)ρστ (uε) +dαβ∂αϕ

ε∂βϕ
ε
)√
a dx

= lim sup
ε→0

∫
Ωε

p · uε√a dx = lim
ε→0

∫
Ωε

p · uε√a dx.

Using (11), Proposition 3.2 (iii) and the fact that T ε(uε) → u, we have

lim
ε→0

∫
Ωε

p · uε
√
a dx = lim

ε→0

∫
Ωε×Y ∗

T ε(uε) · T ε(p
√
a) dxdy = |Y ∗|

∫
Ω

p · u
√
a dx. (47)

From (46) and (47) we deduce that all the above inequalities become equalities. This also implies the strong
convergences (45). The proof of Theorem 4.4 is now complete. �

5. Conclusions

We have obtained in this paper the limit constitutive law of a piezoelectric material with periodically perfo-
rated microstructure and whose reference configuration is a thin shell with fixed thickness. The main difficulty
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comes from the geometry of the reference cell which presents holes. Furthermore, the local problems for the
shells are of different nature than the global one, due to the different orders of derivatives in the linearized
change of metric and curvature tensors γ and ρ. An interesting direction for further research is to determine the
asymptotic behavior of the displacement elastic field and of the electric potential when both ε and the thickness
of the shell 2t goes to zero. In this case the ratio

ε

t
plays an important role as it was analyzed in Caillerie and

Sanchez-Palencia [6].

6. Appendix. Korn’s inequality for shells in perforated domains

In this section we prove the Korn’s inequality for perforated domains. Let D = ]0, L[ × R, L > 0.

Lemma 6.1. Let V ∈ H1(D) be such that V (0, ·) = V (L, ·) = 0. We extend V by zero outside D and let
Λ : Z

2 → (0,+∞) with the property

‖∇V ‖2
L2(ε(ξ+Y );R2) ≤ Λ(ξ) + c‖V ‖2

L2(ε(ξ+Y )), (48)

for all ξ ∈ Z
2, where c > 0 is a positive constant that does not depend on ε and satisfies c εL ≤ 1/2. Then,

there exists C > 0 not depending on ε such that

‖V ‖2
H1(D) ≤ C

∑
ξ∈Z2

Λ(ξ). (49)

Proof. Since V (0, ·) = 0, for all k ∈ Z, k ≥ 0 we have

‖V ‖2
L2(ε((k,q)+Y )) ≤ εL

k∑
p=0

‖∇V ‖2
L2(ε((p,q)+Y );R2). (50)

We fix q ∈ Z, q ≥ 0 and set

yk =
k∑

p=0

‖∇V ‖2
L2(ε((p,q)+Y );R2).

From (48) and (50) it follows that
y0 ≤ 2Λ(0, q), (51)

and
yk+1 − yk ≤ Λ(k + 1, q) + cLεyk+1.

Since 2c εL ≤ 1, the last inequality yields

yk+1 − yk ≤ 2Λ(k + 1, q) + 2cLεyk. (52)

Let Kε =
[

L
ε

]
. For all p > Kε + 1 we have V = 0 in L2(ε((p, q) + Y )), hence one can assume that k ≤ Kε + 1.

Summating in (52) we obtain

yk ≤ (1 + 2c εL)k
k∑

p=1

Λ(p, q)(1 + 2c εL)−p + y0(1 + 2c εL)k.

Using (51) we deduce

yk ≤ 2(1 + 2c εL)k
k∑

p=0

Λ(p, q)(1 + 2c εL)−p ≤ 2(1 + 2c εL)k
k∑

p=0

Λ(p, q).
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Since k ≤
[

L
ε

]
+ 1 we also have (1 + 2c εL)k ≤ e2c εLk ≤ e2cL2+1. This yields

yk ≤ 2e2cL2+1
k∑

p=0

Λ(p, q).

Summating over q in the above inequality we get

‖∇V ‖2
L2(D;R2) ≤ C

∑
(p,q)∈Z2

Λ(p, q).

Now, (49) follows from the last relation and Poincaré’s inequality. This concludes the proof. �
On V (Ωε) we define the seminorm

|||v|||ε :=

⎛⎝∑
α,β

{‖ραβ(v)‖2
L2(Ωε) + ‖γαβ(v)‖2

L2(Ωε)}

⎞⎠1/2

, for all v ∈ V (Ωε).

The following result asserts that |||·|||ε is equivalent to the standard norm in H1(Ωε) ×H1(Ωε) ×H2(Ωε).

Theorem 6.2 (Korn’s inequality). On V (Ωε), the seminorm |||·|||ε is equivalent to the usual norm in H1(Ωε)×
H1(Ωε)×H2(Ωε). More precisely, there exist two positive constants c1, c2 > 0 depending only on Ω, Y ∗ and on
the mapping θ (but not depending on ε) such that

c1 |||v|||ε ≤ ‖v1‖H1(Ωε) + ‖v2‖H1(Ωε) + ‖v3‖H2(Ωε) ≤ c2 |||v|||ε , for all v ∈ V (Ωε). (53)

Proof. The existence of the constant c1 > 0 in (53) is obvious.
Since ∂Y ∗ has a Lipschitz boundary, there exists a linear and continuous operator P : H1(Y ∗) → H1(Y )

such that for all ψ ∈ H1(Y ∗) we have P(ψ) = ψ in Y ∗ and

‖P(ψ)‖L2(Y ) ≤ C̃‖ψ‖L2(Y ∗), ‖∇yP(ψ)‖L2(Y ;R2) ≤ C̃‖∇yψ‖L2(Y ∗;R2), (54)

for some constant C̃ > 0 that depends only on ∂Y ∗. Hence, for all u ∈ V (Ωε) extended by zero on Ω̃ε \Ωε, there
exists a function U ∈ H1

0 (Ω̃ε) such that U = u in Ωε and ‖∇xU‖L2(Ω̃ε;R2) ≤ C‖∇xu‖L2(Ωε;R2), where C > 0
does not depend on ε.

For v ∈ V (Ωε), let Vi and Wα be the extensions to H1
0 (Ω̃ε) of vi and ∂αv3 defined as above. Set X =

(V1, V2, V3,W1,W2) ∈ H1
0 (Ω̃ε; R5). In each cell ε(ξ + Y ∗) ⊆ Ω̃ε, ξ ∈ Z

2, we have

∑
i

‖∇xvi‖2
L2(ε(ξ+Y ∗);R2) ≤ C

⎛⎝∑
α,β

‖γαβ(v)‖2
L2(ε(ξ+Y ∗)) + ‖v‖2

L2(ε(ξ+Y ∗);R3)

⎞⎠ ,

∑
α

‖∇x(∂αv3)‖2
L2(ε(ξ+Y ∗);R2) ≤C

∑
α,β

‖ραβ(v)‖2
L2(ε(ξ+Y ∗)) + C

(
‖∇xv‖2

L2(ε(ξ+Y ∗);R3×R3) + ‖v‖2
L2(ε(ξ+Y ∗);R3)

)
,

where C > 0 does not depend on ε. This implies

‖∇xX‖2
L2(ε(ξ+Y ∗);R5×R5) ≤C1

∑
α,β

{
‖ραβ(v)‖2

L2(ε(ξ+Y ∗)) + ‖γαβ(v)‖2
L2(ε(ξ+Y ∗))

}
+ C1‖X‖2

L2(ε(ξ+Y ∗);R5).
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By virtue of (54) we deduce

‖∇xX‖2
L2(ε(ξ+Y );R5×R5) ≤C2

∑
α,β

{
‖ραβ(v)‖2

L2(ε(ξ+Y ∗)) + ‖γαβ(v)‖2
L2(ε(ξ+Y ∗))

}
+ C2‖X‖2

L2(ε(ξ+Y );R5),

for some C2 > 0 independent on ε.
Since Ω is bounded, without loosing the generality, one can assume that Ω̃ε ⊂ {x ∈ R

2; 0 < x1 < L}, for
some L > 0. In view of Lemma 6.1 it follows that

‖X‖2
H1(Ω;R5) ≤ C3

∑
α,β

{
‖ραβ(v)‖2

L2(Ωε) + ‖γαβ(v)‖2
L2(Ωε)

}
. (55)

Moreover, since Vi = vi and Wα = ∂αv3 in Ωε, from (55) we deduce

‖v1‖2
H1(Ωε) + ‖v2‖2

H1(Ωε) + ‖v3‖2
H2(Ωε) ≤ C3

∑
α,β

{
‖ραβ(v)‖2

L2(Ωε) + ‖γαβ(v)‖2
L2(Ωε)

}
.

This completes the proof. �
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[12] E. Dieulesaint and D. Royer, Ondes élastiques dans les solides, application au traitement du signal. Masson, Paris (1974).
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